clk.c revision 5279fc402ae59361a224d641d5823b21b4206232
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24static DEFINE_SPINLOCK(enable_lock);
25static DEFINE_MUTEX(prepare_lock);
26
27static struct task_struct *prepare_owner;
28static struct task_struct *enable_owner;
29
30static int prepare_refcnt;
31static int enable_refcnt;
32
33static HLIST_HEAD(clk_root_list);
34static HLIST_HEAD(clk_orphan_list);
35static LIST_HEAD(clk_notifier_list);
36
37/***           locking             ***/
38static void clk_prepare_lock(void)
39{
40	if (!mutex_trylock(&prepare_lock)) {
41		if (prepare_owner == current) {
42			prepare_refcnt++;
43			return;
44		}
45		mutex_lock(&prepare_lock);
46	}
47	WARN_ON_ONCE(prepare_owner != NULL);
48	WARN_ON_ONCE(prepare_refcnt != 0);
49	prepare_owner = current;
50	prepare_refcnt = 1;
51}
52
53static void clk_prepare_unlock(void)
54{
55	WARN_ON_ONCE(prepare_owner != current);
56	WARN_ON_ONCE(prepare_refcnt == 0);
57
58	if (--prepare_refcnt)
59		return;
60	prepare_owner = NULL;
61	mutex_unlock(&prepare_lock);
62}
63
64static unsigned long clk_enable_lock(void)
65{
66	unsigned long flags;
67
68	if (!spin_trylock_irqsave(&enable_lock, flags)) {
69		if (enable_owner == current) {
70			enable_refcnt++;
71			return flags;
72		}
73		spin_lock_irqsave(&enable_lock, flags);
74	}
75	WARN_ON_ONCE(enable_owner != NULL);
76	WARN_ON_ONCE(enable_refcnt != 0);
77	enable_owner = current;
78	enable_refcnt = 1;
79	return flags;
80}
81
82static void clk_enable_unlock(unsigned long flags)
83{
84	WARN_ON_ONCE(enable_owner != current);
85	WARN_ON_ONCE(enable_refcnt == 0);
86
87	if (--enable_refcnt)
88		return;
89	enable_owner = NULL;
90	spin_unlock_irqrestore(&enable_lock, flags);
91}
92
93/***        debugfs support        ***/
94
95#ifdef CONFIG_COMMON_CLK_DEBUG
96#include <linux/debugfs.h>
97
98static struct dentry *rootdir;
99static struct dentry *orphandir;
100static int inited = 0;
101
102static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103{
104	if (!c)
105		return;
106
107	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
108		   level * 3 + 1, "",
109		   30 - level * 3, c->name,
110		   c->enable_count, c->prepare_count, clk_get_rate(c),
111		   clk_get_accuracy(c));
112	seq_printf(s, "\n");
113}
114
115static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
116				     int level)
117{
118	struct clk *child;
119
120	if (!c)
121		return;
122
123	clk_summary_show_one(s, c, level);
124
125	hlist_for_each_entry(child, &c->children, child_node)
126		clk_summary_show_subtree(s, child, level + 1);
127}
128
129static int clk_summary_show(struct seq_file *s, void *data)
130{
131	struct clk *c;
132
133	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate        accuracy\n");
134	seq_printf(s, "---------------------------------------------------------------------------------\n");
135
136	clk_prepare_lock();
137
138	hlist_for_each_entry(c, &clk_root_list, child_node)
139		clk_summary_show_subtree(s, c, 0);
140
141	hlist_for_each_entry(c, &clk_orphan_list, child_node)
142		clk_summary_show_subtree(s, c, 0);
143
144	clk_prepare_unlock();
145
146	return 0;
147}
148
149
150static int clk_summary_open(struct inode *inode, struct file *file)
151{
152	return single_open(file, clk_summary_show, inode->i_private);
153}
154
155static const struct file_operations clk_summary_fops = {
156	.open		= clk_summary_open,
157	.read		= seq_read,
158	.llseek		= seq_lseek,
159	.release	= single_release,
160};
161
162static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
163{
164	if (!c)
165		return;
166
167	seq_printf(s, "\"%s\": { ", c->name);
168	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
169	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
170	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
171	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
172}
173
174static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
175{
176	struct clk *child;
177
178	if (!c)
179		return;
180
181	clk_dump_one(s, c, level);
182
183	hlist_for_each_entry(child, &c->children, child_node) {
184		seq_printf(s, ",");
185		clk_dump_subtree(s, child, level + 1);
186	}
187
188	seq_printf(s, "}");
189}
190
191static int clk_dump(struct seq_file *s, void *data)
192{
193	struct clk *c;
194	bool first_node = true;
195
196	seq_printf(s, "{");
197
198	clk_prepare_lock();
199
200	hlist_for_each_entry(c, &clk_root_list, child_node) {
201		if (!first_node)
202			seq_printf(s, ",");
203		first_node = false;
204		clk_dump_subtree(s, c, 0);
205	}
206
207	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
208		seq_printf(s, ",");
209		clk_dump_subtree(s, c, 0);
210	}
211
212	clk_prepare_unlock();
213
214	seq_printf(s, "}");
215	return 0;
216}
217
218
219static int clk_dump_open(struct inode *inode, struct file *file)
220{
221	return single_open(file, clk_dump, inode->i_private);
222}
223
224static const struct file_operations clk_dump_fops = {
225	.open		= clk_dump_open,
226	.read		= seq_read,
227	.llseek		= seq_lseek,
228	.release	= single_release,
229};
230
231/* caller must hold prepare_lock */
232static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
233{
234	struct dentry *d;
235	int ret = -ENOMEM;
236
237	if (!clk || !pdentry) {
238		ret = -EINVAL;
239		goto out;
240	}
241
242	d = debugfs_create_dir(clk->name, pdentry);
243	if (!d)
244		goto out;
245
246	clk->dentry = d;
247
248	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
249			(u32 *)&clk->rate);
250	if (!d)
251		goto err_out;
252
253	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
254			(u32 *)&clk->accuracy);
255	if (!d)
256		goto err_out;
257
258	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
259			(u32 *)&clk->flags);
260	if (!d)
261		goto err_out;
262
263	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
264			(u32 *)&clk->prepare_count);
265	if (!d)
266		goto err_out;
267
268	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
269			(u32 *)&clk->enable_count);
270	if (!d)
271		goto err_out;
272
273	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
274			(u32 *)&clk->notifier_count);
275	if (!d)
276		goto err_out;
277
278	ret = 0;
279	goto out;
280
281err_out:
282	debugfs_remove_recursive(clk->dentry);
283	clk->dentry = NULL;
284out:
285	return ret;
286}
287
288/* caller must hold prepare_lock */
289static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
290{
291	struct clk *child;
292	int ret = -EINVAL;;
293
294	if (!clk || !pdentry)
295		goto out;
296
297	ret = clk_debug_create_one(clk, pdentry);
298
299	if (ret)
300		goto out;
301
302	hlist_for_each_entry(child, &clk->children, child_node)
303		clk_debug_create_subtree(child, clk->dentry);
304
305	ret = 0;
306out:
307	return ret;
308}
309
310/**
311 * clk_debug_register - add a clk node to the debugfs clk tree
312 * @clk: the clk being added to the debugfs clk tree
313 *
314 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
315 * initialized.  Otherwise it bails out early since the debugfs clk tree
316 * will be created lazily by clk_debug_init as part of a late_initcall.
317 *
318 * Caller must hold prepare_lock.  Only clk_init calls this function (so
319 * far) so this is taken care.
320 */
321static int clk_debug_register(struct clk *clk)
322{
323	struct clk *parent;
324	struct dentry *pdentry;
325	int ret = 0;
326
327	if (!inited)
328		goto out;
329
330	parent = clk->parent;
331
332	/*
333	 * Check to see if a clk is a root clk.  Also check that it is
334	 * safe to add this clk to debugfs
335	 */
336	if (!parent)
337		if (clk->flags & CLK_IS_ROOT)
338			pdentry = rootdir;
339		else
340			pdentry = orphandir;
341	else
342		if (parent->dentry)
343			pdentry = parent->dentry;
344		else
345			goto out;
346
347	ret = clk_debug_create_subtree(clk, pdentry);
348
349out:
350	return ret;
351}
352
353/**
354 * clk_debug_reparent - reparent clk node in the debugfs clk tree
355 * @clk: the clk being reparented
356 * @new_parent: the new clk parent, may be NULL
357 *
358 * Rename clk entry in the debugfs clk tree if debugfs has been
359 * initialized.  Otherwise it bails out early since the debugfs clk tree
360 * will be created lazily by clk_debug_init as part of a late_initcall.
361 *
362 * Caller must hold prepare_lock.
363 */
364static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
365{
366	struct dentry *d;
367	struct dentry *new_parent_d;
368
369	if (!inited)
370		return;
371
372	if (new_parent)
373		new_parent_d = new_parent->dentry;
374	else
375		new_parent_d = orphandir;
376
377	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
378			new_parent_d, clk->name);
379	if (d)
380		clk->dentry = d;
381	else
382		pr_debug("%s: failed to rename debugfs entry for %s\n",
383				__func__, clk->name);
384}
385
386/**
387 * clk_debug_init - lazily create the debugfs clk tree visualization
388 *
389 * clks are often initialized very early during boot before memory can
390 * be dynamically allocated and well before debugfs is setup.
391 * clk_debug_init walks the clk tree hierarchy while holding
392 * prepare_lock and creates the topology as part of a late_initcall,
393 * thus insuring that clks initialized very early will still be
394 * represented in the debugfs clk tree.  This function should only be
395 * called once at boot-time, and all other clks added dynamically will
396 * be done so with clk_debug_register.
397 */
398static int __init clk_debug_init(void)
399{
400	struct clk *clk;
401	struct dentry *d;
402
403	rootdir = debugfs_create_dir("clk", NULL);
404
405	if (!rootdir)
406		return -ENOMEM;
407
408	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
409				&clk_summary_fops);
410	if (!d)
411		return -ENOMEM;
412
413	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
414				&clk_dump_fops);
415	if (!d)
416		return -ENOMEM;
417
418	orphandir = debugfs_create_dir("orphans", rootdir);
419
420	if (!orphandir)
421		return -ENOMEM;
422
423	clk_prepare_lock();
424
425	hlist_for_each_entry(clk, &clk_root_list, child_node)
426		clk_debug_create_subtree(clk, rootdir);
427
428	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
429		clk_debug_create_subtree(clk, orphandir);
430
431	inited = 1;
432
433	clk_prepare_unlock();
434
435	return 0;
436}
437late_initcall(clk_debug_init);
438#else
439static inline int clk_debug_register(struct clk *clk) { return 0; }
440static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
441{
442}
443#endif
444
445/* caller must hold prepare_lock */
446static void clk_unprepare_unused_subtree(struct clk *clk)
447{
448	struct clk *child;
449
450	if (!clk)
451		return;
452
453	hlist_for_each_entry(child, &clk->children, child_node)
454		clk_unprepare_unused_subtree(child);
455
456	if (clk->prepare_count)
457		return;
458
459	if (clk->flags & CLK_IGNORE_UNUSED)
460		return;
461
462	if (__clk_is_prepared(clk)) {
463		if (clk->ops->unprepare_unused)
464			clk->ops->unprepare_unused(clk->hw);
465		else if (clk->ops->unprepare)
466			clk->ops->unprepare(clk->hw);
467	}
468}
469
470/* caller must hold prepare_lock */
471static void clk_disable_unused_subtree(struct clk *clk)
472{
473	struct clk *child;
474	unsigned long flags;
475
476	if (!clk)
477		goto out;
478
479	hlist_for_each_entry(child, &clk->children, child_node)
480		clk_disable_unused_subtree(child);
481
482	flags = clk_enable_lock();
483
484	if (clk->enable_count)
485		goto unlock_out;
486
487	if (clk->flags & CLK_IGNORE_UNUSED)
488		goto unlock_out;
489
490	/*
491	 * some gate clocks have special needs during the disable-unused
492	 * sequence.  call .disable_unused if available, otherwise fall
493	 * back to .disable
494	 */
495	if (__clk_is_enabled(clk)) {
496		if (clk->ops->disable_unused)
497			clk->ops->disable_unused(clk->hw);
498		else if (clk->ops->disable)
499			clk->ops->disable(clk->hw);
500	}
501
502unlock_out:
503	clk_enable_unlock(flags);
504
505out:
506	return;
507}
508
509static bool clk_ignore_unused;
510static int __init clk_ignore_unused_setup(char *__unused)
511{
512	clk_ignore_unused = true;
513	return 1;
514}
515__setup("clk_ignore_unused", clk_ignore_unused_setup);
516
517static int clk_disable_unused(void)
518{
519	struct clk *clk;
520
521	if (clk_ignore_unused) {
522		pr_warn("clk: Not disabling unused clocks\n");
523		return 0;
524	}
525
526	clk_prepare_lock();
527
528	hlist_for_each_entry(clk, &clk_root_list, child_node)
529		clk_disable_unused_subtree(clk);
530
531	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
532		clk_disable_unused_subtree(clk);
533
534	hlist_for_each_entry(clk, &clk_root_list, child_node)
535		clk_unprepare_unused_subtree(clk);
536
537	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
538		clk_unprepare_unused_subtree(clk);
539
540	clk_prepare_unlock();
541
542	return 0;
543}
544late_initcall_sync(clk_disable_unused);
545
546/***    helper functions   ***/
547
548const char *__clk_get_name(struct clk *clk)
549{
550	return !clk ? NULL : clk->name;
551}
552EXPORT_SYMBOL_GPL(__clk_get_name);
553
554struct clk_hw *__clk_get_hw(struct clk *clk)
555{
556	return !clk ? NULL : clk->hw;
557}
558
559u8 __clk_get_num_parents(struct clk *clk)
560{
561	return !clk ? 0 : clk->num_parents;
562}
563
564struct clk *__clk_get_parent(struct clk *clk)
565{
566	return !clk ? NULL : clk->parent;
567}
568
569struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
570{
571	if (!clk || index >= clk->num_parents)
572		return NULL;
573	else if (!clk->parents)
574		return __clk_lookup(clk->parent_names[index]);
575	else if (!clk->parents[index])
576		return clk->parents[index] =
577			__clk_lookup(clk->parent_names[index]);
578	else
579		return clk->parents[index];
580}
581
582unsigned int __clk_get_enable_count(struct clk *clk)
583{
584	return !clk ? 0 : clk->enable_count;
585}
586
587unsigned int __clk_get_prepare_count(struct clk *clk)
588{
589	return !clk ? 0 : clk->prepare_count;
590}
591
592unsigned long __clk_get_rate(struct clk *clk)
593{
594	unsigned long ret;
595
596	if (!clk) {
597		ret = 0;
598		goto out;
599	}
600
601	ret = clk->rate;
602
603	if (clk->flags & CLK_IS_ROOT)
604		goto out;
605
606	if (!clk->parent)
607		ret = 0;
608
609out:
610	return ret;
611}
612
613unsigned long __clk_get_accuracy(struct clk *clk)
614{
615	if (!clk)
616		return 0;
617
618	return clk->accuracy;
619}
620
621unsigned long __clk_get_flags(struct clk *clk)
622{
623	return !clk ? 0 : clk->flags;
624}
625EXPORT_SYMBOL_GPL(__clk_get_flags);
626
627bool __clk_is_prepared(struct clk *clk)
628{
629	int ret;
630
631	if (!clk)
632		return false;
633
634	/*
635	 * .is_prepared is optional for clocks that can prepare
636	 * fall back to software usage counter if it is missing
637	 */
638	if (!clk->ops->is_prepared) {
639		ret = clk->prepare_count ? 1 : 0;
640		goto out;
641	}
642
643	ret = clk->ops->is_prepared(clk->hw);
644out:
645	return !!ret;
646}
647
648bool __clk_is_enabled(struct clk *clk)
649{
650	int ret;
651
652	if (!clk)
653		return false;
654
655	/*
656	 * .is_enabled is only mandatory for clocks that gate
657	 * fall back to software usage counter if .is_enabled is missing
658	 */
659	if (!clk->ops->is_enabled) {
660		ret = clk->enable_count ? 1 : 0;
661		goto out;
662	}
663
664	ret = clk->ops->is_enabled(clk->hw);
665out:
666	return !!ret;
667}
668
669static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
670{
671	struct clk *child;
672	struct clk *ret;
673
674	if (!strcmp(clk->name, name))
675		return clk;
676
677	hlist_for_each_entry(child, &clk->children, child_node) {
678		ret = __clk_lookup_subtree(name, child);
679		if (ret)
680			return ret;
681	}
682
683	return NULL;
684}
685
686struct clk *__clk_lookup(const char *name)
687{
688	struct clk *root_clk;
689	struct clk *ret;
690
691	if (!name)
692		return NULL;
693
694	/* search the 'proper' clk tree first */
695	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
696		ret = __clk_lookup_subtree(name, root_clk);
697		if (ret)
698			return ret;
699	}
700
701	/* if not found, then search the orphan tree */
702	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
703		ret = __clk_lookup_subtree(name, root_clk);
704		if (ret)
705			return ret;
706	}
707
708	return NULL;
709}
710
711/*
712 * Helper for finding best parent to provide a given frequency. This can be used
713 * directly as a determine_rate callback (e.g. for a mux), or from a more
714 * complex clock that may combine a mux with other operations.
715 */
716long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
717			      unsigned long *best_parent_rate,
718			      struct clk **best_parent_p)
719{
720	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
721	int i, num_parents;
722	unsigned long parent_rate, best = 0;
723
724	/* if NO_REPARENT flag set, pass through to current parent */
725	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
726		parent = clk->parent;
727		if (clk->flags & CLK_SET_RATE_PARENT)
728			best = __clk_round_rate(parent, rate);
729		else if (parent)
730			best = __clk_get_rate(parent);
731		else
732			best = __clk_get_rate(clk);
733		goto out;
734	}
735
736	/* find the parent that can provide the fastest rate <= rate */
737	num_parents = clk->num_parents;
738	for (i = 0; i < num_parents; i++) {
739		parent = clk_get_parent_by_index(clk, i);
740		if (!parent)
741			continue;
742		if (clk->flags & CLK_SET_RATE_PARENT)
743			parent_rate = __clk_round_rate(parent, rate);
744		else
745			parent_rate = __clk_get_rate(parent);
746		if (parent_rate <= rate && parent_rate > best) {
747			best_parent = parent;
748			best = parent_rate;
749		}
750	}
751
752out:
753	if (best_parent)
754		*best_parent_p = best_parent;
755	*best_parent_rate = best;
756
757	return best;
758}
759
760/***        clk api        ***/
761
762void __clk_unprepare(struct clk *clk)
763{
764	if (!clk)
765		return;
766
767	if (WARN_ON(clk->prepare_count == 0))
768		return;
769
770	if (--clk->prepare_count > 0)
771		return;
772
773	WARN_ON(clk->enable_count > 0);
774
775	if (clk->ops->unprepare)
776		clk->ops->unprepare(clk->hw);
777
778	__clk_unprepare(clk->parent);
779}
780
781/**
782 * clk_unprepare - undo preparation of a clock source
783 * @clk: the clk being unprepared
784 *
785 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
786 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
787 * if the operation may sleep.  One example is a clk which is accessed over
788 * I2c.  In the complex case a clk gate operation may require a fast and a slow
789 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
790 * exclusive.  In fact clk_disable must be called before clk_unprepare.
791 */
792void clk_unprepare(struct clk *clk)
793{
794	clk_prepare_lock();
795	__clk_unprepare(clk);
796	clk_prepare_unlock();
797}
798EXPORT_SYMBOL_GPL(clk_unprepare);
799
800int __clk_prepare(struct clk *clk)
801{
802	int ret = 0;
803
804	if (!clk)
805		return 0;
806
807	if (clk->prepare_count == 0) {
808		ret = __clk_prepare(clk->parent);
809		if (ret)
810			return ret;
811
812		if (clk->ops->prepare) {
813			ret = clk->ops->prepare(clk->hw);
814			if (ret) {
815				__clk_unprepare(clk->parent);
816				return ret;
817			}
818		}
819	}
820
821	clk->prepare_count++;
822
823	return 0;
824}
825
826/**
827 * clk_prepare - prepare a clock source
828 * @clk: the clk being prepared
829 *
830 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
831 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
832 * operation may sleep.  One example is a clk which is accessed over I2c.  In
833 * the complex case a clk ungate operation may require a fast and a slow part.
834 * It is this reason that clk_prepare and clk_enable are not mutually
835 * exclusive.  In fact clk_prepare must be called before clk_enable.
836 * Returns 0 on success, -EERROR otherwise.
837 */
838int clk_prepare(struct clk *clk)
839{
840	int ret;
841
842	clk_prepare_lock();
843	ret = __clk_prepare(clk);
844	clk_prepare_unlock();
845
846	return ret;
847}
848EXPORT_SYMBOL_GPL(clk_prepare);
849
850static void __clk_disable(struct clk *clk)
851{
852	if (!clk)
853		return;
854
855	if (WARN_ON(IS_ERR(clk)))
856		return;
857
858	if (WARN_ON(clk->enable_count == 0))
859		return;
860
861	if (--clk->enable_count > 0)
862		return;
863
864	if (clk->ops->disable)
865		clk->ops->disable(clk->hw);
866
867	__clk_disable(clk->parent);
868}
869
870/**
871 * clk_disable - gate a clock
872 * @clk: the clk being gated
873 *
874 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
875 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
876 * clk if the operation is fast and will never sleep.  One example is a
877 * SoC-internal clk which is controlled via simple register writes.  In the
878 * complex case a clk gate operation may require a fast and a slow part.  It is
879 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
880 * In fact clk_disable must be called before clk_unprepare.
881 */
882void clk_disable(struct clk *clk)
883{
884	unsigned long flags;
885
886	flags = clk_enable_lock();
887	__clk_disable(clk);
888	clk_enable_unlock(flags);
889}
890EXPORT_SYMBOL_GPL(clk_disable);
891
892static int __clk_enable(struct clk *clk)
893{
894	int ret = 0;
895
896	if (!clk)
897		return 0;
898
899	if (WARN_ON(clk->prepare_count == 0))
900		return -ESHUTDOWN;
901
902	if (clk->enable_count == 0) {
903		ret = __clk_enable(clk->parent);
904
905		if (ret)
906			return ret;
907
908		if (clk->ops->enable) {
909			ret = clk->ops->enable(clk->hw);
910			if (ret) {
911				__clk_disable(clk->parent);
912				return ret;
913			}
914		}
915	}
916
917	clk->enable_count++;
918	return 0;
919}
920
921/**
922 * clk_enable - ungate a clock
923 * @clk: the clk being ungated
924 *
925 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
926 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
927 * if the operation will never sleep.  One example is a SoC-internal clk which
928 * is controlled via simple register writes.  In the complex case a clk ungate
929 * operation may require a fast and a slow part.  It is this reason that
930 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
931 * must be called before clk_enable.  Returns 0 on success, -EERROR
932 * otherwise.
933 */
934int clk_enable(struct clk *clk)
935{
936	unsigned long flags;
937	int ret;
938
939	flags = clk_enable_lock();
940	ret = __clk_enable(clk);
941	clk_enable_unlock(flags);
942
943	return ret;
944}
945EXPORT_SYMBOL_GPL(clk_enable);
946
947/**
948 * __clk_round_rate - round the given rate for a clk
949 * @clk: round the rate of this clock
950 * @rate: the rate which is to be rounded
951 *
952 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
953 */
954unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
955{
956	unsigned long parent_rate = 0;
957	struct clk *parent;
958
959	if (!clk)
960		return 0;
961
962	parent = clk->parent;
963	if (parent)
964		parent_rate = parent->rate;
965
966	if (clk->ops->determine_rate)
967		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
968						&parent);
969	else if (clk->ops->round_rate)
970		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
971	else if (clk->flags & CLK_SET_RATE_PARENT)
972		return __clk_round_rate(clk->parent, rate);
973	else
974		return clk->rate;
975}
976
977/**
978 * clk_round_rate - round the given rate for a clk
979 * @clk: the clk for which we are rounding a rate
980 * @rate: the rate which is to be rounded
981 *
982 * Takes in a rate as input and rounds it to a rate that the clk can actually
983 * use which is then returned.  If clk doesn't support round_rate operation
984 * then the parent rate is returned.
985 */
986long clk_round_rate(struct clk *clk, unsigned long rate)
987{
988	unsigned long ret;
989
990	clk_prepare_lock();
991	ret = __clk_round_rate(clk, rate);
992	clk_prepare_unlock();
993
994	return ret;
995}
996EXPORT_SYMBOL_GPL(clk_round_rate);
997
998/**
999 * __clk_notify - call clk notifier chain
1000 * @clk: struct clk * that is changing rate
1001 * @msg: clk notifier type (see include/linux/clk.h)
1002 * @old_rate: old clk rate
1003 * @new_rate: new clk rate
1004 *
1005 * Triggers a notifier call chain on the clk rate-change notification
1006 * for 'clk'.  Passes a pointer to the struct clk and the previous
1007 * and current rates to the notifier callback.  Intended to be called by
1008 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1009 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1010 * a driver returns that.
1011 */
1012static int __clk_notify(struct clk *clk, unsigned long msg,
1013		unsigned long old_rate, unsigned long new_rate)
1014{
1015	struct clk_notifier *cn;
1016	struct clk_notifier_data cnd;
1017	int ret = NOTIFY_DONE;
1018
1019	cnd.clk = clk;
1020	cnd.old_rate = old_rate;
1021	cnd.new_rate = new_rate;
1022
1023	list_for_each_entry(cn, &clk_notifier_list, node) {
1024		if (cn->clk == clk) {
1025			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1026					&cnd);
1027			break;
1028		}
1029	}
1030
1031	return ret;
1032}
1033
1034/**
1035 * __clk_recalc_accuracies
1036 * @clk: first clk in the subtree
1037 *
1038 * Walks the subtree of clks starting with clk and recalculates accuracies as
1039 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1040 * callback then it is assumed that the clock will take on the accuracy of it's
1041 * parent.
1042 *
1043 * Caller must hold prepare_lock.
1044 */
1045static void __clk_recalc_accuracies(struct clk *clk)
1046{
1047	unsigned long parent_accuracy = 0;
1048	struct clk *child;
1049
1050	if (clk->parent)
1051		parent_accuracy = clk->parent->accuracy;
1052
1053	if (clk->ops->recalc_accuracy)
1054		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1055							  parent_accuracy);
1056	else
1057		clk->accuracy = parent_accuracy;
1058
1059	hlist_for_each_entry(child, &clk->children, child_node)
1060		__clk_recalc_accuracies(child);
1061}
1062
1063/**
1064 * clk_get_accuracy - return the accuracy of clk
1065 * @clk: the clk whose accuracy is being returned
1066 *
1067 * Simply returns the cached accuracy of the clk, unless
1068 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1069 * issued.
1070 * If clk is NULL then returns 0.
1071 */
1072long clk_get_accuracy(struct clk *clk)
1073{
1074	unsigned long accuracy;
1075
1076	clk_prepare_lock();
1077	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1078		__clk_recalc_accuracies(clk);
1079
1080	accuracy = __clk_get_accuracy(clk);
1081	clk_prepare_unlock();
1082
1083	return accuracy;
1084}
1085EXPORT_SYMBOL_GPL(clk_get_accuracy);
1086
1087/**
1088 * __clk_recalc_rates
1089 * @clk: first clk in the subtree
1090 * @msg: notification type (see include/linux/clk.h)
1091 *
1092 * Walks the subtree of clks starting with clk and recalculates rates as it
1093 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1094 * it is assumed that the clock will take on the rate of its parent.
1095 *
1096 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1097 * if necessary.
1098 *
1099 * Caller must hold prepare_lock.
1100 */
1101static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1102{
1103	unsigned long old_rate;
1104	unsigned long parent_rate = 0;
1105	struct clk *child;
1106
1107	old_rate = clk->rate;
1108
1109	if (clk->parent)
1110		parent_rate = clk->parent->rate;
1111
1112	if (clk->ops->recalc_rate)
1113		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1114	else
1115		clk->rate = parent_rate;
1116
1117	/*
1118	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1119	 * & ABORT_RATE_CHANGE notifiers
1120	 */
1121	if (clk->notifier_count && msg)
1122		__clk_notify(clk, msg, old_rate, clk->rate);
1123
1124	hlist_for_each_entry(child, &clk->children, child_node)
1125		__clk_recalc_rates(child, msg);
1126}
1127
1128/**
1129 * clk_get_rate - return the rate of clk
1130 * @clk: the clk whose rate is being returned
1131 *
1132 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1133 * is set, which means a recalc_rate will be issued.
1134 * If clk is NULL then returns 0.
1135 */
1136unsigned long clk_get_rate(struct clk *clk)
1137{
1138	unsigned long rate;
1139
1140	clk_prepare_lock();
1141
1142	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1143		__clk_recalc_rates(clk, 0);
1144
1145	rate = __clk_get_rate(clk);
1146	clk_prepare_unlock();
1147
1148	return rate;
1149}
1150EXPORT_SYMBOL_GPL(clk_get_rate);
1151
1152static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1153{
1154	int i;
1155
1156	if (!clk->parents) {
1157		clk->parents = kcalloc(clk->num_parents,
1158					sizeof(struct clk *), GFP_KERNEL);
1159		if (!clk->parents)
1160			return -ENOMEM;
1161	}
1162
1163	/*
1164	 * find index of new parent clock using cached parent ptrs,
1165	 * or if not yet cached, use string name comparison and cache
1166	 * them now to avoid future calls to __clk_lookup.
1167	 */
1168	for (i = 0; i < clk->num_parents; i++) {
1169		if (clk->parents[i] == parent)
1170			return i;
1171
1172		if (clk->parents[i])
1173			continue;
1174
1175		if (!strcmp(clk->parent_names[i], parent->name)) {
1176			clk->parents[i] = __clk_lookup(parent->name);
1177			return i;
1178		}
1179	}
1180
1181	return -EINVAL;
1182}
1183
1184static void clk_reparent(struct clk *clk, struct clk *new_parent)
1185{
1186	hlist_del(&clk->child_node);
1187
1188	if (new_parent) {
1189		/* avoid duplicate POST_RATE_CHANGE notifications */
1190		if (new_parent->new_child == clk)
1191			new_parent->new_child = NULL;
1192
1193		hlist_add_head(&clk->child_node, &new_parent->children);
1194	} else {
1195		hlist_add_head(&clk->child_node, &clk_orphan_list);
1196	}
1197
1198	clk->parent = new_parent;
1199}
1200
1201static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1202{
1203	unsigned long flags;
1204	int ret = 0;
1205	struct clk *old_parent = clk->parent;
1206
1207	/*
1208	 * Migrate prepare state between parents and prevent race with
1209	 * clk_enable().
1210	 *
1211	 * If the clock is not prepared, then a race with
1212	 * clk_enable/disable() is impossible since we already have the
1213	 * prepare lock (future calls to clk_enable() need to be preceded by
1214	 * a clk_prepare()).
1215	 *
1216	 * If the clock is prepared, migrate the prepared state to the new
1217	 * parent and also protect against a race with clk_enable() by
1218	 * forcing the clock and the new parent on.  This ensures that all
1219	 * future calls to clk_enable() are practically NOPs with respect to
1220	 * hardware and software states.
1221	 *
1222	 * See also: Comment for clk_set_parent() below.
1223	 */
1224	if (clk->prepare_count) {
1225		__clk_prepare(parent);
1226		clk_enable(parent);
1227		clk_enable(clk);
1228	}
1229
1230	/* update the clk tree topology */
1231	flags = clk_enable_lock();
1232	clk_reparent(clk, parent);
1233	clk_enable_unlock(flags);
1234
1235	/* change clock input source */
1236	if (parent && clk->ops->set_parent)
1237		ret = clk->ops->set_parent(clk->hw, p_index);
1238
1239	if (ret) {
1240		flags = clk_enable_lock();
1241		clk_reparent(clk, old_parent);
1242		clk_enable_unlock(flags);
1243
1244		if (clk->prepare_count) {
1245			clk_disable(clk);
1246			clk_disable(parent);
1247			__clk_unprepare(parent);
1248		}
1249		return ret;
1250	}
1251
1252	/*
1253	 * Finish the migration of prepare state and undo the changes done
1254	 * for preventing a race with clk_enable().
1255	 */
1256	if (clk->prepare_count) {
1257		clk_disable(clk);
1258		clk_disable(old_parent);
1259		__clk_unprepare(old_parent);
1260	}
1261
1262	/* update debugfs with new clk tree topology */
1263	clk_debug_reparent(clk, parent);
1264	return 0;
1265}
1266
1267/**
1268 * __clk_speculate_rates
1269 * @clk: first clk in the subtree
1270 * @parent_rate: the "future" rate of clk's parent
1271 *
1272 * Walks the subtree of clks starting with clk, speculating rates as it
1273 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1274 *
1275 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1276 * pre-rate change notifications and returns early if no clks in the
1277 * subtree have subscribed to the notifications.  Note that if a clk does not
1278 * implement the .recalc_rate callback then it is assumed that the clock will
1279 * take on the rate of its parent.
1280 *
1281 * Caller must hold prepare_lock.
1282 */
1283static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1284{
1285	struct clk *child;
1286	unsigned long new_rate;
1287	int ret = NOTIFY_DONE;
1288
1289	if (clk->ops->recalc_rate)
1290		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1291	else
1292		new_rate = parent_rate;
1293
1294	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1295	if (clk->notifier_count)
1296		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1297
1298	if (ret & NOTIFY_STOP_MASK)
1299		goto out;
1300
1301	hlist_for_each_entry(child, &clk->children, child_node) {
1302		ret = __clk_speculate_rates(child, new_rate);
1303		if (ret & NOTIFY_STOP_MASK)
1304			break;
1305	}
1306
1307out:
1308	return ret;
1309}
1310
1311static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1312			     struct clk *new_parent, u8 p_index)
1313{
1314	struct clk *child;
1315
1316	clk->new_rate = new_rate;
1317	clk->new_parent = new_parent;
1318	clk->new_parent_index = p_index;
1319	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1320	clk->new_child = NULL;
1321	if (new_parent && new_parent != clk->parent)
1322		new_parent->new_child = clk;
1323
1324	hlist_for_each_entry(child, &clk->children, child_node) {
1325		if (child->ops->recalc_rate)
1326			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1327		else
1328			child->new_rate = new_rate;
1329		clk_calc_subtree(child, child->new_rate, NULL, 0);
1330	}
1331}
1332
1333/*
1334 * calculate the new rates returning the topmost clock that has to be
1335 * changed.
1336 */
1337static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1338{
1339	struct clk *top = clk;
1340	struct clk *old_parent, *parent;
1341	unsigned long best_parent_rate = 0;
1342	unsigned long new_rate;
1343	int p_index = 0;
1344
1345	/* sanity */
1346	if (IS_ERR_OR_NULL(clk))
1347		return NULL;
1348
1349	/* save parent rate, if it exists */
1350	parent = old_parent = clk->parent;
1351	if (parent)
1352		best_parent_rate = parent->rate;
1353
1354	/* find the closest rate and parent clk/rate */
1355	if (clk->ops->determine_rate) {
1356		new_rate = clk->ops->determine_rate(clk->hw, rate,
1357						    &best_parent_rate,
1358						    &parent);
1359	} else if (clk->ops->round_rate) {
1360		new_rate = clk->ops->round_rate(clk->hw, rate,
1361						&best_parent_rate);
1362	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1363		/* pass-through clock without adjustable parent */
1364		clk->new_rate = clk->rate;
1365		return NULL;
1366	} else {
1367		/* pass-through clock with adjustable parent */
1368		top = clk_calc_new_rates(parent, rate);
1369		new_rate = parent->new_rate;
1370		goto out;
1371	}
1372
1373	/* some clocks must be gated to change parent */
1374	if (parent != old_parent &&
1375	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1376		pr_debug("%s: %s not gated but wants to reparent\n",
1377			 __func__, clk->name);
1378		return NULL;
1379	}
1380
1381	/* try finding the new parent index */
1382	if (parent) {
1383		p_index = clk_fetch_parent_index(clk, parent);
1384		if (p_index < 0) {
1385			pr_debug("%s: clk %s can not be parent of clk %s\n",
1386				 __func__, parent->name, clk->name);
1387			return NULL;
1388		}
1389	}
1390
1391	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1392	    best_parent_rate != parent->rate)
1393		top = clk_calc_new_rates(parent, best_parent_rate);
1394
1395out:
1396	clk_calc_subtree(clk, new_rate, parent, p_index);
1397
1398	return top;
1399}
1400
1401/*
1402 * Notify about rate changes in a subtree. Always walk down the whole tree
1403 * so that in case of an error we can walk down the whole tree again and
1404 * abort the change.
1405 */
1406static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1407{
1408	struct clk *child, *tmp_clk, *fail_clk = NULL;
1409	int ret = NOTIFY_DONE;
1410
1411	if (clk->rate == clk->new_rate)
1412		return NULL;
1413
1414	if (clk->notifier_count) {
1415		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1416		if (ret & NOTIFY_STOP_MASK)
1417			fail_clk = clk;
1418	}
1419
1420	hlist_for_each_entry(child, &clk->children, child_node) {
1421		/* Skip children who will be reparented to another clock */
1422		if (child->new_parent && child->new_parent != clk)
1423			continue;
1424		tmp_clk = clk_propagate_rate_change(child, event);
1425		if (tmp_clk)
1426			fail_clk = tmp_clk;
1427	}
1428
1429	/* handle the new child who might not be in clk->children yet */
1430	if (clk->new_child) {
1431		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1432		if (tmp_clk)
1433			fail_clk = tmp_clk;
1434	}
1435
1436	return fail_clk;
1437}
1438
1439/*
1440 * walk down a subtree and set the new rates notifying the rate
1441 * change on the way
1442 */
1443static void clk_change_rate(struct clk *clk)
1444{
1445	struct clk *child;
1446	unsigned long old_rate;
1447	unsigned long best_parent_rate = 0;
1448
1449	old_rate = clk->rate;
1450
1451	/* set parent */
1452	if (clk->new_parent && clk->new_parent != clk->parent)
1453		__clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1454
1455	if (clk->parent)
1456		best_parent_rate = clk->parent->rate;
1457
1458	if (clk->ops->set_rate)
1459		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1460
1461	if (clk->ops->recalc_rate)
1462		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1463	else
1464		clk->rate = best_parent_rate;
1465
1466	if (clk->notifier_count && old_rate != clk->rate)
1467		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1468
1469	hlist_for_each_entry(child, &clk->children, child_node) {
1470		/* Skip children who will be reparented to another clock */
1471		if (child->new_parent && child->new_parent != clk)
1472			continue;
1473		clk_change_rate(child);
1474	}
1475
1476	/* handle the new child who might not be in clk->children yet */
1477	if (clk->new_child)
1478		clk_change_rate(clk->new_child);
1479}
1480
1481/**
1482 * clk_set_rate - specify a new rate for clk
1483 * @clk: the clk whose rate is being changed
1484 * @rate: the new rate for clk
1485 *
1486 * In the simplest case clk_set_rate will only adjust the rate of clk.
1487 *
1488 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1489 * propagate up to clk's parent; whether or not this happens depends on the
1490 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1491 * after calling .round_rate then upstream parent propagation is ignored.  If
1492 * *parent_rate comes back with a new rate for clk's parent then we propagate
1493 * up to clk's parent and set its rate.  Upward propagation will continue
1494 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1495 * .round_rate stops requesting changes to clk's parent_rate.
1496 *
1497 * Rate changes are accomplished via tree traversal that also recalculates the
1498 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1499 *
1500 * Returns 0 on success, -EERROR otherwise.
1501 */
1502int clk_set_rate(struct clk *clk, unsigned long rate)
1503{
1504	struct clk *top, *fail_clk;
1505	int ret = 0;
1506
1507	if (!clk)
1508		return 0;
1509
1510	/* prevent racing with updates to the clock topology */
1511	clk_prepare_lock();
1512
1513	/* bail early if nothing to do */
1514	if (rate == clk_get_rate(clk))
1515		goto out;
1516
1517	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1518		ret = -EBUSY;
1519		goto out;
1520	}
1521
1522	/* calculate new rates and get the topmost changed clock */
1523	top = clk_calc_new_rates(clk, rate);
1524	if (!top) {
1525		ret = -EINVAL;
1526		goto out;
1527	}
1528
1529	/* notify that we are about to change rates */
1530	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1531	if (fail_clk) {
1532		pr_warn("%s: failed to set %s rate\n", __func__,
1533				fail_clk->name);
1534		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1535		ret = -EBUSY;
1536		goto out;
1537	}
1538
1539	/* change the rates */
1540	clk_change_rate(top);
1541
1542out:
1543	clk_prepare_unlock();
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(clk_set_rate);
1548
1549/**
1550 * clk_get_parent - return the parent of a clk
1551 * @clk: the clk whose parent gets returned
1552 *
1553 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1554 */
1555struct clk *clk_get_parent(struct clk *clk)
1556{
1557	struct clk *parent;
1558
1559	clk_prepare_lock();
1560	parent = __clk_get_parent(clk);
1561	clk_prepare_unlock();
1562
1563	return parent;
1564}
1565EXPORT_SYMBOL_GPL(clk_get_parent);
1566
1567/*
1568 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1569 * optional for single-parent clocks.  Always call .get_parent if it is
1570 * available and WARN if it is missing for multi-parent clocks.
1571 *
1572 * For single-parent clocks without .get_parent, first check to see if the
1573 * .parents array exists, and if so use it to avoid an expensive tree
1574 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1575 */
1576static struct clk *__clk_init_parent(struct clk *clk)
1577{
1578	struct clk *ret = NULL;
1579	u8 index;
1580
1581	/* handle the trivial cases */
1582
1583	if (!clk->num_parents)
1584		goto out;
1585
1586	if (clk->num_parents == 1) {
1587		if (IS_ERR_OR_NULL(clk->parent))
1588			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1589		ret = clk->parent;
1590		goto out;
1591	}
1592
1593	if (!clk->ops->get_parent) {
1594		WARN(!clk->ops->get_parent,
1595			"%s: multi-parent clocks must implement .get_parent\n",
1596			__func__);
1597		goto out;
1598	};
1599
1600	/*
1601	 * Do our best to cache parent clocks in clk->parents.  This prevents
1602	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1603	 * clk->parent here; that is done by the calling function
1604	 */
1605
1606	index = clk->ops->get_parent(clk->hw);
1607
1608	if (!clk->parents)
1609		clk->parents =
1610			kcalloc(clk->num_parents, sizeof(struct clk *),
1611					GFP_KERNEL);
1612
1613	ret = clk_get_parent_by_index(clk, index);
1614
1615out:
1616	return ret;
1617}
1618
1619void __clk_reparent(struct clk *clk, struct clk *new_parent)
1620{
1621	clk_reparent(clk, new_parent);
1622	clk_debug_reparent(clk, new_parent);
1623	__clk_recalc_accuracies(clk);
1624	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1625}
1626
1627/**
1628 * clk_set_parent - switch the parent of a mux clk
1629 * @clk: the mux clk whose input we are switching
1630 * @parent: the new input to clk
1631 *
1632 * Re-parent clk to use parent as its new input source.  If clk is in
1633 * prepared state, the clk will get enabled for the duration of this call. If
1634 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1635 * that, the reparenting is glitchy in hardware, etc), use the
1636 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1637 *
1638 * After successfully changing clk's parent clk_set_parent will update the
1639 * clk topology, sysfs topology and propagate rate recalculation via
1640 * __clk_recalc_rates.
1641 *
1642 * Returns 0 on success, -EERROR otherwise.
1643 */
1644int clk_set_parent(struct clk *clk, struct clk *parent)
1645{
1646	int ret = 0;
1647	int p_index = 0;
1648	unsigned long p_rate = 0;
1649
1650	if (!clk)
1651		return 0;
1652
1653	if (!clk->ops)
1654		return -EINVAL;
1655
1656	/* verify ops for for multi-parent clks */
1657	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1658		return -ENOSYS;
1659
1660	/* prevent racing with updates to the clock topology */
1661	clk_prepare_lock();
1662
1663	if (clk->parent == parent)
1664		goto out;
1665
1666	/* check that we are allowed to re-parent if the clock is in use */
1667	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1668		ret = -EBUSY;
1669		goto out;
1670	}
1671
1672	/* try finding the new parent index */
1673	if (parent) {
1674		p_index = clk_fetch_parent_index(clk, parent);
1675		p_rate = parent->rate;
1676		if (p_index < 0) {
1677			pr_debug("%s: clk %s can not be parent of clk %s\n",
1678					__func__, parent->name, clk->name);
1679			ret = p_index;
1680			goto out;
1681		}
1682	}
1683
1684	/* propagate PRE_RATE_CHANGE notifications */
1685	ret = __clk_speculate_rates(clk, p_rate);
1686
1687	/* abort if a driver objects */
1688	if (ret & NOTIFY_STOP_MASK)
1689		goto out;
1690
1691	/* do the re-parent */
1692	ret = __clk_set_parent(clk, parent, p_index);
1693
1694	/* propagate rate an accuracy recalculation accordingly */
1695	if (ret) {
1696		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1697	} else {
1698		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1699		__clk_recalc_accuracies(clk);
1700	}
1701
1702out:
1703	clk_prepare_unlock();
1704
1705	return ret;
1706}
1707EXPORT_SYMBOL_GPL(clk_set_parent);
1708
1709/**
1710 * __clk_init - initialize the data structures in a struct clk
1711 * @dev:	device initializing this clk, placeholder for now
1712 * @clk:	clk being initialized
1713 *
1714 * Initializes the lists in struct clk, queries the hardware for the
1715 * parent and rate and sets them both.
1716 */
1717int __clk_init(struct device *dev, struct clk *clk)
1718{
1719	int i, ret = 0;
1720	struct clk *orphan;
1721	struct hlist_node *tmp2;
1722
1723	if (!clk)
1724		return -EINVAL;
1725
1726	clk_prepare_lock();
1727
1728	/* check to see if a clock with this name is already registered */
1729	if (__clk_lookup(clk->name)) {
1730		pr_debug("%s: clk %s already initialized\n",
1731				__func__, clk->name);
1732		ret = -EEXIST;
1733		goto out;
1734	}
1735
1736	/* check that clk_ops are sane.  See Documentation/clk.txt */
1737	if (clk->ops->set_rate &&
1738	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1739	      clk->ops->recalc_rate)) {
1740		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1741				__func__, clk->name);
1742		ret = -EINVAL;
1743		goto out;
1744	}
1745
1746	if (clk->ops->set_parent && !clk->ops->get_parent) {
1747		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1748				__func__, clk->name);
1749		ret = -EINVAL;
1750		goto out;
1751	}
1752
1753	/* throw a WARN if any entries in parent_names are NULL */
1754	for (i = 0; i < clk->num_parents; i++)
1755		WARN(!clk->parent_names[i],
1756				"%s: invalid NULL in %s's .parent_names\n",
1757				__func__, clk->name);
1758
1759	/*
1760	 * Allocate an array of struct clk *'s to avoid unnecessary string
1761	 * look-ups of clk's possible parents.  This can fail for clocks passed
1762	 * in to clk_init during early boot; thus any access to clk->parents[]
1763	 * must always check for a NULL pointer and try to populate it if
1764	 * necessary.
1765	 *
1766	 * If clk->parents is not NULL we skip this entire block.  This allows
1767	 * for clock drivers to statically initialize clk->parents.
1768	 */
1769	if (clk->num_parents > 1 && !clk->parents) {
1770		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1771					GFP_KERNEL);
1772		/*
1773		 * __clk_lookup returns NULL for parents that have not been
1774		 * clk_init'd; thus any access to clk->parents[] must check
1775		 * for a NULL pointer.  We can always perform lazy lookups for
1776		 * missing parents later on.
1777		 */
1778		if (clk->parents)
1779			for (i = 0; i < clk->num_parents; i++)
1780				clk->parents[i] =
1781					__clk_lookup(clk->parent_names[i]);
1782	}
1783
1784	clk->parent = __clk_init_parent(clk);
1785
1786	/*
1787	 * Populate clk->parent if parent has already been __clk_init'd.  If
1788	 * parent has not yet been __clk_init'd then place clk in the orphan
1789	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1790	 * clk list.
1791	 *
1792	 * Every time a new clk is clk_init'd then we walk the list of orphan
1793	 * clocks and re-parent any that are children of the clock currently
1794	 * being clk_init'd.
1795	 */
1796	if (clk->parent)
1797		hlist_add_head(&clk->child_node,
1798				&clk->parent->children);
1799	else if (clk->flags & CLK_IS_ROOT)
1800		hlist_add_head(&clk->child_node, &clk_root_list);
1801	else
1802		hlist_add_head(&clk->child_node, &clk_orphan_list);
1803
1804	/*
1805	 * Set clk's accuracy.  The preferred method is to use
1806	 * .recalc_accuracy. For simple clocks and lazy developers the default
1807	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1808	 * parent (or is orphaned) then accuracy is set to zero (perfect
1809	 * clock).
1810	 */
1811	if (clk->ops->recalc_accuracy)
1812		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1813					__clk_get_accuracy(clk->parent));
1814	else if (clk->parent)
1815		clk->accuracy = clk->parent->accuracy;
1816	else
1817		clk->accuracy = 0;
1818
1819	/*
1820	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1821	 * simple clocks and lazy developers the default fallback is to use the
1822	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1823	 * then rate is set to zero.
1824	 */
1825	if (clk->ops->recalc_rate)
1826		clk->rate = clk->ops->recalc_rate(clk->hw,
1827				__clk_get_rate(clk->parent));
1828	else if (clk->parent)
1829		clk->rate = clk->parent->rate;
1830	else
1831		clk->rate = 0;
1832
1833	clk_debug_register(clk);
1834	/*
1835	 * walk the list of orphan clocks and reparent any that are children of
1836	 * this clock
1837	 */
1838	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1839		if (orphan->num_parents && orphan->ops->get_parent) {
1840			i = orphan->ops->get_parent(orphan->hw);
1841			if (!strcmp(clk->name, orphan->parent_names[i]))
1842				__clk_reparent(orphan, clk);
1843			continue;
1844		}
1845
1846		for (i = 0; i < orphan->num_parents; i++)
1847			if (!strcmp(clk->name, orphan->parent_names[i])) {
1848				__clk_reparent(orphan, clk);
1849				break;
1850			}
1851	 }
1852
1853	/*
1854	 * optional platform-specific magic
1855	 *
1856	 * The .init callback is not used by any of the basic clock types, but
1857	 * exists for weird hardware that must perform initialization magic.
1858	 * Please consider other ways of solving initialization problems before
1859	 * using this callback, as its use is discouraged.
1860	 */
1861	if (clk->ops->init)
1862		clk->ops->init(clk->hw);
1863
1864out:
1865	clk_prepare_unlock();
1866
1867	return ret;
1868}
1869
1870/**
1871 * __clk_register - register a clock and return a cookie.
1872 *
1873 * Same as clk_register, except that the .clk field inside hw shall point to a
1874 * preallocated (generally statically allocated) struct clk. None of the fields
1875 * of the struct clk need to be initialized.
1876 *
1877 * The data pointed to by .init and .clk field shall NOT be marked as init
1878 * data.
1879 *
1880 * __clk_register is only exposed via clk-private.h and is intended for use with
1881 * very large numbers of clocks that need to be statically initialized.  It is
1882 * a layering violation to include clk-private.h from any code which implements
1883 * a clock's .ops; as such any statically initialized clock data MUST be in a
1884 * separate C file from the logic that implements its operations.  Returns 0
1885 * on success, otherwise an error code.
1886 */
1887struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1888{
1889	int ret;
1890	struct clk *clk;
1891
1892	clk = hw->clk;
1893	clk->name = hw->init->name;
1894	clk->ops = hw->init->ops;
1895	clk->hw = hw;
1896	clk->flags = hw->init->flags;
1897	clk->parent_names = hw->init->parent_names;
1898	clk->num_parents = hw->init->num_parents;
1899
1900	ret = __clk_init(dev, clk);
1901	if (ret)
1902		return ERR_PTR(ret);
1903
1904	return clk;
1905}
1906EXPORT_SYMBOL_GPL(__clk_register);
1907
1908static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1909{
1910	int i, ret;
1911
1912	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1913	if (!clk->name) {
1914		pr_err("%s: could not allocate clk->name\n", __func__);
1915		ret = -ENOMEM;
1916		goto fail_name;
1917	}
1918	clk->ops = hw->init->ops;
1919	clk->hw = hw;
1920	clk->flags = hw->init->flags;
1921	clk->num_parents = hw->init->num_parents;
1922	hw->clk = clk;
1923
1924	/* allocate local copy in case parent_names is __initdata */
1925	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1926					GFP_KERNEL);
1927
1928	if (!clk->parent_names) {
1929		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1930		ret = -ENOMEM;
1931		goto fail_parent_names;
1932	}
1933
1934
1935	/* copy each string name in case parent_names is __initdata */
1936	for (i = 0; i < clk->num_parents; i++) {
1937		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1938						GFP_KERNEL);
1939		if (!clk->parent_names[i]) {
1940			pr_err("%s: could not copy parent_names\n", __func__);
1941			ret = -ENOMEM;
1942			goto fail_parent_names_copy;
1943		}
1944	}
1945
1946	ret = __clk_init(dev, clk);
1947	if (!ret)
1948		return 0;
1949
1950fail_parent_names_copy:
1951	while (--i >= 0)
1952		kfree(clk->parent_names[i]);
1953	kfree(clk->parent_names);
1954fail_parent_names:
1955	kfree(clk->name);
1956fail_name:
1957	return ret;
1958}
1959
1960/**
1961 * clk_register - allocate a new clock, register it and return an opaque cookie
1962 * @dev: device that is registering this clock
1963 * @hw: link to hardware-specific clock data
1964 *
1965 * clk_register is the primary interface for populating the clock tree with new
1966 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1967 * cannot be dereferenced by driver code but may be used in conjuction with the
1968 * rest of the clock API.  In the event of an error clk_register will return an
1969 * error code; drivers must test for an error code after calling clk_register.
1970 */
1971struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1972{
1973	int ret;
1974	struct clk *clk;
1975
1976	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1977	if (!clk) {
1978		pr_err("%s: could not allocate clk\n", __func__);
1979		ret = -ENOMEM;
1980		goto fail_out;
1981	}
1982
1983	ret = _clk_register(dev, hw, clk);
1984	if (!ret)
1985		return clk;
1986
1987	kfree(clk);
1988fail_out:
1989	return ERR_PTR(ret);
1990}
1991EXPORT_SYMBOL_GPL(clk_register);
1992
1993/**
1994 * clk_unregister - unregister a currently registered clock
1995 * @clk: clock to unregister
1996 *
1997 * Currently unimplemented.
1998 */
1999void clk_unregister(struct clk *clk) {}
2000EXPORT_SYMBOL_GPL(clk_unregister);
2001
2002static void devm_clk_release(struct device *dev, void *res)
2003{
2004	clk_unregister(res);
2005}
2006
2007/**
2008 * devm_clk_register - resource managed clk_register()
2009 * @dev: device that is registering this clock
2010 * @hw: link to hardware-specific clock data
2011 *
2012 * Managed clk_register(). Clocks returned from this function are
2013 * automatically clk_unregister()ed on driver detach. See clk_register() for
2014 * more information.
2015 */
2016struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2017{
2018	struct clk *clk;
2019	int ret;
2020
2021	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
2022	if (!clk)
2023		return ERR_PTR(-ENOMEM);
2024
2025	ret = _clk_register(dev, hw, clk);
2026	if (!ret) {
2027		devres_add(dev, clk);
2028	} else {
2029		devres_free(clk);
2030		clk = ERR_PTR(ret);
2031	}
2032
2033	return clk;
2034}
2035EXPORT_SYMBOL_GPL(devm_clk_register);
2036
2037static int devm_clk_match(struct device *dev, void *res, void *data)
2038{
2039	struct clk *c = res;
2040	if (WARN_ON(!c))
2041		return 0;
2042	return c == data;
2043}
2044
2045/**
2046 * devm_clk_unregister - resource managed clk_unregister()
2047 * @clk: clock to unregister
2048 *
2049 * Deallocate a clock allocated with devm_clk_register(). Normally
2050 * this function will not need to be called and the resource management
2051 * code will ensure that the resource is freed.
2052 */
2053void devm_clk_unregister(struct device *dev, struct clk *clk)
2054{
2055	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2056}
2057EXPORT_SYMBOL_GPL(devm_clk_unregister);
2058
2059/***        clk rate change notifiers        ***/
2060
2061/**
2062 * clk_notifier_register - add a clk rate change notifier
2063 * @clk: struct clk * to watch
2064 * @nb: struct notifier_block * with callback info
2065 *
2066 * Request notification when clk's rate changes.  This uses an SRCU
2067 * notifier because we want it to block and notifier unregistrations are
2068 * uncommon.  The callbacks associated with the notifier must not
2069 * re-enter into the clk framework by calling any top-level clk APIs;
2070 * this will cause a nested prepare_lock mutex.
2071 *
2072 * Pre-change notifier callbacks will be passed the current, pre-change
2073 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
2074 * post-change rate of the clk is passed via struct
2075 * clk_notifier_data.new_rate.
2076 *
2077 * Post-change notifiers will pass the now-current, post-change rate of
2078 * the clk in both struct clk_notifier_data.old_rate and struct
2079 * clk_notifier_data.new_rate.
2080 *
2081 * Abort-change notifiers are effectively the opposite of pre-change
2082 * notifiers: the original pre-change clk rate is passed in via struct
2083 * clk_notifier_data.new_rate and the failed post-change rate is passed
2084 * in via struct clk_notifier_data.old_rate.
2085 *
2086 * clk_notifier_register() must be called from non-atomic context.
2087 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2088 * allocation failure; otherwise, passes along the return value of
2089 * srcu_notifier_chain_register().
2090 */
2091int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2092{
2093	struct clk_notifier *cn;
2094	int ret = -ENOMEM;
2095
2096	if (!clk || !nb)
2097		return -EINVAL;
2098
2099	clk_prepare_lock();
2100
2101	/* search the list of notifiers for this clk */
2102	list_for_each_entry(cn, &clk_notifier_list, node)
2103		if (cn->clk == clk)
2104			break;
2105
2106	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2107	if (cn->clk != clk) {
2108		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2109		if (!cn)
2110			goto out;
2111
2112		cn->clk = clk;
2113		srcu_init_notifier_head(&cn->notifier_head);
2114
2115		list_add(&cn->node, &clk_notifier_list);
2116	}
2117
2118	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2119
2120	clk->notifier_count++;
2121
2122out:
2123	clk_prepare_unlock();
2124
2125	return ret;
2126}
2127EXPORT_SYMBOL_GPL(clk_notifier_register);
2128
2129/**
2130 * clk_notifier_unregister - remove a clk rate change notifier
2131 * @clk: struct clk *
2132 * @nb: struct notifier_block * with callback info
2133 *
2134 * Request no further notification for changes to 'clk' and frees memory
2135 * allocated in clk_notifier_register.
2136 *
2137 * Returns -EINVAL if called with null arguments; otherwise, passes
2138 * along the return value of srcu_notifier_chain_unregister().
2139 */
2140int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2141{
2142	struct clk_notifier *cn = NULL;
2143	int ret = -EINVAL;
2144
2145	if (!clk || !nb)
2146		return -EINVAL;
2147
2148	clk_prepare_lock();
2149
2150	list_for_each_entry(cn, &clk_notifier_list, node)
2151		if (cn->clk == clk)
2152			break;
2153
2154	if (cn->clk == clk) {
2155		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2156
2157		clk->notifier_count--;
2158
2159		/* XXX the notifier code should handle this better */
2160		if (!cn->notifier_head.head) {
2161			srcu_cleanup_notifier_head(&cn->notifier_head);
2162			list_del(&cn->node);
2163			kfree(cn);
2164		}
2165
2166	} else {
2167		ret = -ENOENT;
2168	}
2169
2170	clk_prepare_unlock();
2171
2172	return ret;
2173}
2174EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2175
2176#ifdef CONFIG_OF
2177/**
2178 * struct of_clk_provider - Clock provider registration structure
2179 * @link: Entry in global list of clock providers
2180 * @node: Pointer to device tree node of clock provider
2181 * @get: Get clock callback.  Returns NULL or a struct clk for the
2182 *       given clock specifier
2183 * @data: context pointer to be passed into @get callback
2184 */
2185struct of_clk_provider {
2186	struct list_head link;
2187
2188	struct device_node *node;
2189	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2190	void *data;
2191};
2192
2193extern struct of_device_id __clk_of_table[];
2194
2195static const struct of_device_id __clk_of_table_sentinel
2196	__used __section(__clk_of_table_end);
2197
2198static LIST_HEAD(of_clk_providers);
2199static DEFINE_MUTEX(of_clk_lock);
2200
2201struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2202				     void *data)
2203{
2204	return data;
2205}
2206EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2207
2208struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2209{
2210	struct clk_onecell_data *clk_data = data;
2211	unsigned int idx = clkspec->args[0];
2212
2213	if (idx >= clk_data->clk_num) {
2214		pr_err("%s: invalid clock index %d\n", __func__, idx);
2215		return ERR_PTR(-EINVAL);
2216	}
2217
2218	return clk_data->clks[idx];
2219}
2220EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2221
2222/**
2223 * of_clk_add_provider() - Register a clock provider for a node
2224 * @np: Device node pointer associated with clock provider
2225 * @clk_src_get: callback for decoding clock
2226 * @data: context pointer for @clk_src_get callback.
2227 */
2228int of_clk_add_provider(struct device_node *np,
2229			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2230						   void *data),
2231			void *data)
2232{
2233	struct of_clk_provider *cp;
2234
2235	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2236	if (!cp)
2237		return -ENOMEM;
2238
2239	cp->node = of_node_get(np);
2240	cp->data = data;
2241	cp->get = clk_src_get;
2242
2243	mutex_lock(&of_clk_lock);
2244	list_add(&cp->link, &of_clk_providers);
2245	mutex_unlock(&of_clk_lock);
2246	pr_debug("Added clock from %s\n", np->full_name);
2247
2248	return 0;
2249}
2250EXPORT_SYMBOL_GPL(of_clk_add_provider);
2251
2252/**
2253 * of_clk_del_provider() - Remove a previously registered clock provider
2254 * @np: Device node pointer associated with clock provider
2255 */
2256void of_clk_del_provider(struct device_node *np)
2257{
2258	struct of_clk_provider *cp;
2259
2260	mutex_lock(&of_clk_lock);
2261	list_for_each_entry(cp, &of_clk_providers, link) {
2262		if (cp->node == np) {
2263			list_del(&cp->link);
2264			of_node_put(cp->node);
2265			kfree(cp);
2266			break;
2267		}
2268	}
2269	mutex_unlock(&of_clk_lock);
2270}
2271EXPORT_SYMBOL_GPL(of_clk_del_provider);
2272
2273struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2274{
2275	struct of_clk_provider *provider;
2276	struct clk *clk = ERR_PTR(-ENOENT);
2277
2278	/* Check if we have such a provider in our array */
2279	mutex_lock(&of_clk_lock);
2280	list_for_each_entry(provider, &of_clk_providers, link) {
2281		if (provider->node == clkspec->np)
2282			clk = provider->get(clkspec, provider->data);
2283		if (!IS_ERR(clk))
2284			break;
2285	}
2286	mutex_unlock(&of_clk_lock);
2287
2288	return clk;
2289}
2290
2291int of_clk_get_parent_count(struct device_node *np)
2292{
2293	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2294}
2295EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2296
2297const char *of_clk_get_parent_name(struct device_node *np, int index)
2298{
2299	struct of_phandle_args clkspec;
2300	const char *clk_name;
2301	int rc;
2302
2303	if (index < 0)
2304		return NULL;
2305
2306	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2307					&clkspec);
2308	if (rc)
2309		return NULL;
2310
2311	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2312					  clkspec.args_count ? clkspec.args[0] : 0,
2313					  &clk_name) < 0)
2314		clk_name = clkspec.np->name;
2315
2316	of_node_put(clkspec.np);
2317	return clk_name;
2318}
2319EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2320
2321/**
2322 * of_clk_init() - Scan and init clock providers from the DT
2323 * @matches: array of compatible values and init functions for providers.
2324 *
2325 * This function scans the device tree for matching clock providers and
2326 * calls their initialization functions
2327 */
2328void __init of_clk_init(const struct of_device_id *matches)
2329{
2330	const struct of_device_id *match;
2331	struct device_node *np;
2332
2333	if (!matches)
2334		matches = __clk_of_table;
2335
2336	for_each_matching_node_and_match(np, matches, &match) {
2337		of_clk_init_cb_t clk_init_cb = match->data;
2338		clk_init_cb(np);
2339	}
2340}
2341#endif
2342