clk.c revision 5324fda79e28d1d4db0631369b39ff263d0142b4
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24#include "clk.h"
25
26static DEFINE_SPINLOCK(enable_lock);
27static DEFINE_MUTEX(prepare_lock);
28
29static struct task_struct *prepare_owner;
30static struct task_struct *enable_owner;
31
32static int prepare_refcnt;
33static int enable_refcnt;
34
35static HLIST_HEAD(clk_root_list);
36static HLIST_HEAD(clk_orphan_list);
37static LIST_HEAD(clk_notifier_list);
38
39/***           locking             ***/
40static void clk_prepare_lock(void)
41{
42	if (!mutex_trylock(&prepare_lock)) {
43		if (prepare_owner == current) {
44			prepare_refcnt++;
45			return;
46		}
47		mutex_lock(&prepare_lock);
48	}
49	WARN_ON_ONCE(prepare_owner != NULL);
50	WARN_ON_ONCE(prepare_refcnt != 0);
51	prepare_owner = current;
52	prepare_refcnt = 1;
53}
54
55static void clk_prepare_unlock(void)
56{
57	WARN_ON_ONCE(prepare_owner != current);
58	WARN_ON_ONCE(prepare_refcnt == 0);
59
60	if (--prepare_refcnt)
61		return;
62	prepare_owner = NULL;
63	mutex_unlock(&prepare_lock);
64}
65
66static unsigned long clk_enable_lock(void)
67{
68	unsigned long flags;
69
70	if (!spin_trylock_irqsave(&enable_lock, flags)) {
71		if (enable_owner == current) {
72			enable_refcnt++;
73			return flags;
74		}
75		spin_lock_irqsave(&enable_lock, flags);
76	}
77	WARN_ON_ONCE(enable_owner != NULL);
78	WARN_ON_ONCE(enable_refcnt != 0);
79	enable_owner = current;
80	enable_refcnt = 1;
81	return flags;
82}
83
84static void clk_enable_unlock(unsigned long flags)
85{
86	WARN_ON_ONCE(enable_owner != current);
87	WARN_ON_ONCE(enable_refcnt == 0);
88
89	if (--enable_refcnt)
90		return;
91	enable_owner = NULL;
92	spin_unlock_irqrestore(&enable_lock, flags);
93}
94
95/***        debugfs support        ***/
96
97#ifdef CONFIG_DEBUG_FS
98#include <linux/debugfs.h>
99
100static struct dentry *rootdir;
101static struct dentry *orphandir;
102static int inited = 0;
103
104static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105{
106	if (!c)
107		return;
108
109	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
110		   level * 3 + 1, "",
111		   30 - level * 3, c->name,
112		   c->enable_count, c->prepare_count, clk_get_rate(c),
113		   clk_get_accuracy(c));
114	seq_printf(s, "\n");
115}
116
117static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
118				     int level)
119{
120	struct clk *child;
121
122	if (!c)
123		return;
124
125	clk_summary_show_one(s, c, level);
126
127	hlist_for_each_entry(child, &c->children, child_node)
128		clk_summary_show_subtree(s, child, level + 1);
129}
130
131static int clk_summary_show(struct seq_file *s, void *data)
132{
133	struct clk *c;
134
135	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate        accuracy\n");
136	seq_printf(s, "---------------------------------------------------------------------------------\n");
137
138	clk_prepare_lock();
139
140	hlist_for_each_entry(c, &clk_root_list, child_node)
141		clk_summary_show_subtree(s, c, 0);
142
143	hlist_for_each_entry(c, &clk_orphan_list, child_node)
144		clk_summary_show_subtree(s, c, 0);
145
146	clk_prepare_unlock();
147
148	return 0;
149}
150
151
152static int clk_summary_open(struct inode *inode, struct file *file)
153{
154	return single_open(file, clk_summary_show, inode->i_private);
155}
156
157static const struct file_operations clk_summary_fops = {
158	.open		= clk_summary_open,
159	.read		= seq_read,
160	.llseek		= seq_lseek,
161	.release	= single_release,
162};
163
164static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
165{
166	if (!c)
167		return;
168
169	seq_printf(s, "\"%s\": { ", c->name);
170	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
171	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
172	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
173	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
174}
175
176static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
177{
178	struct clk *child;
179
180	if (!c)
181		return;
182
183	clk_dump_one(s, c, level);
184
185	hlist_for_each_entry(child, &c->children, child_node) {
186		seq_printf(s, ",");
187		clk_dump_subtree(s, child, level + 1);
188	}
189
190	seq_printf(s, "}");
191}
192
193static int clk_dump(struct seq_file *s, void *data)
194{
195	struct clk *c;
196	bool first_node = true;
197
198	seq_printf(s, "{");
199
200	clk_prepare_lock();
201
202	hlist_for_each_entry(c, &clk_root_list, child_node) {
203		if (!first_node)
204			seq_printf(s, ",");
205		first_node = false;
206		clk_dump_subtree(s, c, 0);
207	}
208
209	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
210		seq_printf(s, ",");
211		clk_dump_subtree(s, c, 0);
212	}
213
214	clk_prepare_unlock();
215
216	seq_printf(s, "}");
217	return 0;
218}
219
220
221static int clk_dump_open(struct inode *inode, struct file *file)
222{
223	return single_open(file, clk_dump, inode->i_private);
224}
225
226static const struct file_operations clk_dump_fops = {
227	.open		= clk_dump_open,
228	.read		= seq_read,
229	.llseek		= seq_lseek,
230	.release	= single_release,
231};
232
233/* caller must hold prepare_lock */
234static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
235{
236	struct dentry *d;
237	int ret = -ENOMEM;
238
239	if (!clk || !pdentry) {
240		ret = -EINVAL;
241		goto out;
242	}
243
244	d = debugfs_create_dir(clk->name, pdentry);
245	if (!d)
246		goto out;
247
248	clk->dentry = d;
249
250	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
251			(u32 *)&clk->rate);
252	if (!d)
253		goto err_out;
254
255	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
256			(u32 *)&clk->accuracy);
257	if (!d)
258		goto err_out;
259
260	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
261			(u32 *)&clk->flags);
262	if (!d)
263		goto err_out;
264
265	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
266			(u32 *)&clk->prepare_count);
267	if (!d)
268		goto err_out;
269
270	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
271			(u32 *)&clk->enable_count);
272	if (!d)
273		goto err_out;
274
275	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
276			(u32 *)&clk->notifier_count);
277	if (!d)
278		goto err_out;
279
280	ret = 0;
281	goto out;
282
283err_out:
284	debugfs_remove_recursive(clk->dentry);
285	clk->dentry = NULL;
286out:
287	return ret;
288}
289
290/* caller must hold prepare_lock */
291static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
292{
293	struct clk *child;
294	int ret = -EINVAL;;
295
296	if (!clk || !pdentry)
297		goto out;
298
299	ret = clk_debug_create_one(clk, pdentry);
300
301	if (ret)
302		goto out;
303
304	hlist_for_each_entry(child, &clk->children, child_node)
305		clk_debug_create_subtree(child, clk->dentry);
306
307	ret = 0;
308out:
309	return ret;
310}
311
312/**
313 * clk_debug_register - add a clk node to the debugfs clk tree
314 * @clk: the clk being added to the debugfs clk tree
315 *
316 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
317 * initialized.  Otherwise it bails out early since the debugfs clk tree
318 * will be created lazily by clk_debug_init as part of a late_initcall.
319 *
320 * Caller must hold prepare_lock.  Only clk_init calls this function (so
321 * far) so this is taken care.
322 */
323static int clk_debug_register(struct clk *clk)
324{
325	struct clk *parent;
326	struct dentry *pdentry;
327	int ret = 0;
328
329	if (!inited)
330		goto out;
331
332	parent = clk->parent;
333
334	/*
335	 * Check to see if a clk is a root clk.  Also check that it is
336	 * safe to add this clk to debugfs
337	 */
338	if (!parent)
339		if (clk->flags & CLK_IS_ROOT)
340			pdentry = rootdir;
341		else
342			pdentry = orphandir;
343	else
344		if (parent->dentry)
345			pdentry = parent->dentry;
346		else
347			goto out;
348
349	ret = clk_debug_create_subtree(clk, pdentry);
350
351out:
352	return ret;
353}
354
355 /**
356 * clk_debug_unregister - remove a clk node from the debugfs clk tree
357 * @clk: the clk being removed from the debugfs clk tree
358 *
359 * Dynamically removes a clk and all it's children clk nodes from the
360 * debugfs clk tree if clk->dentry points to debugfs created by
361 * clk_debug_register in __clk_init.
362 *
363 * Caller must hold prepare_lock.
364 */
365static void clk_debug_unregister(struct clk *clk)
366{
367	debugfs_remove_recursive(clk->dentry);
368}
369
370/**
371 * clk_debug_reparent - reparent clk node in the debugfs clk tree
372 * @clk: the clk being reparented
373 * @new_parent: the new clk parent, may be NULL
374 *
375 * Rename clk entry in the debugfs clk tree if debugfs has been
376 * initialized.  Otherwise it bails out early since the debugfs clk tree
377 * will be created lazily by clk_debug_init as part of a late_initcall.
378 *
379 * Caller must hold prepare_lock.
380 */
381static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
382{
383	struct dentry *d;
384	struct dentry *new_parent_d;
385
386	if (!inited)
387		return;
388
389	if (new_parent)
390		new_parent_d = new_parent->dentry;
391	else
392		new_parent_d = orphandir;
393
394	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
395			new_parent_d, clk->name);
396	if (d)
397		clk->dentry = d;
398	else
399		pr_debug("%s: failed to rename debugfs entry for %s\n",
400				__func__, clk->name);
401}
402
403/**
404 * clk_debug_init - lazily create the debugfs clk tree visualization
405 *
406 * clks are often initialized very early during boot before memory can
407 * be dynamically allocated and well before debugfs is setup.
408 * clk_debug_init walks the clk tree hierarchy while holding
409 * prepare_lock and creates the topology as part of a late_initcall,
410 * thus insuring that clks initialized very early will still be
411 * represented in the debugfs clk tree.  This function should only be
412 * called once at boot-time, and all other clks added dynamically will
413 * be done so with clk_debug_register.
414 */
415static int __init clk_debug_init(void)
416{
417	struct clk *clk;
418	struct dentry *d;
419
420	rootdir = debugfs_create_dir("clk", NULL);
421
422	if (!rootdir)
423		return -ENOMEM;
424
425	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
426				&clk_summary_fops);
427	if (!d)
428		return -ENOMEM;
429
430	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
431				&clk_dump_fops);
432	if (!d)
433		return -ENOMEM;
434
435	orphandir = debugfs_create_dir("orphans", rootdir);
436
437	if (!orphandir)
438		return -ENOMEM;
439
440	clk_prepare_lock();
441
442	hlist_for_each_entry(clk, &clk_root_list, child_node)
443		clk_debug_create_subtree(clk, rootdir);
444
445	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
446		clk_debug_create_subtree(clk, orphandir);
447
448	inited = 1;
449
450	clk_prepare_unlock();
451
452	return 0;
453}
454late_initcall(clk_debug_init);
455#else
456static inline int clk_debug_register(struct clk *clk) { return 0; }
457static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
458{
459}
460static inline void clk_debug_unregister(struct clk *clk)
461{
462}
463#endif
464
465/* caller must hold prepare_lock */
466static void clk_unprepare_unused_subtree(struct clk *clk)
467{
468	struct clk *child;
469
470	if (!clk)
471		return;
472
473	hlist_for_each_entry(child, &clk->children, child_node)
474		clk_unprepare_unused_subtree(child);
475
476	if (clk->prepare_count)
477		return;
478
479	if (clk->flags & CLK_IGNORE_UNUSED)
480		return;
481
482	if (__clk_is_prepared(clk)) {
483		if (clk->ops->unprepare_unused)
484			clk->ops->unprepare_unused(clk->hw);
485		else if (clk->ops->unprepare)
486			clk->ops->unprepare(clk->hw);
487	}
488}
489
490/* caller must hold prepare_lock */
491static void clk_disable_unused_subtree(struct clk *clk)
492{
493	struct clk *child;
494	unsigned long flags;
495
496	if (!clk)
497		goto out;
498
499	hlist_for_each_entry(child, &clk->children, child_node)
500		clk_disable_unused_subtree(child);
501
502	flags = clk_enable_lock();
503
504	if (clk->enable_count)
505		goto unlock_out;
506
507	if (clk->flags & CLK_IGNORE_UNUSED)
508		goto unlock_out;
509
510	/*
511	 * some gate clocks have special needs during the disable-unused
512	 * sequence.  call .disable_unused if available, otherwise fall
513	 * back to .disable
514	 */
515	if (__clk_is_enabled(clk)) {
516		if (clk->ops->disable_unused)
517			clk->ops->disable_unused(clk->hw);
518		else if (clk->ops->disable)
519			clk->ops->disable(clk->hw);
520	}
521
522unlock_out:
523	clk_enable_unlock(flags);
524
525out:
526	return;
527}
528
529static bool clk_ignore_unused;
530static int __init clk_ignore_unused_setup(char *__unused)
531{
532	clk_ignore_unused = true;
533	return 1;
534}
535__setup("clk_ignore_unused", clk_ignore_unused_setup);
536
537static int clk_disable_unused(void)
538{
539	struct clk *clk;
540
541	if (clk_ignore_unused) {
542		pr_warn("clk: Not disabling unused clocks\n");
543		return 0;
544	}
545
546	clk_prepare_lock();
547
548	hlist_for_each_entry(clk, &clk_root_list, child_node)
549		clk_disable_unused_subtree(clk);
550
551	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
552		clk_disable_unused_subtree(clk);
553
554	hlist_for_each_entry(clk, &clk_root_list, child_node)
555		clk_unprepare_unused_subtree(clk);
556
557	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
558		clk_unprepare_unused_subtree(clk);
559
560	clk_prepare_unlock();
561
562	return 0;
563}
564late_initcall_sync(clk_disable_unused);
565
566/***    helper functions   ***/
567
568const char *__clk_get_name(struct clk *clk)
569{
570	return !clk ? NULL : clk->name;
571}
572EXPORT_SYMBOL_GPL(__clk_get_name);
573
574struct clk_hw *__clk_get_hw(struct clk *clk)
575{
576	return !clk ? NULL : clk->hw;
577}
578EXPORT_SYMBOL_GPL(__clk_get_hw);
579
580u8 __clk_get_num_parents(struct clk *clk)
581{
582	return !clk ? 0 : clk->num_parents;
583}
584EXPORT_SYMBOL_GPL(__clk_get_num_parents);
585
586struct clk *__clk_get_parent(struct clk *clk)
587{
588	return !clk ? NULL : clk->parent;
589}
590EXPORT_SYMBOL_GPL(__clk_get_parent);
591
592struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
593{
594	if (!clk || index >= clk->num_parents)
595		return NULL;
596	else if (!clk->parents)
597		return __clk_lookup(clk->parent_names[index]);
598	else if (!clk->parents[index])
599		return clk->parents[index] =
600			__clk_lookup(clk->parent_names[index]);
601	else
602		return clk->parents[index];
603}
604EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
605
606unsigned int __clk_get_enable_count(struct clk *clk)
607{
608	return !clk ? 0 : clk->enable_count;
609}
610
611unsigned int __clk_get_prepare_count(struct clk *clk)
612{
613	return !clk ? 0 : clk->prepare_count;
614}
615
616unsigned long __clk_get_rate(struct clk *clk)
617{
618	unsigned long ret;
619
620	if (!clk) {
621		ret = 0;
622		goto out;
623	}
624
625	ret = clk->rate;
626
627	if (clk->flags & CLK_IS_ROOT)
628		goto out;
629
630	if (!clk->parent)
631		ret = 0;
632
633out:
634	return ret;
635}
636EXPORT_SYMBOL_GPL(__clk_get_rate);
637
638unsigned long __clk_get_accuracy(struct clk *clk)
639{
640	if (!clk)
641		return 0;
642
643	return clk->accuracy;
644}
645
646unsigned long __clk_get_flags(struct clk *clk)
647{
648	return !clk ? 0 : clk->flags;
649}
650EXPORT_SYMBOL_GPL(__clk_get_flags);
651
652bool __clk_is_prepared(struct clk *clk)
653{
654	int ret;
655
656	if (!clk)
657		return false;
658
659	/*
660	 * .is_prepared is optional for clocks that can prepare
661	 * fall back to software usage counter if it is missing
662	 */
663	if (!clk->ops->is_prepared) {
664		ret = clk->prepare_count ? 1 : 0;
665		goto out;
666	}
667
668	ret = clk->ops->is_prepared(clk->hw);
669out:
670	return !!ret;
671}
672
673bool __clk_is_enabled(struct clk *clk)
674{
675	int ret;
676
677	if (!clk)
678		return false;
679
680	/*
681	 * .is_enabled is only mandatory for clocks that gate
682	 * fall back to software usage counter if .is_enabled is missing
683	 */
684	if (!clk->ops->is_enabled) {
685		ret = clk->enable_count ? 1 : 0;
686		goto out;
687	}
688
689	ret = clk->ops->is_enabled(clk->hw);
690out:
691	return !!ret;
692}
693EXPORT_SYMBOL_GPL(__clk_is_enabled);
694
695static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
696{
697	struct clk *child;
698	struct clk *ret;
699
700	if (!strcmp(clk->name, name))
701		return clk;
702
703	hlist_for_each_entry(child, &clk->children, child_node) {
704		ret = __clk_lookup_subtree(name, child);
705		if (ret)
706			return ret;
707	}
708
709	return NULL;
710}
711
712struct clk *__clk_lookup(const char *name)
713{
714	struct clk *root_clk;
715	struct clk *ret;
716
717	if (!name)
718		return NULL;
719
720	/* search the 'proper' clk tree first */
721	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
722		ret = __clk_lookup_subtree(name, root_clk);
723		if (ret)
724			return ret;
725	}
726
727	/* if not found, then search the orphan tree */
728	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
729		ret = __clk_lookup_subtree(name, root_clk);
730		if (ret)
731			return ret;
732	}
733
734	return NULL;
735}
736
737/*
738 * Helper for finding best parent to provide a given frequency. This can be used
739 * directly as a determine_rate callback (e.g. for a mux), or from a more
740 * complex clock that may combine a mux with other operations.
741 */
742long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
743			      unsigned long *best_parent_rate,
744			      struct clk **best_parent_p)
745{
746	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
747	int i, num_parents;
748	unsigned long parent_rate, best = 0;
749
750	/* if NO_REPARENT flag set, pass through to current parent */
751	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
752		parent = clk->parent;
753		if (clk->flags & CLK_SET_RATE_PARENT)
754			best = __clk_round_rate(parent, rate);
755		else if (parent)
756			best = __clk_get_rate(parent);
757		else
758			best = __clk_get_rate(clk);
759		goto out;
760	}
761
762	/* find the parent that can provide the fastest rate <= rate */
763	num_parents = clk->num_parents;
764	for (i = 0; i < num_parents; i++) {
765		parent = clk_get_parent_by_index(clk, i);
766		if (!parent)
767			continue;
768		if (clk->flags & CLK_SET_RATE_PARENT)
769			parent_rate = __clk_round_rate(parent, rate);
770		else
771			parent_rate = __clk_get_rate(parent);
772		if (parent_rate <= rate && parent_rate > best) {
773			best_parent = parent;
774			best = parent_rate;
775		}
776	}
777
778out:
779	if (best_parent)
780		*best_parent_p = best_parent;
781	*best_parent_rate = best;
782
783	return best;
784}
785EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
786
787/***        clk api        ***/
788
789void __clk_unprepare(struct clk *clk)
790{
791	if (!clk)
792		return;
793
794	if (WARN_ON(clk->prepare_count == 0))
795		return;
796
797	if (--clk->prepare_count > 0)
798		return;
799
800	WARN_ON(clk->enable_count > 0);
801
802	if (clk->ops->unprepare)
803		clk->ops->unprepare(clk->hw);
804
805	__clk_unprepare(clk->parent);
806}
807
808/**
809 * clk_unprepare - undo preparation of a clock source
810 * @clk: the clk being unprepared
811 *
812 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
813 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
814 * if the operation may sleep.  One example is a clk which is accessed over
815 * I2c.  In the complex case a clk gate operation may require a fast and a slow
816 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
817 * exclusive.  In fact clk_disable must be called before clk_unprepare.
818 */
819void clk_unprepare(struct clk *clk)
820{
821	clk_prepare_lock();
822	__clk_unprepare(clk);
823	clk_prepare_unlock();
824}
825EXPORT_SYMBOL_GPL(clk_unprepare);
826
827int __clk_prepare(struct clk *clk)
828{
829	int ret = 0;
830
831	if (!clk)
832		return 0;
833
834	if (clk->prepare_count == 0) {
835		ret = __clk_prepare(clk->parent);
836		if (ret)
837			return ret;
838
839		if (clk->ops->prepare) {
840			ret = clk->ops->prepare(clk->hw);
841			if (ret) {
842				__clk_unprepare(clk->parent);
843				return ret;
844			}
845		}
846	}
847
848	clk->prepare_count++;
849
850	return 0;
851}
852
853/**
854 * clk_prepare - prepare a clock source
855 * @clk: the clk being prepared
856 *
857 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
858 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
859 * operation may sleep.  One example is a clk which is accessed over I2c.  In
860 * the complex case a clk ungate operation may require a fast and a slow part.
861 * It is this reason that clk_prepare and clk_enable are not mutually
862 * exclusive.  In fact clk_prepare must be called before clk_enable.
863 * Returns 0 on success, -EERROR otherwise.
864 */
865int clk_prepare(struct clk *clk)
866{
867	int ret;
868
869	clk_prepare_lock();
870	ret = __clk_prepare(clk);
871	clk_prepare_unlock();
872
873	return ret;
874}
875EXPORT_SYMBOL_GPL(clk_prepare);
876
877static void __clk_disable(struct clk *clk)
878{
879	if (!clk)
880		return;
881
882	if (WARN_ON(IS_ERR(clk)))
883		return;
884
885	if (WARN_ON(clk->enable_count == 0))
886		return;
887
888	if (--clk->enable_count > 0)
889		return;
890
891	if (clk->ops->disable)
892		clk->ops->disable(clk->hw);
893
894	__clk_disable(clk->parent);
895}
896
897/**
898 * clk_disable - gate a clock
899 * @clk: the clk being gated
900 *
901 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
902 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
903 * clk if the operation is fast and will never sleep.  One example is a
904 * SoC-internal clk which is controlled via simple register writes.  In the
905 * complex case a clk gate operation may require a fast and a slow part.  It is
906 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
907 * In fact clk_disable must be called before clk_unprepare.
908 */
909void clk_disable(struct clk *clk)
910{
911	unsigned long flags;
912
913	flags = clk_enable_lock();
914	__clk_disable(clk);
915	clk_enable_unlock(flags);
916}
917EXPORT_SYMBOL_GPL(clk_disable);
918
919static int __clk_enable(struct clk *clk)
920{
921	int ret = 0;
922
923	if (!clk)
924		return 0;
925
926	if (WARN_ON(clk->prepare_count == 0))
927		return -ESHUTDOWN;
928
929	if (clk->enable_count == 0) {
930		ret = __clk_enable(clk->parent);
931
932		if (ret)
933			return ret;
934
935		if (clk->ops->enable) {
936			ret = clk->ops->enable(clk->hw);
937			if (ret) {
938				__clk_disable(clk->parent);
939				return ret;
940			}
941		}
942	}
943
944	clk->enable_count++;
945	return 0;
946}
947
948/**
949 * clk_enable - ungate a clock
950 * @clk: the clk being ungated
951 *
952 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
953 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
954 * if the operation will never sleep.  One example is a SoC-internal clk which
955 * is controlled via simple register writes.  In the complex case a clk ungate
956 * operation may require a fast and a slow part.  It is this reason that
957 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
958 * must be called before clk_enable.  Returns 0 on success, -EERROR
959 * otherwise.
960 */
961int clk_enable(struct clk *clk)
962{
963	unsigned long flags;
964	int ret;
965
966	flags = clk_enable_lock();
967	ret = __clk_enable(clk);
968	clk_enable_unlock(flags);
969
970	return ret;
971}
972EXPORT_SYMBOL_GPL(clk_enable);
973
974/**
975 * __clk_round_rate - round the given rate for a clk
976 * @clk: round the rate of this clock
977 * @rate: the rate which is to be rounded
978 *
979 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
980 */
981unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
982{
983	unsigned long parent_rate = 0;
984	struct clk *parent;
985
986	if (!clk)
987		return 0;
988
989	parent = clk->parent;
990	if (parent)
991		parent_rate = parent->rate;
992
993	if (clk->ops->determine_rate)
994		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
995						&parent);
996	else if (clk->ops->round_rate)
997		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
998	else if (clk->flags & CLK_SET_RATE_PARENT)
999		return __clk_round_rate(clk->parent, rate);
1000	else
1001		return clk->rate;
1002}
1003
1004/**
1005 * clk_round_rate - round the given rate for a clk
1006 * @clk: the clk for which we are rounding a rate
1007 * @rate: the rate which is to be rounded
1008 *
1009 * Takes in a rate as input and rounds it to a rate that the clk can actually
1010 * use which is then returned.  If clk doesn't support round_rate operation
1011 * then the parent rate is returned.
1012 */
1013long clk_round_rate(struct clk *clk, unsigned long rate)
1014{
1015	unsigned long ret;
1016
1017	clk_prepare_lock();
1018	ret = __clk_round_rate(clk, rate);
1019	clk_prepare_unlock();
1020
1021	return ret;
1022}
1023EXPORT_SYMBOL_GPL(clk_round_rate);
1024
1025/**
1026 * __clk_notify - call clk notifier chain
1027 * @clk: struct clk * that is changing rate
1028 * @msg: clk notifier type (see include/linux/clk.h)
1029 * @old_rate: old clk rate
1030 * @new_rate: new clk rate
1031 *
1032 * Triggers a notifier call chain on the clk rate-change notification
1033 * for 'clk'.  Passes a pointer to the struct clk and the previous
1034 * and current rates to the notifier callback.  Intended to be called by
1035 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1036 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1037 * a driver returns that.
1038 */
1039static int __clk_notify(struct clk *clk, unsigned long msg,
1040		unsigned long old_rate, unsigned long new_rate)
1041{
1042	struct clk_notifier *cn;
1043	struct clk_notifier_data cnd;
1044	int ret = NOTIFY_DONE;
1045
1046	cnd.clk = clk;
1047	cnd.old_rate = old_rate;
1048	cnd.new_rate = new_rate;
1049
1050	list_for_each_entry(cn, &clk_notifier_list, node) {
1051		if (cn->clk == clk) {
1052			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1053					&cnd);
1054			break;
1055		}
1056	}
1057
1058	return ret;
1059}
1060
1061/**
1062 * __clk_recalc_accuracies
1063 * @clk: first clk in the subtree
1064 *
1065 * Walks the subtree of clks starting with clk and recalculates accuracies as
1066 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1067 * callback then it is assumed that the clock will take on the accuracy of it's
1068 * parent.
1069 *
1070 * Caller must hold prepare_lock.
1071 */
1072static void __clk_recalc_accuracies(struct clk *clk)
1073{
1074	unsigned long parent_accuracy = 0;
1075	struct clk *child;
1076
1077	if (clk->parent)
1078		parent_accuracy = clk->parent->accuracy;
1079
1080	if (clk->ops->recalc_accuracy)
1081		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1082							  parent_accuracy);
1083	else
1084		clk->accuracy = parent_accuracy;
1085
1086	hlist_for_each_entry(child, &clk->children, child_node)
1087		__clk_recalc_accuracies(child);
1088}
1089
1090/**
1091 * clk_get_accuracy - return the accuracy of clk
1092 * @clk: the clk whose accuracy is being returned
1093 *
1094 * Simply returns the cached accuracy of the clk, unless
1095 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1096 * issued.
1097 * If clk is NULL then returns 0.
1098 */
1099long clk_get_accuracy(struct clk *clk)
1100{
1101	unsigned long accuracy;
1102
1103	clk_prepare_lock();
1104	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1105		__clk_recalc_accuracies(clk);
1106
1107	accuracy = __clk_get_accuracy(clk);
1108	clk_prepare_unlock();
1109
1110	return accuracy;
1111}
1112EXPORT_SYMBOL_GPL(clk_get_accuracy);
1113
1114/**
1115 * __clk_recalc_rates
1116 * @clk: first clk in the subtree
1117 * @msg: notification type (see include/linux/clk.h)
1118 *
1119 * Walks the subtree of clks starting with clk and recalculates rates as it
1120 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1121 * it is assumed that the clock will take on the rate of its parent.
1122 *
1123 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1124 * if necessary.
1125 *
1126 * Caller must hold prepare_lock.
1127 */
1128static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1129{
1130	unsigned long old_rate;
1131	unsigned long parent_rate = 0;
1132	struct clk *child;
1133
1134	old_rate = clk->rate;
1135
1136	if (clk->parent)
1137		parent_rate = clk->parent->rate;
1138
1139	if (clk->ops->recalc_rate)
1140		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1141	else
1142		clk->rate = parent_rate;
1143
1144	/*
1145	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1146	 * & ABORT_RATE_CHANGE notifiers
1147	 */
1148	if (clk->notifier_count && msg)
1149		__clk_notify(clk, msg, old_rate, clk->rate);
1150
1151	hlist_for_each_entry(child, &clk->children, child_node)
1152		__clk_recalc_rates(child, msg);
1153}
1154
1155/**
1156 * clk_get_rate - return the rate of clk
1157 * @clk: the clk whose rate is being returned
1158 *
1159 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1160 * is set, which means a recalc_rate will be issued.
1161 * If clk is NULL then returns 0.
1162 */
1163unsigned long clk_get_rate(struct clk *clk)
1164{
1165	unsigned long rate;
1166
1167	clk_prepare_lock();
1168
1169	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1170		__clk_recalc_rates(clk, 0);
1171
1172	rate = __clk_get_rate(clk);
1173	clk_prepare_unlock();
1174
1175	return rate;
1176}
1177EXPORT_SYMBOL_GPL(clk_get_rate);
1178
1179static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1180{
1181	int i;
1182
1183	if (!clk->parents) {
1184		clk->parents = kcalloc(clk->num_parents,
1185					sizeof(struct clk *), GFP_KERNEL);
1186		if (!clk->parents)
1187			return -ENOMEM;
1188	}
1189
1190	/*
1191	 * find index of new parent clock using cached parent ptrs,
1192	 * or if not yet cached, use string name comparison and cache
1193	 * them now to avoid future calls to __clk_lookup.
1194	 */
1195	for (i = 0; i < clk->num_parents; i++) {
1196		if (clk->parents[i] == parent)
1197			return i;
1198
1199		if (clk->parents[i])
1200			continue;
1201
1202		if (!strcmp(clk->parent_names[i], parent->name)) {
1203			clk->parents[i] = __clk_lookup(parent->name);
1204			return i;
1205		}
1206	}
1207
1208	return -EINVAL;
1209}
1210
1211static void clk_reparent(struct clk *clk, struct clk *new_parent)
1212{
1213	hlist_del(&clk->child_node);
1214
1215	if (new_parent) {
1216		/* avoid duplicate POST_RATE_CHANGE notifications */
1217		if (new_parent->new_child == clk)
1218			new_parent->new_child = NULL;
1219
1220		hlist_add_head(&clk->child_node, &new_parent->children);
1221	} else {
1222		hlist_add_head(&clk->child_node, &clk_orphan_list);
1223	}
1224
1225	clk->parent = new_parent;
1226}
1227
1228static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1229{
1230	unsigned long flags;
1231	struct clk *old_parent = clk->parent;
1232
1233	/*
1234	 * Migrate prepare state between parents and prevent race with
1235	 * clk_enable().
1236	 *
1237	 * If the clock is not prepared, then a race with
1238	 * clk_enable/disable() is impossible since we already have the
1239	 * prepare lock (future calls to clk_enable() need to be preceded by
1240	 * a clk_prepare()).
1241	 *
1242	 * If the clock is prepared, migrate the prepared state to the new
1243	 * parent and also protect against a race with clk_enable() by
1244	 * forcing the clock and the new parent on.  This ensures that all
1245	 * future calls to clk_enable() are practically NOPs with respect to
1246	 * hardware and software states.
1247	 *
1248	 * See also: Comment for clk_set_parent() below.
1249	 */
1250	if (clk->prepare_count) {
1251		__clk_prepare(parent);
1252		clk_enable(parent);
1253		clk_enable(clk);
1254	}
1255
1256	/* update the clk tree topology */
1257	flags = clk_enable_lock();
1258	clk_reparent(clk, parent);
1259	clk_enable_unlock(flags);
1260
1261	return old_parent;
1262}
1263
1264static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1265		struct clk *old_parent)
1266{
1267	/*
1268	 * Finish the migration of prepare state and undo the changes done
1269	 * for preventing a race with clk_enable().
1270	 */
1271	if (clk->prepare_count) {
1272		clk_disable(clk);
1273		clk_disable(old_parent);
1274		__clk_unprepare(old_parent);
1275	}
1276
1277	/* update debugfs with new clk tree topology */
1278	clk_debug_reparent(clk, parent);
1279}
1280
1281static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1282{
1283	unsigned long flags;
1284	int ret = 0;
1285	struct clk *old_parent;
1286
1287	old_parent = __clk_set_parent_before(clk, parent);
1288
1289	/* change clock input source */
1290	if (parent && clk->ops->set_parent)
1291		ret = clk->ops->set_parent(clk->hw, p_index);
1292
1293	if (ret) {
1294		flags = clk_enable_lock();
1295		clk_reparent(clk, old_parent);
1296		clk_enable_unlock(flags);
1297
1298		if (clk->prepare_count) {
1299			clk_disable(clk);
1300			clk_disable(parent);
1301			__clk_unprepare(parent);
1302		}
1303		return ret;
1304	}
1305
1306	__clk_set_parent_after(clk, parent, old_parent);
1307
1308	return 0;
1309}
1310
1311/**
1312 * __clk_speculate_rates
1313 * @clk: first clk in the subtree
1314 * @parent_rate: the "future" rate of clk's parent
1315 *
1316 * Walks the subtree of clks starting with clk, speculating rates as it
1317 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1318 *
1319 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1320 * pre-rate change notifications and returns early if no clks in the
1321 * subtree have subscribed to the notifications.  Note that if a clk does not
1322 * implement the .recalc_rate callback then it is assumed that the clock will
1323 * take on the rate of its parent.
1324 *
1325 * Caller must hold prepare_lock.
1326 */
1327static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1328{
1329	struct clk *child;
1330	unsigned long new_rate;
1331	int ret = NOTIFY_DONE;
1332
1333	if (clk->ops->recalc_rate)
1334		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1335	else
1336		new_rate = parent_rate;
1337
1338	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1339	if (clk->notifier_count)
1340		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1341
1342	if (ret & NOTIFY_STOP_MASK)
1343		goto out;
1344
1345	hlist_for_each_entry(child, &clk->children, child_node) {
1346		ret = __clk_speculate_rates(child, new_rate);
1347		if (ret & NOTIFY_STOP_MASK)
1348			break;
1349	}
1350
1351out:
1352	return ret;
1353}
1354
1355static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1356			     struct clk *new_parent, u8 p_index)
1357{
1358	struct clk *child;
1359
1360	clk->new_rate = new_rate;
1361	clk->new_parent = new_parent;
1362	clk->new_parent_index = p_index;
1363	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1364	clk->new_child = NULL;
1365	if (new_parent && new_parent != clk->parent)
1366		new_parent->new_child = clk;
1367
1368	hlist_for_each_entry(child, &clk->children, child_node) {
1369		if (child->ops->recalc_rate)
1370			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1371		else
1372			child->new_rate = new_rate;
1373		clk_calc_subtree(child, child->new_rate, NULL, 0);
1374	}
1375}
1376
1377/*
1378 * calculate the new rates returning the topmost clock that has to be
1379 * changed.
1380 */
1381static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1382{
1383	struct clk *top = clk;
1384	struct clk *old_parent, *parent;
1385	unsigned long best_parent_rate = 0;
1386	unsigned long new_rate;
1387	int p_index = 0;
1388
1389	/* sanity */
1390	if (IS_ERR_OR_NULL(clk))
1391		return NULL;
1392
1393	/* save parent rate, if it exists */
1394	parent = old_parent = clk->parent;
1395	if (parent)
1396		best_parent_rate = parent->rate;
1397
1398	/* find the closest rate and parent clk/rate */
1399	if (clk->ops->determine_rate) {
1400		new_rate = clk->ops->determine_rate(clk->hw, rate,
1401						    &best_parent_rate,
1402						    &parent);
1403	} else if (clk->ops->round_rate) {
1404		new_rate = clk->ops->round_rate(clk->hw, rate,
1405						&best_parent_rate);
1406	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1407		/* pass-through clock without adjustable parent */
1408		clk->new_rate = clk->rate;
1409		return NULL;
1410	} else {
1411		/* pass-through clock with adjustable parent */
1412		top = clk_calc_new_rates(parent, rate);
1413		new_rate = parent->new_rate;
1414		goto out;
1415	}
1416
1417	/* some clocks must be gated to change parent */
1418	if (parent != old_parent &&
1419	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1420		pr_debug("%s: %s not gated but wants to reparent\n",
1421			 __func__, clk->name);
1422		return NULL;
1423	}
1424
1425	/* try finding the new parent index */
1426	if (parent) {
1427		p_index = clk_fetch_parent_index(clk, parent);
1428		if (p_index < 0) {
1429			pr_debug("%s: clk %s can not be parent of clk %s\n",
1430				 __func__, parent->name, clk->name);
1431			return NULL;
1432		}
1433	}
1434
1435	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1436	    best_parent_rate != parent->rate)
1437		top = clk_calc_new_rates(parent, best_parent_rate);
1438
1439out:
1440	clk_calc_subtree(clk, new_rate, parent, p_index);
1441
1442	return top;
1443}
1444
1445/*
1446 * Notify about rate changes in a subtree. Always walk down the whole tree
1447 * so that in case of an error we can walk down the whole tree again and
1448 * abort the change.
1449 */
1450static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1451{
1452	struct clk *child, *tmp_clk, *fail_clk = NULL;
1453	int ret = NOTIFY_DONE;
1454
1455	if (clk->rate == clk->new_rate)
1456		return NULL;
1457
1458	if (clk->notifier_count) {
1459		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1460		if (ret & NOTIFY_STOP_MASK)
1461			fail_clk = clk;
1462	}
1463
1464	hlist_for_each_entry(child, &clk->children, child_node) {
1465		/* Skip children who will be reparented to another clock */
1466		if (child->new_parent && child->new_parent != clk)
1467			continue;
1468		tmp_clk = clk_propagate_rate_change(child, event);
1469		if (tmp_clk)
1470			fail_clk = tmp_clk;
1471	}
1472
1473	/* handle the new child who might not be in clk->children yet */
1474	if (clk->new_child) {
1475		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1476		if (tmp_clk)
1477			fail_clk = tmp_clk;
1478	}
1479
1480	return fail_clk;
1481}
1482
1483/*
1484 * walk down a subtree and set the new rates notifying the rate
1485 * change on the way
1486 */
1487static void clk_change_rate(struct clk *clk)
1488{
1489	struct clk *child;
1490	unsigned long old_rate;
1491	unsigned long best_parent_rate = 0;
1492	bool skip_set_rate = false;
1493	struct clk *old_parent;
1494
1495	old_rate = clk->rate;
1496
1497	if (clk->new_parent)
1498		best_parent_rate = clk->new_parent->rate;
1499	else if (clk->parent)
1500		best_parent_rate = clk->parent->rate;
1501
1502	if (clk->new_parent && clk->new_parent != clk->parent) {
1503		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1504
1505		if (clk->ops->set_rate_and_parent) {
1506			skip_set_rate = true;
1507			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1508					best_parent_rate,
1509					clk->new_parent_index);
1510		} else if (clk->ops->set_parent) {
1511			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1512		}
1513
1514		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1515	}
1516
1517	if (!skip_set_rate && clk->ops->set_rate)
1518		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1519
1520	if (clk->ops->recalc_rate)
1521		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1522	else
1523		clk->rate = best_parent_rate;
1524
1525	if (clk->notifier_count && old_rate != clk->rate)
1526		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1527
1528	hlist_for_each_entry(child, &clk->children, child_node) {
1529		/* Skip children who will be reparented to another clock */
1530		if (child->new_parent && child->new_parent != clk)
1531			continue;
1532		clk_change_rate(child);
1533	}
1534
1535	/* handle the new child who might not be in clk->children yet */
1536	if (clk->new_child)
1537		clk_change_rate(clk->new_child);
1538}
1539
1540/**
1541 * clk_set_rate - specify a new rate for clk
1542 * @clk: the clk whose rate is being changed
1543 * @rate: the new rate for clk
1544 *
1545 * In the simplest case clk_set_rate will only adjust the rate of clk.
1546 *
1547 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1548 * propagate up to clk's parent; whether or not this happens depends on the
1549 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1550 * after calling .round_rate then upstream parent propagation is ignored.  If
1551 * *parent_rate comes back with a new rate for clk's parent then we propagate
1552 * up to clk's parent and set its rate.  Upward propagation will continue
1553 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1554 * .round_rate stops requesting changes to clk's parent_rate.
1555 *
1556 * Rate changes are accomplished via tree traversal that also recalculates the
1557 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1558 *
1559 * Returns 0 on success, -EERROR otherwise.
1560 */
1561int clk_set_rate(struct clk *clk, unsigned long rate)
1562{
1563	struct clk *top, *fail_clk;
1564	int ret = 0;
1565
1566	if (!clk)
1567		return 0;
1568
1569	/* prevent racing with updates to the clock topology */
1570	clk_prepare_lock();
1571
1572	/* bail early if nothing to do */
1573	if (rate == clk_get_rate(clk))
1574		goto out;
1575
1576	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1577		ret = -EBUSY;
1578		goto out;
1579	}
1580
1581	/* calculate new rates and get the topmost changed clock */
1582	top = clk_calc_new_rates(clk, rate);
1583	if (!top) {
1584		ret = -EINVAL;
1585		goto out;
1586	}
1587
1588	/* notify that we are about to change rates */
1589	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1590	if (fail_clk) {
1591		pr_warn("%s: failed to set %s rate\n", __func__,
1592				fail_clk->name);
1593		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1594		ret = -EBUSY;
1595		goto out;
1596	}
1597
1598	/* change the rates */
1599	clk_change_rate(top);
1600
1601out:
1602	clk_prepare_unlock();
1603
1604	return ret;
1605}
1606EXPORT_SYMBOL_GPL(clk_set_rate);
1607
1608/**
1609 * clk_get_parent - return the parent of a clk
1610 * @clk: the clk whose parent gets returned
1611 *
1612 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1613 */
1614struct clk *clk_get_parent(struct clk *clk)
1615{
1616	struct clk *parent;
1617
1618	clk_prepare_lock();
1619	parent = __clk_get_parent(clk);
1620	clk_prepare_unlock();
1621
1622	return parent;
1623}
1624EXPORT_SYMBOL_GPL(clk_get_parent);
1625
1626/*
1627 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1628 * optional for single-parent clocks.  Always call .get_parent if it is
1629 * available and WARN if it is missing for multi-parent clocks.
1630 *
1631 * For single-parent clocks without .get_parent, first check to see if the
1632 * .parents array exists, and if so use it to avoid an expensive tree
1633 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1634 */
1635static struct clk *__clk_init_parent(struct clk *clk)
1636{
1637	struct clk *ret = NULL;
1638	u8 index;
1639
1640	/* handle the trivial cases */
1641
1642	if (!clk->num_parents)
1643		goto out;
1644
1645	if (clk->num_parents == 1) {
1646		if (IS_ERR_OR_NULL(clk->parent))
1647			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1648		ret = clk->parent;
1649		goto out;
1650	}
1651
1652	if (!clk->ops->get_parent) {
1653		WARN(!clk->ops->get_parent,
1654			"%s: multi-parent clocks must implement .get_parent\n",
1655			__func__);
1656		goto out;
1657	};
1658
1659	/*
1660	 * Do our best to cache parent clocks in clk->parents.  This prevents
1661	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1662	 * clk->parent here; that is done by the calling function
1663	 */
1664
1665	index = clk->ops->get_parent(clk->hw);
1666
1667	if (!clk->parents)
1668		clk->parents =
1669			kcalloc(clk->num_parents, sizeof(struct clk *),
1670					GFP_KERNEL);
1671
1672	ret = clk_get_parent_by_index(clk, index);
1673
1674out:
1675	return ret;
1676}
1677
1678void __clk_reparent(struct clk *clk, struct clk *new_parent)
1679{
1680	clk_reparent(clk, new_parent);
1681	clk_debug_reparent(clk, new_parent);
1682	__clk_recalc_accuracies(clk);
1683	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1684}
1685
1686/**
1687 * clk_set_parent - switch the parent of a mux clk
1688 * @clk: the mux clk whose input we are switching
1689 * @parent: the new input to clk
1690 *
1691 * Re-parent clk to use parent as its new input source.  If clk is in
1692 * prepared state, the clk will get enabled for the duration of this call. If
1693 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1694 * that, the reparenting is glitchy in hardware, etc), use the
1695 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1696 *
1697 * After successfully changing clk's parent clk_set_parent will update the
1698 * clk topology, sysfs topology and propagate rate recalculation via
1699 * __clk_recalc_rates.
1700 *
1701 * Returns 0 on success, -EERROR otherwise.
1702 */
1703int clk_set_parent(struct clk *clk, struct clk *parent)
1704{
1705	int ret = 0;
1706	int p_index = 0;
1707	unsigned long p_rate = 0;
1708
1709	if (!clk)
1710		return 0;
1711
1712	if (!clk->ops)
1713		return -EINVAL;
1714
1715	/* verify ops for for multi-parent clks */
1716	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1717		return -ENOSYS;
1718
1719	/* prevent racing with updates to the clock topology */
1720	clk_prepare_lock();
1721
1722	if (clk->parent == parent)
1723		goto out;
1724
1725	/* check that we are allowed to re-parent if the clock is in use */
1726	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1727		ret = -EBUSY;
1728		goto out;
1729	}
1730
1731	/* try finding the new parent index */
1732	if (parent) {
1733		p_index = clk_fetch_parent_index(clk, parent);
1734		p_rate = parent->rate;
1735		if (p_index < 0) {
1736			pr_debug("%s: clk %s can not be parent of clk %s\n",
1737					__func__, parent->name, clk->name);
1738			ret = p_index;
1739			goto out;
1740		}
1741	}
1742
1743	/* propagate PRE_RATE_CHANGE notifications */
1744	ret = __clk_speculate_rates(clk, p_rate);
1745
1746	/* abort if a driver objects */
1747	if (ret & NOTIFY_STOP_MASK)
1748		goto out;
1749
1750	/* do the re-parent */
1751	ret = __clk_set_parent(clk, parent, p_index);
1752
1753	/* propagate rate an accuracy recalculation accordingly */
1754	if (ret) {
1755		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1756	} else {
1757		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1758		__clk_recalc_accuracies(clk);
1759	}
1760
1761out:
1762	clk_prepare_unlock();
1763
1764	return ret;
1765}
1766EXPORT_SYMBOL_GPL(clk_set_parent);
1767
1768/**
1769 * __clk_init - initialize the data structures in a struct clk
1770 * @dev:	device initializing this clk, placeholder for now
1771 * @clk:	clk being initialized
1772 *
1773 * Initializes the lists in struct clk, queries the hardware for the
1774 * parent and rate and sets them both.
1775 */
1776int __clk_init(struct device *dev, struct clk *clk)
1777{
1778	int i, ret = 0;
1779	struct clk *orphan;
1780	struct hlist_node *tmp2;
1781
1782	if (!clk)
1783		return -EINVAL;
1784
1785	clk_prepare_lock();
1786
1787	/* check to see if a clock with this name is already registered */
1788	if (__clk_lookup(clk->name)) {
1789		pr_debug("%s: clk %s already initialized\n",
1790				__func__, clk->name);
1791		ret = -EEXIST;
1792		goto out;
1793	}
1794
1795	/* check that clk_ops are sane.  See Documentation/clk.txt */
1796	if (clk->ops->set_rate &&
1797	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1798	      clk->ops->recalc_rate)) {
1799		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1800				__func__, clk->name);
1801		ret = -EINVAL;
1802		goto out;
1803	}
1804
1805	if (clk->ops->set_parent && !clk->ops->get_parent) {
1806		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1807				__func__, clk->name);
1808		ret = -EINVAL;
1809		goto out;
1810	}
1811
1812	if (clk->ops->set_rate_and_parent &&
1813			!(clk->ops->set_parent && clk->ops->set_rate)) {
1814		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1815				__func__, clk->name);
1816		ret = -EINVAL;
1817		goto out;
1818	}
1819
1820	/* throw a WARN if any entries in parent_names are NULL */
1821	for (i = 0; i < clk->num_parents; i++)
1822		WARN(!clk->parent_names[i],
1823				"%s: invalid NULL in %s's .parent_names\n",
1824				__func__, clk->name);
1825
1826	/*
1827	 * Allocate an array of struct clk *'s to avoid unnecessary string
1828	 * look-ups of clk's possible parents.  This can fail for clocks passed
1829	 * in to clk_init during early boot; thus any access to clk->parents[]
1830	 * must always check for a NULL pointer and try to populate it if
1831	 * necessary.
1832	 *
1833	 * If clk->parents is not NULL we skip this entire block.  This allows
1834	 * for clock drivers to statically initialize clk->parents.
1835	 */
1836	if (clk->num_parents > 1 && !clk->parents) {
1837		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1838					GFP_KERNEL);
1839		/*
1840		 * __clk_lookup returns NULL for parents that have not been
1841		 * clk_init'd; thus any access to clk->parents[] must check
1842		 * for a NULL pointer.  We can always perform lazy lookups for
1843		 * missing parents later on.
1844		 */
1845		if (clk->parents)
1846			for (i = 0; i < clk->num_parents; i++)
1847				clk->parents[i] =
1848					__clk_lookup(clk->parent_names[i]);
1849	}
1850
1851	clk->parent = __clk_init_parent(clk);
1852
1853	/*
1854	 * Populate clk->parent if parent has already been __clk_init'd.  If
1855	 * parent has not yet been __clk_init'd then place clk in the orphan
1856	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1857	 * clk list.
1858	 *
1859	 * Every time a new clk is clk_init'd then we walk the list of orphan
1860	 * clocks and re-parent any that are children of the clock currently
1861	 * being clk_init'd.
1862	 */
1863	if (clk->parent)
1864		hlist_add_head(&clk->child_node,
1865				&clk->parent->children);
1866	else if (clk->flags & CLK_IS_ROOT)
1867		hlist_add_head(&clk->child_node, &clk_root_list);
1868	else
1869		hlist_add_head(&clk->child_node, &clk_orphan_list);
1870
1871	/*
1872	 * Set clk's accuracy.  The preferred method is to use
1873	 * .recalc_accuracy. For simple clocks and lazy developers the default
1874	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
1875	 * parent (or is orphaned) then accuracy is set to zero (perfect
1876	 * clock).
1877	 */
1878	if (clk->ops->recalc_accuracy)
1879		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1880					__clk_get_accuracy(clk->parent));
1881	else if (clk->parent)
1882		clk->accuracy = clk->parent->accuracy;
1883	else
1884		clk->accuracy = 0;
1885
1886	/*
1887	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1888	 * simple clocks and lazy developers the default fallback is to use the
1889	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1890	 * then rate is set to zero.
1891	 */
1892	if (clk->ops->recalc_rate)
1893		clk->rate = clk->ops->recalc_rate(clk->hw,
1894				__clk_get_rate(clk->parent));
1895	else if (clk->parent)
1896		clk->rate = clk->parent->rate;
1897	else
1898		clk->rate = 0;
1899
1900	clk_debug_register(clk);
1901	/*
1902	 * walk the list of orphan clocks and reparent any that are children of
1903	 * this clock
1904	 */
1905	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1906		if (orphan->num_parents && orphan->ops->get_parent) {
1907			i = orphan->ops->get_parent(orphan->hw);
1908			if (!strcmp(clk->name, orphan->parent_names[i]))
1909				__clk_reparent(orphan, clk);
1910			continue;
1911		}
1912
1913		for (i = 0; i < orphan->num_parents; i++)
1914			if (!strcmp(clk->name, orphan->parent_names[i])) {
1915				__clk_reparent(orphan, clk);
1916				break;
1917			}
1918	 }
1919
1920	/*
1921	 * optional platform-specific magic
1922	 *
1923	 * The .init callback is not used by any of the basic clock types, but
1924	 * exists for weird hardware that must perform initialization magic.
1925	 * Please consider other ways of solving initialization problems before
1926	 * using this callback, as its use is discouraged.
1927	 */
1928	if (clk->ops->init)
1929		clk->ops->init(clk->hw);
1930
1931	kref_init(&clk->ref);
1932out:
1933	clk_prepare_unlock();
1934
1935	return ret;
1936}
1937
1938/**
1939 * __clk_register - register a clock and return a cookie.
1940 *
1941 * Same as clk_register, except that the .clk field inside hw shall point to a
1942 * preallocated (generally statically allocated) struct clk. None of the fields
1943 * of the struct clk need to be initialized.
1944 *
1945 * The data pointed to by .init and .clk field shall NOT be marked as init
1946 * data.
1947 *
1948 * __clk_register is only exposed via clk-private.h and is intended for use with
1949 * very large numbers of clocks that need to be statically initialized.  It is
1950 * a layering violation to include clk-private.h from any code which implements
1951 * a clock's .ops; as such any statically initialized clock data MUST be in a
1952 * separate C file from the logic that implements its operations.  Returns 0
1953 * on success, otherwise an error code.
1954 */
1955struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1956{
1957	int ret;
1958	struct clk *clk;
1959
1960	clk = hw->clk;
1961	clk->name = hw->init->name;
1962	clk->ops = hw->init->ops;
1963	clk->hw = hw;
1964	clk->flags = hw->init->flags;
1965	clk->parent_names = hw->init->parent_names;
1966	clk->num_parents = hw->init->num_parents;
1967	if (dev && dev->driver)
1968		clk->owner = dev->driver->owner;
1969	else
1970		clk->owner = NULL;
1971
1972	ret = __clk_init(dev, clk);
1973	if (ret)
1974		return ERR_PTR(ret);
1975
1976	return clk;
1977}
1978EXPORT_SYMBOL_GPL(__clk_register);
1979
1980static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1981{
1982	int i, ret;
1983
1984	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1985	if (!clk->name) {
1986		pr_err("%s: could not allocate clk->name\n", __func__);
1987		ret = -ENOMEM;
1988		goto fail_name;
1989	}
1990	clk->ops = hw->init->ops;
1991	if (dev && dev->driver)
1992		clk->owner = dev->driver->owner;
1993	clk->hw = hw;
1994	clk->flags = hw->init->flags;
1995	clk->num_parents = hw->init->num_parents;
1996	hw->clk = clk;
1997
1998	/* allocate local copy in case parent_names is __initdata */
1999	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2000					GFP_KERNEL);
2001
2002	if (!clk->parent_names) {
2003		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2004		ret = -ENOMEM;
2005		goto fail_parent_names;
2006	}
2007
2008
2009	/* copy each string name in case parent_names is __initdata */
2010	for (i = 0; i < clk->num_parents; i++) {
2011		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2012						GFP_KERNEL);
2013		if (!clk->parent_names[i]) {
2014			pr_err("%s: could not copy parent_names\n", __func__);
2015			ret = -ENOMEM;
2016			goto fail_parent_names_copy;
2017		}
2018	}
2019
2020	ret = __clk_init(dev, clk);
2021	if (!ret)
2022		return 0;
2023
2024fail_parent_names_copy:
2025	while (--i >= 0)
2026		kfree(clk->parent_names[i]);
2027	kfree(clk->parent_names);
2028fail_parent_names:
2029	kfree(clk->name);
2030fail_name:
2031	return ret;
2032}
2033
2034/**
2035 * clk_register - allocate a new clock, register it and return an opaque cookie
2036 * @dev: device that is registering this clock
2037 * @hw: link to hardware-specific clock data
2038 *
2039 * clk_register is the primary interface for populating the clock tree with new
2040 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2041 * cannot be dereferenced by driver code but may be used in conjuction with the
2042 * rest of the clock API.  In the event of an error clk_register will return an
2043 * error code; drivers must test for an error code after calling clk_register.
2044 */
2045struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2046{
2047	int ret;
2048	struct clk *clk;
2049
2050	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2051	if (!clk) {
2052		pr_err("%s: could not allocate clk\n", __func__);
2053		ret = -ENOMEM;
2054		goto fail_out;
2055	}
2056
2057	ret = _clk_register(dev, hw, clk);
2058	if (!ret)
2059		return clk;
2060
2061	kfree(clk);
2062fail_out:
2063	return ERR_PTR(ret);
2064}
2065EXPORT_SYMBOL_GPL(clk_register);
2066
2067/*
2068 * Free memory allocated for a clock.
2069 * Caller must hold prepare_lock.
2070 */
2071static void __clk_release(struct kref *ref)
2072{
2073	struct clk *clk = container_of(ref, struct clk, ref);
2074	int i = clk->num_parents;
2075
2076	kfree(clk->parents);
2077	while (--i >= 0)
2078		kfree(clk->parent_names[i]);
2079
2080	kfree(clk->parent_names);
2081	kfree(clk->name);
2082	kfree(clk);
2083}
2084
2085/*
2086 * Empty clk_ops for unregistered clocks. These are used temporarily
2087 * after clk_unregister() was called on a clock and until last clock
2088 * consumer calls clk_put() and the struct clk object is freed.
2089 */
2090static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2091{
2092	return -ENXIO;
2093}
2094
2095static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2096{
2097	WARN_ON_ONCE(1);
2098}
2099
2100static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2101					unsigned long parent_rate)
2102{
2103	return -ENXIO;
2104}
2105
2106static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2107{
2108	return -ENXIO;
2109}
2110
2111static const struct clk_ops clk_nodrv_ops = {
2112	.enable		= clk_nodrv_prepare_enable,
2113	.disable	= clk_nodrv_disable_unprepare,
2114	.prepare	= clk_nodrv_prepare_enable,
2115	.unprepare	= clk_nodrv_disable_unprepare,
2116	.set_rate	= clk_nodrv_set_rate,
2117	.set_parent	= clk_nodrv_set_parent,
2118};
2119
2120/**
2121 * clk_unregister - unregister a currently registered clock
2122 * @clk: clock to unregister
2123 */
2124void clk_unregister(struct clk *clk)
2125{
2126	unsigned long flags;
2127
2128       if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2129               return;
2130
2131	clk_prepare_lock();
2132
2133	if (clk->ops == &clk_nodrv_ops) {
2134		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2135		goto out;
2136	}
2137	/*
2138	 * Assign empty clock ops for consumers that might still hold
2139	 * a reference to this clock.
2140	 */
2141	flags = clk_enable_lock();
2142	clk->ops = &clk_nodrv_ops;
2143	clk_enable_unlock(flags);
2144
2145	if (!hlist_empty(&clk->children)) {
2146		struct clk *child;
2147
2148		/* Reparent all children to the orphan list. */
2149		hlist_for_each_entry(child, &clk->children, child_node)
2150			clk_set_parent(child, NULL);
2151	}
2152
2153	clk_debug_unregister(clk);
2154
2155	hlist_del_init(&clk->child_node);
2156
2157	if (clk->prepare_count)
2158		pr_warn("%s: unregistering prepared clock: %s\n",
2159					__func__, clk->name);
2160
2161	kref_put(&clk->ref, __clk_release);
2162out:
2163	clk_prepare_unlock();
2164}
2165EXPORT_SYMBOL_GPL(clk_unregister);
2166
2167static void devm_clk_release(struct device *dev, void *res)
2168{
2169	clk_unregister(res);
2170}
2171
2172/**
2173 * devm_clk_register - resource managed clk_register()
2174 * @dev: device that is registering this clock
2175 * @hw: link to hardware-specific clock data
2176 *
2177 * Managed clk_register(). Clocks returned from this function are
2178 * automatically clk_unregister()ed on driver detach. See clk_register() for
2179 * more information.
2180 */
2181struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2182{
2183	struct clk *clk;
2184	int ret;
2185
2186	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
2187	if (!clk)
2188		return ERR_PTR(-ENOMEM);
2189
2190	ret = _clk_register(dev, hw, clk);
2191	if (!ret) {
2192		devres_add(dev, clk);
2193	} else {
2194		devres_free(clk);
2195		clk = ERR_PTR(ret);
2196	}
2197
2198	return clk;
2199}
2200EXPORT_SYMBOL_GPL(devm_clk_register);
2201
2202static int devm_clk_match(struct device *dev, void *res, void *data)
2203{
2204	struct clk *c = res;
2205	if (WARN_ON(!c))
2206		return 0;
2207	return c == data;
2208}
2209
2210/**
2211 * devm_clk_unregister - resource managed clk_unregister()
2212 * @clk: clock to unregister
2213 *
2214 * Deallocate a clock allocated with devm_clk_register(). Normally
2215 * this function will not need to be called and the resource management
2216 * code will ensure that the resource is freed.
2217 */
2218void devm_clk_unregister(struct device *dev, struct clk *clk)
2219{
2220	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2221}
2222EXPORT_SYMBOL_GPL(devm_clk_unregister);
2223
2224/*
2225 * clkdev helpers
2226 */
2227int __clk_get(struct clk *clk)
2228{
2229	if (clk && !try_module_get(clk->owner))
2230		return 0;
2231
2232	kref_get(&clk->ref);
2233	return 1;
2234}
2235
2236void __clk_put(struct clk *clk)
2237{
2238	if (WARN_ON_ONCE(IS_ERR(clk)))
2239		return;
2240
2241	clk_prepare_lock();
2242	kref_put(&clk->ref, __clk_release);
2243	clk_prepare_unlock();
2244
2245	if (clk)
2246		module_put(clk->owner);
2247}
2248
2249/***        clk rate change notifiers        ***/
2250
2251/**
2252 * clk_notifier_register - add a clk rate change notifier
2253 * @clk: struct clk * to watch
2254 * @nb: struct notifier_block * with callback info
2255 *
2256 * Request notification when clk's rate changes.  This uses an SRCU
2257 * notifier because we want it to block and notifier unregistrations are
2258 * uncommon.  The callbacks associated with the notifier must not
2259 * re-enter into the clk framework by calling any top-level clk APIs;
2260 * this will cause a nested prepare_lock mutex.
2261 *
2262 * In all notification cases cases (pre, post and abort rate change) the
2263 * original clock rate is passed to the callback via struct
2264 * clk_notifier_data.old_rate and the new frequency is passed via struct
2265 * clk_notifier_data.new_rate.
2266 *
2267 * clk_notifier_register() must be called from non-atomic context.
2268 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2269 * allocation failure; otherwise, passes along the return value of
2270 * srcu_notifier_chain_register().
2271 */
2272int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2273{
2274	struct clk_notifier *cn;
2275	int ret = -ENOMEM;
2276
2277	if (!clk || !nb)
2278		return -EINVAL;
2279
2280	clk_prepare_lock();
2281
2282	/* search the list of notifiers for this clk */
2283	list_for_each_entry(cn, &clk_notifier_list, node)
2284		if (cn->clk == clk)
2285			break;
2286
2287	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2288	if (cn->clk != clk) {
2289		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2290		if (!cn)
2291			goto out;
2292
2293		cn->clk = clk;
2294		srcu_init_notifier_head(&cn->notifier_head);
2295
2296		list_add(&cn->node, &clk_notifier_list);
2297	}
2298
2299	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2300
2301	clk->notifier_count++;
2302
2303out:
2304	clk_prepare_unlock();
2305
2306	return ret;
2307}
2308EXPORT_SYMBOL_GPL(clk_notifier_register);
2309
2310/**
2311 * clk_notifier_unregister - remove a clk rate change notifier
2312 * @clk: struct clk *
2313 * @nb: struct notifier_block * with callback info
2314 *
2315 * Request no further notification for changes to 'clk' and frees memory
2316 * allocated in clk_notifier_register.
2317 *
2318 * Returns -EINVAL if called with null arguments; otherwise, passes
2319 * along the return value of srcu_notifier_chain_unregister().
2320 */
2321int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2322{
2323	struct clk_notifier *cn = NULL;
2324	int ret = -EINVAL;
2325
2326	if (!clk || !nb)
2327		return -EINVAL;
2328
2329	clk_prepare_lock();
2330
2331	list_for_each_entry(cn, &clk_notifier_list, node)
2332		if (cn->clk == clk)
2333			break;
2334
2335	if (cn->clk == clk) {
2336		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2337
2338		clk->notifier_count--;
2339
2340		/* XXX the notifier code should handle this better */
2341		if (!cn->notifier_head.head) {
2342			srcu_cleanup_notifier_head(&cn->notifier_head);
2343			list_del(&cn->node);
2344			kfree(cn);
2345		}
2346
2347	} else {
2348		ret = -ENOENT;
2349	}
2350
2351	clk_prepare_unlock();
2352
2353	return ret;
2354}
2355EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2356
2357#ifdef CONFIG_OF
2358/**
2359 * struct of_clk_provider - Clock provider registration structure
2360 * @link: Entry in global list of clock providers
2361 * @node: Pointer to device tree node of clock provider
2362 * @get: Get clock callback.  Returns NULL or a struct clk for the
2363 *       given clock specifier
2364 * @data: context pointer to be passed into @get callback
2365 */
2366struct of_clk_provider {
2367	struct list_head link;
2368
2369	struct device_node *node;
2370	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2371	void *data;
2372};
2373
2374static const struct of_device_id __clk_of_table_sentinel
2375	__used __section(__clk_of_table_end);
2376
2377static LIST_HEAD(of_clk_providers);
2378static DEFINE_MUTEX(of_clk_mutex);
2379
2380/* of_clk_provider list locking helpers */
2381void of_clk_lock(void)
2382{
2383	mutex_lock(&of_clk_mutex);
2384}
2385
2386void of_clk_unlock(void)
2387{
2388	mutex_unlock(&of_clk_mutex);
2389}
2390
2391struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2392				     void *data)
2393{
2394	return data;
2395}
2396EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2397
2398struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2399{
2400	struct clk_onecell_data *clk_data = data;
2401	unsigned int idx = clkspec->args[0];
2402
2403	if (idx >= clk_data->clk_num) {
2404		pr_err("%s: invalid clock index %d\n", __func__, idx);
2405		return ERR_PTR(-EINVAL);
2406	}
2407
2408	return clk_data->clks[idx];
2409}
2410EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2411
2412/**
2413 * of_clk_add_provider() - Register a clock provider for a node
2414 * @np: Device node pointer associated with clock provider
2415 * @clk_src_get: callback for decoding clock
2416 * @data: context pointer for @clk_src_get callback.
2417 */
2418int of_clk_add_provider(struct device_node *np,
2419			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2420						   void *data),
2421			void *data)
2422{
2423	struct of_clk_provider *cp;
2424
2425	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2426	if (!cp)
2427		return -ENOMEM;
2428
2429	cp->node = of_node_get(np);
2430	cp->data = data;
2431	cp->get = clk_src_get;
2432
2433	mutex_lock(&of_clk_mutex);
2434	list_add(&cp->link, &of_clk_providers);
2435	mutex_unlock(&of_clk_mutex);
2436	pr_debug("Added clock from %s\n", np->full_name);
2437
2438	return 0;
2439}
2440EXPORT_SYMBOL_GPL(of_clk_add_provider);
2441
2442/**
2443 * of_clk_del_provider() - Remove a previously registered clock provider
2444 * @np: Device node pointer associated with clock provider
2445 */
2446void of_clk_del_provider(struct device_node *np)
2447{
2448	struct of_clk_provider *cp;
2449
2450	mutex_lock(&of_clk_mutex);
2451	list_for_each_entry(cp, &of_clk_providers, link) {
2452		if (cp->node == np) {
2453			list_del(&cp->link);
2454			of_node_put(cp->node);
2455			kfree(cp);
2456			break;
2457		}
2458	}
2459	mutex_unlock(&of_clk_mutex);
2460}
2461EXPORT_SYMBOL_GPL(of_clk_del_provider);
2462
2463struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2464{
2465	struct of_clk_provider *provider;
2466	struct clk *clk = ERR_PTR(-ENOENT);
2467
2468	/* Check if we have such a provider in our array */
2469	list_for_each_entry(provider, &of_clk_providers, link) {
2470		if (provider->node == clkspec->np)
2471			clk = provider->get(clkspec, provider->data);
2472		if (!IS_ERR(clk))
2473			break;
2474	}
2475
2476	return clk;
2477}
2478
2479struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2480{
2481	struct clk *clk;
2482
2483	mutex_lock(&of_clk_mutex);
2484	clk = __of_clk_get_from_provider(clkspec);
2485	mutex_unlock(&of_clk_mutex);
2486
2487	return clk;
2488}
2489
2490int of_clk_get_parent_count(struct device_node *np)
2491{
2492	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2493}
2494EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2495
2496const char *of_clk_get_parent_name(struct device_node *np, int index)
2497{
2498	struct of_phandle_args clkspec;
2499	const char *clk_name;
2500	int rc;
2501
2502	if (index < 0)
2503		return NULL;
2504
2505	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2506					&clkspec);
2507	if (rc)
2508		return NULL;
2509
2510	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2511					  clkspec.args_count ? clkspec.args[0] : 0,
2512					  &clk_name) < 0)
2513		clk_name = clkspec.np->name;
2514
2515	of_node_put(clkspec.np);
2516	return clk_name;
2517}
2518EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2519
2520/**
2521 * of_clk_init() - Scan and init clock providers from the DT
2522 * @matches: array of compatible values and init functions for providers.
2523 *
2524 * This function scans the device tree for matching clock providers and
2525 * calls their initialization functions
2526 */
2527void __init of_clk_init(const struct of_device_id *matches)
2528{
2529	const struct of_device_id *match;
2530	struct device_node *np;
2531
2532	if (!matches)
2533		matches = &__clk_of_table;
2534
2535	for_each_matching_node_and_match(np, matches, &match) {
2536		of_clk_init_cb_t clk_init_cb = match->data;
2537		clk_init_cb(np);
2538	}
2539}
2540#endif
2541