clk.c revision 1cdf8ee2f88bbc14c697a0b8a2f25f58ed57d591
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24#include "clk.h"
25
26static DEFINE_SPINLOCK(enable_lock);
27static DEFINE_MUTEX(prepare_lock);
28
29static struct task_struct *prepare_owner;
30static struct task_struct *enable_owner;
31
32static int prepare_refcnt;
33static int enable_refcnt;
34
35static HLIST_HEAD(clk_root_list);
36static HLIST_HEAD(clk_orphan_list);
37static LIST_HEAD(clk_notifier_list);
38
39/***           locking             ***/
40static void clk_prepare_lock(void)
41{
42	if (!mutex_trylock(&prepare_lock)) {
43		if (prepare_owner == current) {
44			prepare_refcnt++;
45			return;
46		}
47		mutex_lock(&prepare_lock);
48	}
49	WARN_ON_ONCE(prepare_owner != NULL);
50	WARN_ON_ONCE(prepare_refcnt != 0);
51	prepare_owner = current;
52	prepare_refcnt = 1;
53}
54
55static void clk_prepare_unlock(void)
56{
57	WARN_ON_ONCE(prepare_owner != current);
58	WARN_ON_ONCE(prepare_refcnt == 0);
59
60	if (--prepare_refcnt)
61		return;
62	prepare_owner = NULL;
63	mutex_unlock(&prepare_lock);
64}
65
66static unsigned long clk_enable_lock(void)
67{
68	unsigned long flags;
69
70	if (!spin_trylock_irqsave(&enable_lock, flags)) {
71		if (enable_owner == current) {
72			enable_refcnt++;
73			return flags;
74		}
75		spin_lock_irqsave(&enable_lock, flags);
76	}
77	WARN_ON_ONCE(enable_owner != NULL);
78	WARN_ON_ONCE(enable_refcnt != 0);
79	enable_owner = current;
80	enable_refcnt = 1;
81	return flags;
82}
83
84static void clk_enable_unlock(unsigned long flags)
85{
86	WARN_ON_ONCE(enable_owner != current);
87	WARN_ON_ONCE(enable_refcnt == 0);
88
89	if (--enable_refcnt)
90		return;
91	enable_owner = NULL;
92	spin_unlock_irqrestore(&enable_lock, flags);
93}
94
95/***        debugfs support        ***/
96
97#ifdef CONFIG_DEBUG_FS
98#include <linux/debugfs.h>
99
100static struct dentry *rootdir;
101static struct dentry *orphandir;
102static int inited = 0;
103
104static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105{
106	if (!c)
107		return;
108
109	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu\n",
110		   level * 3 + 1, "",
111		   30 - level * 3, c->name,
112		   c->enable_count, c->prepare_count, clk_get_rate(c),
113		   clk_get_accuracy(c));
114}
115
116static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
117				     int level)
118{
119	struct clk *child;
120
121	if (!c)
122		return;
123
124	clk_summary_show_one(s, c, level);
125
126	hlist_for_each_entry(child, &c->children, child_node)
127		clk_summary_show_subtree(s, child, level + 1);
128}
129
130static int clk_summary_show(struct seq_file *s, void *data)
131{
132	struct clk *c;
133
134	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy\n");
135	seq_puts(s, "--------------------------------------------------------------------------------\n");
136
137	clk_prepare_lock();
138
139	hlist_for_each_entry(c, &clk_root_list, child_node)
140		clk_summary_show_subtree(s, c, 0);
141
142	hlist_for_each_entry(c, &clk_orphan_list, child_node)
143		clk_summary_show_subtree(s, c, 0);
144
145	clk_prepare_unlock();
146
147	return 0;
148}
149
150
151static int clk_summary_open(struct inode *inode, struct file *file)
152{
153	return single_open(file, clk_summary_show, inode->i_private);
154}
155
156static const struct file_operations clk_summary_fops = {
157	.open		= clk_summary_open,
158	.read		= seq_read,
159	.llseek		= seq_lseek,
160	.release	= single_release,
161};
162
163static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
164{
165	if (!c)
166		return;
167
168	seq_printf(s, "\"%s\": { ", c->name);
169	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
170	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
171	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
172	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
173}
174
175static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
176{
177	struct clk *child;
178
179	if (!c)
180		return;
181
182	clk_dump_one(s, c, level);
183
184	hlist_for_each_entry(child, &c->children, child_node) {
185		seq_printf(s, ",");
186		clk_dump_subtree(s, child, level + 1);
187	}
188
189	seq_printf(s, "}");
190}
191
192static int clk_dump(struct seq_file *s, void *data)
193{
194	struct clk *c;
195	bool first_node = true;
196
197	seq_printf(s, "{");
198
199	clk_prepare_lock();
200
201	hlist_for_each_entry(c, &clk_root_list, child_node) {
202		if (!first_node)
203			seq_printf(s, ",");
204		first_node = false;
205		clk_dump_subtree(s, c, 0);
206	}
207
208	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
209		seq_printf(s, ",");
210		clk_dump_subtree(s, c, 0);
211	}
212
213	clk_prepare_unlock();
214
215	seq_printf(s, "}");
216	return 0;
217}
218
219
220static int clk_dump_open(struct inode *inode, struct file *file)
221{
222	return single_open(file, clk_dump, inode->i_private);
223}
224
225static const struct file_operations clk_dump_fops = {
226	.open		= clk_dump_open,
227	.read		= seq_read,
228	.llseek		= seq_lseek,
229	.release	= single_release,
230};
231
232/* caller must hold prepare_lock */
233static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
234{
235	struct dentry *d;
236	int ret = -ENOMEM;
237
238	if (!clk || !pdentry) {
239		ret = -EINVAL;
240		goto out;
241	}
242
243	d = debugfs_create_dir(clk->name, pdentry);
244	if (!d)
245		goto out;
246
247	clk->dentry = d;
248
249	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
250			(u32 *)&clk->rate);
251	if (!d)
252		goto err_out;
253
254	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
255			(u32 *)&clk->accuracy);
256	if (!d)
257		goto err_out;
258
259	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
260			(u32 *)&clk->flags);
261	if (!d)
262		goto err_out;
263
264	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
265			(u32 *)&clk->prepare_count);
266	if (!d)
267		goto err_out;
268
269	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
270			(u32 *)&clk->enable_count);
271	if (!d)
272		goto err_out;
273
274	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
275			(u32 *)&clk->notifier_count);
276	if (!d)
277		goto err_out;
278
279	if (clk->ops->debug_init)
280		if (clk->ops->debug_init(clk->hw, clk->dentry))
281			goto err_out;
282
283	ret = 0;
284	goto out;
285
286err_out:
287	debugfs_remove_recursive(clk->dentry);
288	clk->dentry = NULL;
289out:
290	return ret;
291}
292
293/* caller must hold prepare_lock */
294static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
295{
296	struct clk *child;
297	int ret = -EINVAL;;
298
299	if (!clk || !pdentry)
300		goto out;
301
302	ret = clk_debug_create_one(clk, pdentry);
303
304	if (ret)
305		goto out;
306
307	hlist_for_each_entry(child, &clk->children, child_node)
308		clk_debug_create_subtree(child, clk->dentry);
309
310	ret = 0;
311out:
312	return ret;
313}
314
315/**
316 * clk_debug_register - add a clk node to the debugfs clk tree
317 * @clk: the clk being added to the debugfs clk tree
318 *
319 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
320 * initialized.  Otherwise it bails out early since the debugfs clk tree
321 * will be created lazily by clk_debug_init as part of a late_initcall.
322 *
323 * Caller must hold prepare_lock.  Only clk_init calls this function (so
324 * far) so this is taken care.
325 */
326static int clk_debug_register(struct clk *clk)
327{
328	struct clk *parent;
329	struct dentry *pdentry;
330	int ret = 0;
331
332	if (!inited)
333		goto out;
334
335	parent = clk->parent;
336
337	/*
338	 * Check to see if a clk is a root clk.  Also check that it is
339	 * safe to add this clk to debugfs
340	 */
341	if (!parent)
342		if (clk->flags & CLK_IS_ROOT)
343			pdentry = rootdir;
344		else
345			pdentry = orphandir;
346	else
347		if (parent->dentry)
348			pdentry = parent->dentry;
349		else
350			goto out;
351
352	ret = clk_debug_create_subtree(clk, pdentry);
353
354out:
355	return ret;
356}
357
358 /**
359 * clk_debug_unregister - remove a clk node from the debugfs clk tree
360 * @clk: the clk being removed from the debugfs clk tree
361 *
362 * Dynamically removes a clk and all it's children clk nodes from the
363 * debugfs clk tree if clk->dentry points to debugfs created by
364 * clk_debug_register in __clk_init.
365 *
366 * Caller must hold prepare_lock.
367 */
368static void clk_debug_unregister(struct clk *clk)
369{
370	debugfs_remove_recursive(clk->dentry);
371}
372
373/**
374 * clk_debug_reparent - reparent clk node in the debugfs clk tree
375 * @clk: the clk being reparented
376 * @new_parent: the new clk parent, may be NULL
377 *
378 * Rename clk entry in the debugfs clk tree if debugfs has been
379 * initialized.  Otherwise it bails out early since the debugfs clk tree
380 * will be created lazily by clk_debug_init as part of a late_initcall.
381 *
382 * Caller must hold prepare_lock.
383 */
384static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
385{
386	struct dentry *d;
387	struct dentry *new_parent_d;
388
389	if (!inited)
390		return;
391
392	if (new_parent)
393		new_parent_d = new_parent->dentry;
394	else
395		new_parent_d = orphandir;
396
397	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
398			new_parent_d, clk->name);
399	if (d)
400		clk->dentry = d;
401	else
402		pr_debug("%s: failed to rename debugfs entry for %s\n",
403				__func__, clk->name);
404}
405
406/**
407 * clk_debug_init - lazily create the debugfs clk tree visualization
408 *
409 * clks are often initialized very early during boot before memory can
410 * be dynamically allocated and well before debugfs is setup.
411 * clk_debug_init walks the clk tree hierarchy while holding
412 * prepare_lock and creates the topology as part of a late_initcall,
413 * thus insuring that clks initialized very early will still be
414 * represented in the debugfs clk tree.  This function should only be
415 * called once at boot-time, and all other clks added dynamically will
416 * be done so with clk_debug_register.
417 */
418static int __init clk_debug_init(void)
419{
420	struct clk *clk;
421	struct dentry *d;
422
423	rootdir = debugfs_create_dir("clk", NULL);
424
425	if (!rootdir)
426		return -ENOMEM;
427
428	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
429				&clk_summary_fops);
430	if (!d)
431		return -ENOMEM;
432
433	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
434				&clk_dump_fops);
435	if (!d)
436		return -ENOMEM;
437
438	orphandir = debugfs_create_dir("orphans", rootdir);
439
440	if (!orphandir)
441		return -ENOMEM;
442
443	clk_prepare_lock();
444
445	hlist_for_each_entry(clk, &clk_root_list, child_node)
446		clk_debug_create_subtree(clk, rootdir);
447
448	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
449		clk_debug_create_subtree(clk, orphandir);
450
451	inited = 1;
452
453	clk_prepare_unlock();
454
455	return 0;
456}
457late_initcall(clk_debug_init);
458#else
459static inline int clk_debug_register(struct clk *clk) { return 0; }
460static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
461{
462}
463static inline void clk_debug_unregister(struct clk *clk)
464{
465}
466#endif
467
468/* caller must hold prepare_lock */
469static void clk_unprepare_unused_subtree(struct clk *clk)
470{
471	struct clk *child;
472
473	if (!clk)
474		return;
475
476	hlist_for_each_entry(child, &clk->children, child_node)
477		clk_unprepare_unused_subtree(child);
478
479	if (clk->prepare_count)
480		return;
481
482	if (clk->flags & CLK_IGNORE_UNUSED)
483		return;
484
485	if (__clk_is_prepared(clk)) {
486		if (clk->ops->unprepare_unused)
487			clk->ops->unprepare_unused(clk->hw);
488		else if (clk->ops->unprepare)
489			clk->ops->unprepare(clk->hw);
490	}
491}
492
493/* caller must hold prepare_lock */
494static void clk_disable_unused_subtree(struct clk *clk)
495{
496	struct clk *child;
497	unsigned long flags;
498
499	if (!clk)
500		goto out;
501
502	hlist_for_each_entry(child, &clk->children, child_node)
503		clk_disable_unused_subtree(child);
504
505	flags = clk_enable_lock();
506
507	if (clk->enable_count)
508		goto unlock_out;
509
510	if (clk->flags & CLK_IGNORE_UNUSED)
511		goto unlock_out;
512
513	/*
514	 * some gate clocks have special needs during the disable-unused
515	 * sequence.  call .disable_unused if available, otherwise fall
516	 * back to .disable
517	 */
518	if (__clk_is_enabled(clk)) {
519		if (clk->ops->disable_unused)
520			clk->ops->disable_unused(clk->hw);
521		else if (clk->ops->disable)
522			clk->ops->disable(clk->hw);
523	}
524
525unlock_out:
526	clk_enable_unlock(flags);
527
528out:
529	return;
530}
531
532static bool clk_ignore_unused;
533static int __init clk_ignore_unused_setup(char *__unused)
534{
535	clk_ignore_unused = true;
536	return 1;
537}
538__setup("clk_ignore_unused", clk_ignore_unused_setup);
539
540static int clk_disable_unused(void)
541{
542	struct clk *clk;
543
544	if (clk_ignore_unused) {
545		pr_warn("clk: Not disabling unused clocks\n");
546		return 0;
547	}
548
549	clk_prepare_lock();
550
551	hlist_for_each_entry(clk, &clk_root_list, child_node)
552		clk_disable_unused_subtree(clk);
553
554	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
555		clk_disable_unused_subtree(clk);
556
557	hlist_for_each_entry(clk, &clk_root_list, child_node)
558		clk_unprepare_unused_subtree(clk);
559
560	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
561		clk_unprepare_unused_subtree(clk);
562
563	clk_prepare_unlock();
564
565	return 0;
566}
567late_initcall_sync(clk_disable_unused);
568
569/***    helper functions   ***/
570
571const char *__clk_get_name(struct clk *clk)
572{
573	return !clk ? NULL : clk->name;
574}
575EXPORT_SYMBOL_GPL(__clk_get_name);
576
577struct clk_hw *__clk_get_hw(struct clk *clk)
578{
579	return !clk ? NULL : clk->hw;
580}
581EXPORT_SYMBOL_GPL(__clk_get_hw);
582
583u8 __clk_get_num_parents(struct clk *clk)
584{
585	return !clk ? 0 : clk->num_parents;
586}
587EXPORT_SYMBOL_GPL(__clk_get_num_parents);
588
589struct clk *__clk_get_parent(struct clk *clk)
590{
591	return !clk ? NULL : clk->parent;
592}
593EXPORT_SYMBOL_GPL(__clk_get_parent);
594
595struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
596{
597	if (!clk || index >= clk->num_parents)
598		return NULL;
599	else if (!clk->parents)
600		return __clk_lookup(clk->parent_names[index]);
601	else if (!clk->parents[index])
602		return clk->parents[index] =
603			__clk_lookup(clk->parent_names[index]);
604	else
605		return clk->parents[index];
606}
607EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
608
609unsigned int __clk_get_enable_count(struct clk *clk)
610{
611	return !clk ? 0 : clk->enable_count;
612}
613
614unsigned int __clk_get_prepare_count(struct clk *clk)
615{
616	return !clk ? 0 : clk->prepare_count;
617}
618
619unsigned long __clk_get_rate(struct clk *clk)
620{
621	unsigned long ret;
622
623	if (!clk) {
624		ret = 0;
625		goto out;
626	}
627
628	ret = clk->rate;
629
630	if (clk->flags & CLK_IS_ROOT)
631		goto out;
632
633	if (!clk->parent)
634		ret = 0;
635
636out:
637	return ret;
638}
639EXPORT_SYMBOL_GPL(__clk_get_rate);
640
641unsigned long __clk_get_accuracy(struct clk *clk)
642{
643	if (!clk)
644		return 0;
645
646	return clk->accuracy;
647}
648
649unsigned long __clk_get_flags(struct clk *clk)
650{
651	return !clk ? 0 : clk->flags;
652}
653EXPORT_SYMBOL_GPL(__clk_get_flags);
654
655bool __clk_is_prepared(struct clk *clk)
656{
657	int ret;
658
659	if (!clk)
660		return false;
661
662	/*
663	 * .is_prepared is optional for clocks that can prepare
664	 * fall back to software usage counter if it is missing
665	 */
666	if (!clk->ops->is_prepared) {
667		ret = clk->prepare_count ? 1 : 0;
668		goto out;
669	}
670
671	ret = clk->ops->is_prepared(clk->hw);
672out:
673	return !!ret;
674}
675
676bool __clk_is_enabled(struct clk *clk)
677{
678	int ret;
679
680	if (!clk)
681		return false;
682
683	/*
684	 * .is_enabled is only mandatory for clocks that gate
685	 * fall back to software usage counter if .is_enabled is missing
686	 */
687	if (!clk->ops->is_enabled) {
688		ret = clk->enable_count ? 1 : 0;
689		goto out;
690	}
691
692	ret = clk->ops->is_enabled(clk->hw);
693out:
694	return !!ret;
695}
696EXPORT_SYMBOL_GPL(__clk_is_enabled);
697
698static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
699{
700	struct clk *child;
701	struct clk *ret;
702
703	if (!strcmp(clk->name, name))
704		return clk;
705
706	hlist_for_each_entry(child, &clk->children, child_node) {
707		ret = __clk_lookup_subtree(name, child);
708		if (ret)
709			return ret;
710	}
711
712	return NULL;
713}
714
715struct clk *__clk_lookup(const char *name)
716{
717	struct clk *root_clk;
718	struct clk *ret;
719
720	if (!name)
721		return NULL;
722
723	/* search the 'proper' clk tree first */
724	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
725		ret = __clk_lookup_subtree(name, root_clk);
726		if (ret)
727			return ret;
728	}
729
730	/* if not found, then search the orphan tree */
731	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
732		ret = __clk_lookup_subtree(name, root_clk);
733		if (ret)
734			return ret;
735	}
736
737	return NULL;
738}
739
740/*
741 * Helper for finding best parent to provide a given frequency. This can be used
742 * directly as a determine_rate callback (e.g. for a mux), or from a more
743 * complex clock that may combine a mux with other operations.
744 */
745long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
746			      unsigned long *best_parent_rate,
747			      struct clk **best_parent_p)
748{
749	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
750	int i, num_parents;
751	unsigned long parent_rate, best = 0;
752
753	/* if NO_REPARENT flag set, pass through to current parent */
754	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
755		parent = clk->parent;
756		if (clk->flags & CLK_SET_RATE_PARENT)
757			best = __clk_round_rate(parent, rate);
758		else if (parent)
759			best = __clk_get_rate(parent);
760		else
761			best = __clk_get_rate(clk);
762		goto out;
763	}
764
765	/* find the parent that can provide the fastest rate <= rate */
766	num_parents = clk->num_parents;
767	for (i = 0; i < num_parents; i++) {
768		parent = clk_get_parent_by_index(clk, i);
769		if (!parent)
770			continue;
771		if (clk->flags & CLK_SET_RATE_PARENT)
772			parent_rate = __clk_round_rate(parent, rate);
773		else
774			parent_rate = __clk_get_rate(parent);
775		if (parent_rate <= rate && parent_rate > best) {
776			best_parent = parent;
777			best = parent_rate;
778		}
779	}
780
781out:
782	if (best_parent)
783		*best_parent_p = best_parent;
784	*best_parent_rate = best;
785
786	return best;
787}
788EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
789
790/***        clk api        ***/
791
792void __clk_unprepare(struct clk *clk)
793{
794	if (!clk)
795		return;
796
797	if (WARN_ON(clk->prepare_count == 0))
798		return;
799
800	if (--clk->prepare_count > 0)
801		return;
802
803	WARN_ON(clk->enable_count > 0);
804
805	if (clk->ops->unprepare)
806		clk->ops->unprepare(clk->hw);
807
808	__clk_unprepare(clk->parent);
809}
810
811/**
812 * clk_unprepare - undo preparation of a clock source
813 * @clk: the clk being unprepared
814 *
815 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
816 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
817 * if the operation may sleep.  One example is a clk which is accessed over
818 * I2c.  In the complex case a clk gate operation may require a fast and a slow
819 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
820 * exclusive.  In fact clk_disable must be called before clk_unprepare.
821 */
822void clk_unprepare(struct clk *clk)
823{
824	if (IS_ERR_OR_NULL(clk))
825		return;
826
827	clk_prepare_lock();
828	__clk_unprepare(clk);
829	clk_prepare_unlock();
830}
831EXPORT_SYMBOL_GPL(clk_unprepare);
832
833int __clk_prepare(struct clk *clk)
834{
835	int ret = 0;
836
837	if (!clk)
838		return 0;
839
840	if (clk->prepare_count == 0) {
841		ret = __clk_prepare(clk->parent);
842		if (ret)
843			return ret;
844
845		if (clk->ops->prepare) {
846			ret = clk->ops->prepare(clk->hw);
847			if (ret) {
848				__clk_unprepare(clk->parent);
849				return ret;
850			}
851		}
852	}
853
854	clk->prepare_count++;
855
856	return 0;
857}
858
859/**
860 * clk_prepare - prepare a clock source
861 * @clk: the clk being prepared
862 *
863 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
864 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
865 * operation may sleep.  One example is a clk which is accessed over I2c.  In
866 * the complex case a clk ungate operation may require a fast and a slow part.
867 * It is this reason that clk_prepare and clk_enable are not mutually
868 * exclusive.  In fact clk_prepare must be called before clk_enable.
869 * Returns 0 on success, -EERROR otherwise.
870 */
871int clk_prepare(struct clk *clk)
872{
873	int ret;
874
875	clk_prepare_lock();
876	ret = __clk_prepare(clk);
877	clk_prepare_unlock();
878
879	return ret;
880}
881EXPORT_SYMBOL_GPL(clk_prepare);
882
883static void __clk_disable(struct clk *clk)
884{
885	if (!clk)
886		return;
887
888	if (WARN_ON(clk->enable_count == 0))
889		return;
890
891	if (--clk->enable_count > 0)
892		return;
893
894	if (clk->ops->disable)
895		clk->ops->disable(clk->hw);
896
897	__clk_disable(clk->parent);
898}
899
900/**
901 * clk_disable - gate a clock
902 * @clk: the clk being gated
903 *
904 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
905 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
906 * clk if the operation is fast and will never sleep.  One example is a
907 * SoC-internal clk which is controlled via simple register writes.  In the
908 * complex case a clk gate operation may require a fast and a slow part.  It is
909 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
910 * In fact clk_disable must be called before clk_unprepare.
911 */
912void clk_disable(struct clk *clk)
913{
914	unsigned long flags;
915
916	if (IS_ERR_OR_NULL(clk))
917		return;
918
919	flags = clk_enable_lock();
920	__clk_disable(clk);
921	clk_enable_unlock(flags);
922}
923EXPORT_SYMBOL_GPL(clk_disable);
924
925static int __clk_enable(struct clk *clk)
926{
927	int ret = 0;
928
929	if (!clk)
930		return 0;
931
932	if (WARN_ON(clk->prepare_count == 0))
933		return -ESHUTDOWN;
934
935	if (clk->enable_count == 0) {
936		ret = __clk_enable(clk->parent);
937
938		if (ret)
939			return ret;
940
941		if (clk->ops->enable) {
942			ret = clk->ops->enable(clk->hw);
943			if (ret) {
944				__clk_disable(clk->parent);
945				return ret;
946			}
947		}
948	}
949
950	clk->enable_count++;
951	return 0;
952}
953
954/**
955 * clk_enable - ungate a clock
956 * @clk: the clk being ungated
957 *
958 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
959 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
960 * if the operation will never sleep.  One example is a SoC-internal clk which
961 * is controlled via simple register writes.  In the complex case a clk ungate
962 * operation may require a fast and a slow part.  It is this reason that
963 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
964 * must be called before clk_enable.  Returns 0 on success, -EERROR
965 * otherwise.
966 */
967int clk_enable(struct clk *clk)
968{
969	unsigned long flags;
970	int ret;
971
972	flags = clk_enable_lock();
973	ret = __clk_enable(clk);
974	clk_enable_unlock(flags);
975
976	return ret;
977}
978EXPORT_SYMBOL_GPL(clk_enable);
979
980/**
981 * __clk_round_rate - round the given rate for a clk
982 * @clk: round the rate of this clock
983 * @rate: the rate which is to be rounded
984 *
985 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
986 */
987unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
988{
989	unsigned long parent_rate = 0;
990	struct clk *parent;
991
992	if (!clk)
993		return 0;
994
995	parent = clk->parent;
996	if (parent)
997		parent_rate = parent->rate;
998
999	if (clk->ops->determine_rate)
1000		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
1001						&parent);
1002	else if (clk->ops->round_rate)
1003		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1004	else if (clk->flags & CLK_SET_RATE_PARENT)
1005		return __clk_round_rate(clk->parent, rate);
1006	else
1007		return clk->rate;
1008}
1009EXPORT_SYMBOL_GPL(__clk_round_rate);
1010
1011/**
1012 * clk_round_rate - round the given rate for a clk
1013 * @clk: the clk for which we are rounding a rate
1014 * @rate: the rate which is to be rounded
1015 *
1016 * Takes in a rate as input and rounds it to a rate that the clk can actually
1017 * use which is then returned.  If clk doesn't support round_rate operation
1018 * then the parent rate is returned.
1019 */
1020long clk_round_rate(struct clk *clk, unsigned long rate)
1021{
1022	unsigned long ret;
1023
1024	clk_prepare_lock();
1025	ret = __clk_round_rate(clk, rate);
1026	clk_prepare_unlock();
1027
1028	return ret;
1029}
1030EXPORT_SYMBOL_GPL(clk_round_rate);
1031
1032/**
1033 * __clk_notify - call clk notifier chain
1034 * @clk: struct clk * that is changing rate
1035 * @msg: clk notifier type (see include/linux/clk.h)
1036 * @old_rate: old clk rate
1037 * @new_rate: new clk rate
1038 *
1039 * Triggers a notifier call chain on the clk rate-change notification
1040 * for 'clk'.  Passes a pointer to the struct clk and the previous
1041 * and current rates to the notifier callback.  Intended to be called by
1042 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1043 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1044 * a driver returns that.
1045 */
1046static int __clk_notify(struct clk *clk, unsigned long msg,
1047		unsigned long old_rate, unsigned long new_rate)
1048{
1049	struct clk_notifier *cn;
1050	struct clk_notifier_data cnd;
1051	int ret = NOTIFY_DONE;
1052
1053	cnd.clk = clk;
1054	cnd.old_rate = old_rate;
1055	cnd.new_rate = new_rate;
1056
1057	list_for_each_entry(cn, &clk_notifier_list, node) {
1058		if (cn->clk == clk) {
1059			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1060					&cnd);
1061			break;
1062		}
1063	}
1064
1065	return ret;
1066}
1067
1068/**
1069 * __clk_recalc_accuracies
1070 * @clk: first clk in the subtree
1071 *
1072 * Walks the subtree of clks starting with clk and recalculates accuracies as
1073 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1074 * callback then it is assumed that the clock will take on the accuracy of it's
1075 * parent.
1076 *
1077 * Caller must hold prepare_lock.
1078 */
1079static void __clk_recalc_accuracies(struct clk *clk)
1080{
1081	unsigned long parent_accuracy = 0;
1082	struct clk *child;
1083
1084	if (clk->parent)
1085		parent_accuracy = clk->parent->accuracy;
1086
1087	if (clk->ops->recalc_accuracy)
1088		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1089							  parent_accuracy);
1090	else
1091		clk->accuracy = parent_accuracy;
1092
1093	hlist_for_each_entry(child, &clk->children, child_node)
1094		__clk_recalc_accuracies(child);
1095}
1096
1097/**
1098 * clk_get_accuracy - return the accuracy of clk
1099 * @clk: the clk whose accuracy is being returned
1100 *
1101 * Simply returns the cached accuracy of the clk, unless
1102 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1103 * issued.
1104 * If clk is NULL then returns 0.
1105 */
1106long clk_get_accuracy(struct clk *clk)
1107{
1108	unsigned long accuracy;
1109
1110	clk_prepare_lock();
1111	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1112		__clk_recalc_accuracies(clk);
1113
1114	accuracy = __clk_get_accuracy(clk);
1115	clk_prepare_unlock();
1116
1117	return accuracy;
1118}
1119EXPORT_SYMBOL_GPL(clk_get_accuracy);
1120
1121static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1122{
1123	if (clk->ops->recalc_rate)
1124		return clk->ops->recalc_rate(clk->hw, parent_rate);
1125	return parent_rate;
1126}
1127
1128/**
1129 * __clk_recalc_rates
1130 * @clk: first clk in the subtree
1131 * @msg: notification type (see include/linux/clk.h)
1132 *
1133 * Walks the subtree of clks starting with clk and recalculates rates as it
1134 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1135 * it is assumed that the clock will take on the rate of its parent.
1136 *
1137 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1138 * if necessary.
1139 *
1140 * Caller must hold prepare_lock.
1141 */
1142static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1143{
1144	unsigned long old_rate;
1145	unsigned long parent_rate = 0;
1146	struct clk *child;
1147
1148	old_rate = clk->rate;
1149
1150	if (clk->parent)
1151		parent_rate = clk->parent->rate;
1152
1153	clk->rate = clk_recalc(clk, parent_rate);
1154
1155	/*
1156	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1157	 * & ABORT_RATE_CHANGE notifiers
1158	 */
1159	if (clk->notifier_count && msg)
1160		__clk_notify(clk, msg, old_rate, clk->rate);
1161
1162	hlist_for_each_entry(child, &clk->children, child_node)
1163		__clk_recalc_rates(child, msg);
1164}
1165
1166/**
1167 * clk_get_rate - return the rate of clk
1168 * @clk: the clk whose rate is being returned
1169 *
1170 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1171 * is set, which means a recalc_rate will be issued.
1172 * If clk is NULL then returns 0.
1173 */
1174unsigned long clk_get_rate(struct clk *clk)
1175{
1176	unsigned long rate;
1177
1178	clk_prepare_lock();
1179
1180	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1181		__clk_recalc_rates(clk, 0);
1182
1183	rate = __clk_get_rate(clk);
1184	clk_prepare_unlock();
1185
1186	return rate;
1187}
1188EXPORT_SYMBOL_GPL(clk_get_rate);
1189
1190static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1191{
1192	int i;
1193
1194	if (!clk->parents) {
1195		clk->parents = kcalloc(clk->num_parents,
1196					sizeof(struct clk *), GFP_KERNEL);
1197		if (!clk->parents)
1198			return -ENOMEM;
1199	}
1200
1201	/*
1202	 * find index of new parent clock using cached parent ptrs,
1203	 * or if not yet cached, use string name comparison and cache
1204	 * them now to avoid future calls to __clk_lookup.
1205	 */
1206	for (i = 0; i < clk->num_parents; i++) {
1207		if (clk->parents[i] == parent)
1208			return i;
1209
1210		if (clk->parents[i])
1211			continue;
1212
1213		if (!strcmp(clk->parent_names[i], parent->name)) {
1214			clk->parents[i] = __clk_lookup(parent->name);
1215			return i;
1216		}
1217	}
1218
1219	return -EINVAL;
1220}
1221
1222static void clk_reparent(struct clk *clk, struct clk *new_parent)
1223{
1224	hlist_del(&clk->child_node);
1225
1226	if (new_parent) {
1227		/* avoid duplicate POST_RATE_CHANGE notifications */
1228		if (new_parent->new_child == clk)
1229			new_parent->new_child = NULL;
1230
1231		hlist_add_head(&clk->child_node, &new_parent->children);
1232	} else {
1233		hlist_add_head(&clk->child_node, &clk_orphan_list);
1234	}
1235
1236	clk->parent = new_parent;
1237}
1238
1239static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1240{
1241	unsigned long flags;
1242	struct clk *old_parent = clk->parent;
1243
1244	/*
1245	 * Migrate prepare state between parents and prevent race with
1246	 * clk_enable().
1247	 *
1248	 * If the clock is not prepared, then a race with
1249	 * clk_enable/disable() is impossible since we already have the
1250	 * prepare lock (future calls to clk_enable() need to be preceded by
1251	 * a clk_prepare()).
1252	 *
1253	 * If the clock is prepared, migrate the prepared state to the new
1254	 * parent and also protect against a race with clk_enable() by
1255	 * forcing the clock and the new parent on.  This ensures that all
1256	 * future calls to clk_enable() are practically NOPs with respect to
1257	 * hardware and software states.
1258	 *
1259	 * See also: Comment for clk_set_parent() below.
1260	 */
1261	if (clk->prepare_count) {
1262		__clk_prepare(parent);
1263		clk_enable(parent);
1264		clk_enable(clk);
1265	}
1266
1267	/* update the clk tree topology */
1268	flags = clk_enable_lock();
1269	clk_reparent(clk, parent);
1270	clk_enable_unlock(flags);
1271
1272	return old_parent;
1273}
1274
1275static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1276		struct clk *old_parent)
1277{
1278	/*
1279	 * Finish the migration of prepare state and undo the changes done
1280	 * for preventing a race with clk_enable().
1281	 */
1282	if (clk->prepare_count) {
1283		clk_disable(clk);
1284		clk_disable(old_parent);
1285		__clk_unprepare(old_parent);
1286	}
1287
1288	/* update debugfs with new clk tree topology */
1289	clk_debug_reparent(clk, parent);
1290}
1291
1292static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1293{
1294	unsigned long flags;
1295	int ret = 0;
1296	struct clk *old_parent;
1297
1298	old_parent = __clk_set_parent_before(clk, parent);
1299
1300	/* change clock input source */
1301	if (parent && clk->ops->set_parent)
1302		ret = clk->ops->set_parent(clk->hw, p_index);
1303
1304	if (ret) {
1305		flags = clk_enable_lock();
1306		clk_reparent(clk, old_parent);
1307		clk_enable_unlock(flags);
1308
1309		if (clk->prepare_count) {
1310			clk_disable(clk);
1311			clk_disable(parent);
1312			__clk_unprepare(parent);
1313		}
1314		return ret;
1315	}
1316
1317	__clk_set_parent_after(clk, parent, old_parent);
1318
1319	return 0;
1320}
1321
1322/**
1323 * __clk_speculate_rates
1324 * @clk: first clk in the subtree
1325 * @parent_rate: the "future" rate of clk's parent
1326 *
1327 * Walks the subtree of clks starting with clk, speculating rates as it
1328 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1329 *
1330 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1331 * pre-rate change notifications and returns early if no clks in the
1332 * subtree have subscribed to the notifications.  Note that if a clk does not
1333 * implement the .recalc_rate callback then it is assumed that the clock will
1334 * take on the rate of its parent.
1335 *
1336 * Caller must hold prepare_lock.
1337 */
1338static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1339{
1340	struct clk *child;
1341	unsigned long new_rate;
1342	int ret = NOTIFY_DONE;
1343
1344	new_rate = clk_recalc(clk, parent_rate);
1345
1346	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1347	if (clk->notifier_count)
1348		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1349
1350	if (ret & NOTIFY_STOP_MASK) {
1351		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1352				__func__, clk->name, ret);
1353		goto out;
1354	}
1355
1356	hlist_for_each_entry(child, &clk->children, child_node) {
1357		ret = __clk_speculate_rates(child, new_rate);
1358		if (ret & NOTIFY_STOP_MASK)
1359			break;
1360	}
1361
1362out:
1363	return ret;
1364}
1365
1366static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1367			     struct clk *new_parent, u8 p_index)
1368{
1369	struct clk *child;
1370
1371	clk->new_rate = new_rate;
1372	clk->new_parent = new_parent;
1373	clk->new_parent_index = p_index;
1374	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1375	clk->new_child = NULL;
1376	if (new_parent && new_parent != clk->parent)
1377		new_parent->new_child = clk;
1378
1379	hlist_for_each_entry(child, &clk->children, child_node) {
1380		child->new_rate = clk_recalc(child, new_rate);
1381		clk_calc_subtree(child, child->new_rate, NULL, 0);
1382	}
1383}
1384
1385/*
1386 * calculate the new rates returning the topmost clock that has to be
1387 * changed.
1388 */
1389static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1390{
1391	struct clk *top = clk;
1392	struct clk *old_parent, *parent;
1393	unsigned long best_parent_rate = 0;
1394	unsigned long new_rate;
1395	int p_index = 0;
1396
1397	/* sanity */
1398	if (IS_ERR_OR_NULL(clk))
1399		return NULL;
1400
1401	/* save parent rate, if it exists */
1402	parent = old_parent = clk->parent;
1403	if (parent)
1404		best_parent_rate = parent->rate;
1405
1406	/* find the closest rate and parent clk/rate */
1407	if (clk->ops->determine_rate) {
1408		new_rate = clk->ops->determine_rate(clk->hw, rate,
1409						    &best_parent_rate,
1410						    &parent);
1411	} else if (clk->ops->round_rate) {
1412		new_rate = clk->ops->round_rate(clk->hw, rate,
1413						&best_parent_rate);
1414	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1415		/* pass-through clock without adjustable parent */
1416		clk->new_rate = clk->rate;
1417		return NULL;
1418	} else {
1419		/* pass-through clock with adjustable parent */
1420		top = clk_calc_new_rates(parent, rate);
1421		new_rate = parent->new_rate;
1422		goto out;
1423	}
1424
1425	/* some clocks must be gated to change parent */
1426	if (parent != old_parent &&
1427	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1428		pr_debug("%s: %s not gated but wants to reparent\n",
1429			 __func__, clk->name);
1430		return NULL;
1431	}
1432
1433	/* try finding the new parent index */
1434	if (parent) {
1435		p_index = clk_fetch_parent_index(clk, parent);
1436		if (p_index < 0) {
1437			pr_debug("%s: clk %s can not be parent of clk %s\n",
1438				 __func__, parent->name, clk->name);
1439			return NULL;
1440		}
1441	}
1442
1443	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1444	    best_parent_rate != parent->rate)
1445		top = clk_calc_new_rates(parent, best_parent_rate);
1446
1447out:
1448	clk_calc_subtree(clk, new_rate, parent, p_index);
1449
1450	return top;
1451}
1452
1453/*
1454 * Notify about rate changes in a subtree. Always walk down the whole tree
1455 * so that in case of an error we can walk down the whole tree again and
1456 * abort the change.
1457 */
1458static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1459{
1460	struct clk *child, *tmp_clk, *fail_clk = NULL;
1461	int ret = NOTIFY_DONE;
1462
1463	if (clk->rate == clk->new_rate)
1464		return NULL;
1465
1466	if (clk->notifier_count) {
1467		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1468		if (ret & NOTIFY_STOP_MASK)
1469			fail_clk = clk;
1470	}
1471
1472	hlist_for_each_entry(child, &clk->children, child_node) {
1473		/* Skip children who will be reparented to another clock */
1474		if (child->new_parent && child->new_parent != clk)
1475			continue;
1476		tmp_clk = clk_propagate_rate_change(child, event);
1477		if (tmp_clk)
1478			fail_clk = tmp_clk;
1479	}
1480
1481	/* handle the new child who might not be in clk->children yet */
1482	if (clk->new_child) {
1483		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1484		if (tmp_clk)
1485			fail_clk = tmp_clk;
1486	}
1487
1488	return fail_clk;
1489}
1490
1491/*
1492 * walk down a subtree and set the new rates notifying the rate
1493 * change on the way
1494 */
1495static void clk_change_rate(struct clk *clk)
1496{
1497	struct clk *child;
1498	unsigned long old_rate;
1499	unsigned long best_parent_rate = 0;
1500	bool skip_set_rate = false;
1501	struct clk *old_parent;
1502
1503	old_rate = clk->rate;
1504
1505	if (clk->new_parent)
1506		best_parent_rate = clk->new_parent->rate;
1507	else if (clk->parent)
1508		best_parent_rate = clk->parent->rate;
1509
1510	if (clk->new_parent && clk->new_parent != clk->parent) {
1511		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1512
1513		if (clk->ops->set_rate_and_parent) {
1514			skip_set_rate = true;
1515			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1516					best_parent_rate,
1517					clk->new_parent_index);
1518		} else if (clk->ops->set_parent) {
1519			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1520		}
1521
1522		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1523	}
1524
1525	if (!skip_set_rate && clk->ops->set_rate)
1526		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1527
1528	clk->rate = clk_recalc(clk, best_parent_rate);
1529
1530	if (clk->notifier_count && old_rate != clk->rate)
1531		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1532
1533	hlist_for_each_entry(child, &clk->children, child_node) {
1534		/* Skip children who will be reparented to another clock */
1535		if (child->new_parent && child->new_parent != clk)
1536			continue;
1537		clk_change_rate(child);
1538	}
1539
1540	/* handle the new child who might not be in clk->children yet */
1541	if (clk->new_child)
1542		clk_change_rate(clk->new_child);
1543}
1544
1545/**
1546 * clk_set_rate - specify a new rate for clk
1547 * @clk: the clk whose rate is being changed
1548 * @rate: the new rate for clk
1549 *
1550 * In the simplest case clk_set_rate will only adjust the rate of clk.
1551 *
1552 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1553 * propagate up to clk's parent; whether or not this happens depends on the
1554 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1555 * after calling .round_rate then upstream parent propagation is ignored.  If
1556 * *parent_rate comes back with a new rate for clk's parent then we propagate
1557 * up to clk's parent and set its rate.  Upward propagation will continue
1558 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1559 * .round_rate stops requesting changes to clk's parent_rate.
1560 *
1561 * Rate changes are accomplished via tree traversal that also recalculates the
1562 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1563 *
1564 * Returns 0 on success, -EERROR otherwise.
1565 */
1566int clk_set_rate(struct clk *clk, unsigned long rate)
1567{
1568	struct clk *top, *fail_clk;
1569	int ret = 0;
1570
1571	if (!clk)
1572		return 0;
1573
1574	/* prevent racing with updates to the clock topology */
1575	clk_prepare_lock();
1576
1577	/* bail early if nothing to do */
1578	if (rate == clk_get_rate(clk))
1579		goto out;
1580
1581	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1582		ret = -EBUSY;
1583		goto out;
1584	}
1585
1586	/* calculate new rates and get the topmost changed clock */
1587	top = clk_calc_new_rates(clk, rate);
1588	if (!top) {
1589		ret = -EINVAL;
1590		goto out;
1591	}
1592
1593	/* notify that we are about to change rates */
1594	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1595	if (fail_clk) {
1596		pr_debug("%s: failed to set %s rate\n", __func__,
1597				fail_clk->name);
1598		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1599		ret = -EBUSY;
1600		goto out;
1601	}
1602
1603	/* change the rates */
1604	clk_change_rate(top);
1605
1606out:
1607	clk_prepare_unlock();
1608
1609	return ret;
1610}
1611EXPORT_SYMBOL_GPL(clk_set_rate);
1612
1613/**
1614 * clk_get_parent - return the parent of a clk
1615 * @clk: the clk whose parent gets returned
1616 *
1617 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1618 */
1619struct clk *clk_get_parent(struct clk *clk)
1620{
1621	struct clk *parent;
1622
1623	clk_prepare_lock();
1624	parent = __clk_get_parent(clk);
1625	clk_prepare_unlock();
1626
1627	return parent;
1628}
1629EXPORT_SYMBOL_GPL(clk_get_parent);
1630
1631/*
1632 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1633 * optional for single-parent clocks.  Always call .get_parent if it is
1634 * available and WARN if it is missing for multi-parent clocks.
1635 *
1636 * For single-parent clocks without .get_parent, first check to see if the
1637 * .parents array exists, and if so use it to avoid an expensive tree
1638 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1639 */
1640static struct clk *__clk_init_parent(struct clk *clk)
1641{
1642	struct clk *ret = NULL;
1643	u8 index;
1644
1645	/* handle the trivial cases */
1646
1647	if (!clk->num_parents)
1648		goto out;
1649
1650	if (clk->num_parents == 1) {
1651		if (IS_ERR_OR_NULL(clk->parent))
1652			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1653		ret = clk->parent;
1654		goto out;
1655	}
1656
1657	if (!clk->ops->get_parent) {
1658		WARN(!clk->ops->get_parent,
1659			"%s: multi-parent clocks must implement .get_parent\n",
1660			__func__);
1661		goto out;
1662	};
1663
1664	/*
1665	 * Do our best to cache parent clocks in clk->parents.  This prevents
1666	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1667	 * clk->parent here; that is done by the calling function
1668	 */
1669
1670	index = clk->ops->get_parent(clk->hw);
1671
1672	if (!clk->parents)
1673		clk->parents =
1674			kcalloc(clk->num_parents, sizeof(struct clk *),
1675					GFP_KERNEL);
1676
1677	ret = clk_get_parent_by_index(clk, index);
1678
1679out:
1680	return ret;
1681}
1682
1683void __clk_reparent(struct clk *clk, struct clk *new_parent)
1684{
1685	clk_reparent(clk, new_parent);
1686	clk_debug_reparent(clk, new_parent);
1687	__clk_recalc_accuracies(clk);
1688	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1689}
1690
1691/**
1692 * clk_set_parent - switch the parent of a mux clk
1693 * @clk: the mux clk whose input we are switching
1694 * @parent: the new input to clk
1695 *
1696 * Re-parent clk to use parent as its new input source.  If clk is in
1697 * prepared state, the clk will get enabled for the duration of this call. If
1698 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1699 * that, the reparenting is glitchy in hardware, etc), use the
1700 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1701 *
1702 * After successfully changing clk's parent clk_set_parent will update the
1703 * clk topology, sysfs topology and propagate rate recalculation via
1704 * __clk_recalc_rates.
1705 *
1706 * Returns 0 on success, -EERROR otherwise.
1707 */
1708int clk_set_parent(struct clk *clk, struct clk *parent)
1709{
1710	int ret = 0;
1711	int p_index = 0;
1712	unsigned long p_rate = 0;
1713
1714	if (!clk)
1715		return 0;
1716
1717	/* verify ops for for multi-parent clks */
1718	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1719		return -ENOSYS;
1720
1721	/* prevent racing with updates to the clock topology */
1722	clk_prepare_lock();
1723
1724	if (clk->parent == parent)
1725		goto out;
1726
1727	/* check that we are allowed to re-parent if the clock is in use */
1728	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1729		ret = -EBUSY;
1730		goto out;
1731	}
1732
1733	/* try finding the new parent index */
1734	if (parent) {
1735		p_index = clk_fetch_parent_index(clk, parent);
1736		p_rate = parent->rate;
1737		if (p_index < 0) {
1738			pr_debug("%s: clk %s can not be parent of clk %s\n",
1739					__func__, parent->name, clk->name);
1740			ret = p_index;
1741			goto out;
1742		}
1743	}
1744
1745	/* propagate PRE_RATE_CHANGE notifications */
1746	ret = __clk_speculate_rates(clk, p_rate);
1747
1748	/* abort if a driver objects */
1749	if (ret & NOTIFY_STOP_MASK)
1750		goto out;
1751
1752	/* do the re-parent */
1753	ret = __clk_set_parent(clk, parent, p_index);
1754
1755	/* propagate rate an accuracy recalculation accordingly */
1756	if (ret) {
1757		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1758	} else {
1759		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1760		__clk_recalc_accuracies(clk);
1761	}
1762
1763out:
1764	clk_prepare_unlock();
1765
1766	return ret;
1767}
1768EXPORT_SYMBOL_GPL(clk_set_parent);
1769
1770/**
1771 * __clk_init - initialize the data structures in a struct clk
1772 * @dev:	device initializing this clk, placeholder for now
1773 * @clk:	clk being initialized
1774 *
1775 * Initializes the lists in struct clk, queries the hardware for the
1776 * parent and rate and sets them both.
1777 */
1778int __clk_init(struct device *dev, struct clk *clk)
1779{
1780	int i, ret = 0;
1781	struct clk *orphan;
1782	struct hlist_node *tmp2;
1783
1784	if (!clk)
1785		return -EINVAL;
1786
1787	clk_prepare_lock();
1788
1789	/* check to see if a clock with this name is already registered */
1790	if (__clk_lookup(clk->name)) {
1791		pr_debug("%s: clk %s already initialized\n",
1792				__func__, clk->name);
1793		ret = -EEXIST;
1794		goto out;
1795	}
1796
1797	/* check that clk_ops are sane.  See Documentation/clk.txt */
1798	if (clk->ops->set_rate &&
1799	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1800	      clk->ops->recalc_rate)) {
1801		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1802				__func__, clk->name);
1803		ret = -EINVAL;
1804		goto out;
1805	}
1806
1807	if (clk->ops->set_parent && !clk->ops->get_parent) {
1808		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1809				__func__, clk->name);
1810		ret = -EINVAL;
1811		goto out;
1812	}
1813
1814	if (clk->ops->set_rate_and_parent &&
1815			!(clk->ops->set_parent && clk->ops->set_rate)) {
1816		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1817				__func__, clk->name);
1818		ret = -EINVAL;
1819		goto out;
1820	}
1821
1822	/* throw a WARN if any entries in parent_names are NULL */
1823	for (i = 0; i < clk->num_parents; i++)
1824		WARN(!clk->parent_names[i],
1825				"%s: invalid NULL in %s's .parent_names\n",
1826				__func__, clk->name);
1827
1828	/*
1829	 * Allocate an array of struct clk *'s to avoid unnecessary string
1830	 * look-ups of clk's possible parents.  This can fail for clocks passed
1831	 * in to clk_init during early boot; thus any access to clk->parents[]
1832	 * must always check for a NULL pointer and try to populate it if
1833	 * necessary.
1834	 *
1835	 * If clk->parents is not NULL we skip this entire block.  This allows
1836	 * for clock drivers to statically initialize clk->parents.
1837	 */
1838	if (clk->num_parents > 1 && !clk->parents) {
1839		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1840					GFP_KERNEL);
1841		/*
1842		 * __clk_lookup returns NULL for parents that have not been
1843		 * clk_init'd; thus any access to clk->parents[] must check
1844		 * for a NULL pointer.  We can always perform lazy lookups for
1845		 * missing parents later on.
1846		 */
1847		if (clk->parents)
1848			for (i = 0; i < clk->num_parents; i++)
1849				clk->parents[i] =
1850					__clk_lookup(clk->parent_names[i]);
1851	}
1852
1853	clk->parent = __clk_init_parent(clk);
1854
1855	/*
1856	 * Populate clk->parent if parent has already been __clk_init'd.  If
1857	 * parent has not yet been __clk_init'd then place clk in the orphan
1858	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1859	 * clk list.
1860	 *
1861	 * Every time a new clk is clk_init'd then we walk the list of orphan
1862	 * clocks and re-parent any that are children of the clock currently
1863	 * being clk_init'd.
1864	 */
1865	if (clk->parent)
1866		hlist_add_head(&clk->child_node,
1867				&clk->parent->children);
1868	else if (clk->flags & CLK_IS_ROOT)
1869		hlist_add_head(&clk->child_node, &clk_root_list);
1870	else
1871		hlist_add_head(&clk->child_node, &clk_orphan_list);
1872
1873	/*
1874	 * Set clk's accuracy.  The preferred method is to use
1875	 * .recalc_accuracy. For simple clocks and lazy developers the default
1876	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1877	 * parent (or is orphaned) then accuracy is set to zero (perfect
1878	 * clock).
1879	 */
1880	if (clk->ops->recalc_accuracy)
1881		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1882					__clk_get_accuracy(clk->parent));
1883	else if (clk->parent)
1884		clk->accuracy = clk->parent->accuracy;
1885	else
1886		clk->accuracy = 0;
1887
1888	/*
1889	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1890	 * simple clocks and lazy developers the default fallback is to use the
1891	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1892	 * then rate is set to zero.
1893	 */
1894	if (clk->ops->recalc_rate)
1895		clk->rate = clk->ops->recalc_rate(clk->hw,
1896				__clk_get_rate(clk->parent));
1897	else if (clk->parent)
1898		clk->rate = clk->parent->rate;
1899	else
1900		clk->rate = 0;
1901
1902	clk_debug_register(clk);
1903	/*
1904	 * walk the list of orphan clocks and reparent any that are children of
1905	 * this clock
1906	 */
1907	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1908		if (orphan->num_parents && orphan->ops->get_parent) {
1909			i = orphan->ops->get_parent(orphan->hw);
1910			if (!strcmp(clk->name, orphan->parent_names[i]))
1911				__clk_reparent(orphan, clk);
1912			continue;
1913		}
1914
1915		for (i = 0; i < orphan->num_parents; i++)
1916			if (!strcmp(clk->name, orphan->parent_names[i])) {
1917				__clk_reparent(orphan, clk);
1918				break;
1919			}
1920	 }
1921
1922	/*
1923	 * optional platform-specific magic
1924	 *
1925	 * The .init callback is not used by any of the basic clock types, but
1926	 * exists for weird hardware that must perform initialization magic.
1927	 * Please consider other ways of solving initialization problems before
1928	 * using this callback, as its use is discouraged.
1929	 */
1930	if (clk->ops->init)
1931		clk->ops->init(clk->hw);
1932
1933	kref_init(&clk->ref);
1934out:
1935	clk_prepare_unlock();
1936
1937	return ret;
1938}
1939
1940/**
1941 * __clk_register - register a clock and return a cookie.
1942 *
1943 * Same as clk_register, except that the .clk field inside hw shall point to a
1944 * preallocated (generally statically allocated) struct clk. None of the fields
1945 * of the struct clk need to be initialized.
1946 *
1947 * The data pointed to by .init and .clk field shall NOT be marked as init
1948 * data.
1949 *
1950 * __clk_register is only exposed via clk-private.h and is intended for use with
1951 * very large numbers of clocks that need to be statically initialized.  It is
1952 * a layering violation to include clk-private.h from any code which implements
1953 * a clock's .ops; as such any statically initialized clock data MUST be in a
1954 * separate C file from the logic that implements its operations.  Returns 0
1955 * on success, otherwise an error code.
1956 */
1957struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1958{
1959	int ret;
1960	struct clk *clk;
1961
1962	clk = hw->clk;
1963	clk->name = hw->init->name;
1964	clk->ops = hw->init->ops;
1965	clk->hw = hw;
1966	clk->flags = hw->init->flags;
1967	clk->parent_names = hw->init->parent_names;
1968	clk->num_parents = hw->init->num_parents;
1969	if (dev && dev->driver)
1970		clk->owner = dev->driver->owner;
1971	else
1972		clk->owner = NULL;
1973
1974	ret = __clk_init(dev, clk);
1975	if (ret)
1976		return ERR_PTR(ret);
1977
1978	return clk;
1979}
1980EXPORT_SYMBOL_GPL(__clk_register);
1981
1982/**
1983 * clk_register - allocate a new clock, register it and return an opaque cookie
1984 * @dev: device that is registering this clock
1985 * @hw: link to hardware-specific clock data
1986 *
1987 * clk_register is the primary interface for populating the clock tree with new
1988 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1989 * cannot be dereferenced by driver code but may be used in conjuction with the
1990 * rest of the clock API.  In the event of an error clk_register will return an
1991 * error code; drivers must test for an error code after calling clk_register.
1992 */
1993struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1994{
1995	int i, ret;
1996	struct clk *clk;
1997
1998	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1999	if (!clk) {
2000		pr_err("%s: could not allocate clk\n", __func__);
2001		ret = -ENOMEM;
2002		goto fail_out;
2003	}
2004
2005	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
2006	if (!clk->name) {
2007		pr_err("%s: could not allocate clk->name\n", __func__);
2008		ret = -ENOMEM;
2009		goto fail_name;
2010	}
2011	clk->ops = hw->init->ops;
2012	if (dev && dev->driver)
2013		clk->owner = dev->driver->owner;
2014	clk->hw = hw;
2015	clk->flags = hw->init->flags;
2016	clk->num_parents = hw->init->num_parents;
2017	hw->clk = clk;
2018
2019	/* allocate local copy in case parent_names is __initdata */
2020	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2021					GFP_KERNEL);
2022
2023	if (!clk->parent_names) {
2024		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2025		ret = -ENOMEM;
2026		goto fail_parent_names;
2027	}
2028
2029
2030	/* copy each string name in case parent_names is __initdata */
2031	for (i = 0; i < clk->num_parents; i++) {
2032		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2033						GFP_KERNEL);
2034		if (!clk->parent_names[i]) {
2035			pr_err("%s: could not copy parent_names\n", __func__);
2036			ret = -ENOMEM;
2037			goto fail_parent_names_copy;
2038		}
2039	}
2040
2041	ret = __clk_init(dev, clk);
2042	if (!ret)
2043		return clk;
2044
2045fail_parent_names_copy:
2046	while (--i >= 0)
2047		kfree(clk->parent_names[i]);
2048	kfree(clk->parent_names);
2049fail_parent_names:
2050	kfree(clk->name);
2051fail_name:
2052	kfree(clk);
2053fail_out:
2054	return ERR_PTR(ret);
2055}
2056EXPORT_SYMBOL_GPL(clk_register);
2057
2058/*
2059 * Free memory allocated for a clock.
2060 * Caller must hold prepare_lock.
2061 */
2062static void __clk_release(struct kref *ref)
2063{
2064	struct clk *clk = container_of(ref, struct clk, ref);
2065	int i = clk->num_parents;
2066
2067	kfree(clk->parents);
2068	while (--i >= 0)
2069		kfree(clk->parent_names[i]);
2070
2071	kfree(clk->parent_names);
2072	kfree(clk->name);
2073	kfree(clk);
2074}
2075
2076/*
2077 * Empty clk_ops for unregistered clocks. These are used temporarily
2078 * after clk_unregister() was called on a clock and until last clock
2079 * consumer calls clk_put() and the struct clk object is freed.
2080 */
2081static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2082{
2083	return -ENXIO;
2084}
2085
2086static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2087{
2088	WARN_ON_ONCE(1);
2089}
2090
2091static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2092					unsigned long parent_rate)
2093{
2094	return -ENXIO;
2095}
2096
2097static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2098{
2099	return -ENXIO;
2100}
2101
2102static const struct clk_ops clk_nodrv_ops = {
2103	.enable		= clk_nodrv_prepare_enable,
2104	.disable	= clk_nodrv_disable_unprepare,
2105	.prepare	= clk_nodrv_prepare_enable,
2106	.unprepare	= clk_nodrv_disable_unprepare,
2107	.set_rate	= clk_nodrv_set_rate,
2108	.set_parent	= clk_nodrv_set_parent,
2109};
2110
2111/**
2112 * clk_unregister - unregister a currently registered clock
2113 * @clk: clock to unregister
2114 */
2115void clk_unregister(struct clk *clk)
2116{
2117	unsigned long flags;
2118
2119       if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2120               return;
2121
2122	clk_prepare_lock();
2123
2124	if (clk->ops == &clk_nodrv_ops) {
2125		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2126		goto out;
2127	}
2128	/*
2129	 * Assign empty clock ops for consumers that might still hold
2130	 * a reference to this clock.
2131	 */
2132	flags = clk_enable_lock();
2133	clk->ops = &clk_nodrv_ops;
2134	clk_enable_unlock(flags);
2135
2136	if (!hlist_empty(&clk->children)) {
2137		struct clk *child;
2138		struct hlist_node *t;
2139
2140		/* Reparent all children to the orphan list. */
2141		hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2142			clk_set_parent(child, NULL);
2143	}
2144
2145	clk_debug_unregister(clk);
2146
2147	hlist_del_init(&clk->child_node);
2148
2149	if (clk->prepare_count)
2150		pr_warn("%s: unregistering prepared clock: %s\n",
2151					__func__, clk->name);
2152
2153	kref_put(&clk->ref, __clk_release);
2154out:
2155	clk_prepare_unlock();
2156}
2157EXPORT_SYMBOL_GPL(clk_unregister);
2158
2159static void devm_clk_release(struct device *dev, void *res)
2160{
2161	clk_unregister(*(struct clk **)res);
2162}
2163
2164/**
2165 * devm_clk_register - resource managed clk_register()
2166 * @dev: device that is registering this clock
2167 * @hw: link to hardware-specific clock data
2168 *
2169 * Managed clk_register(). Clocks returned from this function are
2170 * automatically clk_unregister()ed on driver detach. See clk_register() for
2171 * more information.
2172 */
2173struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2174{
2175	struct clk *clk;
2176	struct clk **clkp;
2177
2178	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2179	if (!clkp)
2180		return ERR_PTR(-ENOMEM);
2181
2182	clk = clk_register(dev, hw);
2183	if (!IS_ERR(clk)) {
2184		*clkp = clk;
2185		devres_add(dev, clkp);
2186	} else {
2187		devres_free(clkp);
2188	}
2189
2190	return clk;
2191}
2192EXPORT_SYMBOL_GPL(devm_clk_register);
2193
2194static int devm_clk_match(struct device *dev, void *res, void *data)
2195{
2196	struct clk *c = res;
2197	if (WARN_ON(!c))
2198		return 0;
2199	return c == data;
2200}
2201
2202/**
2203 * devm_clk_unregister - resource managed clk_unregister()
2204 * @clk: clock to unregister
2205 *
2206 * Deallocate a clock allocated with devm_clk_register(). Normally
2207 * this function will not need to be called and the resource management
2208 * code will ensure that the resource is freed.
2209 */
2210void devm_clk_unregister(struct device *dev, struct clk *clk)
2211{
2212	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2213}
2214EXPORT_SYMBOL_GPL(devm_clk_unregister);
2215
2216/*
2217 * clkdev helpers
2218 */
2219int __clk_get(struct clk *clk)
2220{
2221	if (clk) {
2222		if (!try_module_get(clk->owner))
2223			return 0;
2224
2225		kref_get(&clk->ref);
2226	}
2227	return 1;
2228}
2229
2230void __clk_put(struct clk *clk)
2231{
2232	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2233		return;
2234
2235	clk_prepare_lock();
2236	kref_put(&clk->ref, __clk_release);
2237	clk_prepare_unlock();
2238
2239	module_put(clk->owner);
2240}
2241
2242/***        clk rate change notifiers        ***/
2243
2244/**
2245 * clk_notifier_register - add a clk rate change notifier
2246 * @clk: struct clk * to watch
2247 * @nb: struct notifier_block * with callback info
2248 *
2249 * Request notification when clk's rate changes.  This uses an SRCU
2250 * notifier because we want it to block and notifier unregistrations are
2251 * uncommon.  The callbacks associated with the notifier must not
2252 * re-enter into the clk framework by calling any top-level clk APIs;
2253 * this will cause a nested prepare_lock mutex.
2254 *
2255 * In all notification cases cases (pre, post and abort rate change) the
2256 * original clock rate is passed to the callback via struct
2257 * clk_notifier_data.old_rate and the new frequency is passed via struct
2258 * clk_notifier_data.new_rate.
2259 *
2260 * clk_notifier_register() must be called from non-atomic context.
2261 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2262 * allocation failure; otherwise, passes along the return value of
2263 * srcu_notifier_chain_register().
2264 */
2265int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2266{
2267	struct clk_notifier *cn;
2268	int ret = -ENOMEM;
2269
2270	if (!clk || !nb)
2271		return -EINVAL;
2272
2273	clk_prepare_lock();
2274
2275	/* search the list of notifiers for this clk */
2276	list_for_each_entry(cn, &clk_notifier_list, node)
2277		if (cn->clk == clk)
2278			break;
2279
2280	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2281	if (cn->clk != clk) {
2282		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2283		if (!cn)
2284			goto out;
2285
2286		cn->clk = clk;
2287		srcu_init_notifier_head(&cn->notifier_head);
2288
2289		list_add(&cn->node, &clk_notifier_list);
2290	}
2291
2292	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2293
2294	clk->notifier_count++;
2295
2296out:
2297	clk_prepare_unlock();
2298
2299	return ret;
2300}
2301EXPORT_SYMBOL_GPL(clk_notifier_register);
2302
2303/**
2304 * clk_notifier_unregister - remove a clk rate change notifier
2305 * @clk: struct clk *
2306 * @nb: struct notifier_block * with callback info
2307 *
2308 * Request no further notification for changes to 'clk' and frees memory
2309 * allocated in clk_notifier_register.
2310 *
2311 * Returns -EINVAL if called with null arguments; otherwise, passes
2312 * along the return value of srcu_notifier_chain_unregister().
2313 */
2314int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2315{
2316	struct clk_notifier *cn = NULL;
2317	int ret = -EINVAL;
2318
2319	if (!clk || !nb)
2320		return -EINVAL;
2321
2322	clk_prepare_lock();
2323
2324	list_for_each_entry(cn, &clk_notifier_list, node)
2325		if (cn->clk == clk)
2326			break;
2327
2328	if (cn->clk == clk) {
2329		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2330
2331		clk->notifier_count--;
2332
2333		/* XXX the notifier code should handle this better */
2334		if (!cn->notifier_head.head) {
2335			srcu_cleanup_notifier_head(&cn->notifier_head);
2336			list_del(&cn->node);
2337			kfree(cn);
2338		}
2339
2340	} else {
2341		ret = -ENOENT;
2342	}
2343
2344	clk_prepare_unlock();
2345
2346	return ret;
2347}
2348EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2349
2350#ifdef CONFIG_OF
2351/**
2352 * struct of_clk_provider - Clock provider registration structure
2353 * @link: Entry in global list of clock providers
2354 * @node: Pointer to device tree node of clock provider
2355 * @get: Get clock callback.  Returns NULL or a struct clk for the
2356 *       given clock specifier
2357 * @data: context pointer to be passed into @get callback
2358 */
2359struct of_clk_provider {
2360	struct list_head link;
2361
2362	struct device_node *node;
2363	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2364	void *data;
2365};
2366
2367static const struct of_device_id __clk_of_table_sentinel
2368	__used __section(__clk_of_table_end);
2369
2370static LIST_HEAD(of_clk_providers);
2371static DEFINE_MUTEX(of_clk_mutex);
2372
2373/* of_clk_provider list locking helpers */
2374void of_clk_lock(void)
2375{
2376	mutex_lock(&of_clk_mutex);
2377}
2378
2379void of_clk_unlock(void)
2380{
2381	mutex_unlock(&of_clk_mutex);
2382}
2383
2384struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2385				     void *data)
2386{
2387	return data;
2388}
2389EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2390
2391struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2392{
2393	struct clk_onecell_data *clk_data = data;
2394	unsigned int idx = clkspec->args[0];
2395
2396	if (idx >= clk_data->clk_num) {
2397		pr_err("%s: invalid clock index %d\n", __func__, idx);
2398		return ERR_PTR(-EINVAL);
2399	}
2400
2401	return clk_data->clks[idx];
2402}
2403EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2404
2405/**
2406 * of_clk_add_provider() - Register a clock provider for a node
2407 * @np: Device node pointer associated with clock provider
2408 * @clk_src_get: callback for decoding clock
2409 * @data: context pointer for @clk_src_get callback.
2410 */
2411int of_clk_add_provider(struct device_node *np,
2412			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2413						   void *data),
2414			void *data)
2415{
2416	struct of_clk_provider *cp;
2417
2418	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2419	if (!cp)
2420		return -ENOMEM;
2421
2422	cp->node = of_node_get(np);
2423	cp->data = data;
2424	cp->get = clk_src_get;
2425
2426	mutex_lock(&of_clk_mutex);
2427	list_add(&cp->link, &of_clk_providers);
2428	mutex_unlock(&of_clk_mutex);
2429	pr_debug("Added clock from %s\n", np->full_name);
2430
2431	return 0;
2432}
2433EXPORT_SYMBOL_GPL(of_clk_add_provider);
2434
2435/**
2436 * of_clk_del_provider() - Remove a previously registered clock provider
2437 * @np: Device node pointer associated with clock provider
2438 */
2439void of_clk_del_provider(struct device_node *np)
2440{
2441	struct of_clk_provider *cp;
2442
2443	mutex_lock(&of_clk_mutex);
2444	list_for_each_entry(cp, &of_clk_providers, link) {
2445		if (cp->node == np) {
2446			list_del(&cp->link);
2447			of_node_put(cp->node);
2448			kfree(cp);
2449			break;
2450		}
2451	}
2452	mutex_unlock(&of_clk_mutex);
2453}
2454EXPORT_SYMBOL_GPL(of_clk_del_provider);
2455
2456struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2457{
2458	struct of_clk_provider *provider;
2459	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2460
2461	/* Check if we have such a provider in our array */
2462	list_for_each_entry(provider, &of_clk_providers, link) {
2463		if (provider->node == clkspec->np)
2464			clk = provider->get(clkspec, provider->data);
2465		if (!IS_ERR(clk))
2466			break;
2467	}
2468
2469	return clk;
2470}
2471
2472struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2473{
2474	struct clk *clk;
2475
2476	mutex_lock(&of_clk_mutex);
2477	clk = __of_clk_get_from_provider(clkspec);
2478	mutex_unlock(&of_clk_mutex);
2479
2480	return clk;
2481}
2482
2483int of_clk_get_parent_count(struct device_node *np)
2484{
2485	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2486}
2487EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2488
2489const char *of_clk_get_parent_name(struct device_node *np, int index)
2490{
2491	struct of_phandle_args clkspec;
2492	struct property *prop;
2493	const char *clk_name;
2494	const __be32 *vp;
2495	u32 pv;
2496	int rc;
2497	int count;
2498
2499	if (index < 0)
2500		return NULL;
2501
2502	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2503					&clkspec);
2504	if (rc)
2505		return NULL;
2506
2507	index = clkspec.args_count ? clkspec.args[0] : 0;
2508	count = 0;
2509
2510	/* if there is an indices property, use it to transfer the index
2511	 * specified into an array offset for the clock-output-names property.
2512	 */
2513	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2514		if (index == pv) {
2515			index = count;
2516			break;
2517		}
2518		count++;
2519	}
2520
2521	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2522					  index,
2523					  &clk_name) < 0)
2524		clk_name = clkspec.np->name;
2525
2526	of_node_put(clkspec.np);
2527	return clk_name;
2528}
2529EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2530
2531struct clock_provider {
2532	of_clk_init_cb_t clk_init_cb;
2533	struct device_node *np;
2534	struct list_head node;
2535};
2536
2537static LIST_HEAD(clk_provider_list);
2538
2539/*
2540 * This function looks for a parent clock. If there is one, then it
2541 * checks that the provider for this parent clock was initialized, in
2542 * this case the parent clock will be ready.
2543 */
2544static int parent_ready(struct device_node *np)
2545{
2546	int i = 0;
2547
2548	while (true) {
2549		struct clk *clk = of_clk_get(np, i);
2550
2551		/* this parent is ready we can check the next one */
2552		if (!IS_ERR(clk)) {
2553			clk_put(clk);
2554			i++;
2555			continue;
2556		}
2557
2558		/* at least one parent is not ready, we exit now */
2559		if (PTR_ERR(clk) == -EPROBE_DEFER)
2560			return 0;
2561
2562		/*
2563		 * Here we make assumption that the device tree is
2564		 * written correctly. So an error means that there is
2565		 * no more parent. As we didn't exit yet, then the
2566		 * previous parent are ready. If there is no clock
2567		 * parent, no need to wait for them, then we can
2568		 * consider their absence as being ready
2569		 */
2570		return 1;
2571	}
2572}
2573
2574/**
2575 * of_clk_init() - Scan and init clock providers from the DT
2576 * @matches: array of compatible values and init functions for providers.
2577 *
2578 * This function scans the device tree for matching clock providers
2579 * and calls their initialization functions. It also does it by trying
2580 * to follow the dependencies.
2581 */
2582void __init of_clk_init(const struct of_device_id *matches)
2583{
2584	const struct of_device_id *match;
2585	struct device_node *np;
2586	struct clock_provider *clk_provider, *next;
2587	bool is_init_done;
2588	bool force = false;
2589
2590	if (!matches)
2591		matches = &__clk_of_table;
2592
2593	/* First prepare the list of the clocks providers */
2594	for_each_matching_node_and_match(np, matches, &match) {
2595		struct clock_provider *parent =
2596			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
2597
2598		parent->clk_init_cb = match->data;
2599		parent->np = np;
2600		list_add_tail(&parent->node, &clk_provider_list);
2601	}
2602
2603	while (!list_empty(&clk_provider_list)) {
2604		is_init_done = false;
2605		list_for_each_entry_safe(clk_provider, next,
2606					&clk_provider_list, node) {
2607			if (force || parent_ready(clk_provider->np)) {
2608				clk_provider->clk_init_cb(clk_provider->np);
2609				list_del(&clk_provider->node);
2610				kfree(clk_provider);
2611				is_init_done = true;
2612			}
2613		}
2614
2615		/*
2616		 * We didn't manage to initialize any of the
2617		 * remaining providers during the last loop, so now we
2618		 * initialize all the remaining ones unconditionally
2619		 * in case the clock parent was not mandatory
2620		 */
2621		if (!is_init_done)
2622			force = true;
2623
2624	}
2625}
2626#endif
2627