clk.c revision 670decdd9544eddbc2ecf14789da4845f8afdab0
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24static DEFINE_SPINLOCK(enable_lock);
25static DEFINE_MUTEX(prepare_lock);
26
27static struct task_struct *prepare_owner;
28static struct task_struct *enable_owner;
29
30static int prepare_refcnt;
31static int enable_refcnt;
32
33static HLIST_HEAD(clk_root_list);
34static HLIST_HEAD(clk_orphan_list);
35static LIST_HEAD(clk_notifier_list);
36
37/***           locking             ***/
38static void clk_prepare_lock(void)
39{
40	if (!mutex_trylock(&prepare_lock)) {
41		if (prepare_owner == current) {
42			prepare_refcnt++;
43			return;
44		}
45		mutex_lock(&prepare_lock);
46	}
47	WARN_ON_ONCE(prepare_owner != NULL);
48	WARN_ON_ONCE(prepare_refcnt != 0);
49	prepare_owner = current;
50	prepare_refcnt = 1;
51}
52
53static void clk_prepare_unlock(void)
54{
55	WARN_ON_ONCE(prepare_owner != current);
56	WARN_ON_ONCE(prepare_refcnt == 0);
57
58	if (--prepare_refcnt)
59		return;
60	prepare_owner = NULL;
61	mutex_unlock(&prepare_lock);
62}
63
64static unsigned long clk_enable_lock(void)
65{
66	unsigned long flags;
67
68	if (!spin_trylock_irqsave(&enable_lock, flags)) {
69		if (enable_owner == current) {
70			enable_refcnt++;
71			return flags;
72		}
73		spin_lock_irqsave(&enable_lock, flags);
74	}
75	WARN_ON_ONCE(enable_owner != NULL);
76	WARN_ON_ONCE(enable_refcnt != 0);
77	enable_owner = current;
78	enable_refcnt = 1;
79	return flags;
80}
81
82static void clk_enable_unlock(unsigned long flags)
83{
84	WARN_ON_ONCE(enable_owner != current);
85	WARN_ON_ONCE(enable_refcnt == 0);
86
87	if (--enable_refcnt)
88		return;
89	enable_owner = NULL;
90	spin_unlock_irqrestore(&enable_lock, flags);
91}
92
93/***        debugfs support        ***/
94
95#ifdef CONFIG_COMMON_CLK_DEBUG
96#include <linux/debugfs.h>
97
98static struct dentry *rootdir;
99static struct dentry *orphandir;
100static int inited = 0;
101
102static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103{
104	if (!c)
105		return;
106
107	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108		   level * 3 + 1, "",
109		   30 - level * 3, c->name,
110		   c->enable_count, c->prepare_count, clk_get_rate(c));
111	seq_printf(s, "\n");
112}
113
114static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115				     int level)
116{
117	struct clk *child;
118
119	if (!c)
120		return;
121
122	clk_summary_show_one(s, c, level);
123
124	hlist_for_each_entry(child, &c->children, child_node)
125		clk_summary_show_subtree(s, child, level + 1);
126}
127
128static int clk_summary_show(struct seq_file *s, void *data)
129{
130	struct clk *c;
131
132	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate\n");
133	seq_printf(s, "---------------------------------------------------------------------\n");
134
135	clk_prepare_lock();
136
137	hlist_for_each_entry(c, &clk_root_list, child_node)
138		clk_summary_show_subtree(s, c, 0);
139
140	hlist_for_each_entry(c, &clk_orphan_list, child_node)
141		clk_summary_show_subtree(s, c, 0);
142
143	clk_prepare_unlock();
144
145	return 0;
146}
147
148
149static int clk_summary_open(struct inode *inode, struct file *file)
150{
151	return single_open(file, clk_summary_show, inode->i_private);
152}
153
154static const struct file_operations clk_summary_fops = {
155	.open		= clk_summary_open,
156	.read		= seq_read,
157	.llseek		= seq_lseek,
158	.release	= single_release,
159};
160
161static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162{
163	if (!c)
164		return;
165
166	seq_printf(s, "\"%s\": { ", c->name);
167	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170}
171
172static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173{
174	struct clk *child;
175
176	if (!c)
177		return;
178
179	clk_dump_one(s, c, level);
180
181	hlist_for_each_entry(child, &c->children, child_node) {
182		seq_printf(s, ",");
183		clk_dump_subtree(s, child, level + 1);
184	}
185
186	seq_printf(s, "}");
187}
188
189static int clk_dump(struct seq_file *s, void *data)
190{
191	struct clk *c;
192	bool first_node = true;
193
194	seq_printf(s, "{");
195
196	clk_prepare_lock();
197
198	hlist_for_each_entry(c, &clk_root_list, child_node) {
199		if (!first_node)
200			seq_printf(s, ",");
201		first_node = false;
202		clk_dump_subtree(s, c, 0);
203	}
204
205	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206		seq_printf(s, ",");
207		clk_dump_subtree(s, c, 0);
208	}
209
210	clk_prepare_unlock();
211
212	seq_printf(s, "}");
213	return 0;
214}
215
216
217static int clk_dump_open(struct inode *inode, struct file *file)
218{
219	return single_open(file, clk_dump, inode->i_private);
220}
221
222static const struct file_operations clk_dump_fops = {
223	.open		= clk_dump_open,
224	.read		= seq_read,
225	.llseek		= seq_lseek,
226	.release	= single_release,
227};
228
229/* caller must hold prepare_lock */
230static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231{
232	struct dentry *d;
233	int ret = -ENOMEM;
234
235	if (!clk || !pdentry) {
236		ret = -EINVAL;
237		goto out;
238	}
239
240	d = debugfs_create_dir(clk->name, pdentry);
241	if (!d)
242		goto out;
243
244	clk->dentry = d;
245
246	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247			(u32 *)&clk->rate);
248	if (!d)
249		goto err_out;
250
251	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252			(u32 *)&clk->flags);
253	if (!d)
254		goto err_out;
255
256	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257			(u32 *)&clk->prepare_count);
258	if (!d)
259		goto err_out;
260
261	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262			(u32 *)&clk->enable_count);
263	if (!d)
264		goto err_out;
265
266	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267			(u32 *)&clk->notifier_count);
268	if (!d)
269		goto err_out;
270
271	ret = 0;
272	goto out;
273
274err_out:
275	debugfs_remove(clk->dentry);
276out:
277	return ret;
278}
279
280/* caller must hold prepare_lock */
281static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282{
283	struct clk *child;
284	int ret = -EINVAL;;
285
286	if (!clk || !pdentry)
287		goto out;
288
289	ret = clk_debug_create_one(clk, pdentry);
290
291	if (ret)
292		goto out;
293
294	hlist_for_each_entry(child, &clk->children, child_node)
295		clk_debug_create_subtree(child, clk->dentry);
296
297	ret = 0;
298out:
299	return ret;
300}
301
302/**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized.  Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock.  Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313static int clk_debug_register(struct clk *clk)
314{
315	struct clk *parent;
316	struct dentry *pdentry;
317	int ret = 0;
318
319	if (!inited)
320		goto out;
321
322	parent = clk->parent;
323
324	/*
325	 * Check to see if a clk is a root clk.  Also check that it is
326	 * safe to add this clk to debugfs
327	 */
328	if (!parent)
329		if (clk->flags & CLK_IS_ROOT)
330			pdentry = rootdir;
331		else
332			pdentry = orphandir;
333	else
334		if (parent->dentry)
335			pdentry = parent->dentry;
336		else
337			goto out;
338
339	ret = clk_debug_create_subtree(clk, pdentry);
340
341out:
342	return ret;
343}
344
345/**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized.  Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357{
358	struct dentry *d;
359	struct dentry *new_parent_d;
360
361	if (!inited)
362		return;
363
364	if (new_parent)
365		new_parent_d = new_parent->dentry;
366	else
367		new_parent_d = orphandir;
368
369	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370			new_parent_d, clk->name);
371	if (d)
372		clk->dentry = d;
373	else
374		pr_debug("%s: failed to rename debugfs entry for %s\n",
375				__func__, clk->name);
376}
377
378/**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree.  This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390static int __init clk_debug_init(void)
391{
392	struct clk *clk;
393	struct dentry *d;
394
395	rootdir = debugfs_create_dir("clk", NULL);
396
397	if (!rootdir)
398		return -ENOMEM;
399
400	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401				&clk_summary_fops);
402	if (!d)
403		return -ENOMEM;
404
405	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406				&clk_dump_fops);
407	if (!d)
408		return -ENOMEM;
409
410	orphandir = debugfs_create_dir("orphans", rootdir);
411
412	if (!orphandir)
413		return -ENOMEM;
414
415	clk_prepare_lock();
416
417	hlist_for_each_entry(clk, &clk_root_list, child_node)
418		clk_debug_create_subtree(clk, rootdir);
419
420	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421		clk_debug_create_subtree(clk, orphandir);
422
423	inited = 1;
424
425	clk_prepare_unlock();
426
427	return 0;
428}
429late_initcall(clk_debug_init);
430#else
431static inline int clk_debug_register(struct clk *clk) { return 0; }
432static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433{
434}
435#endif
436
437/* caller must hold prepare_lock */
438static void clk_unprepare_unused_subtree(struct clk *clk)
439{
440	struct clk *child;
441
442	if (!clk)
443		return;
444
445	hlist_for_each_entry(child, &clk->children, child_node)
446		clk_unprepare_unused_subtree(child);
447
448	if (clk->prepare_count)
449		return;
450
451	if (clk->flags & CLK_IGNORE_UNUSED)
452		return;
453
454	if (__clk_is_prepared(clk)) {
455		if (clk->ops->unprepare_unused)
456			clk->ops->unprepare_unused(clk->hw);
457		else if (clk->ops->unprepare)
458			clk->ops->unprepare(clk->hw);
459	}
460}
461EXPORT_SYMBOL_GPL(__clk_get_flags);
462
463/* caller must hold prepare_lock */
464static void clk_disable_unused_subtree(struct clk *clk)
465{
466	struct clk *child;
467	unsigned long flags;
468
469	if (!clk)
470		goto out;
471
472	hlist_for_each_entry(child, &clk->children, child_node)
473		clk_disable_unused_subtree(child);
474
475	flags = clk_enable_lock();
476
477	if (clk->enable_count)
478		goto unlock_out;
479
480	if (clk->flags & CLK_IGNORE_UNUSED)
481		goto unlock_out;
482
483	/*
484	 * some gate clocks have special needs during the disable-unused
485	 * sequence.  call .disable_unused if available, otherwise fall
486	 * back to .disable
487	 */
488	if (__clk_is_enabled(clk)) {
489		if (clk->ops->disable_unused)
490			clk->ops->disable_unused(clk->hw);
491		else if (clk->ops->disable)
492			clk->ops->disable(clk->hw);
493	}
494
495unlock_out:
496	clk_enable_unlock(flags);
497
498out:
499	return;
500}
501
502static bool clk_ignore_unused;
503static int __init clk_ignore_unused_setup(char *__unused)
504{
505	clk_ignore_unused = true;
506	return 1;
507}
508__setup("clk_ignore_unused", clk_ignore_unused_setup);
509
510static int clk_disable_unused(void)
511{
512	struct clk *clk;
513
514	if (clk_ignore_unused) {
515		pr_warn("clk: Not disabling unused clocks\n");
516		return 0;
517	}
518
519	clk_prepare_lock();
520
521	hlist_for_each_entry(clk, &clk_root_list, child_node)
522		clk_disable_unused_subtree(clk);
523
524	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
525		clk_disable_unused_subtree(clk);
526
527	hlist_for_each_entry(clk, &clk_root_list, child_node)
528		clk_unprepare_unused_subtree(clk);
529
530	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
531		clk_unprepare_unused_subtree(clk);
532
533	clk_prepare_unlock();
534
535	return 0;
536}
537late_initcall_sync(clk_disable_unused);
538
539/***    helper functions   ***/
540
541const char *__clk_get_name(struct clk *clk)
542{
543	return !clk ? NULL : clk->name;
544}
545EXPORT_SYMBOL_GPL(__clk_get_name);
546
547struct clk_hw *__clk_get_hw(struct clk *clk)
548{
549	return !clk ? NULL : clk->hw;
550}
551
552u8 __clk_get_num_parents(struct clk *clk)
553{
554	return !clk ? 0 : clk->num_parents;
555}
556
557struct clk *__clk_get_parent(struct clk *clk)
558{
559	return !clk ? NULL : clk->parent;
560}
561
562unsigned int __clk_get_enable_count(struct clk *clk)
563{
564	return !clk ? 0 : clk->enable_count;
565}
566
567unsigned int __clk_get_prepare_count(struct clk *clk)
568{
569	return !clk ? 0 : clk->prepare_count;
570}
571
572unsigned long __clk_get_rate(struct clk *clk)
573{
574	unsigned long ret;
575
576	if (!clk) {
577		ret = 0;
578		goto out;
579	}
580
581	ret = clk->rate;
582
583	if (clk->flags & CLK_IS_ROOT)
584		goto out;
585
586	if (!clk->parent)
587		ret = 0;
588
589out:
590	return ret;
591}
592
593unsigned long __clk_get_flags(struct clk *clk)
594{
595	return !clk ? 0 : clk->flags;
596}
597
598bool __clk_is_prepared(struct clk *clk)
599{
600	int ret;
601
602	if (!clk)
603		return false;
604
605	/*
606	 * .is_prepared is optional for clocks that can prepare
607	 * fall back to software usage counter if it is missing
608	 */
609	if (!clk->ops->is_prepared) {
610		ret = clk->prepare_count ? 1 : 0;
611		goto out;
612	}
613
614	ret = clk->ops->is_prepared(clk->hw);
615out:
616	return !!ret;
617}
618
619bool __clk_is_enabled(struct clk *clk)
620{
621	int ret;
622
623	if (!clk)
624		return false;
625
626	/*
627	 * .is_enabled is only mandatory for clocks that gate
628	 * fall back to software usage counter if .is_enabled is missing
629	 */
630	if (!clk->ops->is_enabled) {
631		ret = clk->enable_count ? 1 : 0;
632		goto out;
633	}
634
635	ret = clk->ops->is_enabled(clk->hw);
636out:
637	return !!ret;
638}
639
640static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
641{
642	struct clk *child;
643	struct clk *ret;
644
645	if (!strcmp(clk->name, name))
646		return clk;
647
648	hlist_for_each_entry(child, &clk->children, child_node) {
649		ret = __clk_lookup_subtree(name, child);
650		if (ret)
651			return ret;
652	}
653
654	return NULL;
655}
656
657struct clk *__clk_lookup(const char *name)
658{
659	struct clk *root_clk;
660	struct clk *ret;
661
662	if (!name)
663		return NULL;
664
665	/* search the 'proper' clk tree first */
666	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
667		ret = __clk_lookup_subtree(name, root_clk);
668		if (ret)
669			return ret;
670	}
671
672	/* if not found, then search the orphan tree */
673	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
674		ret = __clk_lookup_subtree(name, root_clk);
675		if (ret)
676			return ret;
677	}
678
679	return NULL;
680}
681
682/***        clk api        ***/
683
684void __clk_unprepare(struct clk *clk)
685{
686	if (!clk)
687		return;
688
689	if (WARN_ON(clk->prepare_count == 0))
690		return;
691
692	if (--clk->prepare_count > 0)
693		return;
694
695	WARN_ON(clk->enable_count > 0);
696
697	if (clk->ops->unprepare)
698		clk->ops->unprepare(clk->hw);
699
700	__clk_unprepare(clk->parent);
701}
702
703/**
704 * clk_unprepare - undo preparation of a clock source
705 * @clk: the clk being unprepare
706 *
707 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
708 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
709 * if the operation may sleep.  One example is a clk which is accessed over
710 * I2c.  In the complex case a clk gate operation may require a fast and a slow
711 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
712 * exclusive.  In fact clk_disable must be called before clk_unprepare.
713 */
714void clk_unprepare(struct clk *clk)
715{
716	clk_prepare_lock();
717	__clk_unprepare(clk);
718	clk_prepare_unlock();
719}
720EXPORT_SYMBOL_GPL(clk_unprepare);
721
722int __clk_prepare(struct clk *clk)
723{
724	int ret = 0;
725
726	if (!clk)
727		return 0;
728
729	if (clk->prepare_count == 0) {
730		ret = __clk_prepare(clk->parent);
731		if (ret)
732			return ret;
733
734		if (clk->ops->prepare) {
735			ret = clk->ops->prepare(clk->hw);
736			if (ret) {
737				__clk_unprepare(clk->parent);
738				return ret;
739			}
740		}
741	}
742
743	clk->prepare_count++;
744
745	return 0;
746}
747
748/**
749 * clk_prepare - prepare a clock source
750 * @clk: the clk being prepared
751 *
752 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
753 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
754 * operation may sleep.  One example is a clk which is accessed over I2c.  In
755 * the complex case a clk ungate operation may require a fast and a slow part.
756 * It is this reason that clk_prepare and clk_enable are not mutually
757 * exclusive.  In fact clk_prepare must be called before clk_enable.
758 * Returns 0 on success, -EERROR otherwise.
759 */
760int clk_prepare(struct clk *clk)
761{
762	int ret;
763
764	clk_prepare_lock();
765	ret = __clk_prepare(clk);
766	clk_prepare_unlock();
767
768	return ret;
769}
770EXPORT_SYMBOL_GPL(clk_prepare);
771
772static void __clk_disable(struct clk *clk)
773{
774	if (!clk)
775		return;
776
777	if (WARN_ON(IS_ERR(clk)))
778		return;
779
780	if (WARN_ON(clk->enable_count == 0))
781		return;
782
783	if (--clk->enable_count > 0)
784		return;
785
786	if (clk->ops->disable)
787		clk->ops->disable(clk->hw);
788
789	__clk_disable(clk->parent);
790}
791
792/**
793 * clk_disable - gate a clock
794 * @clk: the clk being gated
795 *
796 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
797 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
798 * clk if the operation is fast and will never sleep.  One example is a
799 * SoC-internal clk which is controlled via simple register writes.  In the
800 * complex case a clk gate operation may require a fast and a slow part.  It is
801 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
802 * In fact clk_disable must be called before clk_unprepare.
803 */
804void clk_disable(struct clk *clk)
805{
806	unsigned long flags;
807
808	flags = clk_enable_lock();
809	__clk_disable(clk);
810	clk_enable_unlock(flags);
811}
812EXPORT_SYMBOL_GPL(clk_disable);
813
814static int __clk_enable(struct clk *clk)
815{
816	int ret = 0;
817
818	if (!clk)
819		return 0;
820
821	if (WARN_ON(clk->prepare_count == 0))
822		return -ESHUTDOWN;
823
824	if (clk->enable_count == 0) {
825		ret = __clk_enable(clk->parent);
826
827		if (ret)
828			return ret;
829
830		if (clk->ops->enable) {
831			ret = clk->ops->enable(clk->hw);
832			if (ret) {
833				__clk_disable(clk->parent);
834				return ret;
835			}
836		}
837	}
838
839	clk->enable_count++;
840	return 0;
841}
842
843/**
844 * clk_enable - ungate a clock
845 * @clk: the clk being ungated
846 *
847 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
848 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
849 * if the operation will never sleep.  One example is a SoC-internal clk which
850 * is controlled via simple register writes.  In the complex case a clk ungate
851 * operation may require a fast and a slow part.  It is this reason that
852 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
853 * must be called before clk_enable.  Returns 0 on success, -EERROR
854 * otherwise.
855 */
856int clk_enable(struct clk *clk)
857{
858	unsigned long flags;
859	int ret;
860
861	flags = clk_enable_lock();
862	ret = __clk_enable(clk);
863	clk_enable_unlock(flags);
864
865	return ret;
866}
867EXPORT_SYMBOL_GPL(clk_enable);
868
869/**
870 * __clk_round_rate - round the given rate for a clk
871 * @clk: round the rate of this clock
872 *
873 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
874 */
875unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
876{
877	unsigned long parent_rate = 0;
878
879	if (!clk)
880		return 0;
881
882	if (!clk->ops->round_rate) {
883		if (clk->flags & CLK_SET_RATE_PARENT)
884			return __clk_round_rate(clk->parent, rate);
885		else
886			return clk->rate;
887	}
888
889	if (clk->parent)
890		parent_rate = clk->parent->rate;
891
892	return clk->ops->round_rate(clk->hw, rate, &parent_rate);
893}
894
895/**
896 * clk_round_rate - round the given rate for a clk
897 * @clk: the clk for which we are rounding a rate
898 * @rate: the rate which is to be rounded
899 *
900 * Takes in a rate as input and rounds it to a rate that the clk can actually
901 * use which is then returned.  If clk doesn't support round_rate operation
902 * then the parent rate is returned.
903 */
904long clk_round_rate(struct clk *clk, unsigned long rate)
905{
906	unsigned long ret;
907
908	clk_prepare_lock();
909	ret = __clk_round_rate(clk, rate);
910	clk_prepare_unlock();
911
912	return ret;
913}
914EXPORT_SYMBOL_GPL(clk_round_rate);
915
916/**
917 * __clk_notify - call clk notifier chain
918 * @clk: struct clk * that is changing rate
919 * @msg: clk notifier type (see include/linux/clk.h)
920 * @old_rate: old clk rate
921 * @new_rate: new clk rate
922 *
923 * Triggers a notifier call chain on the clk rate-change notification
924 * for 'clk'.  Passes a pointer to the struct clk and the previous
925 * and current rates to the notifier callback.  Intended to be called by
926 * internal clock code only.  Returns NOTIFY_DONE from the last driver
927 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
928 * a driver returns that.
929 */
930static int __clk_notify(struct clk *clk, unsigned long msg,
931		unsigned long old_rate, unsigned long new_rate)
932{
933	struct clk_notifier *cn;
934	struct clk_notifier_data cnd;
935	int ret = NOTIFY_DONE;
936
937	cnd.clk = clk;
938	cnd.old_rate = old_rate;
939	cnd.new_rate = new_rate;
940
941	list_for_each_entry(cn, &clk_notifier_list, node) {
942		if (cn->clk == clk) {
943			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
944					&cnd);
945			break;
946		}
947	}
948
949	return ret;
950}
951
952/**
953 * __clk_recalc_rates
954 * @clk: first clk in the subtree
955 * @msg: notification type (see include/linux/clk.h)
956 *
957 * Walks the subtree of clks starting with clk and recalculates rates as it
958 * goes.  Note that if a clk does not implement the .recalc_rate callback then
959 * it is assumed that the clock will take on the rate of it's parent.
960 *
961 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
962 * if necessary.
963 *
964 * Caller must hold prepare_lock.
965 */
966static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
967{
968	unsigned long old_rate;
969	unsigned long parent_rate = 0;
970	struct clk *child;
971
972	old_rate = clk->rate;
973
974	if (clk->parent)
975		parent_rate = clk->parent->rate;
976
977	if (clk->ops->recalc_rate)
978		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
979	else
980		clk->rate = parent_rate;
981
982	/*
983	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
984	 * & ABORT_RATE_CHANGE notifiers
985	 */
986	if (clk->notifier_count && msg)
987		__clk_notify(clk, msg, old_rate, clk->rate);
988
989	hlist_for_each_entry(child, &clk->children, child_node)
990		__clk_recalc_rates(child, msg);
991}
992
993/**
994 * clk_get_rate - return the rate of clk
995 * @clk: the clk whose rate is being returned
996 *
997 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
998 * is set, which means a recalc_rate will be issued.
999 * If clk is NULL then returns 0.
1000 */
1001unsigned long clk_get_rate(struct clk *clk)
1002{
1003	unsigned long rate;
1004
1005	clk_prepare_lock();
1006
1007	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1008		__clk_recalc_rates(clk, 0);
1009
1010	rate = __clk_get_rate(clk);
1011	clk_prepare_unlock();
1012
1013	return rate;
1014}
1015EXPORT_SYMBOL_GPL(clk_get_rate);
1016
1017/**
1018 * __clk_speculate_rates
1019 * @clk: first clk in the subtree
1020 * @parent_rate: the "future" rate of clk's parent
1021 *
1022 * Walks the subtree of clks starting with clk, speculating rates as it
1023 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1024 *
1025 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1026 * pre-rate change notifications and returns early if no clks in the
1027 * subtree have subscribed to the notifications.  Note that if a clk does not
1028 * implement the .recalc_rate callback then it is assumed that the clock will
1029 * take on the rate of it's parent.
1030 *
1031 * Caller must hold prepare_lock.
1032 */
1033static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1034{
1035	struct clk *child;
1036	unsigned long new_rate;
1037	int ret = NOTIFY_DONE;
1038
1039	if (clk->ops->recalc_rate)
1040		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1041	else
1042		new_rate = parent_rate;
1043
1044	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1045	if (clk->notifier_count)
1046		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1047
1048	if (ret & NOTIFY_STOP_MASK)
1049		goto out;
1050
1051	hlist_for_each_entry(child, &clk->children, child_node) {
1052		ret = __clk_speculate_rates(child, new_rate);
1053		if (ret & NOTIFY_STOP_MASK)
1054			break;
1055	}
1056
1057out:
1058	return ret;
1059}
1060
1061static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
1062{
1063	struct clk *child;
1064
1065	clk->new_rate = new_rate;
1066
1067	hlist_for_each_entry(child, &clk->children, child_node) {
1068		if (child->ops->recalc_rate)
1069			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1070		else
1071			child->new_rate = new_rate;
1072		clk_calc_subtree(child, child->new_rate);
1073	}
1074}
1075
1076/*
1077 * calculate the new rates returning the topmost clock that has to be
1078 * changed.
1079 */
1080static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1081{
1082	struct clk *top = clk;
1083	unsigned long best_parent_rate = 0;
1084	unsigned long new_rate;
1085
1086	/* sanity */
1087	if (IS_ERR_OR_NULL(clk))
1088		return NULL;
1089
1090	/* save parent rate, if it exists */
1091	if (clk->parent)
1092		best_parent_rate = clk->parent->rate;
1093
1094	/* never propagate up to the parent */
1095	if (!(clk->flags & CLK_SET_RATE_PARENT)) {
1096		if (!clk->ops->round_rate) {
1097			clk->new_rate = clk->rate;
1098			return NULL;
1099		}
1100		new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1101		goto out;
1102	}
1103
1104	/* need clk->parent from here on out */
1105	if (!clk->parent) {
1106		pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
1107		return NULL;
1108	}
1109
1110	if (!clk->ops->round_rate) {
1111		top = clk_calc_new_rates(clk->parent, rate);
1112		new_rate = clk->parent->new_rate;
1113
1114		goto out;
1115	}
1116
1117	new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1118
1119	if (best_parent_rate != clk->parent->rate) {
1120		top = clk_calc_new_rates(clk->parent, best_parent_rate);
1121
1122		goto out;
1123	}
1124
1125out:
1126	clk_calc_subtree(clk, new_rate);
1127
1128	return top;
1129}
1130
1131/*
1132 * Notify about rate changes in a subtree. Always walk down the whole tree
1133 * so that in case of an error we can walk down the whole tree again and
1134 * abort the change.
1135 */
1136static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1137{
1138	struct clk *child, *fail_clk = NULL;
1139	int ret = NOTIFY_DONE;
1140
1141	if (clk->rate == clk->new_rate)
1142		return NULL;
1143
1144	if (clk->notifier_count) {
1145		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1146		if (ret & NOTIFY_STOP_MASK)
1147			fail_clk = clk;
1148	}
1149
1150	hlist_for_each_entry(child, &clk->children, child_node) {
1151		clk = clk_propagate_rate_change(child, event);
1152		if (clk)
1153			fail_clk = clk;
1154	}
1155
1156	return fail_clk;
1157}
1158
1159/*
1160 * walk down a subtree and set the new rates notifying the rate
1161 * change on the way
1162 */
1163static void clk_change_rate(struct clk *clk)
1164{
1165	struct clk *child;
1166	unsigned long old_rate;
1167	unsigned long best_parent_rate = 0;
1168
1169	old_rate = clk->rate;
1170
1171	if (clk->parent)
1172		best_parent_rate = clk->parent->rate;
1173
1174	if (clk->ops->set_rate)
1175		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1176
1177	if (clk->ops->recalc_rate)
1178		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1179	else
1180		clk->rate = best_parent_rate;
1181
1182	if (clk->notifier_count && old_rate != clk->rate)
1183		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1184
1185	hlist_for_each_entry(child, &clk->children, child_node)
1186		clk_change_rate(child);
1187}
1188
1189/**
1190 * clk_set_rate - specify a new rate for clk
1191 * @clk: the clk whose rate is being changed
1192 * @rate: the new rate for clk
1193 *
1194 * In the simplest case clk_set_rate will only adjust the rate of clk.
1195 *
1196 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1197 * propagate up to clk's parent; whether or not this happens depends on the
1198 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1199 * after calling .round_rate then upstream parent propagation is ignored.  If
1200 * *parent_rate comes back with a new rate for clk's parent then we propagate
1201 * up to clk's parent and set it's rate.  Upward propagation will continue
1202 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1203 * .round_rate stops requesting changes to clk's parent_rate.
1204 *
1205 * Rate changes are accomplished via tree traversal that also recalculates the
1206 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1207 *
1208 * Returns 0 on success, -EERROR otherwise.
1209 */
1210int clk_set_rate(struct clk *clk, unsigned long rate)
1211{
1212	struct clk *top, *fail_clk;
1213	int ret = 0;
1214
1215	/* prevent racing with updates to the clock topology */
1216	clk_prepare_lock();
1217
1218	/* bail early if nothing to do */
1219	if (rate == clk->rate)
1220		goto out;
1221
1222	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1223		ret = -EBUSY;
1224		goto out;
1225	}
1226
1227	/* calculate new rates and get the topmost changed clock */
1228	top = clk_calc_new_rates(clk, rate);
1229	if (!top) {
1230		ret = -EINVAL;
1231		goto out;
1232	}
1233
1234	/* notify that we are about to change rates */
1235	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1236	if (fail_clk) {
1237		pr_warn("%s: failed to set %s rate\n", __func__,
1238				fail_clk->name);
1239		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1240		ret = -EBUSY;
1241		goto out;
1242	}
1243
1244	/* change the rates */
1245	clk_change_rate(top);
1246
1247out:
1248	clk_prepare_unlock();
1249
1250	return ret;
1251}
1252EXPORT_SYMBOL_GPL(clk_set_rate);
1253
1254/**
1255 * clk_get_parent - return the parent of a clk
1256 * @clk: the clk whose parent gets returned
1257 *
1258 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1259 */
1260struct clk *clk_get_parent(struct clk *clk)
1261{
1262	struct clk *parent;
1263
1264	clk_prepare_lock();
1265	parent = __clk_get_parent(clk);
1266	clk_prepare_unlock();
1267
1268	return parent;
1269}
1270EXPORT_SYMBOL_GPL(clk_get_parent);
1271
1272/*
1273 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1274 * optional for single-parent clocks.  Always call .get_parent if it is
1275 * available and WARN if it is missing for multi-parent clocks.
1276 *
1277 * For single-parent clocks without .get_parent, first check to see if the
1278 * .parents array exists, and if so use it to avoid an expensive tree
1279 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1280 */
1281static struct clk *__clk_init_parent(struct clk *clk)
1282{
1283	struct clk *ret = NULL;
1284	u8 index;
1285
1286	/* handle the trivial cases */
1287
1288	if (!clk->num_parents)
1289		goto out;
1290
1291	if (clk->num_parents == 1) {
1292		if (IS_ERR_OR_NULL(clk->parent))
1293			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1294		ret = clk->parent;
1295		goto out;
1296	}
1297
1298	if (!clk->ops->get_parent) {
1299		WARN(!clk->ops->get_parent,
1300			"%s: multi-parent clocks must implement .get_parent\n",
1301			__func__);
1302		goto out;
1303	};
1304
1305	/*
1306	 * Do our best to cache parent clocks in clk->parents.  This prevents
1307	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1308	 * clk->parent here; that is done by the calling function
1309	 */
1310
1311	index = clk->ops->get_parent(clk->hw);
1312
1313	if (!clk->parents)
1314		clk->parents =
1315			kzalloc((sizeof(struct clk*) * clk->num_parents),
1316					GFP_KERNEL);
1317
1318	if (!clk->parents)
1319		ret = __clk_lookup(clk->parent_names[index]);
1320	else if (!clk->parents[index])
1321		ret = clk->parents[index] =
1322			__clk_lookup(clk->parent_names[index]);
1323	else
1324		ret = clk->parents[index];
1325
1326out:
1327	return ret;
1328}
1329
1330static void clk_reparent(struct clk *clk, struct clk *new_parent)
1331{
1332	hlist_del(&clk->child_node);
1333
1334	if (new_parent)
1335		hlist_add_head(&clk->child_node, &new_parent->children);
1336	else
1337		hlist_add_head(&clk->child_node, &clk_orphan_list);
1338
1339	clk->parent = new_parent;
1340}
1341
1342void __clk_reparent(struct clk *clk, struct clk *new_parent)
1343{
1344	clk_reparent(clk, new_parent);
1345	clk_debug_reparent(clk, new_parent);
1346	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1347}
1348
1349static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1350{
1351	u8 i;
1352
1353	if (!clk->parents)
1354		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1355								GFP_KERNEL);
1356
1357	/*
1358	 * find index of new parent clock using cached parent ptrs,
1359	 * or if not yet cached, use string name comparison and cache
1360	 * them now to avoid future calls to __clk_lookup.
1361	 */
1362	for (i = 0; i < clk->num_parents; i++) {
1363		if (clk->parents && clk->parents[i] == parent)
1364			break;
1365		else if (!strcmp(clk->parent_names[i], parent->name)) {
1366			if (clk->parents)
1367				clk->parents[i] = __clk_lookup(parent->name);
1368			break;
1369		}
1370	}
1371
1372	return i;
1373}
1374
1375static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1376{
1377	unsigned long flags;
1378	int ret = 0;
1379	struct clk *old_parent = clk->parent;
1380
1381	/*
1382	 * Migrate prepare state between parents and prevent race with
1383	 * clk_enable().
1384	 *
1385	 * If the clock is not prepared, then a race with
1386	 * clk_enable/disable() is impossible since we already have the
1387	 * prepare lock (future calls to clk_enable() need to be preceded by
1388	 * a clk_prepare()).
1389	 *
1390	 * If the clock is prepared, migrate the prepared state to the new
1391	 * parent and also protect against a race with clk_enable() by
1392	 * forcing the clock and the new parent on.  This ensures that all
1393	 * future calls to clk_enable() are practically NOPs with respect to
1394	 * hardware and software states.
1395	 *
1396	 * See also: Comment for clk_set_parent() below.
1397	 */
1398	if (clk->prepare_count) {
1399		__clk_prepare(parent);
1400		clk_enable(parent);
1401		clk_enable(clk);
1402	}
1403
1404	/* update the clk tree topology */
1405	flags = clk_enable_lock();
1406	clk_reparent(clk, parent);
1407	clk_enable_unlock(flags);
1408
1409	/* change clock input source */
1410	if (parent && clk->ops->set_parent)
1411		ret = clk->ops->set_parent(clk->hw, p_index);
1412
1413	if (ret) {
1414		flags = clk_enable_lock();
1415		clk_reparent(clk, old_parent);
1416		clk_enable_unlock(flags);
1417
1418		if (clk->prepare_count) {
1419			clk_disable(clk);
1420			clk_disable(parent);
1421			__clk_unprepare(parent);
1422		}
1423		return ret;
1424	}
1425
1426	/*
1427	 * Finish the migration of prepare state and undo the changes done
1428	 * for preventing a race with clk_enable().
1429	 */
1430	if (clk->prepare_count) {
1431		clk_disable(clk);
1432		clk_disable(old_parent);
1433		__clk_unprepare(old_parent);
1434	}
1435
1436	/* update debugfs with new clk tree topology */
1437	clk_debug_reparent(clk, parent);
1438	return 0;
1439}
1440
1441/**
1442 * clk_set_parent - switch the parent of a mux clk
1443 * @clk: the mux clk whose input we are switching
1444 * @parent: the new input to clk
1445 *
1446 * Re-parent clk to use parent as its new input source.  If clk is in
1447 * prepared state, the clk will get enabled for the duration of this call. If
1448 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1449 * that, the reparenting is glitchy in hardware, etc), use the
1450 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1451 *
1452 * After successfully changing clk's parent clk_set_parent will update the
1453 * clk topology, sysfs topology and propagate rate recalculation via
1454 * __clk_recalc_rates.
1455 *
1456 * Returns 0 on success, -EERROR otherwise.
1457 */
1458int clk_set_parent(struct clk *clk, struct clk *parent)
1459{
1460	int ret = 0;
1461	u8 p_index = 0;
1462	unsigned long p_rate = 0;
1463
1464	if (!clk || !clk->ops)
1465		return -EINVAL;
1466
1467	/* verify ops for for multi-parent clks */
1468	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1469		return -ENOSYS;
1470
1471	/* prevent racing with updates to the clock topology */
1472	clk_prepare_lock();
1473
1474	if (clk->parent == parent)
1475		goto out;
1476
1477	/* check that we are allowed to re-parent if the clock is in use */
1478	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1479		ret = -EBUSY;
1480		goto out;
1481	}
1482
1483	/* try finding the new parent index */
1484	if (parent) {
1485		p_index = clk_fetch_parent_index(clk, parent);
1486		p_rate = parent->rate;
1487		if (p_index == clk->num_parents) {
1488			pr_debug("%s: clk %s can not be parent of clk %s\n",
1489					__func__, parent->name, clk->name);
1490			ret = -EINVAL;
1491			goto out;
1492		}
1493	}
1494
1495	/* propagate PRE_RATE_CHANGE notifications */
1496	if (clk->notifier_count)
1497		ret = __clk_speculate_rates(clk, p_rate);
1498
1499	/* abort if a driver objects */
1500	if (ret & NOTIFY_STOP_MASK)
1501		goto out;
1502
1503	/* do the re-parent */
1504	ret = __clk_set_parent(clk, parent, p_index);
1505
1506	/* propagate rate recalculation accordingly */
1507	if (ret)
1508		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1509	else
1510		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1511
1512out:
1513	clk_prepare_unlock();
1514
1515	return ret;
1516}
1517EXPORT_SYMBOL_GPL(clk_set_parent);
1518
1519/**
1520 * __clk_init - initialize the data structures in a struct clk
1521 * @dev:	device initializing this clk, placeholder for now
1522 * @clk:	clk being initialized
1523 *
1524 * Initializes the lists in struct clk, queries the hardware for the
1525 * parent and rate and sets them both.
1526 */
1527int __clk_init(struct device *dev, struct clk *clk)
1528{
1529	int i, ret = 0;
1530	struct clk *orphan;
1531	struct hlist_node *tmp2;
1532
1533	if (!clk)
1534		return -EINVAL;
1535
1536	clk_prepare_lock();
1537
1538	/* check to see if a clock with this name is already registered */
1539	if (__clk_lookup(clk->name)) {
1540		pr_debug("%s: clk %s already initialized\n",
1541				__func__, clk->name);
1542		ret = -EEXIST;
1543		goto out;
1544	}
1545
1546	/* check that clk_ops are sane.  See Documentation/clk.txt */
1547	if (clk->ops->set_rate &&
1548			!(clk->ops->round_rate && clk->ops->recalc_rate)) {
1549		pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1550				__func__, clk->name);
1551		ret = -EINVAL;
1552		goto out;
1553	}
1554
1555	if (clk->ops->set_parent && !clk->ops->get_parent) {
1556		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1557				__func__, clk->name);
1558		ret = -EINVAL;
1559		goto out;
1560	}
1561
1562	/* throw a WARN if any entries in parent_names are NULL */
1563	for (i = 0; i < clk->num_parents; i++)
1564		WARN(!clk->parent_names[i],
1565				"%s: invalid NULL in %s's .parent_names\n",
1566				__func__, clk->name);
1567
1568	/*
1569	 * Allocate an array of struct clk *'s to avoid unnecessary string
1570	 * look-ups of clk's possible parents.  This can fail for clocks passed
1571	 * in to clk_init during early boot; thus any access to clk->parents[]
1572	 * must always check for a NULL pointer and try to populate it if
1573	 * necessary.
1574	 *
1575	 * If clk->parents is not NULL we skip this entire block.  This allows
1576	 * for clock drivers to statically initialize clk->parents.
1577	 */
1578	if (clk->num_parents > 1 && !clk->parents) {
1579		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1580				GFP_KERNEL);
1581		/*
1582		 * __clk_lookup returns NULL for parents that have not been
1583		 * clk_init'd; thus any access to clk->parents[] must check
1584		 * for a NULL pointer.  We can always perform lazy lookups for
1585		 * missing parents later on.
1586		 */
1587		if (clk->parents)
1588			for (i = 0; i < clk->num_parents; i++)
1589				clk->parents[i] =
1590					__clk_lookup(clk->parent_names[i]);
1591	}
1592
1593	clk->parent = __clk_init_parent(clk);
1594
1595	/*
1596	 * Populate clk->parent if parent has already been __clk_init'd.  If
1597	 * parent has not yet been __clk_init'd then place clk in the orphan
1598	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1599	 * clk list.
1600	 *
1601	 * Every time a new clk is clk_init'd then we walk the list of orphan
1602	 * clocks and re-parent any that are children of the clock currently
1603	 * being clk_init'd.
1604	 */
1605	if (clk->parent)
1606		hlist_add_head(&clk->child_node,
1607				&clk->parent->children);
1608	else if (clk->flags & CLK_IS_ROOT)
1609		hlist_add_head(&clk->child_node, &clk_root_list);
1610	else
1611		hlist_add_head(&clk->child_node, &clk_orphan_list);
1612
1613	/*
1614	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1615	 * simple clocks and lazy developers the default fallback is to use the
1616	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1617	 * then rate is set to zero.
1618	 */
1619	if (clk->ops->recalc_rate)
1620		clk->rate = clk->ops->recalc_rate(clk->hw,
1621				__clk_get_rate(clk->parent));
1622	else if (clk->parent)
1623		clk->rate = clk->parent->rate;
1624	else
1625		clk->rate = 0;
1626
1627	/*
1628	 * walk the list of orphan clocks and reparent any that are children of
1629	 * this clock
1630	 */
1631	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1632		if (orphan->ops->get_parent) {
1633			i = orphan->ops->get_parent(orphan->hw);
1634			if (!strcmp(clk->name, orphan->parent_names[i]))
1635				__clk_reparent(orphan, clk);
1636			continue;
1637		}
1638
1639		for (i = 0; i < orphan->num_parents; i++)
1640			if (!strcmp(clk->name, orphan->parent_names[i])) {
1641				__clk_reparent(orphan, clk);
1642				break;
1643			}
1644	 }
1645
1646	/*
1647	 * optional platform-specific magic
1648	 *
1649	 * The .init callback is not used by any of the basic clock types, but
1650	 * exists for weird hardware that must perform initialization magic.
1651	 * Please consider other ways of solving initialization problems before
1652	 * using this callback, as it's use is discouraged.
1653	 */
1654	if (clk->ops->init)
1655		clk->ops->init(clk->hw);
1656
1657	clk_debug_register(clk);
1658
1659out:
1660	clk_prepare_unlock();
1661
1662	return ret;
1663}
1664
1665/**
1666 * __clk_register - register a clock and return a cookie.
1667 *
1668 * Same as clk_register, except that the .clk field inside hw shall point to a
1669 * preallocated (generally statically allocated) struct clk. None of the fields
1670 * of the struct clk need to be initialized.
1671 *
1672 * The data pointed to by .init and .clk field shall NOT be marked as init
1673 * data.
1674 *
1675 * __clk_register is only exposed via clk-private.h and is intended for use with
1676 * very large numbers of clocks that need to be statically initialized.  It is
1677 * a layering violation to include clk-private.h from any code which implements
1678 * a clock's .ops; as such any statically initialized clock data MUST be in a
1679 * separate C file from the logic that implements it's operations.  Returns 0
1680 * on success, otherwise an error code.
1681 */
1682struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1683{
1684	int ret;
1685	struct clk *clk;
1686
1687	clk = hw->clk;
1688	clk->name = hw->init->name;
1689	clk->ops = hw->init->ops;
1690	clk->hw = hw;
1691	clk->flags = hw->init->flags;
1692	clk->parent_names = hw->init->parent_names;
1693	clk->num_parents = hw->init->num_parents;
1694
1695	ret = __clk_init(dev, clk);
1696	if (ret)
1697		return ERR_PTR(ret);
1698
1699	return clk;
1700}
1701EXPORT_SYMBOL_GPL(__clk_register);
1702
1703static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1704{
1705	int i, ret;
1706
1707	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1708	if (!clk->name) {
1709		pr_err("%s: could not allocate clk->name\n", __func__);
1710		ret = -ENOMEM;
1711		goto fail_name;
1712	}
1713	clk->ops = hw->init->ops;
1714	clk->hw = hw;
1715	clk->flags = hw->init->flags;
1716	clk->num_parents = hw->init->num_parents;
1717	hw->clk = clk;
1718
1719	/* allocate local copy in case parent_names is __initdata */
1720	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1721			GFP_KERNEL);
1722
1723	if (!clk->parent_names) {
1724		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1725		ret = -ENOMEM;
1726		goto fail_parent_names;
1727	}
1728
1729
1730	/* copy each string name in case parent_names is __initdata */
1731	for (i = 0; i < clk->num_parents; i++) {
1732		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1733						GFP_KERNEL);
1734		if (!clk->parent_names[i]) {
1735			pr_err("%s: could not copy parent_names\n", __func__);
1736			ret = -ENOMEM;
1737			goto fail_parent_names_copy;
1738		}
1739	}
1740
1741	ret = __clk_init(dev, clk);
1742	if (!ret)
1743		return 0;
1744
1745fail_parent_names_copy:
1746	while (--i >= 0)
1747		kfree(clk->parent_names[i]);
1748	kfree(clk->parent_names);
1749fail_parent_names:
1750	kfree(clk->name);
1751fail_name:
1752	return ret;
1753}
1754
1755/**
1756 * clk_register - allocate a new clock, register it and return an opaque cookie
1757 * @dev: device that is registering this clock
1758 * @hw: link to hardware-specific clock data
1759 *
1760 * clk_register is the primary interface for populating the clock tree with new
1761 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1762 * cannot be dereferenced by driver code but may be used in conjuction with the
1763 * rest of the clock API.  In the event of an error clk_register will return an
1764 * error code; drivers must test for an error code after calling clk_register.
1765 */
1766struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1767{
1768	int ret;
1769	struct clk *clk;
1770
1771	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1772	if (!clk) {
1773		pr_err("%s: could not allocate clk\n", __func__);
1774		ret = -ENOMEM;
1775		goto fail_out;
1776	}
1777
1778	ret = _clk_register(dev, hw, clk);
1779	if (!ret)
1780		return clk;
1781
1782	kfree(clk);
1783fail_out:
1784	return ERR_PTR(ret);
1785}
1786EXPORT_SYMBOL_GPL(clk_register);
1787
1788/**
1789 * clk_unregister - unregister a currently registered clock
1790 * @clk: clock to unregister
1791 *
1792 * Currently unimplemented.
1793 */
1794void clk_unregister(struct clk *clk) {}
1795EXPORT_SYMBOL_GPL(clk_unregister);
1796
1797static void devm_clk_release(struct device *dev, void *res)
1798{
1799	clk_unregister(res);
1800}
1801
1802/**
1803 * devm_clk_register - resource managed clk_register()
1804 * @dev: device that is registering this clock
1805 * @hw: link to hardware-specific clock data
1806 *
1807 * Managed clk_register(). Clocks returned from this function are
1808 * automatically clk_unregister()ed on driver detach. See clk_register() for
1809 * more information.
1810 */
1811struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1812{
1813	struct clk *clk;
1814	int ret;
1815
1816	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1817	if (!clk)
1818		return ERR_PTR(-ENOMEM);
1819
1820	ret = _clk_register(dev, hw, clk);
1821	if (!ret) {
1822		devres_add(dev, clk);
1823	} else {
1824		devres_free(clk);
1825		clk = ERR_PTR(ret);
1826	}
1827
1828	return clk;
1829}
1830EXPORT_SYMBOL_GPL(devm_clk_register);
1831
1832static int devm_clk_match(struct device *dev, void *res, void *data)
1833{
1834	struct clk *c = res;
1835	if (WARN_ON(!c))
1836		return 0;
1837	return c == data;
1838}
1839
1840/**
1841 * devm_clk_unregister - resource managed clk_unregister()
1842 * @clk: clock to unregister
1843 *
1844 * Deallocate a clock allocated with devm_clk_register(). Normally
1845 * this function will not need to be called and the resource management
1846 * code will ensure that the resource is freed.
1847 */
1848void devm_clk_unregister(struct device *dev, struct clk *clk)
1849{
1850	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1851}
1852EXPORT_SYMBOL_GPL(devm_clk_unregister);
1853
1854/***        clk rate change notifiers        ***/
1855
1856/**
1857 * clk_notifier_register - add a clk rate change notifier
1858 * @clk: struct clk * to watch
1859 * @nb: struct notifier_block * with callback info
1860 *
1861 * Request notification when clk's rate changes.  This uses an SRCU
1862 * notifier because we want it to block and notifier unregistrations are
1863 * uncommon.  The callbacks associated with the notifier must not
1864 * re-enter into the clk framework by calling any top-level clk APIs;
1865 * this will cause a nested prepare_lock mutex.
1866 *
1867 * Pre-change notifier callbacks will be passed the current, pre-change
1868 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1869 * post-change rate of the clk is passed via struct
1870 * clk_notifier_data.new_rate.
1871 *
1872 * Post-change notifiers will pass the now-current, post-change rate of
1873 * the clk in both struct clk_notifier_data.old_rate and struct
1874 * clk_notifier_data.new_rate.
1875 *
1876 * Abort-change notifiers are effectively the opposite of pre-change
1877 * notifiers: the original pre-change clk rate is passed in via struct
1878 * clk_notifier_data.new_rate and the failed post-change rate is passed
1879 * in via struct clk_notifier_data.old_rate.
1880 *
1881 * clk_notifier_register() must be called from non-atomic context.
1882 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1883 * allocation failure; otherwise, passes along the return value of
1884 * srcu_notifier_chain_register().
1885 */
1886int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1887{
1888	struct clk_notifier *cn;
1889	int ret = -ENOMEM;
1890
1891	if (!clk || !nb)
1892		return -EINVAL;
1893
1894	clk_prepare_lock();
1895
1896	/* search the list of notifiers for this clk */
1897	list_for_each_entry(cn, &clk_notifier_list, node)
1898		if (cn->clk == clk)
1899			break;
1900
1901	/* if clk wasn't in the notifier list, allocate new clk_notifier */
1902	if (cn->clk != clk) {
1903		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1904		if (!cn)
1905			goto out;
1906
1907		cn->clk = clk;
1908		srcu_init_notifier_head(&cn->notifier_head);
1909
1910		list_add(&cn->node, &clk_notifier_list);
1911	}
1912
1913	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1914
1915	clk->notifier_count++;
1916
1917out:
1918	clk_prepare_unlock();
1919
1920	return ret;
1921}
1922EXPORT_SYMBOL_GPL(clk_notifier_register);
1923
1924/**
1925 * clk_notifier_unregister - remove a clk rate change notifier
1926 * @clk: struct clk *
1927 * @nb: struct notifier_block * with callback info
1928 *
1929 * Request no further notification for changes to 'clk' and frees memory
1930 * allocated in clk_notifier_register.
1931 *
1932 * Returns -EINVAL if called with null arguments; otherwise, passes
1933 * along the return value of srcu_notifier_chain_unregister().
1934 */
1935int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1936{
1937	struct clk_notifier *cn = NULL;
1938	int ret = -EINVAL;
1939
1940	if (!clk || !nb)
1941		return -EINVAL;
1942
1943	clk_prepare_lock();
1944
1945	list_for_each_entry(cn, &clk_notifier_list, node)
1946		if (cn->clk == clk)
1947			break;
1948
1949	if (cn->clk == clk) {
1950		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1951
1952		clk->notifier_count--;
1953
1954		/* XXX the notifier code should handle this better */
1955		if (!cn->notifier_head.head) {
1956			srcu_cleanup_notifier_head(&cn->notifier_head);
1957			kfree(cn);
1958		}
1959
1960	} else {
1961		ret = -ENOENT;
1962	}
1963
1964	clk_prepare_unlock();
1965
1966	return ret;
1967}
1968EXPORT_SYMBOL_GPL(clk_notifier_unregister);
1969
1970#ifdef CONFIG_OF
1971/**
1972 * struct of_clk_provider - Clock provider registration structure
1973 * @link: Entry in global list of clock providers
1974 * @node: Pointer to device tree node of clock provider
1975 * @get: Get clock callback.  Returns NULL or a struct clk for the
1976 *       given clock specifier
1977 * @data: context pointer to be passed into @get callback
1978 */
1979struct of_clk_provider {
1980	struct list_head link;
1981
1982	struct device_node *node;
1983	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
1984	void *data;
1985};
1986
1987extern struct of_device_id __clk_of_table[];
1988
1989static const struct of_device_id __clk_of_table_sentinel
1990	__used __section(__clk_of_table_end);
1991
1992static LIST_HEAD(of_clk_providers);
1993static DEFINE_MUTEX(of_clk_lock);
1994
1995struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
1996				     void *data)
1997{
1998	return data;
1999}
2000EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2001
2002struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2003{
2004	struct clk_onecell_data *clk_data = data;
2005	unsigned int idx = clkspec->args[0];
2006
2007	if (idx >= clk_data->clk_num) {
2008		pr_err("%s: invalid clock index %d\n", __func__, idx);
2009		return ERR_PTR(-EINVAL);
2010	}
2011
2012	return clk_data->clks[idx];
2013}
2014EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2015
2016/**
2017 * of_clk_add_provider() - Register a clock provider for a node
2018 * @np: Device node pointer associated with clock provider
2019 * @clk_src_get: callback for decoding clock
2020 * @data: context pointer for @clk_src_get callback.
2021 */
2022int of_clk_add_provider(struct device_node *np,
2023			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2024						   void *data),
2025			void *data)
2026{
2027	struct of_clk_provider *cp;
2028
2029	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2030	if (!cp)
2031		return -ENOMEM;
2032
2033	cp->node = of_node_get(np);
2034	cp->data = data;
2035	cp->get = clk_src_get;
2036
2037	mutex_lock(&of_clk_lock);
2038	list_add(&cp->link, &of_clk_providers);
2039	mutex_unlock(&of_clk_lock);
2040	pr_debug("Added clock from %s\n", np->full_name);
2041
2042	return 0;
2043}
2044EXPORT_SYMBOL_GPL(of_clk_add_provider);
2045
2046/**
2047 * of_clk_del_provider() - Remove a previously registered clock provider
2048 * @np: Device node pointer associated with clock provider
2049 */
2050void of_clk_del_provider(struct device_node *np)
2051{
2052	struct of_clk_provider *cp;
2053
2054	mutex_lock(&of_clk_lock);
2055	list_for_each_entry(cp, &of_clk_providers, link) {
2056		if (cp->node == np) {
2057			list_del(&cp->link);
2058			of_node_put(cp->node);
2059			kfree(cp);
2060			break;
2061		}
2062	}
2063	mutex_unlock(&of_clk_lock);
2064}
2065EXPORT_SYMBOL_GPL(of_clk_del_provider);
2066
2067struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2068{
2069	struct of_clk_provider *provider;
2070	struct clk *clk = ERR_PTR(-ENOENT);
2071
2072	/* Check if we have such a provider in our array */
2073	mutex_lock(&of_clk_lock);
2074	list_for_each_entry(provider, &of_clk_providers, link) {
2075		if (provider->node == clkspec->np)
2076			clk = provider->get(clkspec, provider->data);
2077		if (!IS_ERR(clk))
2078			break;
2079	}
2080	mutex_unlock(&of_clk_lock);
2081
2082	return clk;
2083}
2084
2085const char *of_clk_get_parent_name(struct device_node *np, int index)
2086{
2087	struct of_phandle_args clkspec;
2088	const char *clk_name;
2089	int rc;
2090
2091	if (index < 0)
2092		return NULL;
2093
2094	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2095					&clkspec);
2096	if (rc)
2097		return NULL;
2098
2099	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2100					  clkspec.args_count ? clkspec.args[0] : 0,
2101					  &clk_name) < 0)
2102		clk_name = clkspec.np->name;
2103
2104	of_node_put(clkspec.np);
2105	return clk_name;
2106}
2107EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2108
2109/**
2110 * of_clk_init() - Scan and init clock providers from the DT
2111 * @matches: array of compatible values and init functions for providers.
2112 *
2113 * This function scans the device tree for matching clock providers and
2114 * calls their initialization functions
2115 */
2116void __init of_clk_init(const struct of_device_id *matches)
2117{
2118	struct device_node *np;
2119
2120	if (!matches)
2121		matches = __clk_of_table;
2122
2123	for_each_matching_node(np, matches) {
2124		const struct of_device_id *match = of_match_node(matches, np);
2125		of_clk_init_cb_t clk_init_cb = match->data;
2126		clk_init_cb(np);
2127	}
2128}
2129#endif
2130