rtc.c revision c68d07b2da54c941bb36c9d6d35fe8f263ee10ef
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 */
52
53#define RTC_VERSION		"1.12ac"
54
55/*
56 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 *	design of the RTC, we don't want two different things trying to
59 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 *	this driver.)
61 */
62
63#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/smp_lock.h>
77#include <linux/sysctl.h>
78#include <linux/wait.h>
79#include <linux/bcd.h>
80#include <linux/delay.h>
81#include <linux/smp_lock.h>
82#include <linux/uaccess.h>
83
84#include <asm/current.h>
85#include <asm/system.h>
86
87#ifdef CONFIG_X86
88#include <asm/hpet.h>
89#endif
90
91#ifdef CONFIG_SPARC32
92#include <linux/pci.h>
93#include <linux/jiffies.h>
94#include <asm/ebus.h>
95
96static unsigned long rtc_port;
97static int rtc_irq = PCI_IRQ_NONE;
98#endif
99
100#ifdef	CONFIG_HPET_RTC_IRQ
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec)	0
111#define hpet_set_periodic_freq(arg)		0
112#define hpet_mask_rtc_irq_bit(arg)		0
113#define hpet_set_rtc_irq_bit(arg)		0
114#define hpet_rtc_timer_init()			do { } while (0)
115#define hpet_rtc_dropped_irq()			0
116#define hpet_register_irq_handler(h)		({ 0; })
117#define hpet_unregister_irq_handler(h)		({ 0; })
118#ifdef RTC_IRQ
119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120{
121	return 0;
122}
123#endif
124#endif
125
126/*
127 *	We sponge a minor off of the misc major. No need slurping
128 *	up another valuable major dev number for this. If you add
129 *	an ioctl, make sure you don't conflict with SPARC's RTC
130 *	ioctls.
131 */
132
133static struct fasync_struct *rtc_async_queue;
134
135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137#ifdef RTC_IRQ
138static void rtc_dropped_irq(unsigned long data);
139
140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141#endif
142
143static ssize_t rtc_read(struct file *file, char __user *buf,
144			size_t count, loff_t *ppos);
145
146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147
148#ifdef RTC_IRQ
149static unsigned int rtc_poll(struct file *file, poll_table *wait);
150#endif
151
152static void get_rtc_alm_time(struct rtc_time *alm_tm);
153#ifdef RTC_IRQ
154static void set_rtc_irq_bit_locked(unsigned char bit);
155static void mask_rtc_irq_bit_locked(unsigned char bit);
156
157static inline void set_rtc_irq_bit(unsigned char bit)
158{
159	spin_lock_irq(&rtc_lock);
160	set_rtc_irq_bit_locked(bit);
161	spin_unlock_irq(&rtc_lock);
162}
163
164static void mask_rtc_irq_bit(unsigned char bit)
165{
166	spin_lock_irq(&rtc_lock);
167	mask_rtc_irq_bit_locked(bit);
168	spin_unlock_irq(&rtc_lock);
169}
170#endif
171
172#ifdef CONFIG_PROC_FS
173static int rtc_proc_open(struct inode *inode, struct file *file);
174#endif
175
176/*
177 *	Bits in rtc_status. (6 bits of room for future expansion)
178 */
179
180#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
181#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
182
183/*
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the big kernel lock. However, ioctl can still disable the timer
186 * in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
189 */
190static unsigned long rtc_status;	/* bitmapped status byte.	*/
191static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
192static unsigned long rtc_irq_data;	/* our output to the world	*/
193static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
194
195#ifdef RTC_IRQ
196/*
197 * rtc_task_lock nests inside rtc_lock.
198 */
199static DEFINE_SPINLOCK(rtc_task_lock);
200static rtc_task_t *rtc_callback;
201#endif
202
203/*
204 *	If this driver ever becomes modularised, it will be really nice
205 *	to make the epoch retain its value across module reload...
206 */
207
208static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
209
210static const unsigned char days_in_mo[] =
211{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212
213/*
214 * Returns true if a clock update is in progress
215 */
216static inline unsigned char rtc_is_updating(void)
217{
218	unsigned long flags;
219	unsigned char uip;
220
221	spin_lock_irqsave(&rtc_lock, flags);
222	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
223	spin_unlock_irqrestore(&rtc_lock, flags);
224	return uip;
225}
226
227#ifdef RTC_IRQ
228/*
229 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230 *	but there is possibility of conflicting with the set_rtc_mmss()
231 *	call (the rtc irq and the timer irq can easily run at the same
232 *	time in two different CPUs). So we need to serialize
233 *	accesses to the chip with the rtc_lock spinlock that each
234 *	architecture should implement in the timer code.
235 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 */
237
238irqreturn_t rtc_interrupt(int irq, void *dev_id)
239{
240	/*
241	 *	Can be an alarm interrupt, update complete interrupt,
242	 *	or a periodic interrupt. We store the status in the
243	 *	low byte and the number of interrupts received since
244	 *	the last read in the remainder of rtc_irq_data.
245	 */
246
247	spin_lock(&rtc_lock);
248	rtc_irq_data += 0x100;
249	rtc_irq_data &= ~0xff;
250	if (is_hpet_enabled()) {
251		/*
252		 * In this case it is HPET RTC interrupt handler
253		 * calling us, with the interrupt information
254		 * passed as arg1, instead of irq.
255		 */
256		rtc_irq_data |= (unsigned long)irq & 0xF0;
257	} else {
258		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259	}
260
261	if (rtc_status & RTC_TIMER_ON)
262		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
263
264	spin_unlock(&rtc_lock);
265
266	/* Now do the rest of the actions */
267	spin_lock(&rtc_task_lock);
268	if (rtc_callback)
269		rtc_callback->func(rtc_callback->private_data);
270	spin_unlock(&rtc_task_lock);
271	wake_up_interruptible(&rtc_wait);
272
273	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
274
275	return IRQ_HANDLED;
276}
277#endif
278
279/*
280 * sysctl-tuning infrastructure.
281 */
282static ctl_table rtc_table[] = {
283	{
284		.ctl_name	= CTL_UNNUMBERED,
285		.procname	= "max-user-freq",
286		.data		= &rtc_max_user_freq,
287		.maxlen		= sizeof(int),
288		.mode		= 0644,
289		.proc_handler	= &proc_dointvec,
290	},
291	{ .ctl_name = 0 }
292};
293
294static ctl_table rtc_root[] = {
295	{
296		.ctl_name	= CTL_UNNUMBERED,
297		.procname	= "rtc",
298		.mode		= 0555,
299		.child		= rtc_table,
300	},
301	{ .ctl_name = 0 }
302};
303
304static ctl_table dev_root[] = {
305	{
306		.ctl_name	= CTL_DEV,
307		.procname	= "dev",
308		.mode		= 0555,
309		.child		= rtc_root,
310	},
311	{ .ctl_name = 0 }
312};
313
314static struct ctl_table_header *sysctl_header;
315
316static int __init init_sysctl(void)
317{
318    sysctl_header = register_sysctl_table(dev_root);
319    return 0;
320}
321
322static void __exit cleanup_sysctl(void)
323{
324    unregister_sysctl_table(sysctl_header);
325}
326
327/*
328 *	Now all the various file operations that we export.
329 */
330
331static ssize_t rtc_read(struct file *file, char __user *buf,
332			size_t count, loff_t *ppos)
333{
334#ifndef RTC_IRQ
335	return -EIO;
336#else
337	DECLARE_WAITQUEUE(wait, current);
338	unsigned long data;
339	ssize_t retval;
340
341	if (rtc_has_irq == 0)
342		return -EIO;
343
344	/*
345	 * Historically this function used to assume that sizeof(unsigned long)
346	 * is the same in userspace and kernelspace.  This lead to problems
347	 * for configurations with multiple ABIs such a the MIPS o32 and 64
348	 * ABIs supported on the same kernel.  So now we support read of both
349	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350	 * userspace ABI.
351	 */
352	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
353		return -EINVAL;
354
355	add_wait_queue(&rtc_wait, &wait);
356
357	do {
358		/* First make it right. Then make it fast. Putting this whole
359		 * block within the parentheses of a while would be too
360		 * confusing. And no, xchg() is not the answer. */
361
362		__set_current_state(TASK_INTERRUPTIBLE);
363
364		spin_lock_irq(&rtc_lock);
365		data = rtc_irq_data;
366		rtc_irq_data = 0;
367		spin_unlock_irq(&rtc_lock);
368
369		if (data != 0)
370			break;
371
372		if (file->f_flags & O_NONBLOCK) {
373			retval = -EAGAIN;
374			goto out;
375		}
376		if (signal_pending(current)) {
377			retval = -ERESTARTSYS;
378			goto out;
379		}
380		schedule();
381	} while (1);
382
383	if (count == sizeof(unsigned int)) {
384		retval = put_user(data,
385				  (unsigned int __user *)buf) ?: sizeof(int);
386	} else {
387		retval = put_user(data,
388				  (unsigned long __user *)buf) ?: sizeof(long);
389	}
390	if (!retval)
391		retval = count;
392 out:
393	__set_current_state(TASK_RUNNING);
394	remove_wait_queue(&rtc_wait, &wait);
395
396	return retval;
397#endif
398}
399
400static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401{
402	struct rtc_time wtime;
403
404#ifdef RTC_IRQ
405	if (rtc_has_irq == 0) {
406		switch (cmd) {
407		case RTC_AIE_OFF:
408		case RTC_AIE_ON:
409		case RTC_PIE_OFF:
410		case RTC_PIE_ON:
411		case RTC_UIE_OFF:
412		case RTC_UIE_ON:
413		case RTC_IRQP_READ:
414		case RTC_IRQP_SET:
415			return -EINVAL;
416		};
417	}
418#endif
419
420	switch (cmd) {
421#ifdef RTC_IRQ
422	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
423	{
424		mask_rtc_irq_bit(RTC_AIE);
425		return 0;
426	}
427	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
428	{
429		set_rtc_irq_bit(RTC_AIE);
430		return 0;
431	}
432	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
433	{
434		/* can be called from isr via rtc_control() */
435		unsigned long flags;
436
437		spin_lock_irqsave(&rtc_lock, flags);
438		mask_rtc_irq_bit_locked(RTC_PIE);
439		if (rtc_status & RTC_TIMER_ON) {
440			rtc_status &= ~RTC_TIMER_ON;
441			del_timer(&rtc_irq_timer);
442		}
443		spin_unlock_irqrestore(&rtc_lock, flags);
444
445		return 0;
446	}
447	case RTC_PIE_ON:	/* Allow periodic ints		*/
448	{
449		/* can be called from isr via rtc_control() */
450		unsigned long flags;
451
452		/*
453		 * We don't really want Joe User enabling more
454		 * than 64Hz of interrupts on a multi-user machine.
455		 */
456		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
457						(!capable(CAP_SYS_RESOURCE)))
458			return -EACCES;
459
460		spin_lock_irqsave(&rtc_lock, flags);
461		if (!(rtc_status & RTC_TIMER_ON)) {
462			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463					2*HZ/100);
464			rtc_status |= RTC_TIMER_ON;
465		}
466		set_rtc_irq_bit_locked(RTC_PIE);
467		spin_unlock_irqrestore(&rtc_lock, flags);
468
469		return 0;
470	}
471	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
472	{
473		mask_rtc_irq_bit(RTC_UIE);
474		return 0;
475	}
476	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
477	{
478		set_rtc_irq_bit(RTC_UIE);
479		return 0;
480	}
481#endif
482	case RTC_ALM_READ:	/* Read the present alarm time */
483	{
484		/*
485		 * This returns a struct rtc_time. Reading >= 0xc0
486		 * means "don't care" or "match all". Only the tm_hour,
487		 * tm_min, and tm_sec values are filled in.
488		 */
489		memset(&wtime, 0, sizeof(struct rtc_time));
490		get_rtc_alm_time(&wtime);
491		break;
492	}
493	case RTC_ALM_SET:	/* Store a time into the alarm */
494	{
495		/*
496		 * This expects a struct rtc_time. Writing 0xff means
497		 * "don't care" or "match all". Only the tm_hour,
498		 * tm_min and tm_sec are used.
499		 */
500		unsigned char hrs, min, sec;
501		struct rtc_time alm_tm;
502
503		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504				   sizeof(struct rtc_time)))
505			return -EFAULT;
506
507		hrs = alm_tm.tm_hour;
508		min = alm_tm.tm_min;
509		sec = alm_tm.tm_sec;
510
511		spin_lock_irq(&rtc_lock);
512		if (hpet_set_alarm_time(hrs, min, sec)) {
513			/*
514			 * Fallthru and set alarm time in CMOS too,
515			 * so that we will get proper value in RTC_ALM_READ
516			 */
517		}
518		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
519							RTC_ALWAYS_BCD) {
520			if (sec < 60)
521				BIN_TO_BCD(sec);
522			else
523				sec = 0xff;
524
525			if (min < 60)
526				BIN_TO_BCD(min);
527			else
528				min = 0xff;
529
530			if (hrs < 24)
531				BIN_TO_BCD(hrs);
532			else
533				hrs = 0xff;
534		}
535		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536		CMOS_WRITE(min, RTC_MINUTES_ALARM);
537		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538		spin_unlock_irq(&rtc_lock);
539
540		return 0;
541	}
542	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
543	{
544		memset(&wtime, 0, sizeof(struct rtc_time));
545		rtc_get_rtc_time(&wtime);
546		break;
547	}
548	case RTC_SET_TIME:	/* Set the RTC */
549	{
550		struct rtc_time rtc_tm;
551		unsigned char mon, day, hrs, min, sec, leap_yr;
552		unsigned char save_control, save_freq_select;
553		unsigned int yrs;
554#ifdef CONFIG_MACH_DECSTATION
555		unsigned int real_yrs;
556#endif
557
558		if (!capable(CAP_SYS_TIME))
559			return -EACCES;
560
561		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562				   sizeof(struct rtc_time)))
563			return -EFAULT;
564
565		yrs = rtc_tm.tm_year + 1900;
566		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
567		day = rtc_tm.tm_mday;
568		hrs = rtc_tm.tm_hour;
569		min = rtc_tm.tm_min;
570		sec = rtc_tm.tm_sec;
571
572		if (yrs < 1970)
573			return -EINVAL;
574
575		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
576
577		if ((mon > 12) || (day == 0))
578			return -EINVAL;
579
580		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581			return -EINVAL;
582
583		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584			return -EINVAL;
585
586		yrs -= epoch;
587		if (yrs > 255)		/* They are unsigned */
588			return -EINVAL;
589
590		spin_lock_irq(&rtc_lock);
591#ifdef CONFIG_MACH_DECSTATION
592		real_yrs = yrs;
593		yrs = 72;
594
595		/*
596		 * We want to keep the year set to 73 until March
597		 * for non-leap years, so that Feb, 29th is handled
598		 * correctly.
599		 */
600		if (!leap_yr && mon < 3) {
601			real_yrs--;
602			yrs = 73;
603		}
604#endif
605		/* These limits and adjustments are independent of
606		 * whether the chip is in binary mode or not.
607		 */
608		if (yrs > 169) {
609			spin_unlock_irq(&rtc_lock);
610			return -EINVAL;
611		}
612		if (yrs >= 100)
613			yrs -= 100;
614
615		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616		    || RTC_ALWAYS_BCD) {
617			BIN_TO_BCD(sec);
618			BIN_TO_BCD(min);
619			BIN_TO_BCD(hrs);
620			BIN_TO_BCD(day);
621			BIN_TO_BCD(mon);
622			BIN_TO_BCD(yrs);
623		}
624
625		save_control = CMOS_READ(RTC_CONTROL);
626		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
629
630#ifdef CONFIG_MACH_DECSTATION
631		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632#endif
633		CMOS_WRITE(yrs, RTC_YEAR);
634		CMOS_WRITE(mon, RTC_MONTH);
635		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636		CMOS_WRITE(hrs, RTC_HOURS);
637		CMOS_WRITE(min, RTC_MINUTES);
638		CMOS_WRITE(sec, RTC_SECONDS);
639
640		CMOS_WRITE(save_control, RTC_CONTROL);
641		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
642
643		spin_unlock_irq(&rtc_lock);
644		return 0;
645	}
646#ifdef RTC_IRQ
647	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
648	{
649		return put_user(rtc_freq, (unsigned long __user *)arg);
650	}
651	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
652	{
653		int tmp = 0;
654		unsigned char val;
655		/* can be called from isr via rtc_control() */
656		unsigned long flags;
657
658		/*
659		 * The max we can do is 8192Hz.
660		 */
661		if ((arg < 2) || (arg > 8192))
662			return -EINVAL;
663		/*
664		 * We don't really want Joe User generating more
665		 * than 64Hz of interrupts on a multi-user machine.
666		 */
667		if (!kernel && (arg > rtc_max_user_freq) &&
668					!capable(CAP_SYS_RESOURCE))
669			return -EACCES;
670
671		while (arg > (1<<tmp))
672			tmp++;
673
674		/*
675		 * Check that the input was really a power of 2.
676		 */
677		if (arg != (1<<tmp))
678			return -EINVAL;
679
680		rtc_freq = arg;
681
682		spin_lock_irqsave(&rtc_lock, flags);
683		if (hpet_set_periodic_freq(arg)) {
684			spin_unlock_irqrestore(&rtc_lock, flags);
685			return 0;
686		}
687
688		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689		val |= (16 - tmp);
690		CMOS_WRITE(val, RTC_FREQ_SELECT);
691		spin_unlock_irqrestore(&rtc_lock, flags);
692		return 0;
693	}
694#endif
695	case RTC_EPOCH_READ:	/* Read the epoch.	*/
696	{
697		return put_user(epoch, (unsigned long __user *)arg);
698	}
699	case RTC_EPOCH_SET:	/* Set the epoch.	*/
700	{
701		/*
702		 * There were no RTC clocks before 1900.
703		 */
704		if (arg < 1900)
705			return -EINVAL;
706
707		if (!capable(CAP_SYS_TIME))
708			return -EACCES;
709
710		epoch = arg;
711		return 0;
712	}
713	default:
714		return -ENOTTY;
715	}
716	return copy_to_user((void __user *)arg,
717			    &wtime, sizeof wtime) ? -EFAULT : 0;
718}
719
720static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
721{
722	long ret;
723	lock_kernel();
724	ret = rtc_do_ioctl(cmd, arg, 0);
725	unlock_kernel();
726	return ret;
727}
728
729/*
730 *	We enforce only one user at a time here with the open/close.
731 *	Also clear the previous interrupt data on an open, and clean
732 *	up things on a close.
733 */
734
735/* We use rtc_lock to protect against concurrent opens. So the BKL is not
736 * needed here. Or anywhere else in this driver. */
737static int rtc_open(struct inode *inode, struct file *file)
738{
739	lock_kernel();
740	spin_lock_irq(&rtc_lock);
741
742	if (rtc_status & RTC_IS_OPEN)
743		goto out_busy;
744
745	rtc_status |= RTC_IS_OPEN;
746
747	rtc_irq_data = 0;
748	spin_unlock_irq(&rtc_lock);
749	unlock_kernel();
750	return 0;
751
752out_busy:
753	spin_unlock_irq(&rtc_lock);
754	unlock_kernel();
755	return -EBUSY;
756}
757
758static int rtc_fasync(int fd, struct file *filp, int on)
759{
760	return fasync_helper(fd, filp, on, &rtc_async_queue);
761}
762
763static int rtc_release(struct inode *inode, struct file *file)
764{
765#ifdef RTC_IRQ
766	unsigned char tmp;
767
768	if (rtc_has_irq == 0)
769		goto no_irq;
770
771	/*
772	 * Turn off all interrupts once the device is no longer
773	 * in use, and clear the data.
774	 */
775
776	spin_lock_irq(&rtc_lock);
777	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
778		tmp = CMOS_READ(RTC_CONTROL);
779		tmp &=  ~RTC_PIE;
780		tmp &=  ~RTC_AIE;
781		tmp &=  ~RTC_UIE;
782		CMOS_WRITE(tmp, RTC_CONTROL);
783		CMOS_READ(RTC_INTR_FLAGS);
784	}
785	if (rtc_status & RTC_TIMER_ON) {
786		rtc_status &= ~RTC_TIMER_ON;
787		del_timer(&rtc_irq_timer);
788	}
789	spin_unlock_irq(&rtc_lock);
790
791	if (file->f_flags & FASYNC)
792		rtc_fasync(-1, file, 0);
793no_irq:
794#endif
795
796	spin_lock_irq(&rtc_lock);
797	rtc_irq_data = 0;
798	rtc_status &= ~RTC_IS_OPEN;
799	spin_unlock_irq(&rtc_lock);
800
801	return 0;
802}
803
804#ifdef RTC_IRQ
805/* Called without the kernel lock - fine */
806static unsigned int rtc_poll(struct file *file, poll_table *wait)
807{
808	unsigned long l;
809
810	if (rtc_has_irq == 0)
811		return 0;
812
813	poll_wait(file, &rtc_wait, wait);
814
815	spin_lock_irq(&rtc_lock);
816	l = rtc_irq_data;
817	spin_unlock_irq(&rtc_lock);
818
819	if (l != 0)
820		return POLLIN | POLLRDNORM;
821	return 0;
822}
823#endif
824
825int rtc_register(rtc_task_t *task)
826{
827#ifndef RTC_IRQ
828	return -EIO;
829#else
830	if (task == NULL || task->func == NULL)
831		return -EINVAL;
832	spin_lock_irq(&rtc_lock);
833	if (rtc_status & RTC_IS_OPEN) {
834		spin_unlock_irq(&rtc_lock);
835		return -EBUSY;
836	}
837	spin_lock(&rtc_task_lock);
838	if (rtc_callback) {
839		spin_unlock(&rtc_task_lock);
840		spin_unlock_irq(&rtc_lock);
841		return -EBUSY;
842	}
843	rtc_status |= RTC_IS_OPEN;
844	rtc_callback = task;
845	spin_unlock(&rtc_task_lock);
846	spin_unlock_irq(&rtc_lock);
847	return 0;
848#endif
849}
850EXPORT_SYMBOL(rtc_register);
851
852int rtc_unregister(rtc_task_t *task)
853{
854#ifndef RTC_IRQ
855	return -EIO;
856#else
857	unsigned char tmp;
858
859	spin_lock_irq(&rtc_lock);
860	spin_lock(&rtc_task_lock);
861	if (rtc_callback != task) {
862		spin_unlock(&rtc_task_lock);
863		spin_unlock_irq(&rtc_lock);
864		return -ENXIO;
865	}
866	rtc_callback = NULL;
867
868	/* disable controls */
869	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
870		tmp = CMOS_READ(RTC_CONTROL);
871		tmp &= ~RTC_PIE;
872		tmp &= ~RTC_AIE;
873		tmp &= ~RTC_UIE;
874		CMOS_WRITE(tmp, RTC_CONTROL);
875		CMOS_READ(RTC_INTR_FLAGS);
876	}
877	if (rtc_status & RTC_TIMER_ON) {
878		rtc_status &= ~RTC_TIMER_ON;
879		del_timer(&rtc_irq_timer);
880	}
881	rtc_status &= ~RTC_IS_OPEN;
882	spin_unlock(&rtc_task_lock);
883	spin_unlock_irq(&rtc_lock);
884	return 0;
885#endif
886}
887EXPORT_SYMBOL(rtc_unregister);
888
889int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
890{
891#ifndef RTC_IRQ
892	return -EIO;
893#else
894	unsigned long flags;
895	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
896		return -EINVAL;
897	spin_lock_irqsave(&rtc_task_lock, flags);
898	if (rtc_callback != task) {
899		spin_unlock_irqrestore(&rtc_task_lock, flags);
900		return -ENXIO;
901	}
902	spin_unlock_irqrestore(&rtc_task_lock, flags);
903	return rtc_do_ioctl(cmd, arg, 1);
904#endif
905}
906EXPORT_SYMBOL(rtc_control);
907
908/*
909 *	The various file operations we support.
910 */
911
912static const struct file_operations rtc_fops = {
913	.owner		= THIS_MODULE,
914	.llseek		= no_llseek,
915	.read		= rtc_read,
916#ifdef RTC_IRQ
917	.poll		= rtc_poll,
918#endif
919	.unlocked_ioctl	= rtc_ioctl,
920	.open		= rtc_open,
921	.release	= rtc_release,
922	.fasync		= rtc_fasync,
923};
924
925static struct miscdevice rtc_dev = {
926	.minor		= RTC_MINOR,
927	.name		= "rtc",
928	.fops		= &rtc_fops,
929};
930
931#ifdef CONFIG_PROC_FS
932static const struct file_operations rtc_proc_fops = {
933	.owner		= THIS_MODULE,
934	.open		= rtc_proc_open,
935	.read		= seq_read,
936	.llseek		= seq_lseek,
937	.release	= single_release,
938};
939#endif
940
941static resource_size_t rtc_size;
942
943static struct resource * __init rtc_request_region(resource_size_t size)
944{
945	struct resource *r;
946
947	if (RTC_IOMAPPED)
948		r = request_region(RTC_PORT(0), size, "rtc");
949	else
950		r = request_mem_region(RTC_PORT(0), size, "rtc");
951
952	if (r)
953		rtc_size = size;
954
955	return r;
956}
957
958static void rtc_release_region(void)
959{
960	if (RTC_IOMAPPED)
961		release_region(RTC_PORT(0), rtc_size);
962	else
963		release_mem_region(RTC_PORT(0), rtc_size);
964}
965
966static int __init rtc_init(void)
967{
968#ifdef CONFIG_PROC_FS
969	struct proc_dir_entry *ent;
970#endif
971#if defined(__alpha__) || defined(__mips__)
972	unsigned int year, ctrl;
973	char *guess = NULL;
974#endif
975#ifdef CONFIG_SPARC32
976	struct linux_ebus *ebus;
977	struct linux_ebus_device *edev;
978#else
979	void *r;
980#ifdef RTC_IRQ
981	irq_handler_t rtc_int_handler_ptr;
982#endif
983#endif
984
985#ifdef CONFIG_SPARC32
986	for_each_ebus(ebus) {
987		for_each_ebusdev(edev, ebus) {
988			if (strcmp(edev->prom_node->name, "rtc") == 0) {
989				rtc_port = edev->resource[0].start;
990				rtc_irq = edev->irqs[0];
991				goto found;
992			}
993		}
994	}
995	rtc_has_irq = 0;
996	printk(KERN_ERR "rtc_init: no PC rtc found\n");
997	return -EIO;
998
999found:
1000	if (rtc_irq == PCI_IRQ_NONE) {
1001		rtc_has_irq = 0;
1002		goto no_irq;
1003	}
1004
1005	/*
1006	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1007	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1008	 */
1009	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1010			(void *)&rtc_port)) {
1011		rtc_has_irq = 0;
1012		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1013		return -EIO;
1014	}
1015no_irq:
1016#else
1017	r = rtc_request_region(RTC_IO_EXTENT);
1018
1019	/*
1020	 * If we've already requested a smaller range (for example, because
1021	 * PNPBIOS or ACPI told us how the device is configured), the request
1022	 * above might fail because it's too big.
1023	 *
1024	 * If so, request just the range we actually use.
1025	 */
1026	if (!r)
1027		r = rtc_request_region(RTC_IO_EXTENT_USED);
1028	if (!r) {
1029#ifdef RTC_IRQ
1030		rtc_has_irq = 0;
1031#endif
1032		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1033		       (long)(RTC_PORT(0)));
1034		return -EIO;
1035	}
1036
1037#ifdef RTC_IRQ
1038	if (is_hpet_enabled()) {
1039		int err;
1040
1041		rtc_int_handler_ptr = hpet_rtc_interrupt;
1042		err = hpet_register_irq_handler(rtc_interrupt);
1043		if (err != 0) {
1044			printk(KERN_WARNING "hpet_register_irq_handler failed "
1045					"in rtc_init().");
1046			return err;
1047		}
1048	} else {
1049		rtc_int_handler_ptr = rtc_interrupt;
1050	}
1051
1052	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1053			"rtc", NULL)) {
1054		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1055		rtc_has_irq = 0;
1056		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1057		rtc_release_region();
1058
1059		return -EIO;
1060	}
1061	hpet_rtc_timer_init();
1062
1063#endif
1064
1065#endif /* CONFIG_SPARC32 vs. others */
1066
1067	if (misc_register(&rtc_dev)) {
1068#ifdef RTC_IRQ
1069		free_irq(RTC_IRQ, NULL);
1070		hpet_unregister_irq_handler(rtc_interrupt);
1071		rtc_has_irq = 0;
1072#endif
1073		rtc_release_region();
1074		return -ENODEV;
1075	}
1076
1077#ifdef CONFIG_PROC_FS
1078	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1079	if (!ent)
1080		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1081#endif
1082
1083#if defined(__alpha__) || defined(__mips__)
1084	rtc_freq = HZ;
1085
1086	/* Each operating system on an Alpha uses its own epoch.
1087	   Let's try to guess which one we are using now. */
1088
1089	if (rtc_is_updating() != 0)
1090		msleep(20);
1091
1092	spin_lock_irq(&rtc_lock);
1093	year = CMOS_READ(RTC_YEAR);
1094	ctrl = CMOS_READ(RTC_CONTROL);
1095	spin_unlock_irq(&rtc_lock);
1096
1097	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1098		BCD_TO_BIN(year);       /* This should never happen... */
1099
1100	if (year < 20) {
1101		epoch = 2000;
1102		guess = "SRM (post-2000)";
1103	} else if (year >= 20 && year < 48) {
1104		epoch = 1980;
1105		guess = "ARC console";
1106	} else if (year >= 48 && year < 72) {
1107		epoch = 1952;
1108		guess = "Digital UNIX";
1109#if defined(__mips__)
1110	} else if (year >= 72 && year < 74) {
1111		epoch = 2000;
1112		guess = "Digital DECstation";
1113#else
1114	} else if (year >= 70) {
1115		epoch = 1900;
1116		guess = "Standard PC (1900)";
1117#endif
1118	}
1119	if (guess)
1120		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1121			guess, epoch);
1122#endif
1123#ifdef RTC_IRQ
1124	if (rtc_has_irq == 0)
1125		goto no_irq2;
1126
1127	spin_lock_irq(&rtc_lock);
1128	rtc_freq = 1024;
1129	if (!hpet_set_periodic_freq(rtc_freq)) {
1130		/*
1131		 * Initialize periodic frequency to CMOS reset default,
1132		 * which is 1024Hz
1133		 */
1134		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1135			   RTC_FREQ_SELECT);
1136	}
1137	spin_unlock_irq(&rtc_lock);
1138no_irq2:
1139#endif
1140
1141	(void) init_sysctl();
1142
1143	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1144
1145	return 0;
1146}
1147
1148static void __exit rtc_exit(void)
1149{
1150	cleanup_sysctl();
1151	remove_proc_entry("driver/rtc", NULL);
1152	misc_deregister(&rtc_dev);
1153
1154#ifdef CONFIG_SPARC32
1155	if (rtc_has_irq)
1156		free_irq(rtc_irq, &rtc_port);
1157#else
1158	rtc_release_region();
1159#ifdef RTC_IRQ
1160	if (rtc_has_irq) {
1161		free_irq(RTC_IRQ, NULL);
1162		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1163	}
1164#endif
1165#endif /* CONFIG_SPARC32 */
1166}
1167
1168module_init(rtc_init);
1169module_exit(rtc_exit);
1170
1171#ifdef RTC_IRQ
1172/*
1173 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1174 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1175 *	Since the interrupt handler doesn't get called, the IRQ status
1176 *	byte doesn't get read, and the RTC stops generating interrupts.
1177 *	A timer is set, and will call this function if/when that happens.
1178 *	To get it out of this stalled state, we just read the status.
1179 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1180 *	(You *really* shouldn't be trying to use a non-realtime system
1181 *	for something that requires a steady > 1KHz signal anyways.)
1182 */
1183
1184static void rtc_dropped_irq(unsigned long data)
1185{
1186	unsigned long freq;
1187
1188	spin_lock_irq(&rtc_lock);
1189
1190	if (hpet_rtc_dropped_irq()) {
1191		spin_unlock_irq(&rtc_lock);
1192		return;
1193	}
1194
1195	/* Just in case someone disabled the timer from behind our back... */
1196	if (rtc_status & RTC_TIMER_ON)
1197		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1198
1199	rtc_irq_data += ((rtc_freq/HZ)<<8);
1200	rtc_irq_data &= ~0xff;
1201	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1202
1203	freq = rtc_freq;
1204
1205	spin_unlock_irq(&rtc_lock);
1206
1207	if (printk_ratelimit()) {
1208		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1209			freq);
1210	}
1211
1212	/* Now we have new data */
1213	wake_up_interruptible(&rtc_wait);
1214
1215	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1216}
1217#endif
1218
1219#ifdef CONFIG_PROC_FS
1220/*
1221 *	Info exported via "/proc/driver/rtc".
1222 */
1223
1224static int rtc_proc_show(struct seq_file *seq, void *v)
1225{
1226#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1227#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1228	struct rtc_time tm;
1229	unsigned char batt, ctrl;
1230	unsigned long freq;
1231
1232	spin_lock_irq(&rtc_lock);
1233	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1234	ctrl = CMOS_READ(RTC_CONTROL);
1235	freq = rtc_freq;
1236	spin_unlock_irq(&rtc_lock);
1237
1238
1239	rtc_get_rtc_time(&tm);
1240
1241	/*
1242	 * There is no way to tell if the luser has the RTC set for local
1243	 * time or for Universal Standard Time (GMT). Probably local though.
1244	 */
1245	seq_printf(seq,
1246		   "rtc_time\t: %02d:%02d:%02d\n"
1247		   "rtc_date\t: %04d-%02d-%02d\n"
1248		   "rtc_epoch\t: %04lu\n",
1249		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1250		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1251
1252	get_rtc_alm_time(&tm);
1253
1254	/*
1255	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1256	 * match any value for that particular field. Values that are
1257	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1258	 */
1259	seq_puts(seq, "alarm\t\t: ");
1260	if (tm.tm_hour <= 24)
1261		seq_printf(seq, "%02d:", tm.tm_hour);
1262	else
1263		seq_puts(seq, "**:");
1264
1265	if (tm.tm_min <= 59)
1266		seq_printf(seq, "%02d:", tm.tm_min);
1267	else
1268		seq_puts(seq, "**:");
1269
1270	if (tm.tm_sec <= 59)
1271		seq_printf(seq, "%02d\n", tm.tm_sec);
1272	else
1273		seq_puts(seq, "**\n");
1274
1275	seq_printf(seq,
1276		   "DST_enable\t: %s\n"
1277		   "BCD\t\t: %s\n"
1278		   "24hr\t\t: %s\n"
1279		   "square_wave\t: %s\n"
1280		   "alarm_IRQ\t: %s\n"
1281		   "update_IRQ\t: %s\n"
1282		   "periodic_IRQ\t: %s\n"
1283		   "periodic_freq\t: %ld\n"
1284		   "batt_status\t: %s\n",
1285		   YN(RTC_DST_EN),
1286		   NY(RTC_DM_BINARY),
1287		   YN(RTC_24H),
1288		   YN(RTC_SQWE),
1289		   YN(RTC_AIE),
1290		   YN(RTC_UIE),
1291		   YN(RTC_PIE),
1292		   freq,
1293		   batt ? "okay" : "dead");
1294
1295	return  0;
1296#undef YN
1297#undef NY
1298}
1299
1300static int rtc_proc_open(struct inode *inode, struct file *file)
1301{
1302	return single_open(file, rtc_proc_show, NULL);
1303}
1304#endif
1305
1306void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1307{
1308	unsigned long uip_watchdog = jiffies, flags;
1309	unsigned char ctrl;
1310#ifdef CONFIG_MACH_DECSTATION
1311	unsigned int real_year;
1312#endif
1313
1314	/*
1315	 * read RTC once any update in progress is done. The update
1316	 * can take just over 2ms. We wait 20ms. There is no need to
1317	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1318	 * If you need to know *exactly* when a second has started, enable
1319	 * periodic update complete interrupts, (via ioctl) and then
1320	 * immediately read /dev/rtc which will block until you get the IRQ.
1321	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1322	 */
1323
1324	while (rtc_is_updating() != 0 &&
1325	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1326		cpu_relax();
1327
1328	/*
1329	 * Only the values that we read from the RTC are set. We leave
1330	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1331	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1332	 * only updated by the RTC when initially set to a non-zero value.
1333	 */
1334	spin_lock_irqsave(&rtc_lock, flags);
1335	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1336	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1337	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1338	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1339	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1340	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1341	/* Only set from 2.6.16 onwards */
1342	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1343
1344#ifdef CONFIG_MACH_DECSTATION
1345	real_year = CMOS_READ(RTC_DEC_YEAR);
1346#endif
1347	ctrl = CMOS_READ(RTC_CONTROL);
1348	spin_unlock_irqrestore(&rtc_lock, flags);
1349
1350	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1351		BCD_TO_BIN(rtc_tm->tm_sec);
1352		BCD_TO_BIN(rtc_tm->tm_min);
1353		BCD_TO_BIN(rtc_tm->tm_hour);
1354		BCD_TO_BIN(rtc_tm->tm_mday);
1355		BCD_TO_BIN(rtc_tm->tm_mon);
1356		BCD_TO_BIN(rtc_tm->tm_year);
1357		BCD_TO_BIN(rtc_tm->tm_wday);
1358	}
1359
1360#ifdef CONFIG_MACH_DECSTATION
1361	rtc_tm->tm_year += real_year - 72;
1362#endif
1363
1364	/*
1365	 * Account for differences between how the RTC uses the values
1366	 * and how they are defined in a struct rtc_time;
1367	 */
1368	rtc_tm->tm_year += epoch - 1900;
1369	if (rtc_tm->tm_year <= 69)
1370		rtc_tm->tm_year += 100;
1371
1372	rtc_tm->tm_mon--;
1373}
1374
1375static void get_rtc_alm_time(struct rtc_time *alm_tm)
1376{
1377	unsigned char ctrl;
1378
1379	/*
1380	 * Only the values that we read from the RTC are set. That
1381	 * means only tm_hour, tm_min, and tm_sec.
1382	 */
1383	spin_lock_irq(&rtc_lock);
1384	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1385	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1386	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1387	ctrl = CMOS_READ(RTC_CONTROL);
1388	spin_unlock_irq(&rtc_lock);
1389
1390	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1391		BCD_TO_BIN(alm_tm->tm_sec);
1392		BCD_TO_BIN(alm_tm->tm_min);
1393		BCD_TO_BIN(alm_tm->tm_hour);
1394	}
1395}
1396
1397#ifdef RTC_IRQ
1398/*
1399 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1400 * Rumour has it that if you frob the interrupt enable/disable
1401 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1402 * ensure you actually start getting interrupts. Probably for
1403 * compatibility with older/broken chipset RTC implementations.
1404 * We also clear out any old irq data after an ioctl() that
1405 * meddles with the interrupt enable/disable bits.
1406 */
1407
1408static void mask_rtc_irq_bit_locked(unsigned char bit)
1409{
1410	unsigned char val;
1411
1412	if (hpet_mask_rtc_irq_bit(bit))
1413		return;
1414	val = CMOS_READ(RTC_CONTROL);
1415	val &=  ~bit;
1416	CMOS_WRITE(val, RTC_CONTROL);
1417	CMOS_READ(RTC_INTR_FLAGS);
1418
1419	rtc_irq_data = 0;
1420}
1421
1422static void set_rtc_irq_bit_locked(unsigned char bit)
1423{
1424	unsigned char val;
1425
1426	if (hpet_set_rtc_irq_bit(bit))
1427		return;
1428	val = CMOS_READ(RTC_CONTROL);
1429	val |= bit;
1430	CMOS_WRITE(val, RTC_CONTROL);
1431	CMOS_READ(RTC_INTR_FLAGS);
1432
1433	rtc_irq_data = 0;
1434}
1435#endif
1436
1437MODULE_AUTHOR("Paul Gortmaker");
1438MODULE_LICENSE("GPL");
1439MODULE_ALIAS_MISCDEV(RTC_MINOR);
1440