clk.c revision b05c683637fd538686030ec46c6717439d5571ab
1/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API.  See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/device.h>
21#include <linux/init.h>
22#include <linux/sched.h>
23
24static DEFINE_SPINLOCK(enable_lock);
25static DEFINE_MUTEX(prepare_lock);
26
27static struct task_struct *prepare_owner;
28static struct task_struct *enable_owner;
29
30static int prepare_refcnt;
31static int enable_refcnt;
32
33static HLIST_HEAD(clk_root_list);
34static HLIST_HEAD(clk_orphan_list);
35static LIST_HEAD(clk_notifier_list);
36
37/***           locking             ***/
38static void clk_prepare_lock(void)
39{
40	if (!mutex_trylock(&prepare_lock)) {
41		if (prepare_owner == current) {
42			prepare_refcnt++;
43			return;
44		}
45		mutex_lock(&prepare_lock);
46	}
47	WARN_ON_ONCE(prepare_owner != NULL);
48	WARN_ON_ONCE(prepare_refcnt != 0);
49	prepare_owner = current;
50	prepare_refcnt = 1;
51}
52
53static void clk_prepare_unlock(void)
54{
55	WARN_ON_ONCE(prepare_owner != current);
56	WARN_ON_ONCE(prepare_refcnt == 0);
57
58	if (--prepare_refcnt)
59		return;
60	prepare_owner = NULL;
61	mutex_unlock(&prepare_lock);
62}
63
64static unsigned long clk_enable_lock(void)
65{
66	unsigned long flags;
67
68	if (!spin_trylock_irqsave(&enable_lock, flags)) {
69		if (enable_owner == current) {
70			enable_refcnt++;
71			return flags;
72		}
73		spin_lock_irqsave(&enable_lock, flags);
74	}
75	WARN_ON_ONCE(enable_owner != NULL);
76	WARN_ON_ONCE(enable_refcnt != 0);
77	enable_owner = current;
78	enable_refcnt = 1;
79	return flags;
80}
81
82static void clk_enable_unlock(unsigned long flags)
83{
84	WARN_ON_ONCE(enable_owner != current);
85	WARN_ON_ONCE(enable_refcnt == 0);
86
87	if (--enable_refcnt)
88		return;
89	enable_owner = NULL;
90	spin_unlock_irqrestore(&enable_lock, flags);
91}
92
93/***        debugfs support        ***/
94
95#ifdef CONFIG_COMMON_CLK_DEBUG
96#include <linux/debugfs.h>
97
98static struct dentry *rootdir;
99static struct dentry *orphandir;
100static int inited = 0;
101
102static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103{
104	if (!c)
105		return;
106
107	seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108		   level * 3 + 1, "",
109		   30 - level * 3, c->name,
110		   c->enable_count, c->prepare_count, clk_get_rate(c));
111	seq_printf(s, "\n");
112}
113
114static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115				     int level)
116{
117	struct clk *child;
118
119	if (!c)
120		return;
121
122	clk_summary_show_one(s, c, level);
123
124	hlist_for_each_entry(child, &c->children, child_node)
125		clk_summary_show_subtree(s, child, level + 1);
126}
127
128static int clk_summary_show(struct seq_file *s, void *data)
129{
130	struct clk *c;
131
132	seq_printf(s, "   clock                        enable_cnt  prepare_cnt  rate\n");
133	seq_printf(s, "---------------------------------------------------------------------\n");
134
135	clk_prepare_lock();
136
137	hlist_for_each_entry(c, &clk_root_list, child_node)
138		clk_summary_show_subtree(s, c, 0);
139
140	hlist_for_each_entry(c, &clk_orphan_list, child_node)
141		clk_summary_show_subtree(s, c, 0);
142
143	clk_prepare_unlock();
144
145	return 0;
146}
147
148
149static int clk_summary_open(struct inode *inode, struct file *file)
150{
151	return single_open(file, clk_summary_show, inode->i_private);
152}
153
154static const struct file_operations clk_summary_fops = {
155	.open		= clk_summary_open,
156	.read		= seq_read,
157	.llseek		= seq_lseek,
158	.release	= single_release,
159};
160
161static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162{
163	if (!c)
164		return;
165
166	seq_printf(s, "\"%s\": { ", c->name);
167	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170}
171
172static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173{
174	struct clk *child;
175
176	if (!c)
177		return;
178
179	clk_dump_one(s, c, level);
180
181	hlist_for_each_entry(child, &c->children, child_node) {
182		seq_printf(s, ",");
183		clk_dump_subtree(s, child, level + 1);
184	}
185
186	seq_printf(s, "}");
187}
188
189static int clk_dump(struct seq_file *s, void *data)
190{
191	struct clk *c;
192	bool first_node = true;
193
194	seq_printf(s, "{");
195
196	clk_prepare_lock();
197
198	hlist_for_each_entry(c, &clk_root_list, child_node) {
199		if (!first_node)
200			seq_printf(s, ",");
201		first_node = false;
202		clk_dump_subtree(s, c, 0);
203	}
204
205	hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206		seq_printf(s, ",");
207		clk_dump_subtree(s, c, 0);
208	}
209
210	clk_prepare_unlock();
211
212	seq_printf(s, "}");
213	return 0;
214}
215
216
217static int clk_dump_open(struct inode *inode, struct file *file)
218{
219	return single_open(file, clk_dump, inode->i_private);
220}
221
222static const struct file_operations clk_dump_fops = {
223	.open		= clk_dump_open,
224	.read		= seq_read,
225	.llseek		= seq_lseek,
226	.release	= single_release,
227};
228
229/* caller must hold prepare_lock */
230static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231{
232	struct dentry *d;
233	int ret = -ENOMEM;
234
235	if (!clk || !pdentry) {
236		ret = -EINVAL;
237		goto out;
238	}
239
240	d = debugfs_create_dir(clk->name, pdentry);
241	if (!d)
242		goto out;
243
244	clk->dentry = d;
245
246	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247			(u32 *)&clk->rate);
248	if (!d)
249		goto err_out;
250
251	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252			(u32 *)&clk->flags);
253	if (!d)
254		goto err_out;
255
256	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257			(u32 *)&clk->prepare_count);
258	if (!d)
259		goto err_out;
260
261	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262			(u32 *)&clk->enable_count);
263	if (!d)
264		goto err_out;
265
266	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267			(u32 *)&clk->notifier_count);
268	if (!d)
269		goto err_out;
270
271	ret = 0;
272	goto out;
273
274err_out:
275	debugfs_remove(clk->dentry);
276out:
277	return ret;
278}
279
280/* caller must hold prepare_lock */
281static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282{
283	struct clk *child;
284	int ret = -EINVAL;;
285
286	if (!clk || !pdentry)
287		goto out;
288
289	ret = clk_debug_create_one(clk, pdentry);
290
291	if (ret)
292		goto out;
293
294	hlist_for_each_entry(child, &clk->children, child_node)
295		clk_debug_create_subtree(child, clk->dentry);
296
297	ret = 0;
298out:
299	return ret;
300}
301
302/**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized.  Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock.  Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313static int clk_debug_register(struct clk *clk)
314{
315	struct clk *parent;
316	struct dentry *pdentry;
317	int ret = 0;
318
319	if (!inited)
320		goto out;
321
322	parent = clk->parent;
323
324	/*
325	 * Check to see if a clk is a root clk.  Also check that it is
326	 * safe to add this clk to debugfs
327	 */
328	if (!parent)
329		if (clk->flags & CLK_IS_ROOT)
330			pdentry = rootdir;
331		else
332			pdentry = orphandir;
333	else
334		if (parent->dentry)
335			pdentry = parent->dentry;
336		else
337			goto out;
338
339	ret = clk_debug_create_subtree(clk, pdentry);
340
341out:
342	return ret;
343}
344
345/**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized.  Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357{
358	struct dentry *d;
359	struct dentry *new_parent_d;
360
361	if (!inited)
362		return;
363
364	if (new_parent)
365		new_parent_d = new_parent->dentry;
366	else
367		new_parent_d = orphandir;
368
369	d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370			new_parent_d, clk->name);
371	if (d)
372		clk->dentry = d;
373	else
374		pr_debug("%s: failed to rename debugfs entry for %s\n",
375				__func__, clk->name);
376}
377
378/**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree.  This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390static int __init clk_debug_init(void)
391{
392	struct clk *clk;
393	struct dentry *d;
394
395	rootdir = debugfs_create_dir("clk", NULL);
396
397	if (!rootdir)
398		return -ENOMEM;
399
400	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401				&clk_summary_fops);
402	if (!d)
403		return -ENOMEM;
404
405	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406				&clk_dump_fops);
407	if (!d)
408		return -ENOMEM;
409
410	orphandir = debugfs_create_dir("orphans", rootdir);
411
412	if (!orphandir)
413		return -ENOMEM;
414
415	clk_prepare_lock();
416
417	hlist_for_each_entry(clk, &clk_root_list, child_node)
418		clk_debug_create_subtree(clk, rootdir);
419
420	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421		clk_debug_create_subtree(clk, orphandir);
422
423	inited = 1;
424
425	clk_prepare_unlock();
426
427	return 0;
428}
429late_initcall(clk_debug_init);
430#else
431static inline int clk_debug_register(struct clk *clk) { return 0; }
432static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433{
434}
435#endif
436
437/* caller must hold prepare_lock */
438static void clk_unprepare_unused_subtree(struct clk *clk)
439{
440	struct clk *child;
441
442	if (!clk)
443		return;
444
445	hlist_for_each_entry(child, &clk->children, child_node)
446		clk_unprepare_unused_subtree(child);
447
448	if (clk->prepare_count)
449		return;
450
451	if (clk->flags & CLK_IGNORE_UNUSED)
452		return;
453
454	if (__clk_is_prepared(clk)) {
455		if (clk->ops->unprepare_unused)
456			clk->ops->unprepare_unused(clk->hw);
457		else if (clk->ops->unprepare)
458			clk->ops->unprepare(clk->hw);
459	}
460}
461
462/* caller must hold prepare_lock */
463static void clk_disable_unused_subtree(struct clk *clk)
464{
465	struct clk *child;
466	unsigned long flags;
467
468	if (!clk)
469		goto out;
470
471	hlist_for_each_entry(child, &clk->children, child_node)
472		clk_disable_unused_subtree(child);
473
474	flags = clk_enable_lock();
475
476	if (clk->enable_count)
477		goto unlock_out;
478
479	if (clk->flags & CLK_IGNORE_UNUSED)
480		goto unlock_out;
481
482	/*
483	 * some gate clocks have special needs during the disable-unused
484	 * sequence.  call .disable_unused if available, otherwise fall
485	 * back to .disable
486	 */
487	if (__clk_is_enabled(clk)) {
488		if (clk->ops->disable_unused)
489			clk->ops->disable_unused(clk->hw);
490		else if (clk->ops->disable)
491			clk->ops->disable(clk->hw);
492	}
493
494unlock_out:
495	clk_enable_unlock(flags);
496
497out:
498	return;
499}
500
501static bool clk_ignore_unused;
502static int __init clk_ignore_unused_setup(char *__unused)
503{
504	clk_ignore_unused = true;
505	return 1;
506}
507__setup("clk_ignore_unused", clk_ignore_unused_setup);
508
509static int clk_disable_unused(void)
510{
511	struct clk *clk;
512
513	if (clk_ignore_unused) {
514		pr_warn("clk: Not disabling unused clocks\n");
515		return 0;
516	}
517
518	clk_prepare_lock();
519
520	hlist_for_each_entry(clk, &clk_root_list, child_node)
521		clk_disable_unused_subtree(clk);
522
523	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
524		clk_disable_unused_subtree(clk);
525
526	hlist_for_each_entry(clk, &clk_root_list, child_node)
527		clk_unprepare_unused_subtree(clk);
528
529	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
530		clk_unprepare_unused_subtree(clk);
531
532	clk_prepare_unlock();
533
534	return 0;
535}
536late_initcall_sync(clk_disable_unused);
537
538/***    helper functions   ***/
539
540const char *__clk_get_name(struct clk *clk)
541{
542	return !clk ? NULL : clk->name;
543}
544EXPORT_SYMBOL_GPL(__clk_get_name);
545
546struct clk_hw *__clk_get_hw(struct clk *clk)
547{
548	return !clk ? NULL : clk->hw;
549}
550
551u8 __clk_get_num_parents(struct clk *clk)
552{
553	return !clk ? 0 : clk->num_parents;
554}
555
556struct clk *__clk_get_parent(struct clk *clk)
557{
558	return !clk ? NULL : clk->parent;
559}
560
561struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
562{
563	if (!clk || index >= clk->num_parents)
564		return NULL;
565	else if (!clk->parents)
566		return __clk_lookup(clk->parent_names[index]);
567	else if (!clk->parents[index])
568		return clk->parents[index] =
569			__clk_lookup(clk->parent_names[index]);
570	else
571		return clk->parents[index];
572}
573
574unsigned int __clk_get_enable_count(struct clk *clk)
575{
576	return !clk ? 0 : clk->enable_count;
577}
578
579unsigned int __clk_get_prepare_count(struct clk *clk)
580{
581	return !clk ? 0 : clk->prepare_count;
582}
583
584unsigned long __clk_get_rate(struct clk *clk)
585{
586	unsigned long ret;
587
588	if (!clk) {
589		ret = 0;
590		goto out;
591	}
592
593	ret = clk->rate;
594
595	if (clk->flags & CLK_IS_ROOT)
596		goto out;
597
598	if (!clk->parent)
599		ret = 0;
600
601out:
602	return ret;
603}
604
605unsigned long __clk_get_flags(struct clk *clk)
606{
607	return !clk ? 0 : clk->flags;
608}
609EXPORT_SYMBOL_GPL(__clk_get_flags);
610
611bool __clk_is_prepared(struct clk *clk)
612{
613	int ret;
614
615	if (!clk)
616		return false;
617
618	/*
619	 * .is_prepared is optional for clocks that can prepare
620	 * fall back to software usage counter if it is missing
621	 */
622	if (!clk->ops->is_prepared) {
623		ret = clk->prepare_count ? 1 : 0;
624		goto out;
625	}
626
627	ret = clk->ops->is_prepared(clk->hw);
628out:
629	return !!ret;
630}
631
632bool __clk_is_enabled(struct clk *clk)
633{
634	int ret;
635
636	if (!clk)
637		return false;
638
639	/*
640	 * .is_enabled is only mandatory for clocks that gate
641	 * fall back to software usage counter if .is_enabled is missing
642	 */
643	if (!clk->ops->is_enabled) {
644		ret = clk->enable_count ? 1 : 0;
645		goto out;
646	}
647
648	ret = clk->ops->is_enabled(clk->hw);
649out:
650	return !!ret;
651}
652
653static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654{
655	struct clk *child;
656	struct clk *ret;
657
658	if (!strcmp(clk->name, name))
659		return clk;
660
661	hlist_for_each_entry(child, &clk->children, child_node) {
662		ret = __clk_lookup_subtree(name, child);
663		if (ret)
664			return ret;
665	}
666
667	return NULL;
668}
669
670struct clk *__clk_lookup(const char *name)
671{
672	struct clk *root_clk;
673	struct clk *ret;
674
675	if (!name)
676		return NULL;
677
678	/* search the 'proper' clk tree first */
679	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680		ret = __clk_lookup_subtree(name, root_clk);
681		if (ret)
682			return ret;
683	}
684
685	/* if not found, then search the orphan tree */
686	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687		ret = __clk_lookup_subtree(name, root_clk);
688		if (ret)
689			return ret;
690	}
691
692	return NULL;
693}
694
695/*
696 * Helper for finding best parent to provide a given frequency. This can be used
697 * directly as a determine_rate callback (e.g. for a mux), or from a more
698 * complex clock that may combine a mux with other operations.
699 */
700long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
701			      unsigned long *best_parent_rate,
702			      struct clk **best_parent_p)
703{
704	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
705	int i, num_parents;
706	unsigned long parent_rate, best = 0;
707
708	/* if NO_REPARENT flag set, pass through to current parent */
709	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
710		parent = clk->parent;
711		if (clk->flags & CLK_SET_RATE_PARENT)
712			best = __clk_round_rate(parent, rate);
713		else if (parent)
714			best = __clk_get_rate(parent);
715		else
716			best = __clk_get_rate(clk);
717		goto out;
718	}
719
720	/* find the parent that can provide the fastest rate <= rate */
721	num_parents = clk->num_parents;
722	for (i = 0; i < num_parents; i++) {
723		parent = clk_get_parent_by_index(clk, i);
724		if (!parent)
725			continue;
726		if (clk->flags & CLK_SET_RATE_PARENT)
727			parent_rate = __clk_round_rate(parent, rate);
728		else
729			parent_rate = __clk_get_rate(parent);
730		if (parent_rate <= rate && parent_rate > best) {
731			best_parent = parent;
732			best = parent_rate;
733		}
734	}
735
736out:
737	if (best_parent)
738		*best_parent_p = best_parent;
739	*best_parent_rate = best;
740
741	return best;
742}
743
744/***        clk api        ***/
745
746void __clk_unprepare(struct clk *clk)
747{
748	if (!clk)
749		return;
750
751	if (WARN_ON(clk->prepare_count == 0))
752		return;
753
754	if (--clk->prepare_count > 0)
755		return;
756
757	WARN_ON(clk->enable_count > 0);
758
759	if (clk->ops->unprepare)
760		clk->ops->unprepare(clk->hw);
761
762	__clk_unprepare(clk->parent);
763}
764
765/**
766 * clk_unprepare - undo preparation of a clock source
767 * @clk: the clk being unprepared
768 *
769 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
770 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
771 * if the operation may sleep.  One example is a clk which is accessed over
772 * I2c.  In the complex case a clk gate operation may require a fast and a slow
773 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
774 * exclusive.  In fact clk_disable must be called before clk_unprepare.
775 */
776void clk_unprepare(struct clk *clk)
777{
778	clk_prepare_lock();
779	__clk_unprepare(clk);
780	clk_prepare_unlock();
781}
782EXPORT_SYMBOL_GPL(clk_unprepare);
783
784int __clk_prepare(struct clk *clk)
785{
786	int ret = 0;
787
788	if (!clk)
789		return 0;
790
791	if (clk->prepare_count == 0) {
792		ret = __clk_prepare(clk->parent);
793		if (ret)
794			return ret;
795
796		if (clk->ops->prepare) {
797			ret = clk->ops->prepare(clk->hw);
798			if (ret) {
799				__clk_unprepare(clk->parent);
800				return ret;
801			}
802		}
803	}
804
805	clk->prepare_count++;
806
807	return 0;
808}
809
810/**
811 * clk_prepare - prepare a clock source
812 * @clk: the clk being prepared
813 *
814 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
815 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
816 * operation may sleep.  One example is a clk which is accessed over I2c.  In
817 * the complex case a clk ungate operation may require a fast and a slow part.
818 * It is this reason that clk_prepare and clk_enable are not mutually
819 * exclusive.  In fact clk_prepare must be called before clk_enable.
820 * Returns 0 on success, -EERROR otherwise.
821 */
822int clk_prepare(struct clk *clk)
823{
824	int ret;
825
826	clk_prepare_lock();
827	ret = __clk_prepare(clk);
828	clk_prepare_unlock();
829
830	return ret;
831}
832EXPORT_SYMBOL_GPL(clk_prepare);
833
834static void __clk_disable(struct clk *clk)
835{
836	if (!clk)
837		return;
838
839	if (WARN_ON(IS_ERR(clk)))
840		return;
841
842	if (WARN_ON(clk->enable_count == 0))
843		return;
844
845	if (--clk->enable_count > 0)
846		return;
847
848	if (clk->ops->disable)
849		clk->ops->disable(clk->hw);
850
851	__clk_disable(clk->parent);
852}
853
854/**
855 * clk_disable - gate a clock
856 * @clk: the clk being gated
857 *
858 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
859 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
860 * clk if the operation is fast and will never sleep.  One example is a
861 * SoC-internal clk which is controlled via simple register writes.  In the
862 * complex case a clk gate operation may require a fast and a slow part.  It is
863 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
864 * In fact clk_disable must be called before clk_unprepare.
865 */
866void clk_disable(struct clk *clk)
867{
868	unsigned long flags;
869
870	flags = clk_enable_lock();
871	__clk_disable(clk);
872	clk_enable_unlock(flags);
873}
874EXPORT_SYMBOL_GPL(clk_disable);
875
876static int __clk_enable(struct clk *clk)
877{
878	int ret = 0;
879
880	if (!clk)
881		return 0;
882
883	if (WARN_ON(clk->prepare_count == 0))
884		return -ESHUTDOWN;
885
886	if (clk->enable_count == 0) {
887		ret = __clk_enable(clk->parent);
888
889		if (ret)
890			return ret;
891
892		if (clk->ops->enable) {
893			ret = clk->ops->enable(clk->hw);
894			if (ret) {
895				__clk_disable(clk->parent);
896				return ret;
897			}
898		}
899	}
900
901	clk->enable_count++;
902	return 0;
903}
904
905/**
906 * clk_enable - ungate a clock
907 * @clk: the clk being ungated
908 *
909 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
910 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
911 * if the operation will never sleep.  One example is a SoC-internal clk which
912 * is controlled via simple register writes.  In the complex case a clk ungate
913 * operation may require a fast and a slow part.  It is this reason that
914 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
915 * must be called before clk_enable.  Returns 0 on success, -EERROR
916 * otherwise.
917 */
918int clk_enable(struct clk *clk)
919{
920	unsigned long flags;
921	int ret;
922
923	flags = clk_enable_lock();
924	ret = __clk_enable(clk);
925	clk_enable_unlock(flags);
926
927	return ret;
928}
929EXPORT_SYMBOL_GPL(clk_enable);
930
931/**
932 * __clk_round_rate - round the given rate for a clk
933 * @clk: round the rate of this clock
934 * @rate: the rate which is to be rounded
935 *
936 * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
937 */
938unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
939{
940	unsigned long parent_rate = 0;
941	struct clk *parent;
942
943	if (!clk)
944		return 0;
945
946	parent = clk->parent;
947	if (parent)
948		parent_rate = parent->rate;
949
950	if (clk->ops->determine_rate)
951		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
952						&parent);
953	else if (clk->ops->round_rate)
954		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
955	else if (clk->flags & CLK_SET_RATE_PARENT)
956		return __clk_round_rate(clk->parent, rate);
957	else
958		return clk->rate;
959}
960
961/**
962 * clk_round_rate - round the given rate for a clk
963 * @clk: the clk for which we are rounding a rate
964 * @rate: the rate which is to be rounded
965 *
966 * Takes in a rate as input and rounds it to a rate that the clk can actually
967 * use which is then returned.  If clk doesn't support round_rate operation
968 * then the parent rate is returned.
969 */
970long clk_round_rate(struct clk *clk, unsigned long rate)
971{
972	unsigned long ret;
973
974	clk_prepare_lock();
975	ret = __clk_round_rate(clk, rate);
976	clk_prepare_unlock();
977
978	return ret;
979}
980EXPORT_SYMBOL_GPL(clk_round_rate);
981
982/**
983 * __clk_notify - call clk notifier chain
984 * @clk: struct clk * that is changing rate
985 * @msg: clk notifier type (see include/linux/clk.h)
986 * @old_rate: old clk rate
987 * @new_rate: new clk rate
988 *
989 * Triggers a notifier call chain on the clk rate-change notification
990 * for 'clk'.  Passes a pointer to the struct clk and the previous
991 * and current rates to the notifier callback.  Intended to be called by
992 * internal clock code only.  Returns NOTIFY_DONE from the last driver
993 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
994 * a driver returns that.
995 */
996static int __clk_notify(struct clk *clk, unsigned long msg,
997		unsigned long old_rate, unsigned long new_rate)
998{
999	struct clk_notifier *cn;
1000	struct clk_notifier_data cnd;
1001	int ret = NOTIFY_DONE;
1002
1003	cnd.clk = clk;
1004	cnd.old_rate = old_rate;
1005	cnd.new_rate = new_rate;
1006
1007	list_for_each_entry(cn, &clk_notifier_list, node) {
1008		if (cn->clk == clk) {
1009			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1010					&cnd);
1011			break;
1012		}
1013	}
1014
1015	return ret;
1016}
1017
1018/**
1019 * __clk_recalc_rates
1020 * @clk: first clk in the subtree
1021 * @msg: notification type (see include/linux/clk.h)
1022 *
1023 * Walks the subtree of clks starting with clk and recalculates rates as it
1024 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1025 * it is assumed that the clock will take on the rate of its parent.
1026 *
1027 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1028 * if necessary.
1029 *
1030 * Caller must hold prepare_lock.
1031 */
1032static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1033{
1034	unsigned long old_rate;
1035	unsigned long parent_rate = 0;
1036	struct clk *child;
1037
1038	old_rate = clk->rate;
1039
1040	if (clk->parent)
1041		parent_rate = clk->parent->rate;
1042
1043	if (clk->ops->recalc_rate)
1044		clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1045	else
1046		clk->rate = parent_rate;
1047
1048	/*
1049	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1050	 * & ABORT_RATE_CHANGE notifiers
1051	 */
1052	if (clk->notifier_count && msg)
1053		__clk_notify(clk, msg, old_rate, clk->rate);
1054
1055	hlist_for_each_entry(child, &clk->children, child_node)
1056		__clk_recalc_rates(child, msg);
1057}
1058
1059/**
1060 * clk_get_rate - return the rate of clk
1061 * @clk: the clk whose rate is being returned
1062 *
1063 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1064 * is set, which means a recalc_rate will be issued.
1065 * If clk is NULL then returns 0.
1066 */
1067unsigned long clk_get_rate(struct clk *clk)
1068{
1069	unsigned long rate;
1070
1071	clk_prepare_lock();
1072
1073	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1074		__clk_recalc_rates(clk, 0);
1075
1076	rate = __clk_get_rate(clk);
1077	clk_prepare_unlock();
1078
1079	return rate;
1080}
1081EXPORT_SYMBOL_GPL(clk_get_rate);
1082
1083static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1084{
1085	u8 i;
1086
1087	if (!clk->parents)
1088		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1089								GFP_KERNEL);
1090
1091	/*
1092	 * find index of new parent clock using cached parent ptrs,
1093	 * or if not yet cached, use string name comparison and cache
1094	 * them now to avoid future calls to __clk_lookup.
1095	 */
1096	for (i = 0; i < clk->num_parents; i++) {
1097		if (clk->parents && clk->parents[i] == parent)
1098			break;
1099		else if (!strcmp(clk->parent_names[i], parent->name)) {
1100			if (clk->parents)
1101				clk->parents[i] = __clk_lookup(parent->name);
1102			break;
1103		}
1104	}
1105
1106	return i;
1107}
1108
1109static void clk_reparent(struct clk *clk, struct clk *new_parent)
1110{
1111	hlist_del(&clk->child_node);
1112
1113	if (new_parent) {
1114		/* avoid duplicate POST_RATE_CHANGE notifications */
1115		if (new_parent->new_child == clk)
1116			new_parent->new_child = NULL;
1117
1118		hlist_add_head(&clk->child_node, &new_parent->children);
1119	} else {
1120		hlist_add_head(&clk->child_node, &clk_orphan_list);
1121	}
1122
1123	clk->parent = new_parent;
1124}
1125
1126static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1127{
1128	unsigned long flags;
1129	int ret = 0;
1130	struct clk *old_parent = clk->parent;
1131
1132	/*
1133	 * Migrate prepare state between parents and prevent race with
1134	 * clk_enable().
1135	 *
1136	 * If the clock is not prepared, then a race with
1137	 * clk_enable/disable() is impossible since we already have the
1138	 * prepare lock (future calls to clk_enable() need to be preceded by
1139	 * a clk_prepare()).
1140	 *
1141	 * If the clock is prepared, migrate the prepared state to the new
1142	 * parent and also protect against a race with clk_enable() by
1143	 * forcing the clock and the new parent on.  This ensures that all
1144	 * future calls to clk_enable() are practically NOPs with respect to
1145	 * hardware and software states.
1146	 *
1147	 * See also: Comment for clk_set_parent() below.
1148	 */
1149	if (clk->prepare_count) {
1150		__clk_prepare(parent);
1151		clk_enable(parent);
1152		clk_enable(clk);
1153	}
1154
1155	/* update the clk tree topology */
1156	flags = clk_enable_lock();
1157	clk_reparent(clk, parent);
1158	clk_enable_unlock(flags);
1159
1160	/* change clock input source */
1161	if (parent && clk->ops->set_parent)
1162		ret = clk->ops->set_parent(clk->hw, p_index);
1163
1164	if (ret) {
1165		flags = clk_enable_lock();
1166		clk_reparent(clk, old_parent);
1167		clk_enable_unlock(flags);
1168
1169		if (clk->prepare_count) {
1170			clk_disable(clk);
1171			clk_disable(parent);
1172			__clk_unprepare(parent);
1173		}
1174		return ret;
1175	}
1176
1177	/*
1178	 * Finish the migration of prepare state and undo the changes done
1179	 * for preventing a race with clk_enable().
1180	 */
1181	if (clk->prepare_count) {
1182		clk_disable(clk);
1183		clk_disable(old_parent);
1184		__clk_unprepare(old_parent);
1185	}
1186
1187	/* update debugfs with new clk tree topology */
1188	clk_debug_reparent(clk, parent);
1189	return 0;
1190}
1191
1192/**
1193 * __clk_speculate_rates
1194 * @clk: first clk in the subtree
1195 * @parent_rate: the "future" rate of clk's parent
1196 *
1197 * Walks the subtree of clks starting with clk, speculating rates as it
1198 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1199 *
1200 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1201 * pre-rate change notifications and returns early if no clks in the
1202 * subtree have subscribed to the notifications.  Note that if a clk does not
1203 * implement the .recalc_rate callback then it is assumed that the clock will
1204 * take on the rate of its parent.
1205 *
1206 * Caller must hold prepare_lock.
1207 */
1208static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1209{
1210	struct clk *child;
1211	unsigned long new_rate;
1212	int ret = NOTIFY_DONE;
1213
1214	if (clk->ops->recalc_rate)
1215		new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1216	else
1217		new_rate = parent_rate;
1218
1219	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1220	if (clk->notifier_count)
1221		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1222
1223	if (ret & NOTIFY_STOP_MASK)
1224		goto out;
1225
1226	hlist_for_each_entry(child, &clk->children, child_node) {
1227		ret = __clk_speculate_rates(child, new_rate);
1228		if (ret & NOTIFY_STOP_MASK)
1229			break;
1230	}
1231
1232out:
1233	return ret;
1234}
1235
1236static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1237			     struct clk *new_parent, u8 p_index)
1238{
1239	struct clk *child;
1240
1241	clk->new_rate = new_rate;
1242	clk->new_parent = new_parent;
1243	clk->new_parent_index = p_index;
1244	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1245	clk->new_child = NULL;
1246	if (new_parent && new_parent != clk->parent)
1247		new_parent->new_child = clk;
1248
1249	hlist_for_each_entry(child, &clk->children, child_node) {
1250		if (child->ops->recalc_rate)
1251			child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1252		else
1253			child->new_rate = new_rate;
1254		clk_calc_subtree(child, child->new_rate, NULL, 0);
1255	}
1256}
1257
1258/*
1259 * calculate the new rates returning the topmost clock that has to be
1260 * changed.
1261 */
1262static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1263{
1264	struct clk *top = clk;
1265	struct clk *old_parent, *parent;
1266	unsigned long best_parent_rate = 0;
1267	unsigned long new_rate;
1268	u8 p_index = 0;
1269
1270	/* sanity */
1271	if (IS_ERR_OR_NULL(clk))
1272		return NULL;
1273
1274	/* save parent rate, if it exists */
1275	parent = old_parent = clk->parent;
1276	if (parent)
1277		best_parent_rate = parent->rate;
1278
1279	/* find the closest rate and parent clk/rate */
1280	if (clk->ops->determine_rate) {
1281		new_rate = clk->ops->determine_rate(clk->hw, rate,
1282						    &best_parent_rate,
1283						    &parent);
1284	} else if (clk->ops->round_rate) {
1285		new_rate = clk->ops->round_rate(clk->hw, rate,
1286						&best_parent_rate);
1287	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1288		/* pass-through clock without adjustable parent */
1289		clk->new_rate = clk->rate;
1290		return NULL;
1291	} else {
1292		/* pass-through clock with adjustable parent */
1293		top = clk_calc_new_rates(parent, rate);
1294		new_rate = parent->new_rate;
1295		goto out;
1296	}
1297
1298	/* some clocks must be gated to change parent */
1299	if (parent != old_parent &&
1300	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1301		pr_debug("%s: %s not gated but wants to reparent\n",
1302			 __func__, clk->name);
1303		return NULL;
1304	}
1305
1306	/* try finding the new parent index */
1307	if (parent) {
1308		p_index = clk_fetch_parent_index(clk, parent);
1309		if (p_index == clk->num_parents) {
1310			pr_debug("%s: clk %s can not be parent of clk %s\n",
1311				 __func__, parent->name, clk->name);
1312			return NULL;
1313		}
1314	}
1315
1316	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1317	    best_parent_rate != parent->rate)
1318		top = clk_calc_new_rates(parent, best_parent_rate);
1319
1320out:
1321	clk_calc_subtree(clk, new_rate, parent, p_index);
1322
1323	return top;
1324}
1325
1326/*
1327 * Notify about rate changes in a subtree. Always walk down the whole tree
1328 * so that in case of an error we can walk down the whole tree again and
1329 * abort the change.
1330 */
1331static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1332{
1333	struct clk *child, *tmp_clk, *fail_clk = NULL;
1334	int ret = NOTIFY_DONE;
1335
1336	if (clk->rate == clk->new_rate)
1337		return NULL;
1338
1339	if (clk->notifier_count) {
1340		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1341		if (ret & NOTIFY_STOP_MASK)
1342			fail_clk = clk;
1343	}
1344
1345	hlist_for_each_entry(child, &clk->children, child_node) {
1346		/* Skip children who will be reparented to another clock */
1347		if (child->new_parent && child->new_parent != clk)
1348			continue;
1349		tmp_clk = clk_propagate_rate_change(child, event);
1350		if (tmp_clk)
1351			fail_clk = tmp_clk;
1352	}
1353
1354	/* handle the new child who might not be in clk->children yet */
1355	if (clk->new_child) {
1356		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1357		if (tmp_clk)
1358			fail_clk = tmp_clk;
1359	}
1360
1361	return fail_clk;
1362}
1363
1364/*
1365 * walk down a subtree and set the new rates notifying the rate
1366 * change on the way
1367 */
1368static void clk_change_rate(struct clk *clk)
1369{
1370	struct clk *child;
1371	unsigned long old_rate;
1372	unsigned long best_parent_rate = 0;
1373
1374	old_rate = clk->rate;
1375
1376	/* set parent */
1377	if (clk->new_parent && clk->new_parent != clk->parent)
1378		__clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1379
1380	if (clk->parent)
1381		best_parent_rate = clk->parent->rate;
1382
1383	if (clk->ops->set_rate)
1384		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1385
1386	if (clk->ops->recalc_rate)
1387		clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1388	else
1389		clk->rate = best_parent_rate;
1390
1391	if (clk->notifier_count && old_rate != clk->rate)
1392		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1393
1394	hlist_for_each_entry(child, &clk->children, child_node) {
1395		/* Skip children who will be reparented to another clock */
1396		if (child->new_parent && child->new_parent != clk)
1397			continue;
1398		clk_change_rate(child);
1399	}
1400
1401	/* handle the new child who might not be in clk->children yet */
1402	if (clk->new_child)
1403		clk_change_rate(clk->new_child);
1404}
1405
1406/**
1407 * clk_set_rate - specify a new rate for clk
1408 * @clk: the clk whose rate is being changed
1409 * @rate: the new rate for clk
1410 *
1411 * In the simplest case clk_set_rate will only adjust the rate of clk.
1412 *
1413 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1414 * propagate up to clk's parent; whether or not this happens depends on the
1415 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1416 * after calling .round_rate then upstream parent propagation is ignored.  If
1417 * *parent_rate comes back with a new rate for clk's parent then we propagate
1418 * up to clk's parent and set its rate.  Upward propagation will continue
1419 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1420 * .round_rate stops requesting changes to clk's parent_rate.
1421 *
1422 * Rate changes are accomplished via tree traversal that also recalculates the
1423 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1424 *
1425 * Returns 0 on success, -EERROR otherwise.
1426 */
1427int clk_set_rate(struct clk *clk, unsigned long rate)
1428{
1429	struct clk *top, *fail_clk;
1430	int ret = 0;
1431
1432	if (!clk)
1433		return 0;
1434
1435	/* prevent racing with updates to the clock topology */
1436	clk_prepare_lock();
1437
1438	/* bail early if nothing to do */
1439	if (rate == clk_get_rate(clk))
1440		goto out;
1441
1442	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1443		ret = -EBUSY;
1444		goto out;
1445	}
1446
1447	/* calculate new rates and get the topmost changed clock */
1448	top = clk_calc_new_rates(clk, rate);
1449	if (!top) {
1450		ret = -EINVAL;
1451		goto out;
1452	}
1453
1454	/* notify that we are about to change rates */
1455	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1456	if (fail_clk) {
1457		pr_warn("%s: failed to set %s rate\n", __func__,
1458				fail_clk->name);
1459		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1460		ret = -EBUSY;
1461		goto out;
1462	}
1463
1464	/* change the rates */
1465	clk_change_rate(top);
1466
1467out:
1468	clk_prepare_unlock();
1469
1470	return ret;
1471}
1472EXPORT_SYMBOL_GPL(clk_set_rate);
1473
1474/**
1475 * clk_get_parent - return the parent of a clk
1476 * @clk: the clk whose parent gets returned
1477 *
1478 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1479 */
1480struct clk *clk_get_parent(struct clk *clk)
1481{
1482	struct clk *parent;
1483
1484	clk_prepare_lock();
1485	parent = __clk_get_parent(clk);
1486	clk_prepare_unlock();
1487
1488	return parent;
1489}
1490EXPORT_SYMBOL_GPL(clk_get_parent);
1491
1492/*
1493 * .get_parent is mandatory for clocks with multiple possible parents.  It is
1494 * optional for single-parent clocks.  Always call .get_parent if it is
1495 * available and WARN if it is missing for multi-parent clocks.
1496 *
1497 * For single-parent clocks without .get_parent, first check to see if the
1498 * .parents array exists, and if so use it to avoid an expensive tree
1499 * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1500 */
1501static struct clk *__clk_init_parent(struct clk *clk)
1502{
1503	struct clk *ret = NULL;
1504	u8 index;
1505
1506	/* handle the trivial cases */
1507
1508	if (!clk->num_parents)
1509		goto out;
1510
1511	if (clk->num_parents == 1) {
1512		if (IS_ERR_OR_NULL(clk->parent))
1513			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1514		ret = clk->parent;
1515		goto out;
1516	}
1517
1518	if (!clk->ops->get_parent) {
1519		WARN(!clk->ops->get_parent,
1520			"%s: multi-parent clocks must implement .get_parent\n",
1521			__func__);
1522		goto out;
1523	};
1524
1525	/*
1526	 * Do our best to cache parent clocks in clk->parents.  This prevents
1527	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1528	 * clk->parent here; that is done by the calling function
1529	 */
1530
1531	index = clk->ops->get_parent(clk->hw);
1532
1533	if (!clk->parents)
1534		clk->parents =
1535			kzalloc((sizeof(struct clk*) * clk->num_parents),
1536					GFP_KERNEL);
1537
1538	ret = clk_get_parent_by_index(clk, index);
1539
1540out:
1541	return ret;
1542}
1543
1544void __clk_reparent(struct clk *clk, struct clk *new_parent)
1545{
1546	clk_reparent(clk, new_parent);
1547	clk_debug_reparent(clk, new_parent);
1548	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1549}
1550
1551/**
1552 * clk_set_parent - switch the parent of a mux clk
1553 * @clk: the mux clk whose input we are switching
1554 * @parent: the new input to clk
1555 *
1556 * Re-parent clk to use parent as its new input source.  If clk is in
1557 * prepared state, the clk will get enabled for the duration of this call. If
1558 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1559 * that, the reparenting is glitchy in hardware, etc), use the
1560 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1561 *
1562 * After successfully changing clk's parent clk_set_parent will update the
1563 * clk topology, sysfs topology and propagate rate recalculation via
1564 * __clk_recalc_rates.
1565 *
1566 * Returns 0 on success, -EERROR otherwise.
1567 */
1568int clk_set_parent(struct clk *clk, struct clk *parent)
1569{
1570	int ret = 0;
1571	u8 p_index = 0;
1572	unsigned long p_rate = 0;
1573
1574	if (!clk)
1575		return 0;
1576
1577	if (!clk->ops)
1578		return -EINVAL;
1579
1580	/* verify ops for for multi-parent clks */
1581	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1582		return -ENOSYS;
1583
1584	/* prevent racing with updates to the clock topology */
1585	clk_prepare_lock();
1586
1587	if (clk->parent == parent)
1588		goto out;
1589
1590	/* check that we are allowed to re-parent if the clock is in use */
1591	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1592		ret = -EBUSY;
1593		goto out;
1594	}
1595
1596	/* try finding the new parent index */
1597	if (parent) {
1598		p_index = clk_fetch_parent_index(clk, parent);
1599		p_rate = parent->rate;
1600		if (p_index == clk->num_parents) {
1601			pr_debug("%s: clk %s can not be parent of clk %s\n",
1602					__func__, parent->name, clk->name);
1603			ret = -EINVAL;
1604			goto out;
1605		}
1606	}
1607
1608	/* propagate PRE_RATE_CHANGE notifications */
1609	ret = __clk_speculate_rates(clk, p_rate);
1610
1611	/* abort if a driver objects */
1612	if (ret & NOTIFY_STOP_MASK)
1613		goto out;
1614
1615	/* do the re-parent */
1616	ret = __clk_set_parent(clk, parent, p_index);
1617
1618	/* propagate rate recalculation accordingly */
1619	if (ret)
1620		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1621	else
1622		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1623
1624out:
1625	clk_prepare_unlock();
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(clk_set_parent);
1630
1631/**
1632 * __clk_init - initialize the data structures in a struct clk
1633 * @dev:	device initializing this clk, placeholder for now
1634 * @clk:	clk being initialized
1635 *
1636 * Initializes the lists in struct clk, queries the hardware for the
1637 * parent and rate and sets them both.
1638 */
1639int __clk_init(struct device *dev, struct clk *clk)
1640{
1641	int i, ret = 0;
1642	struct clk *orphan;
1643	struct hlist_node *tmp2;
1644
1645	if (!clk)
1646		return -EINVAL;
1647
1648	clk_prepare_lock();
1649
1650	/* check to see if a clock with this name is already registered */
1651	if (__clk_lookup(clk->name)) {
1652		pr_debug("%s: clk %s already initialized\n",
1653				__func__, clk->name);
1654		ret = -EEXIST;
1655		goto out;
1656	}
1657
1658	/* check that clk_ops are sane.  See Documentation/clk.txt */
1659	if (clk->ops->set_rate &&
1660	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
1661	      clk->ops->recalc_rate)) {
1662		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1663				__func__, clk->name);
1664		ret = -EINVAL;
1665		goto out;
1666	}
1667
1668	if (clk->ops->set_parent && !clk->ops->get_parent) {
1669		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1670				__func__, clk->name);
1671		ret = -EINVAL;
1672		goto out;
1673	}
1674
1675	/* throw a WARN if any entries in parent_names are NULL */
1676	for (i = 0; i < clk->num_parents; i++)
1677		WARN(!clk->parent_names[i],
1678				"%s: invalid NULL in %s's .parent_names\n",
1679				__func__, clk->name);
1680
1681	/*
1682	 * Allocate an array of struct clk *'s to avoid unnecessary string
1683	 * look-ups of clk's possible parents.  This can fail for clocks passed
1684	 * in to clk_init during early boot; thus any access to clk->parents[]
1685	 * must always check for a NULL pointer and try to populate it if
1686	 * necessary.
1687	 *
1688	 * If clk->parents is not NULL we skip this entire block.  This allows
1689	 * for clock drivers to statically initialize clk->parents.
1690	 */
1691	if (clk->num_parents > 1 && !clk->parents) {
1692		clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1693				GFP_KERNEL);
1694		/*
1695		 * __clk_lookup returns NULL for parents that have not been
1696		 * clk_init'd; thus any access to clk->parents[] must check
1697		 * for a NULL pointer.  We can always perform lazy lookups for
1698		 * missing parents later on.
1699		 */
1700		if (clk->parents)
1701			for (i = 0; i < clk->num_parents; i++)
1702				clk->parents[i] =
1703					__clk_lookup(clk->parent_names[i]);
1704	}
1705
1706	clk->parent = __clk_init_parent(clk);
1707
1708	/*
1709	 * Populate clk->parent if parent has already been __clk_init'd.  If
1710	 * parent has not yet been __clk_init'd then place clk in the orphan
1711	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
1712	 * clk list.
1713	 *
1714	 * Every time a new clk is clk_init'd then we walk the list of orphan
1715	 * clocks and re-parent any that are children of the clock currently
1716	 * being clk_init'd.
1717	 */
1718	if (clk->parent)
1719		hlist_add_head(&clk->child_node,
1720				&clk->parent->children);
1721	else if (clk->flags & CLK_IS_ROOT)
1722		hlist_add_head(&clk->child_node, &clk_root_list);
1723	else
1724		hlist_add_head(&clk->child_node, &clk_orphan_list);
1725
1726	/*
1727	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
1728	 * simple clocks and lazy developers the default fallback is to use the
1729	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
1730	 * then rate is set to zero.
1731	 */
1732	if (clk->ops->recalc_rate)
1733		clk->rate = clk->ops->recalc_rate(clk->hw,
1734				__clk_get_rate(clk->parent));
1735	else if (clk->parent)
1736		clk->rate = clk->parent->rate;
1737	else
1738		clk->rate = 0;
1739
1740	/*
1741	 * walk the list of orphan clocks and reparent any that are children of
1742	 * this clock
1743	 */
1744	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1745		if (orphan->ops->get_parent) {
1746			i = orphan->ops->get_parent(orphan->hw);
1747			if (!strcmp(clk->name, orphan->parent_names[i]))
1748				__clk_reparent(orphan, clk);
1749			continue;
1750		}
1751
1752		for (i = 0; i < orphan->num_parents; i++)
1753			if (!strcmp(clk->name, orphan->parent_names[i])) {
1754				__clk_reparent(orphan, clk);
1755				break;
1756			}
1757	 }
1758
1759	/*
1760	 * optional platform-specific magic
1761	 *
1762	 * The .init callback is not used by any of the basic clock types, but
1763	 * exists for weird hardware that must perform initialization magic.
1764	 * Please consider other ways of solving initialization problems before
1765	 * using this callback, as its use is discouraged.
1766	 */
1767	if (clk->ops->init)
1768		clk->ops->init(clk->hw);
1769
1770	clk_debug_register(clk);
1771
1772out:
1773	clk_prepare_unlock();
1774
1775	return ret;
1776}
1777
1778/**
1779 * __clk_register - register a clock and return a cookie.
1780 *
1781 * Same as clk_register, except that the .clk field inside hw shall point to a
1782 * preallocated (generally statically allocated) struct clk. None of the fields
1783 * of the struct clk need to be initialized.
1784 *
1785 * The data pointed to by .init and .clk field shall NOT be marked as init
1786 * data.
1787 *
1788 * __clk_register is only exposed via clk-private.h and is intended for use with
1789 * very large numbers of clocks that need to be statically initialized.  It is
1790 * a layering violation to include clk-private.h from any code which implements
1791 * a clock's .ops; as such any statically initialized clock data MUST be in a
1792 * separate C file from the logic that implements its operations.  Returns 0
1793 * on success, otherwise an error code.
1794 */
1795struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1796{
1797	int ret;
1798	struct clk *clk;
1799
1800	clk = hw->clk;
1801	clk->name = hw->init->name;
1802	clk->ops = hw->init->ops;
1803	clk->hw = hw;
1804	clk->flags = hw->init->flags;
1805	clk->parent_names = hw->init->parent_names;
1806	clk->num_parents = hw->init->num_parents;
1807
1808	ret = __clk_init(dev, clk);
1809	if (ret)
1810		return ERR_PTR(ret);
1811
1812	return clk;
1813}
1814EXPORT_SYMBOL_GPL(__clk_register);
1815
1816static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1817{
1818	int i, ret;
1819
1820	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1821	if (!clk->name) {
1822		pr_err("%s: could not allocate clk->name\n", __func__);
1823		ret = -ENOMEM;
1824		goto fail_name;
1825	}
1826	clk->ops = hw->init->ops;
1827	clk->hw = hw;
1828	clk->flags = hw->init->flags;
1829	clk->num_parents = hw->init->num_parents;
1830	hw->clk = clk;
1831
1832	/* allocate local copy in case parent_names is __initdata */
1833	clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1834			GFP_KERNEL);
1835
1836	if (!clk->parent_names) {
1837		pr_err("%s: could not allocate clk->parent_names\n", __func__);
1838		ret = -ENOMEM;
1839		goto fail_parent_names;
1840	}
1841
1842
1843	/* copy each string name in case parent_names is __initdata */
1844	for (i = 0; i < clk->num_parents; i++) {
1845		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1846						GFP_KERNEL);
1847		if (!clk->parent_names[i]) {
1848			pr_err("%s: could not copy parent_names\n", __func__);
1849			ret = -ENOMEM;
1850			goto fail_parent_names_copy;
1851		}
1852	}
1853
1854	ret = __clk_init(dev, clk);
1855	if (!ret)
1856		return 0;
1857
1858fail_parent_names_copy:
1859	while (--i >= 0)
1860		kfree(clk->parent_names[i]);
1861	kfree(clk->parent_names);
1862fail_parent_names:
1863	kfree(clk->name);
1864fail_name:
1865	return ret;
1866}
1867
1868/**
1869 * clk_register - allocate a new clock, register it and return an opaque cookie
1870 * @dev: device that is registering this clock
1871 * @hw: link to hardware-specific clock data
1872 *
1873 * clk_register is the primary interface for populating the clock tree with new
1874 * clock nodes.  It returns a pointer to the newly allocated struct clk which
1875 * cannot be dereferenced by driver code but may be used in conjuction with the
1876 * rest of the clock API.  In the event of an error clk_register will return an
1877 * error code; drivers must test for an error code after calling clk_register.
1878 */
1879struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1880{
1881	int ret;
1882	struct clk *clk;
1883
1884	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1885	if (!clk) {
1886		pr_err("%s: could not allocate clk\n", __func__);
1887		ret = -ENOMEM;
1888		goto fail_out;
1889	}
1890
1891	ret = _clk_register(dev, hw, clk);
1892	if (!ret)
1893		return clk;
1894
1895	kfree(clk);
1896fail_out:
1897	return ERR_PTR(ret);
1898}
1899EXPORT_SYMBOL_GPL(clk_register);
1900
1901/**
1902 * clk_unregister - unregister a currently registered clock
1903 * @clk: clock to unregister
1904 *
1905 * Currently unimplemented.
1906 */
1907void clk_unregister(struct clk *clk) {}
1908EXPORT_SYMBOL_GPL(clk_unregister);
1909
1910static void devm_clk_release(struct device *dev, void *res)
1911{
1912	clk_unregister(res);
1913}
1914
1915/**
1916 * devm_clk_register - resource managed clk_register()
1917 * @dev: device that is registering this clock
1918 * @hw: link to hardware-specific clock data
1919 *
1920 * Managed clk_register(). Clocks returned from this function are
1921 * automatically clk_unregister()ed on driver detach. See clk_register() for
1922 * more information.
1923 */
1924struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1925{
1926	struct clk *clk;
1927	int ret;
1928
1929	clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1930	if (!clk)
1931		return ERR_PTR(-ENOMEM);
1932
1933	ret = _clk_register(dev, hw, clk);
1934	if (!ret) {
1935		devres_add(dev, clk);
1936	} else {
1937		devres_free(clk);
1938		clk = ERR_PTR(ret);
1939	}
1940
1941	return clk;
1942}
1943EXPORT_SYMBOL_GPL(devm_clk_register);
1944
1945static int devm_clk_match(struct device *dev, void *res, void *data)
1946{
1947	struct clk *c = res;
1948	if (WARN_ON(!c))
1949		return 0;
1950	return c == data;
1951}
1952
1953/**
1954 * devm_clk_unregister - resource managed clk_unregister()
1955 * @clk: clock to unregister
1956 *
1957 * Deallocate a clock allocated with devm_clk_register(). Normally
1958 * this function will not need to be called and the resource management
1959 * code will ensure that the resource is freed.
1960 */
1961void devm_clk_unregister(struct device *dev, struct clk *clk)
1962{
1963	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1964}
1965EXPORT_SYMBOL_GPL(devm_clk_unregister);
1966
1967/***        clk rate change notifiers        ***/
1968
1969/**
1970 * clk_notifier_register - add a clk rate change notifier
1971 * @clk: struct clk * to watch
1972 * @nb: struct notifier_block * with callback info
1973 *
1974 * Request notification when clk's rate changes.  This uses an SRCU
1975 * notifier because we want it to block and notifier unregistrations are
1976 * uncommon.  The callbacks associated with the notifier must not
1977 * re-enter into the clk framework by calling any top-level clk APIs;
1978 * this will cause a nested prepare_lock mutex.
1979 *
1980 * Pre-change notifier callbacks will be passed the current, pre-change
1981 * rate of the clk via struct clk_notifier_data.old_rate.  The new,
1982 * post-change rate of the clk is passed via struct
1983 * clk_notifier_data.new_rate.
1984 *
1985 * Post-change notifiers will pass the now-current, post-change rate of
1986 * the clk in both struct clk_notifier_data.old_rate and struct
1987 * clk_notifier_data.new_rate.
1988 *
1989 * Abort-change notifiers are effectively the opposite of pre-change
1990 * notifiers: the original pre-change clk rate is passed in via struct
1991 * clk_notifier_data.new_rate and the failed post-change rate is passed
1992 * in via struct clk_notifier_data.old_rate.
1993 *
1994 * clk_notifier_register() must be called from non-atomic context.
1995 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1996 * allocation failure; otherwise, passes along the return value of
1997 * srcu_notifier_chain_register().
1998 */
1999int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2000{
2001	struct clk_notifier *cn;
2002	int ret = -ENOMEM;
2003
2004	if (!clk || !nb)
2005		return -EINVAL;
2006
2007	clk_prepare_lock();
2008
2009	/* search the list of notifiers for this clk */
2010	list_for_each_entry(cn, &clk_notifier_list, node)
2011		if (cn->clk == clk)
2012			break;
2013
2014	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2015	if (cn->clk != clk) {
2016		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2017		if (!cn)
2018			goto out;
2019
2020		cn->clk = clk;
2021		srcu_init_notifier_head(&cn->notifier_head);
2022
2023		list_add(&cn->node, &clk_notifier_list);
2024	}
2025
2026	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2027
2028	clk->notifier_count++;
2029
2030out:
2031	clk_prepare_unlock();
2032
2033	return ret;
2034}
2035EXPORT_SYMBOL_GPL(clk_notifier_register);
2036
2037/**
2038 * clk_notifier_unregister - remove a clk rate change notifier
2039 * @clk: struct clk *
2040 * @nb: struct notifier_block * with callback info
2041 *
2042 * Request no further notification for changes to 'clk' and frees memory
2043 * allocated in clk_notifier_register.
2044 *
2045 * Returns -EINVAL if called with null arguments; otherwise, passes
2046 * along the return value of srcu_notifier_chain_unregister().
2047 */
2048int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2049{
2050	struct clk_notifier *cn = NULL;
2051	int ret = -EINVAL;
2052
2053	if (!clk || !nb)
2054		return -EINVAL;
2055
2056	clk_prepare_lock();
2057
2058	list_for_each_entry(cn, &clk_notifier_list, node)
2059		if (cn->clk == clk)
2060			break;
2061
2062	if (cn->clk == clk) {
2063		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2064
2065		clk->notifier_count--;
2066
2067		/* XXX the notifier code should handle this better */
2068		if (!cn->notifier_head.head) {
2069			srcu_cleanup_notifier_head(&cn->notifier_head);
2070			list_del(&cn->node);
2071			kfree(cn);
2072		}
2073
2074	} else {
2075		ret = -ENOENT;
2076	}
2077
2078	clk_prepare_unlock();
2079
2080	return ret;
2081}
2082EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2083
2084#ifdef CONFIG_OF
2085/**
2086 * struct of_clk_provider - Clock provider registration structure
2087 * @link: Entry in global list of clock providers
2088 * @node: Pointer to device tree node of clock provider
2089 * @get: Get clock callback.  Returns NULL or a struct clk for the
2090 *       given clock specifier
2091 * @data: context pointer to be passed into @get callback
2092 */
2093struct of_clk_provider {
2094	struct list_head link;
2095
2096	struct device_node *node;
2097	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2098	void *data;
2099};
2100
2101extern struct of_device_id __clk_of_table[];
2102
2103static const struct of_device_id __clk_of_table_sentinel
2104	__used __section(__clk_of_table_end);
2105
2106static LIST_HEAD(of_clk_providers);
2107static DEFINE_MUTEX(of_clk_lock);
2108
2109struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2110				     void *data)
2111{
2112	return data;
2113}
2114EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2115
2116struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2117{
2118	struct clk_onecell_data *clk_data = data;
2119	unsigned int idx = clkspec->args[0];
2120
2121	if (idx >= clk_data->clk_num) {
2122		pr_err("%s: invalid clock index %d\n", __func__, idx);
2123		return ERR_PTR(-EINVAL);
2124	}
2125
2126	return clk_data->clks[idx];
2127}
2128EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2129
2130/**
2131 * of_clk_add_provider() - Register a clock provider for a node
2132 * @np: Device node pointer associated with clock provider
2133 * @clk_src_get: callback for decoding clock
2134 * @data: context pointer for @clk_src_get callback.
2135 */
2136int of_clk_add_provider(struct device_node *np,
2137			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2138						   void *data),
2139			void *data)
2140{
2141	struct of_clk_provider *cp;
2142
2143	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2144	if (!cp)
2145		return -ENOMEM;
2146
2147	cp->node = of_node_get(np);
2148	cp->data = data;
2149	cp->get = clk_src_get;
2150
2151	mutex_lock(&of_clk_lock);
2152	list_add(&cp->link, &of_clk_providers);
2153	mutex_unlock(&of_clk_lock);
2154	pr_debug("Added clock from %s\n", np->full_name);
2155
2156	return 0;
2157}
2158EXPORT_SYMBOL_GPL(of_clk_add_provider);
2159
2160/**
2161 * of_clk_del_provider() - Remove a previously registered clock provider
2162 * @np: Device node pointer associated with clock provider
2163 */
2164void of_clk_del_provider(struct device_node *np)
2165{
2166	struct of_clk_provider *cp;
2167
2168	mutex_lock(&of_clk_lock);
2169	list_for_each_entry(cp, &of_clk_providers, link) {
2170		if (cp->node == np) {
2171			list_del(&cp->link);
2172			of_node_put(cp->node);
2173			kfree(cp);
2174			break;
2175		}
2176	}
2177	mutex_unlock(&of_clk_lock);
2178}
2179EXPORT_SYMBOL_GPL(of_clk_del_provider);
2180
2181struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2182{
2183	struct of_clk_provider *provider;
2184	struct clk *clk = ERR_PTR(-ENOENT);
2185
2186	/* Check if we have such a provider in our array */
2187	mutex_lock(&of_clk_lock);
2188	list_for_each_entry(provider, &of_clk_providers, link) {
2189		if (provider->node == clkspec->np)
2190			clk = provider->get(clkspec, provider->data);
2191		if (!IS_ERR(clk))
2192			break;
2193	}
2194	mutex_unlock(&of_clk_lock);
2195
2196	return clk;
2197}
2198
2199const char *of_clk_get_parent_name(struct device_node *np, int index)
2200{
2201	struct of_phandle_args clkspec;
2202	const char *clk_name;
2203	int rc;
2204
2205	if (index < 0)
2206		return NULL;
2207
2208	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2209					&clkspec);
2210	if (rc)
2211		return NULL;
2212
2213	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2214					  clkspec.args_count ? clkspec.args[0] : 0,
2215					  &clk_name) < 0)
2216		clk_name = clkspec.np->name;
2217
2218	of_node_put(clkspec.np);
2219	return clk_name;
2220}
2221EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2222
2223/**
2224 * of_clk_init() - Scan and init clock providers from the DT
2225 * @matches: array of compatible values and init functions for providers.
2226 *
2227 * This function scans the device tree for matching clock providers and
2228 * calls their initialization functions
2229 */
2230void __init of_clk_init(const struct of_device_id *matches)
2231{
2232	const struct of_device_id *match;
2233	struct device_node *np;
2234
2235	if (!matches)
2236		matches = __clk_of_table;
2237
2238	for_each_matching_node_and_match(np, matches, &match) {
2239		of_clk_init_cb_t clk_init_cb = match->data;
2240		clk_init_cb(np);
2241	}
2242}
2243#endif
2244