clk.c revision 3a5aec246f294004564cbe960724fa0ace59a4c5
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24static DEFINE_SPINLOCK(enable_lock);
25static DEFINE_MUTEX(prepare_lock);
26
27static struct task_struct *prepare_owner;
28static struct task_struct *enable_owner;
29
30static int prepare_refcnt;
31static int enable_refcnt;
32
33static HLIST_HEAD(clk_root_list);
34static HLIST_HEAD(clk_orphan_list);
35static LIST_HEAD(clk_notifier_list);
36
37/***           locking             ***/
38static void clk_prepare_lock(void)
39{
40	if (!mutex_trylock(&prepare_lock)) {
41		if (prepare_owner == current) {
42			prepare_refcnt++;
43			return;
44		}
45		mutex_lock(&prepare_lock);
46	}
47	WARN_ON_ONCE(prepare_owner != NULL);
48	WARN_ON_ONCE(prepare_refcnt != 0);
49	prepare_owner = current;
50	prepare_refcnt = 1;
51}
52
53static void clk_prepare_unlock(void)
54{
55	WARN_ON_ONCE(prepare_owner != current);
56	WARN_ON_ONCE(prepare_refcnt == 0);
57
58	if (--prepare_refcnt)
59		return;
60	prepare_owner = NULL;
61	mutex_unlock(&prepare_lock);
62}
63
64static unsigned long clk_enable_lock(void)
65{
66	unsigned long flags;
67
68	if (!spin_trylock_irqsave(&enable_lock, flags)) {
69		if (enable_owner == current) {
70			enable_refcnt++;
71			return flags;
72		}
73		spin_lock_irqsave(&enable_lock, flags);
74	}
75	WARN_ON_ONCE(enable_owner != NULL);
76	WARN_ON_ONCE(enable_refcnt != 0);
77	enable_owner = current;
78	enable_refcnt = 1;
79	return flags;
80}
81
82static void clk_enable_unlock(unsigned long flags)
83{
84	WARN_ON_ONCE(enable_owner != current);
85	WARN_ON_ONCE(enable_refcnt == 0);
86
87	if (--enable_refcnt)
88		return;
89	enable_owner = NULL;
90	spin_unlock_irqrestore(&enable_lock, flags);
91}
92
93/***        debugfs support        ***/
94
95#ifdef CONFIG_COMMON_CLK_DEBUG
96#include <linux/debugfs.h>
97
98static struct dentry *rootdir;
99static struct dentry *orphandir;
100static int inited = 0;
101
102static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103{
104	if (!c)
105		return;
106
107	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108		   level * 3 + 1, "",
109		   30 - level * 3, c->name,
110		   c->enable_count, c->prepare_count, clk_get_rate(c));
111	seq_printf(s, "\n");
112}
113
114static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115				     int level)
116{
117	struct clk *child;
118
119	if (!c)
120		return;
121
122	clk_summary_show_one(s, c, level);
123
124	hlist_for_each_entry(child, &c->children, child_node)
125		clk_summary_show_subtree(s, child, level + 1);
126}
127
128static int clk_summary_show(struct seq_file *s, void *data)
129{
130	struct clk *c;
131
132	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate\n");
133	seq_printf(s, "---------------------------------------------------------------------\n");
134
135	clk_prepare_lock();
136
137	hlist_for_each_entry(c, &clk_root_list, child_node)
138		clk_summary_show_subtree(s, c, 0);
139
140	hlist_for_each_entry(c, &clk_orphan_list, child_node)
141		clk_summary_show_subtree(s, c, 0);
142
143	clk_prepare_unlock();
144
145	return 0;
146}
147
148
149static int clk_summary_open(struct inode *inode, struct file *file)
150{
151	return single_open(file, clk_summary_show, inode->i_private);
152}
153
154static const struct file_operations clk_summary_fops = {
155	.open		= clk_summary_open,
156	.read		= seq_read,
157	.llseek		= seq_lseek,
158	.release	= single_release,
159};
160
161static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162{
163	if (!c)
164		return;
165
166	seq_printf(s, "\"%s\": { ", c->name);
167	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170}
171
172static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173{
174	struct clk *child;
175
176	if (!c)
177		return;
178
179	clk_dump_one(s, c, level);
180
181	hlist_for_each_entry(child, &c->children, child_node) {
182		seq_printf(s, ",");
183		clk_dump_subtree(s, child, level + 1);
184	}
185
186	seq_printf(s, "}");
187}
188
189static int clk_dump(struct seq_file *s, void *data)
190{
191	struct clk *c;
192	bool first_node = true;
193
194	seq_printf(s, "{");
195
196	clk_prepare_lock();
197
198	hlist_for_each_entry(c, &clk_root_list, child_node) {
199		if (!first_node)
200			seq_printf(s, ",");
201		first_node = false;
202		clk_dump_subtree(s, c, 0);
203	}
204
205	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206		seq_printf(s, ",");
207		clk_dump_subtree(s, c, 0);
208	}
209
210	clk_prepare_unlock();
211
212	seq_printf(s, "}");
213	return 0;
214}
215
216
217static int clk_dump_open(struct inode *inode, struct file *file)
218{
219	return single_open(file, clk_dump, inode->i_private);
220}
221
222static const struct file_operations clk_dump_fops = {
223	.open		= clk_dump_open,
224	.read		= seq_read,
225	.llseek		= seq_lseek,
226	.release	= single_release,
227};
228
229/* caller must hold prepare_lock */
230static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231{
232	struct dentry *d;
233	int ret = -ENOMEM;
234
235	if (!clk || !pdentry) {
236		ret = -EINVAL;
237		goto out;
238	}
239
240	d = debugfs_create_dir(clk->name, pdentry);
241	if (!d)
242		goto out;
243
244	clk->dentry = d;
245
246	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247			(u32 *)&clk->rate);
248	if (!d)
249		goto err_out;
250
251	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252			(u32 *)&clk->flags);
253	if (!d)
254		goto err_out;
255
256	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257			(u32 *)&clk->prepare_count);
258	if (!d)
259		goto err_out;
260
261	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262			(u32 *)&clk->enable_count);
263	if (!d)
264		goto err_out;
265
266	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267			(u32 *)&clk->notifier_count);
268	if (!d)
269		goto err_out;
270
271	ret = 0;
272	goto out;
273
274err_out:
275	debugfs_remove_recursive(clk->dentry);
276	clk->dentry = NULL;
277out:
278	return ret;
279}
280
281/* caller must hold prepare_lock */
282static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
283{
284	struct clk *child;
285	int ret = -EINVAL;;
286
287	if (!clk || !pdentry)
288		goto out;
289
290	ret = clk_debug_create_one(clk, pdentry);
291
292	if (ret)
293		goto out;
294
295	hlist_for_each_entry(child, &clk->children, child_node)
296		clk_debug_create_subtree(child, clk->dentry);
297
298	ret = 0;
299out:
300	return ret;
301}
302
303/**
304 * clk_debug_register - add a clk node to the debugfs clk tree
305 * @clk: the clk being added to the debugfs clk tree
306 *
307 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
308 * initialized.  Otherwise it bails out early since the debugfs clk tree
309 * will be created lazily by clk_debug_init as part of a late_initcall.
310 *
311 * Caller must hold prepare_lock.  Only clk_init calls this function (so
312 * far) so this is taken care.
313 */
314static int clk_debug_register(struct clk *clk)
315{
316	struct clk *parent;
317	struct dentry *pdentry;
318	int ret = 0;
319
320	if (!inited)
321		goto out;
322
323	parent = clk->parent;
324
325	/*
326	 * Check to see if a clk is a root clk.  Also check that it is
327	 * safe to add this clk to debugfs
328	 */
329	if (!parent)
330		if (clk->flags & CLK_IS_ROOT)
331			pdentry = rootdir;
332		else
333			pdentry = orphandir;
334	else
335		if (parent->dentry)
336			pdentry = parent->dentry;
337		else
338			goto out;
339
340	ret = clk_debug_create_subtree(clk, pdentry);
341
342out:
343	return ret;
344}
345
346/**
347 * clk_debug_reparent - reparent clk node in the debugfs clk tree
348 * @clk: the clk being reparented
349 * @new_parent: the new clk parent, may be NULL
350 *
351 * Rename clk entry in the debugfs clk tree if debugfs has been
352 * initialized.  Otherwise it bails out early since the debugfs clk tree
353 * will be created lazily by clk_debug_init as part of a late_initcall.
354 *
355 * Caller must hold prepare_lock.
356 */
357static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
358{
359	struct dentry *d;
360	struct dentry *new_parent_d;
361
362	if (!inited)
363		return;
364
365	if (new_parent)
366		new_parent_d = new_parent->dentry;
367	else
368		new_parent_d = orphandir;
369
370	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
371			new_parent_d, clk->name);
372	if (d)
373		clk->dentry = d;
374	else
375		pr_debug("%s: failed to rename debugfs entry for %s\n",
376				__func__, clk->name);
377}
378
379/**
380 * clk_debug_init - lazily create the debugfs clk tree visualization
381 *
382 * clks are often initialized very early during boot before memory can
383 * be dynamically allocated and well before debugfs is setup.
384 * clk_debug_init walks the clk tree hierarchy while holding
385 * prepare_lock and creates the topology as part of a late_initcall,
386 * thus insuring that clks initialized very early will still be
387 * represented in the debugfs clk tree.  This function should only be
388 * called once at boot-time, and all other clks added dynamically will
389 * be done so with clk_debug_register.
390 */
391static int __init clk_debug_init(void)
392{
393	struct clk *clk;
394	struct dentry *d;
395
396	rootdir = debugfs_create_dir("clk", NULL);
397
398	if (!rootdir)
399		return -ENOMEM;
400
401	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
402				&clk_summary_fops);
403	if (!d)
404		return -ENOMEM;
405
406	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
407				&clk_dump_fops);
408	if (!d)
409		return -ENOMEM;
410
411	orphandir = debugfs_create_dir("orphans", rootdir);
412
413	if (!orphandir)
414		return -ENOMEM;
415
416	clk_prepare_lock();
417
418	hlist_for_each_entry(clk, &clk_root_list, child_node)
419		clk_debug_create_subtree(clk, rootdir);
420
421	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
422		clk_debug_create_subtree(clk, orphandir);
423
424	inited = 1;
425
426	clk_prepare_unlock();
427
428	return 0;
429}
430late_initcall(clk_debug_init);
431#else
432static inline int clk_debug_register(struct clk *clk) { return 0; }
433static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
434{
435}
436#endif
437
438/* caller must hold prepare_lock */
439static void clk_unprepare_unused_subtree(struct clk *clk)
440{
441	struct clk *child;
442
443	if (!clk)
444		return;
445
446	hlist_for_each_entry(child, &clk->children, child_node)
447		clk_unprepare_unused_subtree(child);
448
449	if (clk->prepare_count)
450		return;
451
452	if (clk->flags & CLK_IGNORE_UNUSED)
453		return;
454
455	if (__clk_is_prepared(clk)) {
456		if (clk->ops->unprepare_unused)
457			clk->ops->unprepare_unused(clk->hw);
458		else if (clk->ops->unprepare)
459			clk->ops->unprepare(clk->hw);
460	}
461}
462
463/* caller must hold prepare_lock */
464static void clk_disable_unused_subtree(struct clk *clk)
465{
466	struct clk *child;
467	unsigned long flags;
468
469	if (!clk)
470		goto out;
471
472	hlist_for_each_entry(child, &clk->children, child_node)
473		clk_disable_unused_subtree(child);
474
475	flags = clk_enable_lock();
476
477	if (clk->enable_count)
478		goto unlock_out;
479
480	if (clk->flags & CLK_IGNORE_UNUSED)
481		goto unlock_out;
482
483	/*
484	 * some gate clocks have special needs during the disable-unused
485	 * sequence.  call .disable_unused if available, otherwise fall
486	 * back to .disable
487	 */
488	if (__clk_is_enabled(clk)) {
489		if (clk->ops->disable_unused)
490			clk->ops->disable_unused(clk->hw);
491		else if (clk->ops->disable)
492			clk->ops->disable(clk->hw);
493	}
494
495unlock_out:
496	clk_enable_unlock(flags);
497
498out:
499	return;
500}
501
502static bool clk_ignore_unused;
503static int __init clk_ignore_unused_setup(char *__unused)
504{
505	clk_ignore_unused = true;
506	return 1;
507}
508__setup("clk_ignore_unused", clk_ignore_unused_setup);
509
510static int clk_disable_unused(void)
511{
512	struct clk *clk;
513
514	if (clk_ignore_unused) {
515		pr_warn("clk: Not disabling unused clocks\n");
516		return 0;
517	}
518
519	clk_prepare_lock();
520
521	hlist_for_each_entry(clk, &clk_root_list, child_node)
522		clk_disable_unused_subtree(clk);
523
524	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
525		clk_disable_unused_subtree(clk);
526
527	hlist_for_each_entry(clk, &clk_root_list, child_node)
528		clk_unprepare_unused_subtree(clk);
529
530	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
531		clk_unprepare_unused_subtree(clk);
532
533	clk_prepare_unlock();
534
535	return 0;
536}
537late_initcall_sync(clk_disable_unused);
538
539/***    helper functions   ***/
540
541const char *__clk_get_name(struct clk *clk)
542{
543	return !clk ? NULL : clk->name;
544}
545EXPORT_SYMBOL_GPL(__clk_get_name);
546
547struct clk_hw *__clk_get_hw(struct clk *clk)
548{
549	return !clk ? NULL : clk->hw;
550}
551
552u8 __clk_get_num_parents(struct clk *clk)
553{
554	return !clk ? 0 : clk->num_parents;
555}
556
557struct clk *__clk_get_parent(struct clk *clk)
558{
559	return !clk ? NULL : clk->parent;
560}
561
562struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
563{
564	if (!clk || index >= clk->num_parents)
565		return NULL;
566	else if (!clk->parents)
567		return __clk_lookup(clk->parent_names[index]);
568	else if (!clk->parents[index])
569		return clk->parents[index] =
570			__clk_lookup(clk->parent_names[index]);
571	else
572		return clk->parents[index];
573}
574
575unsigned int __clk_get_enable_count(struct clk *clk)
576{
577	return !clk ? 0 : clk->enable_count;
578}
579
580unsigned int __clk_get_prepare_count(struct clk *clk)
581{
582	return !clk ? 0 : clk->prepare_count;
583}
584
585unsigned long __clk_get_rate(struct clk *clk)
586{
587	unsigned long ret;
588
589	if (!clk) {
590		ret = 0;
591		goto out;
592	}
593
594	ret = clk->rate;
595
596	if (clk->flags & CLK_IS_ROOT)
597		goto out;
598
599	if (!clk->parent)
600		ret = 0;
601
602out:
603	return ret;
604}
605
606unsigned long __clk_get_flags(struct clk *clk)
607{
608	return !clk ? 0 : clk->flags;
609}
610EXPORT_SYMBOL_GPL(__clk_get_flags);
611
612bool __clk_is_prepared(struct clk *clk)
613{
614	int ret;
615
616	if (!clk)
617		return false;
618
619	/*
620	 * .is_prepared is optional for clocks that can prepare
621	 * fall back to software usage counter if it is missing
622	 */
623	if (!clk->ops->is_prepared) {
624		ret = clk->prepare_count ? 1 : 0;
625		goto out;
626	}
627
628	ret = clk->ops->is_prepared(clk->hw);
629out:
630	return !!ret;
631}
632
633bool __clk_is_enabled(struct clk *clk)
634{
635	int ret;
636
637	if (!clk)
638		return false;
639
640	/*
641	 * .is_enabled is only mandatory for clocks that gate
642	 * fall back to software usage counter if .is_enabled is missing
643	 */
644	if (!clk->ops->is_enabled) {
645		ret = clk->enable_count ? 1 : 0;
646		goto out;
647	}
648
649	ret = clk->ops->is_enabled(clk->hw);
650out:
651	return !!ret;
652}
653
654static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
655{
656	struct clk *child;
657	struct clk *ret;
658
659	if (!strcmp(clk->name, name))
660		return clk;
661
662	hlist_for_each_entry(child, &clk->children, child_node) {
663		ret = __clk_lookup_subtree(name, child);
664		if (ret)
665			return ret;
666	}
667
668	return NULL;
669}
670
671struct clk *__clk_lookup(const char *name)
672{
673	struct clk *root_clk;
674	struct clk *ret;
675
676	if (!name)
677		return NULL;
678
679	/* search the 'proper' clk tree first */
680	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
681		ret = __clk_lookup_subtree(name, root_clk);
682		if (ret)
683			return ret;
684	}
685
686	/* if not found, then search the orphan tree */
687	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
688		ret = __clk_lookup_subtree(name, root_clk);
689		if (ret)
690			return ret;
691	}
692
693	return NULL;
694}
695
696/*
697 * Helper for finding best parent to provide a given frequency. This can be used
698 * directly as a determine_rate callback (e.g. for a mux), or from a more
699 * complex clock that may combine a mux with other operations.
700 */
701long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
702			      unsigned long *best_parent_rate,
703			      struct clk **best_parent_p)
704{
705	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
706	int i, num_parents;
707	unsigned long parent_rate, best = 0;
708
709	/* if NO_REPARENT flag set, pass through to current parent */
710	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
711		parent = clk->parent;
712		if (clk->flags & CLK_SET_RATE_PARENT)
713			best = __clk_round_rate(parent, rate);
714		else if (parent)
715			best = __clk_get_rate(parent);
716		else
717			best = __clk_get_rate(clk);
718		goto out;
719	}
720
721	/* find the parent that can provide the fastest rate <= rate */
722	num_parents = clk->num_parents;
723	for (i = 0; i < num_parents; i++) {
724		parent = clk_get_parent_by_index(clk, i);
725		if (!parent)
726			continue;
727		if (clk->flags & CLK_SET_RATE_PARENT)
728			parent_rate = __clk_round_rate(parent, rate);
729		else
730			parent_rate = __clk_get_rate(parent);
731		if (parent_rate <= rate && parent_rate > best) {
732			best_parent = parent;
733			best = parent_rate;
734		}
735	}
736
737out:
738	if (best_parent)
739		*best_parent_p = best_parent;
740	*best_parent_rate = best;
741
742	return best;
743}
744
745/***        clk api        ***/
746
747void __clk_unprepare(struct clk *clk)
748{
749	if (!clk)
750		return;
751
752	if (WARN_ON(clk->prepare_count == 0))
753		return;
754
755	if (--clk->prepare_count > 0)
756		return;
757
758	WARN_ON(clk->enable_count > 0);
759
760	if (clk->ops->unprepare)
761		clk->ops->unprepare(clk->hw);
762
763	__clk_unprepare(clk->parent);
764}
765
766/**
767 * clk_unprepare - undo preparation of a clock source
768 * @clk: the clk being unprepared
769 *
770 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
771 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
772 * if the operation may sleep.  One example is a clk which is accessed over
773 * I2c.  In the complex case a clk gate operation may require a fast and a slow
774 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
775 * exclusive.  In fact clk_disable must be called before clk_unprepare.
776 */
777void clk_unprepare(struct clk *clk)
778{
779	clk_prepare_lock();
780	__clk_unprepare(clk);
781	clk_prepare_unlock();
782}
783EXPORT_SYMBOL_GPL(clk_unprepare);
784
785int __clk_prepare(struct clk *clk)
786{
787	int ret = 0;
788
789	if (!clk)
790		return 0;
791
792	if (clk->prepare_count == 0) {
793		ret = __clk_prepare(clk->parent);
794		if (ret)
795			return ret;
796
797		if (clk->ops->prepare) {
798			ret = clk->ops->prepare(clk->hw);
799			if (ret) {
800				__clk_unprepare(clk->parent);
801				return ret;
802			}
803		}
804	}
805
806	clk->prepare_count++;
807
808	return 0;
809}
810
811/**
812 * clk_prepare - prepare a clock source
813 * @clk: the clk being prepared
814 *
815 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
816 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
817 * operation may sleep.  One example is a clk which is accessed over I2c.  In
818 * the complex case a clk ungate operation may require a fast and a slow part.
819 * It is this reason that clk_prepare and clk_enable are not mutually
820 * exclusive.  In fact clk_prepare must be called before clk_enable.
821 * Returns 0 on success, -EERROR otherwise.
822 */
823int clk_prepare(struct clk *clk)
824{
825	int ret;
826
827	clk_prepare_lock();
828	ret = __clk_prepare(clk);
829	clk_prepare_unlock();
830
831	return ret;
832}
833EXPORT_SYMBOL_GPL(clk_prepare);
834
835static void __clk_disable(struct clk *clk)
836{
837	if (!clk)
838		return;
839
840	if (WARN_ON(IS_ERR(clk)))
841		return;
842
843	if (WARN_ON(clk->enable_count == 0))
844		return;
845
846	if (--clk->enable_count > 0)
847		return;
848
849	if (clk->ops->disable)
850		clk->ops->disable(clk->hw);
851
852	__clk_disable(clk->parent);
853}
854
855/**
856 * clk_disable - gate a clock
857 * @clk: the clk being gated
858 *
859 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
860 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
861 * clk if the operation is fast and will never sleep.  One example is a
862 * SoC-internal clk which is controlled via simple register writes.  In the
863 * complex case a clk gate operation may require a fast and a slow part.  It is
864 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
865 * In fact clk_disable must be called before clk_unprepare.
866 */
867void clk_disable(struct clk *clk)
868{
869	unsigned long flags;
870
871	flags = clk_enable_lock();
872	__clk_disable(clk);
873	clk_enable_unlock(flags);
874}
875EXPORT_SYMBOL_GPL(clk_disable);
876
877static int __clk_enable(struct clk *clk)
878{
879	int ret = 0;
880
881	if (!clk)
882		return 0;
883
884	if (WARN_ON(clk->prepare_count == 0))
885		return -ESHUTDOWN;
886
887	if (clk->enable_count == 0) {
888		ret = __clk_enable(clk->parent);
889
890		if (ret)
891			return ret;
892
893		if (clk->ops->enable) {
894			ret = clk->ops->enable(clk->hw);
895			if (ret) {
896				__clk_disable(clk->parent);
897				return ret;
898			}
899		}
900	}
901
902	clk->enable_count++;
903	return 0;
904}
905
906/**
907 * clk_enable - ungate a clock
908 * @clk: the clk being ungated
909 *
910 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
911 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
912 * if the operation will never sleep.  One example is a SoC-internal clk which
913 * is controlled via simple register writes.  In the complex case a clk ungate
914 * operation may require a fast and a slow part.  It is this reason that
915 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
916 * must be called before clk_enable.  Returns 0 on success, -EERROR
917 * otherwise.
918 */
919int clk_enable(struct clk *clk)
920{
921	unsigned long flags;
922	int ret;
923
924	flags = clk_enable_lock();
925	ret = __clk_enable(clk);
926	clk_enable_unlock(flags);
927
928	return ret;
929}
930EXPORT_SYMBOL_GPL(clk_enable);
931
932/**
933 * __clk_round_rate - round the given rate for a clk
934 * @clk: round the rate of this clock
935 * @rate: the rate which is to be rounded
936 *
937 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
938 */
939unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
940{
941	unsigned long parent_rate = 0;
942	struct clk *parent;
943
944	if (!clk)
945		return 0;
946
947	parent = clk->parent;
948	if (parent)
949		parent_rate = parent->rate;
950
951	if (clk->ops->determine_rate)
952		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
953						&parent);
954	else if (clk->ops->round_rate)
955		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
956	else if (clk->flags & CLK_SET_RATE_PARENT)
957		return __clk_round_rate(clk->parent, rate);
958	else
959		return clk->rate;
960}
961
962/**
963 * clk_round_rate - round the given rate for a clk
964 * @clk: the clk for which we are rounding a rate
965 * @rate: the rate which is to be rounded
966 *
967 * Takes in a rate as input and rounds it to a rate that the clk can actually
968 * use which is then returned.  If clk doesn't support round_rate operation
969 * then the parent rate is returned.
970 */
971long clk_round_rate(struct clk *clk, unsigned long rate)
972{
973	unsigned long ret;
974
975	clk_prepare_lock();
976	ret = __clk_round_rate(clk, rate);
977	clk_prepare_unlock();
978
979	return ret;
980}
981EXPORT_SYMBOL_GPL(clk_round_rate);
982
983/**
984 * __clk_notify - call clk notifier chain
985 * @clk: struct clk * that is changing rate
986 * @msg: clk notifier type (see include/linux/clk.h)
987 * @old_rate: old clk rate
988 * @new_rate: new clk rate
989 *
990 * Triggers a notifier call chain on the clk rate-change notification
991 * for 'clk'.  Passes a pointer to the struct clk and the previous
992 * and current rates to the notifier callback.  Intended to be called by
993 * internal clock code only.  Returns NOTIFY_DONE from the last driver
994 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
995 * a driver returns that.
996 */
997static int __clk_notify(struct clk *clk, unsigned long msg,
998		unsigned long old_rate, unsigned long new_rate)
999{
1000	struct clk_notifier *cn;
1001	struct clk_notifier_data cnd;
1002	int ret = NOTIFY_DONE;
1003
1004	cnd.clk = clk;
1005	cnd.old_rate = old_rate;
1006	cnd.new_rate = new_rate;
1007
1008	list_for_each_entry(cn, &clk_notifier_list, node) {
1009		if (cn->clk == clk) {
1010			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1011					&cnd);
1012			break;
1013		}
1014	}
1015
1016	return ret;
1017}
1018
1019/**
1020 * __clk_recalc_rates
1021 * @clk: first clk in the subtree
1022 * @msg: notification type (see include/linux/clk.h)
1023 *
1024 * Walks the subtree of clks starting with clk and recalculates rates as it
1025 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1026 * it is assumed that the clock will take on the rate of its parent.
1027 *
1028 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1029 * if necessary.
1030 *
1031 * Caller must hold prepare_lock.
1032 */
1033static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1034{
1035	unsigned long old_rate;
1036	unsigned long parent_rate = 0;
1037	struct clk *child;
1038
1039	old_rate = clk->rate;
1040
1041	if (clk->parent)
1042		parent_rate = clk->parent->rate;
1043
1044	if (clk->ops->recalc_rate)
1045		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1046	else
1047		clk->rate = parent_rate;
1048
1049	/*
1050	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1051	 * & ABORT_RATE_CHANGE notifiers
1052	 */
1053	if (clk->notifier_count && msg)
1054		__clk_notify(clk, msg, old_rate, clk->rate);
1055
1056	hlist_for_each_entry(child, &clk->children, child_node)
1057		__clk_recalc_rates(child, msg);
1058}
1059
1060/**
1061 * clk_get_rate - return the rate of clk
1062 * @clk: the clk whose rate is being returned
1063 *
1064 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1065 * is set, which means a recalc_rate will be issued.
1066 * If clk is NULL then returns 0.
1067 */
1068unsigned long clk_get_rate(struct clk *clk)
1069{
1070	unsigned long rate;
1071
1072	clk_prepare_lock();
1073
1074	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1075		__clk_recalc_rates(clk, 0);
1076
1077	rate = __clk_get_rate(clk);
1078	clk_prepare_unlock();
1079
1080	return rate;
1081}
1082EXPORT_SYMBOL_GPL(clk_get_rate);
1083
1084static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1085{
1086	int i;
1087
1088	if (!clk->parents) {
1089		clk->parents = kcalloc(clk->num_parents,
1090					sizeof(struct clk *), GFP_KERNEL);
1091		if (!clk->parents)
1092			return -ENOMEM;
1093	}
1094
1095	/*
1096	 * find index of new parent clock using cached parent ptrs,
1097	 * or if not yet cached, use string name comparison and cache
1098	 * them now to avoid future calls to __clk_lookup.
1099	 */
1100	for (i = 0; i < clk->num_parents; i++) {
1101		if (clk->parents[i] == parent)
1102			return i;
1103
1104		if (clk->parents[i])
1105			continue;
1106
1107		if (!strcmp(clk->parent_names[i], parent->name)) {
1108			clk->parents[i] = __clk_lookup(parent->name);
1109			return i;
1110		}
1111	}
1112
1113	return -EINVAL;
1114}
1115
1116static void clk_reparent(struct clk *clk, struct clk *new_parent)
1117{
1118	hlist_del(&clk->child_node);
1119
1120	if (new_parent) {
1121		/* avoid duplicate POST_RATE_CHANGE notifications */
1122		if (new_parent->new_child == clk)
1123			new_parent->new_child = NULL;
1124
1125		hlist_add_head(&clk->child_node, &new_parent->children);
1126	} else {
1127		hlist_add_head(&clk->child_node, &clk_orphan_list);
1128	}
1129
1130	clk->parent = new_parent;
1131}
1132
1133static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1134{
1135	unsigned long flags;
1136	int ret = 0;
1137	struct clk *old_parent = clk->parent;
1138
1139	/*
1140	 * Migrate prepare state between parents and prevent race with
1141	 * clk_enable().
1142	 *
1143	 * If the clock is not prepared, then a race with
1144	 * clk_enable/disable() is impossible since we already have the
1145	 * prepare lock (future calls to clk_enable() need to be preceded by
1146	 * a clk_prepare()).
1147	 *
1148	 * If the clock is prepared, migrate the prepared state to the new
1149	 * parent and also protect against a race with clk_enable() by
1150	 * forcing the clock and the new parent on.  This ensures that all
1151	 * future calls to clk_enable() are practically NOPs with respect to
1152	 * hardware and software states.
1153	 *
1154	 * See also: Comment for clk_set_parent() below.
1155	 */
1156	if (clk->prepare_count) {
1157		__clk_prepare(parent);
1158		clk_enable(parent);
1159		clk_enable(clk);
1160	}
1161
1162	/* update the clk tree topology */
1163	flags = clk_enable_lock();
1164	clk_reparent(clk, parent);
1165	clk_enable_unlock(flags);
1166
1167	/* change clock input source */
1168	if (parent && clk->ops->set_parent)
1169		ret = clk->ops->set_parent(clk->hw, p_index);
1170
1171	if (ret) {
1172		flags = clk_enable_lock();
1173		clk_reparent(clk, old_parent);
1174		clk_enable_unlock(flags);
1175
1176		if (clk->prepare_count) {
1177			clk_disable(clk);
1178			clk_disable(parent);
1179			__clk_unprepare(parent);
1180		}
1181		return ret;
1182	}
1183
1184	/*
1185	 * Finish the migration of prepare state and undo the changes done
1186	 * for preventing a race with clk_enable().
1187	 */
1188	if (clk->prepare_count) {
1189		clk_disable(clk);
1190		clk_disable(old_parent);
1191		__clk_unprepare(old_parent);
1192	}
1193
1194	/* update debugfs with new clk tree topology */
1195	clk_debug_reparent(clk, parent);
1196	return 0;
1197}
1198
1199/**
1200 * __clk_speculate_rates
1201 * @clk: first clk in the subtree
1202 * @parent_rate: the "future" rate of clk's parent
1203 *
1204 * Walks the subtree of clks starting with clk, speculating rates as it
1205 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1206 *
1207 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1208 * pre-rate change notifications and returns early if no clks in the
1209 * subtree have subscribed to the notifications.  Note that if a clk does not
1210 * implement the .recalc_rate callback then it is assumed that the clock will
1211 * take on the rate of its parent.
1212 *
1213 * Caller must hold prepare_lock.
1214 */
1215static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1216{
1217	struct clk *child;
1218	unsigned long new_rate;
1219	int ret = NOTIFY_DONE;
1220
1221	if (clk->ops->recalc_rate)
1222		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1223	else
1224		new_rate = parent_rate;
1225
1226	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1227	if (clk->notifier_count)
1228		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1229
1230	if (ret & NOTIFY_STOP_MASK)
1231		goto out;
1232
1233	hlist_for_each_entry(child, &clk->children, child_node) {
1234		ret = __clk_speculate_rates(child, new_rate);
1235		if (ret & NOTIFY_STOP_MASK)
1236			break;
1237	}
1238
1239out:
1240	return ret;
1241}
1242
1243static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1244			     struct clk *new_parent, u8 p_index)
1245{
1246	struct clk *child;
1247
1248	clk->new_rate = new_rate;
1249	clk->new_parent = new_parent;
1250	clk->new_parent_index = p_index;
1251	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1252	clk->new_child = NULL;
1253	if (new_parent && new_parent != clk->parent)
1254		new_parent->new_child = clk;
1255
1256	hlist_for_each_entry(child, &clk->children, child_node) {
1257		if (child->ops->recalc_rate)
1258			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1259		else
1260			child->new_rate = new_rate;
1261		clk_calc_subtree(child, child->new_rate, NULL, 0);
1262	}
1263}
1264
1265/*
1266 * calculate the new rates returning the topmost clock that has to be
1267 * changed.
1268 */
1269static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1270{
1271	struct clk *top = clk;
1272	struct clk *old_parent, *parent;
1273	unsigned long best_parent_rate = 0;
1274	unsigned long new_rate;
1275	int p_index = 0;
1276
1277	/* sanity */
1278	if (IS_ERR_OR_NULL(clk))
1279		return NULL;
1280
1281	/* save parent rate, if it exists */
1282	parent = old_parent = clk->parent;
1283	if (parent)
1284		best_parent_rate = parent->rate;
1285
1286	/* find the closest rate and parent clk/rate */
1287	if (clk->ops->determine_rate) {
1288		new_rate = clk->ops->determine_rate(clk->hw, rate,
1289						    &best_parent_rate,
1290						    &parent);
1291	} else if (clk->ops->round_rate) {
1292		new_rate = clk->ops->round_rate(clk->hw, rate,
1293						&best_parent_rate);
1294	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1295		/* pass-through clock without adjustable parent */
1296		clk->new_rate = clk->rate;
1297		return NULL;
1298	} else {
1299		/* pass-through clock with adjustable parent */
1300		top = clk_calc_new_rates(parent, rate);
1301		new_rate = parent->new_rate;
1302		goto out;
1303	}
1304
1305	/* some clocks must be gated to change parent */
1306	if (parent != old_parent &&
1307	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1308		pr_debug("%s: %s not gated but wants to reparent\n",
1309			 __func__, clk->name);
1310		return NULL;
1311	}
1312
1313	/* try finding the new parent index */
1314	if (parent) {
1315		p_index = clk_fetch_parent_index(clk, parent);
1316		if (p_index < 0) {
1317			pr_debug("%s: clk %s can not be parent of clk %s\n",
1318				 __func__, parent->name, clk->name);
1319			return NULL;
1320		}
1321	}
1322
1323	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1324	    best_parent_rate != parent->rate)
1325		top = clk_calc_new_rates(parent, best_parent_rate);
1326
1327out:
1328	clk_calc_subtree(clk, new_rate, parent, p_index);
1329
1330	return top;
1331}
1332
1333/*
1334 * Notify about rate changes in a subtree. Always walk down the whole tree
1335 * so that in case of an error we can walk down the whole tree again and
1336 * abort the change.
1337 */
1338static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1339{
1340	struct clk *child, *tmp_clk, *fail_clk = NULL;
1341	int ret = NOTIFY_DONE;
1342
1343	if (clk->rate == clk->new_rate)
1344		return NULL;
1345
1346	if (clk->notifier_count) {
1347		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1348		if (ret & NOTIFY_STOP_MASK)
1349			fail_clk = clk;
1350	}
1351
1352	hlist_for_each_entry(child, &clk->children, child_node) {
1353		/* Skip children who will be reparented to another clock */
1354		if (child->new_parent && child->new_parent != clk)
1355			continue;
1356		tmp_clk = clk_propagate_rate_change(child, event);
1357		if (tmp_clk)
1358			fail_clk = tmp_clk;
1359	}
1360
1361	/* handle the new child who might not be in clk->children yet */
1362	if (clk->new_child) {
1363		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1364		if (tmp_clk)
1365			fail_clk = tmp_clk;
1366	}
1367
1368	return fail_clk;
1369}
1370
1371/*
1372 * walk down a subtree and set the new rates notifying the rate
1373 * change on the way
1374 */
1375static void clk_change_rate(struct clk *clk)
1376{
1377	struct clk *child;
1378	unsigned long old_rate;
1379	unsigned long best_parent_rate = 0;
1380
1381	old_rate = clk->rate;
1382
1383	/* set parent */
1384	if (clk->new_parent && clk->new_parent != clk->parent)
1385		__clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1386
1387	if (clk->parent)
1388		best_parent_rate = clk->parent->rate;
1389
1390	if (clk->ops->set_rate)
1391		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1392
1393	if (clk->ops->recalc_rate)
1394		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1395	else
1396		clk->rate = best_parent_rate;
1397
1398	if (clk->notifier_count && old_rate != clk->rate)
1399		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1400
1401	hlist_for_each_entry(child, &clk->children, child_node) {
1402		/* Skip children who will be reparented to another clock */
1403		if (child->new_parent && child->new_parent != clk)
1404			continue;
1405		clk_change_rate(child);
1406	}
1407
1408	/* handle the new child who might not be in clk->children yet */
1409	if (clk->new_child)
1410		clk_change_rate(clk->new_child);
1411}
1412
1413/**
1414 * clk_set_rate - specify a new rate for clk
1415 * @clk: the clk whose rate is being changed
1416 * @rate: the new rate for clk
1417 *
1418 * In the simplest case clk_set_rate will only adjust the rate of clk.
1419 *
1420 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1421 * propagate up to clk's parent; whether or not this happens depends on the
1422 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1423 * after calling .round_rate then upstream parent propagation is ignored.  If
1424 * *parent_rate comes back with a new rate for clk's parent then we propagate
1425 * up to clk's parent and set its rate.  Upward propagation will continue
1426 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1427 * .round_rate stops requesting changes to clk's parent_rate.
1428 *
1429 * Rate changes are accomplished via tree traversal that also recalculates the
1430 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1431 *
1432 * Returns 0 on success, -EERROR otherwise.
1433 */
1434int clk_set_rate(struct clk *clk, unsigned long rate)
1435{
1436	struct clk *top, *fail_clk;
1437	int ret = 0;
1438
1439	if (!clk)
1440		return 0;
1441
1442	/* prevent racing with updates to the clock topology */
1443	clk_prepare_lock();
1444
1445	/* bail early if nothing to do */
1446	if (rate == clk_get_rate(clk))
1447		goto out;
1448
1449	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1450		ret = -EBUSY;
1451		goto out;
1452	}
1453
1454	/* calculate new rates and get the topmost changed clock */
1455	top = clk_calc_new_rates(clk, rate);
1456	if (!top) {
1457		ret = -EINVAL;
1458		goto out;
1459	}
1460
1461	/* notify that we are about to change rates */
1462	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1463	if (fail_clk) {
1464		pr_warn("%s: failed to set %s rate\n", __func__,
1465				fail_clk->name);
1466		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1467		ret = -EBUSY;
1468		goto out;
1469	}
1470
1471	/* change the rates */
1472	clk_change_rate(top);
1473
1474out:
1475	clk_prepare_unlock();
1476
1477	return ret;
1478}
1479EXPORT_SYMBOL_GPL(clk_set_rate);
1480
1481/**
1482 * clk_get_parent - return the parent of a clk
1483 * @clk: the clk whose parent gets returned
1484 *
1485 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1486 */
1487struct clk *clk_get_parent(struct clk *clk)
1488{
1489	struct clk *parent;
1490
1491	clk_prepare_lock();
1492	parent = __clk_get_parent(clk);
1493	clk_prepare_unlock();
1494
1495	return parent;
1496}
1497EXPORT_SYMBOL_GPL(clk_get_parent);
1498
1499/*
1500 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1501 * optional for single-parent clocks.  Always call .get_parent if it is
1502 * available and WARN if it is missing for multi-parent clocks.
1503 *
1504 * For single-parent clocks without .get_parent, first check to see if the
1505 * .parents array exists, and if so use it to avoid an expensive tree
1506 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1507 */
1508static struct clk *__clk_init_parent(struct clk *clk)
1509{
1510	struct clk *ret = NULL;
1511	u8 index;
1512
1513	/* handle the trivial cases */
1514
1515	if (!clk->num_parents)
1516		goto out;
1517
1518	if (clk->num_parents == 1) {
1519		if (IS_ERR_OR_NULL(clk->parent))
1520			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1521		ret = clk->parent;
1522		goto out;
1523	}
1524
1525	if (!clk->ops->get_parent) {
1526		WARN(!clk->ops->get_parent,
1527			"%s: multi-parent clocks must implement .get_parent\n",
1528			__func__);
1529		goto out;
1530	};
1531
1532	/*
1533	 * Do our best to cache parent clocks in clk->parents.  This prevents
1534	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1535	 * clk->parent here; that is done by the calling function
1536	 */
1537
1538	index = clk->ops->get_parent(clk->hw);
1539
1540	if (!clk->parents)
1541		clk->parents =
1542			kcalloc(clk->num_parents, sizeof(struct clk *),
1543					GFP_KERNEL);
1544
1545	ret = clk_get_parent_by_index(clk, index);
1546
1547out:
1548	return ret;
1549}
1550
1551void __clk_reparent(struct clk *clk, struct clk *new_parent)
1552{
1553	clk_reparent(clk, new_parent);
1554	clk_debug_reparent(clk, new_parent);
1555	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1556}
1557
1558/**
1559 * clk_set_parent - switch the parent of a mux clk
1560 * @clk: the mux clk whose input we are switching
1561 * @parent: the new input to clk
1562 *
1563 * Re-parent clk to use parent as its new input source.  If clk is in
1564 * prepared state, the clk will get enabled for the duration of this call. If
1565 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1566 * that, the reparenting is glitchy in hardware, etc), use the
1567 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1568 *
1569 * After successfully changing clk's parent clk_set_parent will update the
1570 * clk topology, sysfs topology and propagate rate recalculation via
1571 * __clk_recalc_rates.
1572 *
1573 * Returns 0 on success, -EERROR otherwise.
1574 */
1575int clk_set_parent(struct clk *clk, struct clk *parent)
1576{
1577	int ret = 0;
1578	int p_index = 0;
1579	unsigned long p_rate = 0;
1580
1581	if (!clk)
1582		return 0;
1583
1584	if (!clk->ops)
1585		return -EINVAL;
1586
1587	/* verify ops for for multi-parent clks */
1588	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1589		return -ENOSYS;
1590
1591	/* prevent racing with updates to the clock topology */
1592	clk_prepare_lock();
1593
1594	if (clk->parent == parent)
1595		goto out;
1596
1597	/* check that we are allowed to re-parent if the clock is in use */
1598	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1599		ret = -EBUSY;
1600		goto out;
1601	}
1602
1603	/* try finding the new parent index */
1604	if (parent) {
1605		p_index = clk_fetch_parent_index(clk, parent);
1606		p_rate = parent->rate;
1607		if (p_index < 0) {
1608			pr_debug("%s: clk %s can not be parent of clk %s\n",
1609					__func__, parent->name, clk->name);
1610			ret = p_index;
1611			goto out;
1612		}
1613	}
1614
1615	/* propagate PRE_RATE_CHANGE notifications */
1616	ret = __clk_speculate_rates(clk, p_rate);
1617
1618	/* abort if a driver objects */
1619	if (ret & NOTIFY_STOP_MASK)
1620		goto out;
1621
1622	/* do the re-parent */
1623	ret = __clk_set_parent(clk, parent, p_index);
1624
1625	/* propagate rate recalculation accordingly */
1626	if (ret)
1627		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1628	else
1629		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1630
1631out:
1632	clk_prepare_unlock();
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(clk_set_parent);
1637
1638/**
1639 * __clk_init - initialize the data structures in a struct clk
1640 * @dev:	device initializing this clk, placeholder for now
1641 * @clk:	clk being initialized
1642 *
1643 * Initializes the lists in struct clk, queries the hardware for the
1644 * parent and rate and sets them both.
1645 */
1646int __clk_init(struct device *dev, struct clk *clk)
1647{
1648	int i, ret = 0;
1649	struct clk *orphan;
1650	struct hlist_node *tmp2;
1651
1652	if (!clk)
1653		return -EINVAL;
1654
1655	clk_prepare_lock();
1656
1657	/* check to see if a clock with this name is already registered */
1658	if (__clk_lookup(clk->name)) {
1659		pr_debug("%s: clk %s already initialized\n",
1660				__func__, clk->name);
1661		ret = -EEXIST;
1662		goto out;
1663	}
1664
1665	/* check that clk_ops are sane.  See Documentation/clk.txt */
1666	if (clk->ops->set_rate &&
1667	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1668	      clk->ops->recalc_rate)) {
1669		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1670				__func__, clk->name);
1671		ret = -EINVAL;
1672		goto out;
1673	}
1674
1675	if (clk->ops->set_parent && !clk->ops->get_parent) {
1676		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1677				__func__, clk->name);
1678		ret = -EINVAL;
1679		goto out;
1680	}
1681
1682	/* throw a WARN if any entries in parent_names are NULL */
1683	for (i = 0; i < clk->num_parents; i++)
1684		WARN(!clk->parent_names[i],
1685				"%s: invalid NULL in %s's .parent_names\n",
1686				__func__, clk->name);
1687
1688	/*
1689	 * Allocate an array of struct clk *'s to avoid unnecessary string
1690	 * look-ups of clk's possible parents.  This can fail for clocks passed
1691	 * in to clk_init during early boot; thus any access to clk->parents[]
1692	 * must always check for a NULL pointer and try to populate it if
1693	 * necessary.
1694	 *
1695	 * If clk->parents is not NULL we skip this entire block.  This allows
1696	 * for clock drivers to statically initialize clk->parents.
1697	 */
1698	if (clk->num_parents > 1 && !clk->parents) {
1699		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1700					GFP_KERNEL);
1701		/*
1702		 * __clk_lookup returns NULL for parents that have not been
1703		 * clk_init'd; thus any access to clk->parents[] must check
1704		 * for a NULL pointer.  We can always perform lazy lookups for
1705		 * missing parents later on.
1706		 */
1707		if (clk->parents)
1708			for (i = 0; i < clk->num_parents; i++)
1709				clk->parents[i] =
1710					__clk_lookup(clk->parent_names[i]);
1711	}
1712
1713	clk->parent = __clk_init_parent(clk);
1714
1715	/*
1716	 * Populate clk->parent if parent has already been __clk_init'd.  If
1717	 * parent has not yet been __clk_init'd then place clk in the orphan
1718	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1719	 * clk list.
1720	 *
1721	 * Every time a new clk is clk_init'd then we walk the list of orphan
1722	 * clocks and re-parent any that are children of the clock currently
1723	 * being clk_init'd.
1724	 */
1725	if (clk->parent)
1726		hlist_add_head(&clk->child_node,
1727				&clk->parent->children);
1728	else if (clk->flags & CLK_IS_ROOT)
1729		hlist_add_head(&clk->child_node, &clk_root_list);
1730	else
1731		hlist_add_head(&clk->child_node, &clk_orphan_list);
1732
1733	/*
1734	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1735	 * simple clocks and lazy developers the default fallback is to use the
1736	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1737	 * then rate is set to zero.
1738	 */
1739	if (clk->ops->recalc_rate)
1740		clk->rate = clk->ops->recalc_rate(clk->hw,
1741				__clk_get_rate(clk->parent));
1742	else if (clk->parent)
1743		clk->rate = clk->parent->rate;
1744	else
1745		clk->rate = 0;
1746
1747	clk_debug_register(clk);
1748	/*
1749	 * walk the list of orphan clocks and reparent any that are children of
1750	 * this clock
1751	 */
1752	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1753		if (orphan->num_parents && orphan->ops->get_parent) {
1754			i = orphan->ops->get_parent(orphan->hw);
1755			if (!strcmp(clk->name, orphan->parent_names[i]))
1756				__clk_reparent(orphan, clk);
1757			continue;
1758		}
1759
1760		for (i = 0; i < orphan->num_parents; i++)
1761			if (!strcmp(clk->name, orphan->parent_names[i])) {
1762				__clk_reparent(orphan, clk);
1763				break;
1764			}
1765	 }
1766
1767	/*
1768	 * optional platform-specific magic
1769	 *
1770	 * The .init callback is not used by any of the basic clock types, but
1771	 * exists for weird hardware that must perform initialization magic.
1772	 * Please consider other ways of solving initialization problems before
1773	 * using this callback, as its use is discouraged.
1774	 */
1775	if (clk->ops->init)
1776		clk->ops->init(clk->hw);
1777
1778out:
1779	clk_prepare_unlock();
1780
1781	return ret;
1782}
1783
1784/**
1785 * __clk_register - register a clock and return a cookie.
1786 *
1787 * Same as clk_register, except that the .clk field inside hw shall point to a
1788 * preallocated (generally statically allocated) struct clk. None of the fields
1789 * of the struct clk need to be initialized.
1790 *
1791 * The data pointed to by .init and .clk field shall NOT be marked as init
1792 * data.
1793 *
1794 * __clk_register is only exposed via clk-private.h and is intended for use with
1795 * very large numbers of clocks that need to be statically initialized.  It is
1796 * a layering violation to include clk-private.h from any code which implements
1797 * a clock's .ops; as such any statically initialized clock data MUST be in a
1798 * separate C file from the logic that implements its operations.  Returns 0
1799 * on success, otherwise an error code.
1800 */
1801struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1802{
1803	int ret;
1804	struct clk *clk;
1805
1806	clk = hw->clk;
1807	clk->name = hw->init->name;
1808	clk->ops = hw->init->ops;
1809	clk->hw = hw;
1810	clk->flags = hw->init->flags;
1811	clk->parent_names = hw->init->parent_names;
1812	clk->num_parents = hw->init->num_parents;
1813
1814	ret = __clk_init(dev, clk);
1815	if (ret)
1816		return ERR_PTR(ret);
1817
1818	return clk;
1819}
1820EXPORT_SYMBOL_GPL(__clk_register);
1821
1822static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1823{
1824	int i, ret;
1825
1826	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1827	if (!clk->name) {
1828		pr_err("%s: could not allocate clk->name\n", __func__);
1829		ret = -ENOMEM;
1830		goto fail_name;
1831	}
1832	clk->ops = hw->init->ops;
1833	clk->hw = hw;
1834	clk->flags = hw->init->flags;
1835	clk->num_parents = hw->init->num_parents;
1836	hw->clk = clk;
1837
1838	/* allocate local copy in case parent_names is __initdata */
1839	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1840					GFP_KERNEL);
1841
1842	if (!clk->parent_names) {
1843		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1844		ret = -ENOMEM;
1845		goto fail_parent_names;
1846	}
1847
1848
1849	/* copy each string name in case parent_names is __initdata */
1850	for (i = 0; i < clk->num_parents; i++) {
1851		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1852						GFP_KERNEL);
1853		if (!clk->parent_names[i]) {
1854			pr_err("%s: could not copy parent_names\n", __func__);
1855			ret = -ENOMEM;
1856			goto fail_parent_names_copy;
1857		}
1858	}
1859
1860	ret = __clk_init(dev, clk);
1861	if (!ret)
1862		return 0;
1863
1864fail_parent_names_copy:
1865	while (--i >= 0)
1866		kfree(clk->parent_names[i]);
1867	kfree(clk->parent_names);
1868fail_parent_names:
1869	kfree(clk->name);
1870fail_name:
1871	return ret;
1872}
1873
1874/**
1875 * clk_register - allocate a new clock, register it and return an opaque cookie
1876 * @dev: device that is registering this clock
1877 * @hw: link to hardware-specific clock data
1878 *
1879 * clk_register is the primary interface for populating the clock tree with new
1880 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1881 * cannot be dereferenced by driver code but may be used in conjuction with the
1882 * rest of the clock API.  In the event of an error clk_register will return an
1883 * error code; drivers must test for an error code after calling clk_register.
1884 */
1885struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1886{
1887	int ret;
1888	struct clk *clk;
1889
1890	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1891	if (!clk) {
1892		pr_err("%s: could not allocate clk\n", __func__);
1893		ret = -ENOMEM;
1894		goto fail_out;
1895	}
1896
1897	ret = _clk_register(dev, hw, clk);
1898	if (!ret)
1899		return clk;
1900
1901	kfree(clk);
1902fail_out:
1903	return ERR_PTR(ret);
1904}
1905EXPORT_SYMBOL_GPL(clk_register);
1906
1907/**
1908 * clk_unregister - unregister a currently registered clock
1909 * @clk: clock to unregister
1910 *
1911 * Currently unimplemented.
1912 */
1913void clk_unregister(struct clk *clk) {}
1914EXPORT_SYMBOL_GPL(clk_unregister);
1915
1916static void devm_clk_release(struct device *dev, void *res)
1917{
1918	clk_unregister(res);
1919}
1920
1921/**
1922 * devm_clk_register - resource managed clk_register()
1923 * @dev: device that is registering this clock
1924 * @hw: link to hardware-specific clock data
1925 *
1926 * Managed clk_register(). Clocks returned from this function are
1927 * automatically clk_unregister()ed on driver detach. See clk_register() for
1928 * more information.
1929 */
1930struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1931{
1932	struct clk *clk;
1933	int ret;
1934
1935	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1936	if (!clk)
1937		return ERR_PTR(-ENOMEM);
1938
1939	ret = _clk_register(dev, hw, clk);
1940	if (!ret) {
1941		devres_add(dev, clk);
1942	} else {
1943		devres_free(clk);
1944		clk = ERR_PTR(ret);
1945	}
1946
1947	return clk;
1948}
1949EXPORT_SYMBOL_GPL(devm_clk_register);
1950
1951static int devm_clk_match(struct device *dev, void *res, void *data)
1952{
1953	struct clk *c = res;
1954	if (WARN_ON(!c))
1955		return 0;
1956	return c == data;
1957}
1958
1959/**
1960 * devm_clk_unregister - resource managed clk_unregister()
1961 * @clk: clock to unregister
1962 *
1963 * Deallocate a clock allocated with devm_clk_register(). Normally
1964 * this function will not need to be called and the resource management
1965 * code will ensure that the resource is freed.
1966 */
1967void devm_clk_unregister(struct device *dev, struct clk *clk)
1968{
1969	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1970}
1971EXPORT_SYMBOL_GPL(devm_clk_unregister);
1972
1973/***        clk rate change notifiers        ***/
1974
1975/**
1976 * clk_notifier_register - add a clk rate change notifier
1977 * @clk: struct clk * to watch
1978 * @nb: struct notifier_block * with callback info
1979 *
1980 * Request notification when clk's rate changes.  This uses an SRCU
1981 * notifier because we want it to block and notifier unregistrations are
1982 * uncommon.  The callbacks associated with the notifier must not
1983 * re-enter into the clk framework by calling any top-level clk APIs;
1984 * this will cause a nested prepare_lock mutex.
1985 *
1986 * Pre-change notifier callbacks will be passed the current, pre-change
1987 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1988 * post-change rate of the clk is passed via struct
1989 * clk_notifier_data.new_rate.
1990 *
1991 * Post-change notifiers will pass the now-current, post-change rate of
1992 * the clk in both struct clk_notifier_data.old_rate and struct
1993 * clk_notifier_data.new_rate.
1994 *
1995 * Abort-change notifiers are effectively the opposite of pre-change
1996 * notifiers: the original pre-change clk rate is passed in via struct
1997 * clk_notifier_data.new_rate and the failed post-change rate is passed
1998 * in via struct clk_notifier_data.old_rate.
1999 *
2000 * clk_notifier_register() must be called from non-atomic context.
2001 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2002 * allocation failure; otherwise, passes along the return value of
2003 * srcu_notifier_chain_register().
2004 */
2005int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2006{
2007	struct clk_notifier *cn;
2008	int ret = -ENOMEM;
2009
2010	if (!clk || !nb)
2011		return -EINVAL;
2012
2013	clk_prepare_lock();
2014
2015	/* search the list of notifiers for this clk */
2016	list_for_each_entry(cn, &clk_notifier_list, node)
2017		if (cn->clk == clk)
2018			break;
2019
2020	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2021	if (cn->clk != clk) {
2022		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2023		if (!cn)
2024			goto out;
2025
2026		cn->clk = clk;
2027		srcu_init_notifier_head(&cn->notifier_head);
2028
2029		list_add(&cn->node, &clk_notifier_list);
2030	}
2031
2032	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2033
2034	clk->notifier_count++;
2035
2036out:
2037	clk_prepare_unlock();
2038
2039	return ret;
2040}
2041EXPORT_SYMBOL_GPL(clk_notifier_register);
2042
2043/**
2044 * clk_notifier_unregister - remove a clk rate change notifier
2045 * @clk: struct clk *
2046 * @nb: struct notifier_block * with callback info
2047 *
2048 * Request no further notification for changes to 'clk' and frees memory
2049 * allocated in clk_notifier_register.
2050 *
2051 * Returns -EINVAL if called with null arguments; otherwise, passes
2052 * along the return value of srcu_notifier_chain_unregister().
2053 */
2054int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2055{
2056	struct clk_notifier *cn = NULL;
2057	int ret = -EINVAL;
2058
2059	if (!clk || !nb)
2060		return -EINVAL;
2061
2062	clk_prepare_lock();
2063
2064	list_for_each_entry(cn, &clk_notifier_list, node)
2065		if (cn->clk == clk)
2066			break;
2067
2068	if (cn->clk == clk) {
2069		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2070
2071		clk->notifier_count--;
2072
2073		/* XXX the notifier code should handle this better */
2074		if (!cn->notifier_head.head) {
2075			srcu_cleanup_notifier_head(&cn->notifier_head);
2076			list_del(&cn->node);
2077			kfree(cn);
2078		}
2079
2080	} else {
2081		ret = -ENOENT;
2082	}
2083
2084	clk_prepare_unlock();
2085
2086	return ret;
2087}
2088EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2089
2090#ifdef CONFIG_OF
2091/**
2092 * struct of_clk_provider - Clock provider registration structure
2093 * @link: Entry in global list of clock providers
2094 * @node: Pointer to device tree node of clock provider
2095 * @get: Get clock callback.  Returns NULL or a struct clk for the
2096 *       given clock specifier
2097 * @data: context pointer to be passed into @get callback
2098 */
2099struct of_clk_provider {
2100	struct list_head link;
2101
2102	struct device_node *node;
2103	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2104	void *data;
2105};
2106
2107extern struct of_device_id __clk_of_table[];
2108
2109static const struct of_device_id __clk_of_table_sentinel
2110	__used __section(__clk_of_table_end);
2111
2112static LIST_HEAD(of_clk_providers);
2113static DEFINE_MUTEX(of_clk_lock);
2114
2115struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2116				     void *data)
2117{
2118	return data;
2119}
2120EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2121
2122struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2123{
2124	struct clk_onecell_data *clk_data = data;
2125	unsigned int idx = clkspec->args[0];
2126
2127	if (idx >= clk_data->clk_num) {
2128		pr_err("%s: invalid clock index %d\n", __func__, idx);
2129		return ERR_PTR(-EINVAL);
2130	}
2131
2132	return clk_data->clks[idx];
2133}
2134EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2135
2136/**
2137 * of_clk_add_provider() - Register a clock provider for a node
2138 * @np: Device node pointer associated with clock provider
2139 * @clk_src_get: callback for decoding clock
2140 * @data: context pointer for @clk_src_get callback.
2141 */
2142int of_clk_add_provider(struct device_node *np,
2143			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2144						   void *data),
2145			void *data)
2146{
2147	struct of_clk_provider *cp;
2148
2149	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2150	if (!cp)
2151		return -ENOMEM;
2152
2153	cp->node = of_node_get(np);
2154	cp->data = data;
2155	cp->get = clk_src_get;
2156
2157	mutex_lock(&of_clk_lock);
2158	list_add(&cp->link, &of_clk_providers);
2159	mutex_unlock(&of_clk_lock);
2160	pr_debug("Added clock from %s\n", np->full_name);
2161
2162	return 0;
2163}
2164EXPORT_SYMBOL_GPL(of_clk_add_provider);
2165
2166/**
2167 * of_clk_del_provider() - Remove a previously registered clock provider
2168 * @np: Device node pointer associated with clock provider
2169 */
2170void of_clk_del_provider(struct device_node *np)
2171{
2172	struct of_clk_provider *cp;
2173
2174	mutex_lock(&of_clk_lock);
2175	list_for_each_entry(cp, &of_clk_providers, link) {
2176		if (cp->node == np) {
2177			list_del(&cp->link);
2178			of_node_put(cp->node);
2179			kfree(cp);
2180			break;
2181		}
2182	}
2183	mutex_unlock(&of_clk_lock);
2184}
2185EXPORT_SYMBOL_GPL(of_clk_del_provider);
2186
2187struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2188{
2189	struct of_clk_provider *provider;
2190	struct clk *clk = ERR_PTR(-ENOENT);
2191
2192	/* Check if we have such a provider in our array */
2193	mutex_lock(&of_clk_lock);
2194	list_for_each_entry(provider, &of_clk_providers, link) {
2195		if (provider->node == clkspec->np)
2196			clk = provider->get(clkspec, provider->data);
2197		if (!IS_ERR(clk))
2198			break;
2199	}
2200	mutex_unlock(&of_clk_lock);
2201
2202	return clk;
2203}
2204
2205int of_clk_get_parent_count(struct device_node *np)
2206{
2207	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2208}
2209EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2210
2211const char *of_clk_get_parent_name(struct device_node *np, int index)
2212{
2213	struct of_phandle_args clkspec;
2214	const char *clk_name;
2215	int rc;
2216
2217	if (index < 0)
2218		return NULL;
2219
2220	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2221					&clkspec);
2222	if (rc)
2223		return NULL;
2224
2225	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2226					  clkspec.args_count ? clkspec.args[0] : 0,
2227					  &clk_name) < 0)
2228		clk_name = clkspec.np->name;
2229
2230	of_node_put(clkspec.np);
2231	return clk_name;
2232}
2233EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2234
2235/**
2236 * of_clk_init() - Scan and init clock providers from the DT
2237 * @matches: array of compatible values and init functions for providers.
2238 *
2239 * This function scans the device tree for matching clock providers and
2240 * calls their initialization functions
2241 */
2242void __init of_clk_init(const struct of_device_id *matches)
2243{
2244	const struct of_device_id *match;
2245	struct device_node *np;
2246
2247	if (!matches)
2248		matches = __clk_of_table;
2249
2250	for_each_matching_node_and_match(np, matches, &match) {
2251		of_clk_init_cb_t clk_init_cb = match->data;
2252		clk_init_cb(np);
2253	}
2254}
2255#endif
2256