1/*
2 * Copyright (C) 2014 STMicroelectronics R&D Ltd
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 */
9
10/*
11 * Authors:
12 * Stephen Gallimore <stephen.gallimore@st.com>,
13 * Pankaj Dev <pankaj.dev@st.com>.
14 */
15
16#include <linux/slab.h>
17#include <linux/of_address.h>
18#include <linux/clk-provider.h>
19
20#include "clkgen.h"
21
22/*
23 * Maximum input clock to the PLL before we divide it down by 2
24 * although in reality in actual systems this has never been seen to
25 * be used.
26 */
27#define QUADFS_NDIV_THRESHOLD 30000000
28
29#define PLL_BW_GOODREF   (0L)
30#define PLL_BW_VBADREF   (1L)
31#define PLL_BW_BADREF    (2L)
32#define PLL_BW_VGOODREF  (3L)
33
34#define QUADFS_MAX_CHAN 4
35
36struct stm_fs {
37	unsigned long ndiv;
38	unsigned long mdiv;
39	unsigned long pe;
40	unsigned long sdiv;
41	unsigned long nsdiv;
42};
43
44static const struct stm_fs fs216c65_rtbl[] = {
45	{ .mdiv = 0x1f, .pe = 0x0,	.sdiv = 0x7,	.nsdiv = 0 },	/* 312.5 Khz */
46	{ .mdiv = 0x17, .pe = 0x25ed,	.sdiv = 0x1,	.nsdiv = 0 },	/* 27    MHz */
47	{ .mdiv = 0x1a, .pe = 0x7b36,	.sdiv = 0x2,	.nsdiv = 1 },	/* 36.87 MHz */
48	{ .mdiv = 0x13, .pe = 0x0,	.sdiv = 0x2,	.nsdiv = 1 },	/* 48    MHz */
49	{ .mdiv = 0x11, .pe = 0x1c72,	.sdiv = 0x1,	.nsdiv = 1 },	/* 108   MHz */
50};
51
52static const struct stm_fs fs432c65_rtbl[] = {
53	{ .mdiv = 0x1f, .pe = 0x0,	.sdiv = 0x7,	.nsdiv = 0 },	/* 625     Khz */
54	{ .mdiv = 0x13, .pe = 0x777c,	.sdiv = 0x4,	.nsdiv = 1 },	/* 25.175  MHz */
55	{ .mdiv = 0x19, .pe = 0x4d35,	.sdiv = 0x2,	.nsdiv = 0 },	/* 25.200  MHz */
56	{ .mdiv = 0x11, .pe = 0x1c72,	.sdiv = 0x4,	.nsdiv = 1 },	/* 27.000  MHz */
57	{ .mdiv = 0x17, .pe = 0x28f5,	.sdiv = 0x2,	.nsdiv = 0 },	/* 27.027  MHz */
58	{ .mdiv = 0x16, .pe = 0x3359,	.sdiv = 0x2,	.nsdiv = 0 },	/* 28.320  MHz */
59	{ .mdiv = 0x1f, .pe = 0x2083,	.sdiv = 0x3,	.nsdiv = 1 },	/* 30.240  MHz */
60	{ .mdiv = 0x1e, .pe = 0x430d,	.sdiv = 0x3,	.nsdiv = 1 },	/* 31.500  MHz */
61	{ .mdiv = 0x17, .pe = 0x0,	.sdiv = 0x3,	.nsdiv = 1 },	/* 40.000  MHz */
62	{ .mdiv = 0x19, .pe = 0x121a,	.sdiv = 0x1,	.nsdiv = 0 },	/* 49.500  MHz */
63	{ .mdiv = 0x13, .pe = 0x6667,	.sdiv = 0x3,	.nsdiv = 1 },	/* 50.000  MHz */
64	{ .mdiv = 0x10, .pe = 0x1ee6,	.sdiv = 0x3,	.nsdiv = 1 },	/* 57.284  MHz */
65	{ .mdiv = 0x1d, .pe = 0x3b14,	.sdiv = 0x2,	.nsdiv = 1 },	/* 65.000  MHz */
66	{ .mdiv = 0x12, .pe = 0x7c65,	.sdiv = 0x1,	.nsdiv = 0 },	/* 71.000  MHz */
67	{ .mdiv = 0x19, .pe = 0xecd,	.sdiv = 0x2,	.nsdiv = 1 },	/* 74.176  MHz */
68	{ .mdiv = 0x19, .pe = 0x121a,	.sdiv = 0x2,	.nsdiv = 1 },	/* 74.250  MHz */
69	{ .mdiv = 0x19, .pe = 0x3334,	.sdiv = 0x2,	.nsdiv = 1 },	/* 75.000  MHz */
70	{ .mdiv = 0x18, .pe = 0x5138,	.sdiv = 0x2,	.nsdiv = 1 },	/* 78.800  MHz */
71	{ .mdiv = 0x1d, .pe = 0x77d,	.sdiv = 0x0,	.nsdiv = 0 },	/* 85.500  MHz */
72	{ .mdiv = 0x1c, .pe = 0x13d5,	.sdiv = 0x0,	.nsdiv = 0 },	/* 88.750  MHz */
73	{ .mdiv = 0x11, .pe = 0x1c72,	.sdiv = 0x2,	.nsdiv = 1 },	/* 108.000 MHz */
74	{ .mdiv = 0x17, .pe = 0x28f5,	.sdiv = 0x0,	.nsdiv = 0 },	/* 108.108 MHz */
75	{ .mdiv = 0x10, .pe = 0x6e26,	.sdiv = 0x2,	.nsdiv = 1 },	/* 118.963 MHz */
76	{ .mdiv = 0x15, .pe = 0x3e63,	.sdiv = 0x0,	.nsdiv = 0 },	/* 119.000 MHz */
77	{ .mdiv = 0x1c, .pe = 0x471d,	.sdiv = 0x1,	.nsdiv = 1 },	/* 135.000 MHz */
78	{ .mdiv = 0x19, .pe = 0xecd,	.sdiv = 0x1,	.nsdiv = 1 },	/* 148.352 MHz */
79	{ .mdiv = 0x19, .pe = 0x121a,	.sdiv = 0x1,	.nsdiv = 1 },	/* 148.500 MHz */
80	{ .mdiv = 0x19, .pe = 0x121a,	.sdiv = 0x0,	.nsdiv = 1 },	/* 297     MHz */
81};
82
83static const struct stm_fs fs660c32_rtbl[] = {
84	{ .mdiv = 0x14, .pe = 0x376b,	.sdiv = 0x4,	.nsdiv = 1 },	/* 25.175  MHz */
85	{ .mdiv = 0x14, .pe = 0x30c3,	.sdiv = 0x4,	.nsdiv = 1 },	/* 25.200  MHz */
86	{ .mdiv = 0x10, .pe = 0x71c7,	.sdiv = 0x4,	.nsdiv = 1 },	/* 27.000  MHz */
87	{ .mdiv = 0x00, .pe = 0x47af,	.sdiv = 0x3,	.nsdiv = 0 },	/* 27.027  MHz */
88	{ .mdiv = 0x0e, .pe = 0x4e1a,	.sdiv = 0x4,	.nsdiv = 1 },	/* 28.320  MHz */
89	{ .mdiv = 0x0b, .pe = 0x534d,	.sdiv = 0x4,	.nsdiv = 1 },	/* 30.240  MHz */
90	{ .mdiv = 0x17, .pe = 0x6fbf,	.sdiv = 0x2,	.nsdiv = 0 },	/* 31.500  MHz */
91	{ .mdiv = 0x01, .pe = 0x0,	.sdiv = 0x4,	.nsdiv = 1 },	/* 40.000  MHz */
92	{ .mdiv = 0x15, .pe = 0x2aab,	.sdiv = 0x3,	.nsdiv = 1 },	/* 49.500  MHz */
93	{ .mdiv = 0x14, .pe = 0x6666,	.sdiv = 0x3,	.nsdiv = 1 },	/* 50.000  MHz */
94	{ .mdiv = 0x1d, .pe = 0x395f,	.sdiv = 0x1,	.nsdiv = 0 },	/* 57.284  MHz */
95	{ .mdiv = 0x08, .pe = 0x4ec5,	.sdiv = 0x3,	.nsdiv = 1 },	/* 65.000  MHz */
96	{ .mdiv = 0x05, .pe = 0x1770,	.sdiv = 0x3,	.nsdiv = 1 },	/* 71.000  MHz */
97	{ .mdiv = 0x03, .pe = 0x4ba7,	.sdiv = 0x3,	.nsdiv = 1 },	/* 74.176  MHz */
98	{ .mdiv = 0x0f, .pe = 0x3426,	.sdiv = 0x1,	.nsdiv = 0 },	/* 74.250  MHz */
99	{ .mdiv = 0x0e, .pe = 0x7777,	.sdiv = 0x1,	.nsdiv = 0 },	/* 75.000  MHz */
100	{ .mdiv = 0x01, .pe = 0x4053,	.sdiv = 0x3,	.nsdiv = 1 },	/* 78.800  MHz */
101	{ .mdiv = 0x09, .pe = 0x15b5,	.sdiv = 0x1,	.nsdiv = 0 },	/* 85.500  MHz */
102	{ .mdiv = 0x1b, .pe = 0x3f19,	.sdiv = 0x2,	.nsdiv = 1 },	/* 88.750  MHz */
103	{ .mdiv = 0x10, .pe = 0x71c7,	.sdiv = 0x2,	.nsdiv = 1 },	/* 108.000 MHz */
104	{ .mdiv = 0x00, .pe = 0x47af,	.sdiv = 0x1,	.nsdiv = 0 },	/* 108.108 MHz */
105	{ .mdiv = 0x0c, .pe = 0x3118,	.sdiv = 0x2,	.nsdiv = 1 },	/* 118.963 MHz */
106	{ .mdiv = 0x0c, .pe = 0x2f54,	.sdiv = 0x2,	.nsdiv = 1 },	/* 119.000 MHz */
107	{ .mdiv = 0x07, .pe = 0xe39,	.sdiv = 0x2,	.nsdiv = 1 },	/* 135.000 MHz */
108	{ .mdiv = 0x03, .pe = 0x4ba7,	.sdiv = 0x2,	.nsdiv = 1 },	/* 148.352 MHz */
109	{ .mdiv = 0x0f, .pe = 0x3426,	.sdiv = 0x0,	.nsdiv = 0 },	/* 148.500 MHz */
110	{ .mdiv = 0x03, .pe = 0x4ba7,	.sdiv = 0x1,	.nsdiv = 1 },	/* 296.704 MHz */
111	{ .mdiv = 0x03, .pe = 0x471c,	.sdiv = 0x1,	.nsdiv = 1 },	/* 297.000 MHz */
112	{ .mdiv = 0x00, .pe = 0x295f,	.sdiv = 0x1,	.nsdiv = 1 },	/* 326.700 MHz */
113	{ .mdiv = 0x1f, .pe = 0x3633,	.sdiv = 0x0,	.nsdiv = 1 },	/* 333.000 MHz */
114	{ .mdiv = 0x1c, .pe = 0x0,	.sdiv = 0x0,	.nsdiv = 1 },	/* 352.000 Mhz */
115};
116
117struct clkgen_quadfs_data {
118	bool reset_present;
119	bool bwfilter_present;
120	bool lockstatus_present;
121	bool powerup_polarity;
122	bool standby_polarity;
123	bool nsdiv_present;
124	bool nrst_present;
125	struct clkgen_field ndiv;
126	struct clkgen_field ref_bw;
127	struct clkgen_field nreset;
128	struct clkgen_field npda;
129	struct clkgen_field lock_status;
130
131	struct clkgen_field nrst[QUADFS_MAX_CHAN];
132	struct clkgen_field nsb[QUADFS_MAX_CHAN];
133	struct clkgen_field en[QUADFS_MAX_CHAN];
134	struct clkgen_field mdiv[QUADFS_MAX_CHAN];
135	struct clkgen_field pe[QUADFS_MAX_CHAN];
136	struct clkgen_field sdiv[QUADFS_MAX_CHAN];
137	struct clkgen_field nsdiv[QUADFS_MAX_CHAN];
138
139	const struct clk_ops *pll_ops;
140	const struct stm_fs *rtbl;
141	u8 rtbl_cnt;
142	int  (*get_rate)(unsigned long , const struct stm_fs *,
143			unsigned long *);
144};
145
146static const struct clk_ops st_quadfs_pll_c65_ops;
147static const struct clk_ops st_quadfs_pll_c32_ops;
148static const struct clk_ops st_quadfs_fs216c65_ops;
149static const struct clk_ops st_quadfs_fs432c65_ops;
150static const struct clk_ops st_quadfs_fs660c32_ops;
151
152static int clk_fs216c65_get_rate(unsigned long, const struct stm_fs *,
153		unsigned long *);
154static int clk_fs432c65_get_rate(unsigned long, const struct stm_fs *,
155		unsigned long *);
156static int clk_fs660c32_dig_get_rate(unsigned long, const struct stm_fs *,
157		unsigned long *);
158/*
159 * Values for all of the standalone instances of this clock
160 * generator found in STiH415 and STiH416 SYSCFG register banks. Note
161 * that the individual channel standby control bits (nsb) are in the
162 * first register along with the PLL control bits.
163 */
164static const struct clkgen_quadfs_data st_fs216c65_416 = {
165	/* 416 specific */
166	.npda	= CLKGEN_FIELD(0x0, 0x1, 14),
167	.nsb	= { CLKGEN_FIELD(0x0, 0x1, 10),
168		    CLKGEN_FIELD(0x0, 0x1, 11),
169		    CLKGEN_FIELD(0x0, 0x1, 12),
170		    CLKGEN_FIELD(0x0, 0x1, 13) },
171	.nsdiv_present = true,
172	.nsdiv	= { CLKGEN_FIELD(0x0, 0x1, 18),
173		    CLKGEN_FIELD(0x0, 0x1, 19),
174		    CLKGEN_FIELD(0x0, 0x1, 20),
175		    CLKGEN_FIELD(0x0, 0x1, 21) },
176	.mdiv	= { CLKGEN_FIELD(0x4, 0x1f, 0),
177		    CLKGEN_FIELD(0x14, 0x1f, 0),
178		    CLKGEN_FIELD(0x24, 0x1f, 0),
179		    CLKGEN_FIELD(0x34, 0x1f, 0) },
180	.en	= { CLKGEN_FIELD(0x10, 0x1, 0),
181		    CLKGEN_FIELD(0x20, 0x1, 0),
182		    CLKGEN_FIELD(0x30, 0x1, 0),
183		    CLKGEN_FIELD(0x40, 0x1, 0) },
184	.ndiv	= CLKGEN_FIELD(0x0, 0x1, 15),
185	.bwfilter_present = true,
186	.ref_bw = CLKGEN_FIELD(0x0, 0x3, 16),
187	.pe	= { CLKGEN_FIELD(0x8, 0xffff, 0),
188		    CLKGEN_FIELD(0x18, 0xffff, 0),
189		    CLKGEN_FIELD(0x28, 0xffff, 0),
190		    CLKGEN_FIELD(0x38, 0xffff, 0) },
191	.sdiv	= { CLKGEN_FIELD(0xC, 0x7, 0),
192		    CLKGEN_FIELD(0x1C, 0x7, 0),
193		    CLKGEN_FIELD(0x2C, 0x7, 0),
194		    CLKGEN_FIELD(0x3C, 0x7, 0) },
195	.pll_ops	= &st_quadfs_pll_c65_ops,
196	.rtbl		= fs216c65_rtbl,
197	.rtbl_cnt	= ARRAY_SIZE(fs216c65_rtbl),
198	.get_rate	= clk_fs216c65_get_rate,
199};
200
201static const struct clkgen_quadfs_data st_fs432c65_416 = {
202	.npda	= CLKGEN_FIELD(0x0, 0x1, 14),
203	.nsb	= { CLKGEN_FIELD(0x0, 0x1, 10),
204		    CLKGEN_FIELD(0x0, 0x1, 11),
205		    CLKGEN_FIELD(0x0, 0x1, 12),
206		    CLKGEN_FIELD(0x0, 0x1, 13) },
207	.nsdiv_present = true,
208	.nsdiv	= { CLKGEN_FIELD(0x0, 0x1, 18),
209		   CLKGEN_FIELD(0x0, 0x1, 19),
210		   CLKGEN_FIELD(0x0, 0x1, 20),
211		   CLKGEN_FIELD(0x0, 0x1, 21) },
212	.mdiv	= { CLKGEN_FIELD(0x4, 0x1f, 0),
213		    CLKGEN_FIELD(0x14, 0x1f, 0),
214		    CLKGEN_FIELD(0x24, 0x1f, 0),
215		    CLKGEN_FIELD(0x34, 0x1f, 0) },
216	.en	= { CLKGEN_FIELD(0x10, 0x1, 0),
217		    CLKGEN_FIELD(0x20, 0x1, 0),
218		    CLKGEN_FIELD(0x30, 0x1, 0),
219		    CLKGEN_FIELD(0x40, 0x1, 0) },
220	.ndiv	= CLKGEN_FIELD(0x0, 0x1, 15),
221	.bwfilter_present = true,
222	.ref_bw = CLKGEN_FIELD(0x0, 0x3, 16),
223	.pe	= { CLKGEN_FIELD(0x8, 0xffff, 0),
224		    CLKGEN_FIELD(0x18, 0xffff, 0),
225		    CLKGEN_FIELD(0x28, 0xffff, 0),
226		    CLKGEN_FIELD(0x38, 0xffff, 0) },
227	.sdiv	= { CLKGEN_FIELD(0xC, 0x7, 0),
228		    CLKGEN_FIELD(0x1C, 0x7, 0),
229		    CLKGEN_FIELD(0x2C, 0x7, 0),
230		    CLKGEN_FIELD(0x3C, 0x7, 0) },
231	.pll_ops	= &st_quadfs_pll_c65_ops,
232	.rtbl		= fs432c65_rtbl,
233	.rtbl_cnt	= ARRAY_SIZE(fs432c65_rtbl),
234	.get_rate	= clk_fs432c65_get_rate,
235};
236
237static const struct clkgen_quadfs_data st_fs660c32_E_416 = {
238	.npda	= CLKGEN_FIELD(0x0, 0x1, 14),
239	.nsb	= { CLKGEN_FIELD(0x0, 0x1, 10),
240		    CLKGEN_FIELD(0x0, 0x1, 11),
241		    CLKGEN_FIELD(0x0, 0x1, 12),
242		    CLKGEN_FIELD(0x0, 0x1, 13) },
243	.nsdiv_present = true,
244	.nsdiv	= { CLKGEN_FIELD(0x0, 0x1, 18),
245		    CLKGEN_FIELD(0x0, 0x1, 19),
246		    CLKGEN_FIELD(0x0, 0x1, 20),
247		    CLKGEN_FIELD(0x0, 0x1, 21) },
248	.mdiv	= { CLKGEN_FIELD(0x4, 0x1f, 0),
249		    CLKGEN_FIELD(0x14, 0x1f, 0),
250		    CLKGEN_FIELD(0x24, 0x1f, 0),
251		    CLKGEN_FIELD(0x34, 0x1f, 0) },
252	.en	= { CLKGEN_FIELD(0x10, 0x1, 0),
253		    CLKGEN_FIELD(0x20, 0x1, 0),
254		    CLKGEN_FIELD(0x30, 0x1, 0),
255		    CLKGEN_FIELD(0x40, 0x1, 0) },
256	.ndiv	= CLKGEN_FIELD(0x0, 0x7, 15),
257	.pe	= { CLKGEN_FIELD(0x8, 0x7fff, 0),
258		    CLKGEN_FIELD(0x18, 0x7fff, 0),
259		    CLKGEN_FIELD(0x28, 0x7fff, 0),
260		    CLKGEN_FIELD(0x38, 0x7fff, 0) },
261	.sdiv	= { CLKGEN_FIELD(0xC, 0xf, 0),
262		    CLKGEN_FIELD(0x1C, 0xf, 0),
263		    CLKGEN_FIELD(0x2C, 0xf, 0),
264		    CLKGEN_FIELD(0x3C, 0xf, 0) },
265	.lockstatus_present = true,
266	.lock_status = CLKGEN_FIELD(0xAC, 0x1, 0),
267	.pll_ops	= &st_quadfs_pll_c32_ops,
268	.rtbl		= fs660c32_rtbl,
269	.rtbl_cnt	= ARRAY_SIZE(fs660c32_rtbl),
270	.get_rate	= clk_fs660c32_dig_get_rate,
271};
272
273static const struct clkgen_quadfs_data st_fs660c32_F_416 = {
274	.npda	= CLKGEN_FIELD(0x0, 0x1, 14),
275	.nsb	= { CLKGEN_FIELD(0x0, 0x1, 10),
276		    CLKGEN_FIELD(0x0, 0x1, 11),
277		    CLKGEN_FIELD(0x0, 0x1, 12),
278		    CLKGEN_FIELD(0x0, 0x1, 13) },
279	.nsdiv_present = true,
280	.nsdiv	= { CLKGEN_FIELD(0x0, 0x1, 18),
281		    CLKGEN_FIELD(0x0, 0x1, 19),
282		    CLKGEN_FIELD(0x0, 0x1, 20),
283		    CLKGEN_FIELD(0x0, 0x1, 21) },
284	.mdiv	= { CLKGEN_FIELD(0x4, 0x1f, 0),
285		    CLKGEN_FIELD(0x14, 0x1f, 0),
286		    CLKGEN_FIELD(0x24, 0x1f, 0),
287		    CLKGEN_FIELD(0x34, 0x1f, 0) },
288	.en	= { CLKGEN_FIELD(0x10, 0x1, 0),
289		    CLKGEN_FIELD(0x20, 0x1, 0),
290		    CLKGEN_FIELD(0x30, 0x1, 0),
291		    CLKGEN_FIELD(0x40, 0x1, 0) },
292	.ndiv	= CLKGEN_FIELD(0x0, 0x7, 15),
293	.pe	= { CLKGEN_FIELD(0x8, 0x7fff, 0),
294		    CLKGEN_FIELD(0x18, 0x7fff, 0),
295		    CLKGEN_FIELD(0x28, 0x7fff, 0),
296		    CLKGEN_FIELD(0x38, 0x7fff, 0) },
297	.sdiv	= { CLKGEN_FIELD(0xC, 0xf, 0),
298		    CLKGEN_FIELD(0x1C, 0xf, 0),
299		    CLKGEN_FIELD(0x2C, 0xf, 0),
300		    CLKGEN_FIELD(0x3C, 0xf, 0) },
301	.lockstatus_present = true,
302	.lock_status = CLKGEN_FIELD(0xEC, 0x1, 0),
303	.pll_ops	= &st_quadfs_pll_c32_ops,
304	.rtbl		= fs660c32_rtbl,
305	.rtbl_cnt	= ARRAY_SIZE(fs660c32_rtbl),
306	.get_rate	= clk_fs660c32_dig_get_rate,
307};
308
309static const struct clkgen_quadfs_data st_fs660c32_C_407 = {
310	.nrst_present = true,
311	.nrst	= { CLKGEN_FIELD(0x2f0, 0x1, 0),
312		    CLKGEN_FIELD(0x2f0, 0x1, 1),
313		    CLKGEN_FIELD(0x2f0, 0x1, 2),
314		    CLKGEN_FIELD(0x2f0, 0x1, 3) },
315	.npda	= CLKGEN_FIELD(0x2f0, 0x1, 12),
316	.nsb	= { CLKGEN_FIELD(0x2f0, 0x1, 8),
317		    CLKGEN_FIELD(0x2f0, 0x1, 9),
318		    CLKGEN_FIELD(0x2f0, 0x1, 10),
319		    CLKGEN_FIELD(0x2f0, 0x1, 11) },
320	.nsdiv_present = true,
321	.nsdiv	= { CLKGEN_FIELD(0x304, 0x1, 24),
322		    CLKGEN_FIELD(0x308, 0x1, 24),
323		    CLKGEN_FIELD(0x30c, 0x1, 24),
324		    CLKGEN_FIELD(0x310, 0x1, 24) },
325	.mdiv	= { CLKGEN_FIELD(0x304, 0x1f, 15),
326		    CLKGEN_FIELD(0x308, 0x1f, 15),
327		    CLKGEN_FIELD(0x30c, 0x1f, 15),
328		    CLKGEN_FIELD(0x310, 0x1f, 15) },
329	.en	= { CLKGEN_FIELD(0x2fc, 0x1, 0),
330		    CLKGEN_FIELD(0x2fc, 0x1, 1),
331		    CLKGEN_FIELD(0x2fc, 0x1, 2),
332		    CLKGEN_FIELD(0x2fc, 0x1, 3) },
333	.ndiv	= CLKGEN_FIELD(0x2f4, 0x7, 16),
334	.pe	= { CLKGEN_FIELD(0x304, 0x7fff, 0),
335		    CLKGEN_FIELD(0x308, 0x7fff, 0),
336		    CLKGEN_FIELD(0x30c, 0x7fff, 0),
337		    CLKGEN_FIELD(0x310, 0x7fff, 0) },
338	.sdiv	= { CLKGEN_FIELD(0x304, 0xf, 20),
339		    CLKGEN_FIELD(0x308, 0xf, 20),
340		    CLKGEN_FIELD(0x30c, 0xf, 20),
341		    CLKGEN_FIELD(0x310, 0xf, 20) },
342	.lockstatus_present = true,
343	.lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24),
344	.powerup_polarity = 1,
345	.standby_polarity = 1,
346	.pll_ops	= &st_quadfs_pll_c32_ops,
347	.rtbl		= fs660c32_rtbl,
348	.rtbl_cnt	= ARRAY_SIZE(fs660c32_rtbl),
349	.get_rate	= clk_fs660c32_dig_get_rate,
350};
351
352static const struct clkgen_quadfs_data st_fs660c32_D_407 = {
353	.nrst_present = true,
354	.nrst	= { CLKGEN_FIELD(0x2a0, 0x1, 0),
355		    CLKGEN_FIELD(0x2a0, 0x1, 1),
356		    CLKGEN_FIELD(0x2a0, 0x1, 2),
357		    CLKGEN_FIELD(0x2a0, 0x1, 3) },
358	.ndiv	= CLKGEN_FIELD(0x2a4, 0x7, 16),
359	.pe	= { CLKGEN_FIELD(0x2b4, 0x7fff, 0),
360		    CLKGEN_FIELD(0x2b8, 0x7fff, 0),
361		    CLKGEN_FIELD(0x2bc, 0x7fff, 0),
362		    CLKGEN_FIELD(0x2c0, 0x7fff, 0) },
363	.sdiv	= { CLKGEN_FIELD(0x2b4, 0xf, 20),
364		    CLKGEN_FIELD(0x2b8, 0xf, 20),
365		    CLKGEN_FIELD(0x2bc, 0xf, 20),
366		    CLKGEN_FIELD(0x2c0, 0xf, 20) },
367	.npda	= CLKGEN_FIELD(0x2a0, 0x1, 12),
368	.nsb	= { CLKGEN_FIELD(0x2a0, 0x1, 8),
369		    CLKGEN_FIELD(0x2a0, 0x1, 9),
370		    CLKGEN_FIELD(0x2a0, 0x1, 10),
371		    CLKGEN_FIELD(0x2a0, 0x1, 11) },
372	.nsdiv_present = true,
373	.nsdiv	= { CLKGEN_FIELD(0x2b4, 0x1, 24),
374		    CLKGEN_FIELD(0x2b8, 0x1, 24),
375		    CLKGEN_FIELD(0x2bc, 0x1, 24),
376		    CLKGEN_FIELD(0x2c0, 0x1, 24) },
377	.mdiv	= { CLKGEN_FIELD(0x2b4, 0x1f, 15),
378		    CLKGEN_FIELD(0x2b8, 0x1f, 15),
379		    CLKGEN_FIELD(0x2bc, 0x1f, 15),
380		    CLKGEN_FIELD(0x2c0, 0x1f, 15) },
381	.en	= { CLKGEN_FIELD(0x2ac, 0x1, 0),
382		    CLKGEN_FIELD(0x2ac, 0x1, 1),
383		    CLKGEN_FIELD(0x2ac, 0x1, 2),
384		    CLKGEN_FIELD(0x2ac, 0x1, 3) },
385	.lockstatus_present = true,
386	.lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24),
387	.powerup_polarity = 1,
388	.standby_polarity = 1,
389	.pll_ops	= &st_quadfs_pll_c32_ops,
390	.rtbl		= fs660c32_rtbl,
391	.rtbl_cnt	= ARRAY_SIZE(fs660c32_rtbl),
392	.get_rate	= clk_fs660c32_dig_get_rate,};
393
394/**
395 * DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor
396 *
397 * Traits of this clock:
398 * prepare - clk_(un)prepare only ensures parent is (un)prepared
399 * enable - clk_enable and clk_disable are functional & control the Fsyn
400 * rate - inherits rate from parent. set_rate/round_rate/recalc_rate
401 * parent - fixed parent.  No clk_set_parent support
402 */
403
404/**
405 * struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of
406 *                                  its parent clock, found inside a type of
407 *                                  ST quad channel frequency synthesizer block
408 *
409 * @hw: handle between common and hardware-specific interfaces.
410 * @ndiv: regmap field for the ndiv control.
411 * @regs_base: base address of the configuration registers.
412 * @lock: spinlock.
413 *
414 */
415struct st_clk_quadfs_pll {
416	struct clk_hw	hw;
417	void __iomem	*regs_base;
418	spinlock_t	*lock;
419	struct clkgen_quadfs_data *data;
420	u32 ndiv;
421};
422
423#define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw)
424
425static int quadfs_pll_enable(struct clk_hw *hw)
426{
427	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
428	unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(10);
429
430	if (pll->lock)
431		spin_lock_irqsave(pll->lock, flags);
432
433	/*
434	 * Bring block out of reset if we have reset control.
435	 */
436	if (pll->data->reset_present)
437		CLKGEN_WRITE(pll, nreset, 1);
438
439	/*
440	 * Use a fixed input clock noise bandwidth filter for the moment
441	 */
442	if (pll->data->bwfilter_present)
443		CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF);
444
445
446	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
447
448	/*
449	 * Power up the PLL
450	 */
451	CLKGEN_WRITE(pll, npda, !pll->data->powerup_polarity);
452
453	if (pll->lock)
454		spin_unlock_irqrestore(pll->lock, flags);
455
456	if (pll->data->lockstatus_present)
457		while (!CLKGEN_READ(pll, lock_status)) {
458			if (time_after(jiffies, timeout))
459				return -ETIMEDOUT;
460			cpu_relax();
461		}
462
463	return 0;
464}
465
466static void quadfs_pll_disable(struct clk_hw *hw)
467{
468	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
469	unsigned long flags = 0;
470
471	if (pll->lock)
472		spin_lock_irqsave(pll->lock, flags);
473
474	/*
475	 * Powerdown the PLL and then put block into soft reset if we have
476	 * reset control.
477	 */
478	CLKGEN_WRITE(pll, npda, pll->data->powerup_polarity);
479
480	if (pll->data->reset_present)
481		CLKGEN_WRITE(pll, nreset, 0);
482
483	if (pll->lock)
484		spin_unlock_irqrestore(pll->lock, flags);
485}
486
487static int quadfs_pll_is_enabled(struct clk_hw *hw)
488{
489	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
490	u32 npda = CLKGEN_READ(pll, npda);
491
492	return !!npda;
493}
494
495int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs,
496			   unsigned long *rate)
497{
498	unsigned long nd = fs->ndiv + 16; /* ndiv value */
499
500	*rate = input * nd;
501
502	return 0;
503}
504
505static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw,
506					unsigned long parent_rate)
507{
508	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
509	unsigned long rate = 0;
510	struct stm_fs params;
511
512	params.ndiv = CLKGEN_READ(pll, ndiv);
513	if (clk_fs660c32_vco_get_rate(parent_rate, &params, &rate))
514		pr_err("%s:%s error calculating rate\n",
515		       __clk_get_name(hw->clk), __func__);
516
517	pll->ndiv = params.ndiv;
518
519	return rate;
520}
521
522int clk_fs660c32_vco_get_params(unsigned long input,
523				unsigned long output, struct stm_fs *fs)
524{
525/* Formula
526   VCO frequency = (fin x ndiv) / pdiv
527   ndiv = VCOfreq * pdiv / fin
528   */
529	unsigned long pdiv = 1, n;
530
531	/* Output clock range: 384Mhz to 660Mhz */
532	if (output < 384000000 || output > 660000000)
533		return -EINVAL;
534
535	if (input > 40000000)
536		/* This means that PDIV would be 2 instead of 1.
537		   Not supported today. */
538		return -EINVAL;
539
540	input /= 1000;
541	output /= 1000;
542
543	n = output * pdiv / input;
544	if (n < 16)
545		n = 16;
546	fs->ndiv = n - 16; /* Converting formula value to reg value */
547
548	return 0;
549}
550
551static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw, unsigned long rate
552		, unsigned long *prate)
553{
554	struct stm_fs params;
555
556	if (!clk_fs660c32_vco_get_params(*prate, rate, &params))
557		clk_fs660c32_vco_get_rate(*prate, &params, &rate);
558
559	pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
560		 __func__, __clk_get_name(hw->clk),
561		 rate, (unsigned int)params.sdiv,
562		 (unsigned int)params.mdiv,
563		 (unsigned int)params.pe, (unsigned int)params.nsdiv);
564
565	return rate;
566}
567
568static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate,
569				unsigned long parent_rate)
570{
571	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
572	struct stm_fs params;
573	long hwrate = 0;
574	unsigned long flags = 0;
575
576	if (!rate || !parent_rate)
577		return -EINVAL;
578
579	if (!clk_fs660c32_vco_get_params(parent_rate, rate, &params))
580		clk_fs660c32_vco_get_rate(parent_rate, &params, &hwrate);
581
582	pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n",
583		 __func__, __clk_get_name(hw->clk),
584		 hwrate, (unsigned int)params.ndiv);
585
586	if (!hwrate)
587		return -EINVAL;
588
589	pll->ndiv = params.ndiv;
590
591	if (pll->lock)
592		spin_lock_irqsave(pll->lock, flags);
593
594	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
595
596	if (pll->lock)
597		spin_unlock_irqrestore(pll->lock, flags);
598
599	return 0;
600}
601
602static const struct clk_ops st_quadfs_pll_c65_ops = {
603	.enable		= quadfs_pll_enable,
604	.disable	= quadfs_pll_disable,
605	.is_enabled	= quadfs_pll_is_enabled,
606};
607
608static const struct clk_ops st_quadfs_pll_c32_ops = {
609	.enable		= quadfs_pll_enable,
610	.disable	= quadfs_pll_disable,
611	.is_enabled	= quadfs_pll_is_enabled,
612	.recalc_rate	= quadfs_pll_fs660c32_recalc_rate,
613	.round_rate	= quadfs_pll_fs660c32_round_rate,
614	.set_rate	= quadfs_pll_fs660c32_set_rate,
615};
616
617static struct clk * __init st_clk_register_quadfs_pll(
618		const char *name, const char *parent_name,
619		struct clkgen_quadfs_data *quadfs, void __iomem *reg,
620		spinlock_t *lock)
621{
622	struct st_clk_quadfs_pll *pll;
623	struct clk *clk;
624	struct clk_init_data init;
625
626	/*
627	 * Sanity check required pointers.
628	 */
629	if (WARN_ON(!name || !parent_name))
630		return ERR_PTR(-EINVAL);
631
632	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
633	if (!pll)
634		return ERR_PTR(-ENOMEM);
635
636	init.name = name;
637	init.ops = quadfs->pll_ops;
638	init.flags = CLK_IS_BASIC;
639	init.parent_names = &parent_name;
640	init.num_parents = 1;
641
642	pll->data = quadfs;
643	pll->regs_base = reg;
644	pll->lock = lock;
645	pll->hw.init = &init;
646
647	clk = clk_register(NULL, &pll->hw);
648
649	if (IS_ERR(clk))
650		kfree(pll);
651
652	return clk;
653}
654
655/**
656 * DOC: A digital frequency synthesizer
657 *
658 * Traits of this clock:
659 * prepare - clk_(un)prepare only ensures parent is (un)prepared
660 * enable - clk_enable and clk_disable are functional
661 * rate - set rate is functional
662 * parent - fixed parent.  No clk_set_parent support
663 */
664
665/**
666 * struct st_clk_quadfs_fsynth - One clock output from a four channel digital
667 *                                  frequency synthesizer (fsynth) block.
668 *
669 * @hw: handle between common and hardware-specific interfaces
670 *
671 * @nsb: regmap field in the output control register for the digital
672 *       standby of this fsynth channel. This control is active low so
673 *       the channel is in standby when the control bit is cleared.
674 *
675 * @nsdiv: regmap field in the output control register for
676 *          for the optional divide by 3 of this fsynth channel. This control
677 *          is active low so the divide by 3 is active when the control bit is
678 *          cleared and the divide is bypassed when the bit is set.
679 */
680struct st_clk_quadfs_fsynth {
681	struct clk_hw	hw;
682	void __iomem	*regs_base;
683	spinlock_t	*lock;
684	struct clkgen_quadfs_data *data;
685
686	u32 chan;
687	/*
688	 * Cached hardware values from set_rate so we can program the
689	 * hardware in enable. There are two reasons for this:
690	 *
691	 *  1. The registers may not be writable until the parent has been
692	 *     enabled.
693	 *
694	 *  2. It restores the clock rate when a driver does an enable
695	 *     on PM restore, after a suspend to RAM has lost the hardware
696	 *     setup.
697	 */
698	u32 md;
699	u32 pe;
700	u32 sdiv;
701	u32 nsdiv;
702};
703
704#define to_quadfs_fsynth(_hw) \
705	container_of(_hw, struct st_clk_quadfs_fsynth, hw)
706
707static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs)
708{
709	/*
710	 * Pulse the program enable register lsb to make the hardware take
711	 * notice of the new md/pe values with a glitchless transition.
712	 */
713	CLKGEN_WRITE(fs, en[fs->chan], 1);
714	CLKGEN_WRITE(fs, en[fs->chan], 0);
715}
716
717static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs)
718{
719	unsigned long flags = 0;
720
721	/*
722	 * Ensure the md/pe parameters are ignored while we are
723	 * reprogramming them so we can get a glitchless change
724	 * when fine tuning the speed of a running clock.
725	 */
726	CLKGEN_WRITE(fs, en[fs->chan], 0);
727
728	CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md);
729	CLKGEN_WRITE(fs, pe[fs->chan], fs->pe);
730	CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv);
731
732	if (fs->lock)
733		spin_lock_irqsave(fs->lock, flags);
734
735	if (fs->data->nsdiv_present)
736		CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv);
737
738	if (fs->lock)
739		spin_unlock_irqrestore(fs->lock, flags);
740}
741
742static int quadfs_fsynth_enable(struct clk_hw *hw)
743{
744	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
745	unsigned long flags = 0;
746
747	pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
748
749	quadfs_fsynth_program_rate(fs);
750
751	if (fs->lock)
752		spin_lock_irqsave(fs->lock, flags);
753
754	CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity);
755
756	if (fs->data->nrst_present)
757		CLKGEN_WRITE(fs, nrst[fs->chan], 0);
758
759	if (fs->lock)
760		spin_unlock_irqrestore(fs->lock, flags);
761
762	quadfs_fsynth_program_enable(fs);
763
764	return 0;
765}
766
767static void quadfs_fsynth_disable(struct clk_hw *hw)
768{
769	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
770	unsigned long flags = 0;
771
772	pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
773
774	if (fs->lock)
775		spin_lock_irqsave(fs->lock, flags);
776
777	CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity);
778
779	if (fs->lock)
780		spin_unlock_irqrestore(fs->lock, flags);
781}
782
783static int quadfs_fsynth_is_enabled(struct clk_hw *hw)
784{
785	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
786	u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]);
787
788	pr_debug("%s: %s enable bit = 0x%x\n",
789		 __func__, __clk_get_name(hw->clk), nsb);
790
791	return fs->data->standby_polarity ? !nsb : !!nsb;
792}
793
794#define P15			(uint64_t)(1 << 15)
795
796static int clk_fs216c65_get_rate(unsigned long input, const struct stm_fs *fs,
797		unsigned long *rate)
798{
799	uint64_t res;
800	unsigned long ns;
801	unsigned long nd = 8; /* ndiv stuck at 0 => val = 8 */
802	unsigned long s;
803	long m;
804
805	m = fs->mdiv - 32;
806	s = 1 << (fs->sdiv + 1);
807	ns = (fs->nsdiv ? 1 : 3);
808
809	res = (uint64_t)(s * ns * P15 * (uint64_t)(m + 33));
810	res = res - (s * ns * fs->pe);
811	*rate = div64_u64(P15 * nd * input * 32, res);
812
813	return 0;
814}
815
816static int clk_fs432c65_get_rate(unsigned long input, const struct stm_fs *fs,
817		unsigned long *rate)
818{
819	uint64_t res;
820	unsigned long nd = 16; /* ndiv value; stuck at 0 (30Mhz input) */
821	long m;
822	unsigned long sd;
823	unsigned long ns;
824
825	m = fs->mdiv - 32;
826	sd = 1 << (fs->sdiv + 1);
827	ns = (fs->nsdiv ? 1 : 3);
828
829	res = (uint64_t)(sd * ns * P15 * (uint64_t)(m + 33));
830	res = res - (sd * ns * fs->pe);
831	*rate = div64_u64(P15 * nd * input * 32, res);
832
833	return 0;
834}
835
836#define P20		(uint64_t)(1 << 20)
837
838static int clk_fs660c32_dig_get_rate(unsigned long input,
839				const struct stm_fs *fs, unsigned long *rate)
840{
841	unsigned long s = (1 << fs->sdiv);
842	unsigned long ns;
843	uint64_t res;
844
845	/*
846	 * 'nsdiv' is a register value ('BIN') which is translated
847	 * to a decimal value according to following rules.
848	 *
849	 *     nsdiv      ns.dec
850	 *       0        3
851	 *       1        1
852	 */
853	ns = (fs->nsdiv == 1) ? 1 : 3;
854
855	res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns;
856	*rate = (unsigned long)div64_u64(input * P20 * 32, res);
857
858	return 0;
859}
860
861static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs,
862		struct stm_fs *params)
863{
864	/*
865	 * Get the initial hardware values for recalc_rate
866	 */
867	params->mdiv	= CLKGEN_READ(fs, mdiv[fs->chan]);
868	params->pe	= CLKGEN_READ(fs, pe[fs->chan]);
869	params->sdiv	= CLKGEN_READ(fs, sdiv[fs->chan]);
870
871	if (fs->data->nsdiv_present)
872		params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]);
873	else
874		params->nsdiv = 1;
875
876	/*
877	 * If All are NULL then assume no clock rate is programmed.
878	 */
879	if (!params->mdiv && !params->pe && !params->sdiv)
880		return 1;
881
882	fs->md = params->mdiv;
883	fs->pe = params->pe;
884	fs->sdiv = params->sdiv;
885	fs->nsdiv = params->nsdiv;
886
887	return 0;
888}
889
890static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate,
891				unsigned long prate, struct stm_fs *params)
892{
893	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
894	int (*clk_fs_get_rate)(unsigned long ,
895				const struct stm_fs *, unsigned long *);
896	struct stm_fs prev_params;
897	unsigned long prev_rate, rate = 0;
898	unsigned long diff_rate, prev_diff_rate = ~0;
899	int index;
900
901	clk_fs_get_rate = fs->data->get_rate;
902
903	for (index = 0; index < fs->data->rtbl_cnt; index++) {
904		prev_rate = rate;
905
906		*params = fs->data->rtbl[index];
907		prev_params = *params;
908
909		clk_fs_get_rate(prate, &fs->data->rtbl[index], &rate);
910
911		diff_rate = abs(drate - rate);
912
913		if (diff_rate > prev_diff_rate) {
914			rate = prev_rate;
915			*params = prev_params;
916			break;
917		}
918
919		prev_diff_rate = diff_rate;
920
921		if (drate == rate)
922			return rate;
923	}
924
925
926	if (index == fs->data->rtbl_cnt)
927		*params = prev_params;
928
929	return rate;
930}
931
932static unsigned long quadfs_recalc_rate(struct clk_hw *hw,
933		unsigned long parent_rate)
934{
935	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
936	unsigned long rate = 0;
937	struct stm_fs params;
938	int (*clk_fs_get_rate)(unsigned long ,
939				const struct stm_fs *, unsigned long *);
940
941	clk_fs_get_rate = fs->data->get_rate;
942
943	if (quadfs_fsynt_get_hw_value_for_recalc(fs, &params))
944		return 0;
945
946	if (clk_fs_get_rate(parent_rate, &params, &rate)) {
947		pr_err("%s:%s error calculating rate\n",
948		       __clk_get_name(hw->clk), __func__);
949	}
950
951	pr_debug("%s:%s rate %lu\n", __clk_get_name(hw->clk), __func__, rate);
952
953	return rate;
954}
955
956static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate,
957				     unsigned long *prate)
958{
959	struct stm_fs params;
960
961	rate = quadfs_find_best_rate(hw, rate, *prate, &params);
962
963	pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
964		 __func__, __clk_get_name(hw->clk),
965		 rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv,
966			 (unsigned int)params.pe, (unsigned int)params.nsdiv);
967
968	return rate;
969}
970
971
972static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs,
973		struct stm_fs *params)
974{
975	fs->md = params->mdiv;
976	fs->pe = params->pe;
977	fs->sdiv = params->sdiv;
978	fs->nsdiv = params->nsdiv;
979
980	/*
981	 * In some integrations you can only change the fsynth programming when
982	 * the parent entity containing it is enabled.
983	 */
984	quadfs_fsynth_program_rate(fs);
985	quadfs_fsynth_program_enable(fs);
986}
987
988static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate,
989				  unsigned long parent_rate)
990{
991	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
992	struct stm_fs params;
993	long hwrate;
994	int uninitialized_var(i);
995
996	if (!rate || !parent_rate)
997		return -EINVAL;
998
999	memset(&params, 0, sizeof(struct stm_fs));
1000
1001	hwrate = quadfs_find_best_rate(hw, rate, parent_rate, &params);
1002	if (!hwrate)
1003		return -EINVAL;
1004
1005	quadfs_program_and_enable(fs, &params);
1006
1007	return 0;
1008}
1009
1010
1011
1012static const struct clk_ops st_quadfs_ops = {
1013	.enable		= quadfs_fsynth_enable,
1014	.disable	= quadfs_fsynth_disable,
1015	.is_enabled	= quadfs_fsynth_is_enabled,
1016	.round_rate	= quadfs_round_rate,
1017	.set_rate	= quadfs_set_rate,
1018	.recalc_rate	= quadfs_recalc_rate,
1019};
1020
1021static struct clk * __init st_clk_register_quadfs_fsynth(
1022		const char *name, const char *parent_name,
1023		struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan,
1024		spinlock_t *lock)
1025{
1026	struct st_clk_quadfs_fsynth *fs;
1027	struct clk *clk;
1028	struct clk_init_data init;
1029
1030	/*
1031	 * Sanity check required pointers, note that nsdiv3 is optional.
1032	 */
1033	if (WARN_ON(!name || !parent_name))
1034		return ERR_PTR(-EINVAL);
1035
1036	fs = kzalloc(sizeof(*fs), GFP_KERNEL);
1037	if (!fs)
1038		return ERR_PTR(-ENOMEM);
1039
1040	init.name = name;
1041	init.ops = &st_quadfs_ops;
1042	init.flags = CLK_GET_RATE_NOCACHE | CLK_IS_BASIC;
1043	init.parent_names = &parent_name;
1044	init.num_parents = 1;
1045
1046	fs->data = quadfs;
1047	fs->regs_base = reg;
1048	fs->chan = chan;
1049	fs->lock = lock;
1050	fs->hw.init = &init;
1051
1052	clk = clk_register(NULL, &fs->hw);
1053
1054	if (IS_ERR(clk))
1055		kfree(fs);
1056
1057	return clk;
1058}
1059
1060static struct of_device_id quadfs_of_match[] = {
1061	{
1062		.compatible = "st,stih416-quadfs216",
1063		.data = &st_fs216c65_416
1064	},
1065	{
1066		.compatible = "st,stih416-quadfs432",
1067		.data = &st_fs432c65_416
1068	},
1069	{
1070		.compatible = "st,stih416-quadfs660-E",
1071		.data = &st_fs660c32_E_416
1072	},
1073	{
1074		.compatible = "st,stih416-quadfs660-F",
1075		.data = &st_fs660c32_F_416
1076	},
1077	{
1078		.compatible = "st,stih407-quadfs660-C",
1079		.data = &st_fs660c32_C_407
1080	},
1081	{
1082		.compatible = "st,stih407-quadfs660-D",
1083		.data = &st_fs660c32_D_407
1084	},
1085	{
1086		.compatible = "st,stih407-quadfs660-D",
1087		.data = (void *)&st_fs660c32_D_407
1088	},
1089	{}
1090};
1091
1092static void __init st_of_create_quadfs_fsynths(
1093		struct device_node *np, const char *pll_name,
1094		struct clkgen_quadfs_data *quadfs, void __iomem *reg,
1095		spinlock_t *lock)
1096{
1097	struct clk_onecell_data *clk_data;
1098	int fschan;
1099
1100	clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
1101	if (!clk_data)
1102		return;
1103
1104	clk_data->clk_num = QUADFS_MAX_CHAN;
1105	clk_data->clks = kzalloc(QUADFS_MAX_CHAN * sizeof(struct clk *),
1106				 GFP_KERNEL);
1107
1108	if (!clk_data->clks) {
1109		kfree(clk_data);
1110		return;
1111	}
1112
1113	for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) {
1114		struct clk *clk;
1115		const char *clk_name;
1116
1117		if (of_property_read_string_index(np, "clock-output-names",
1118						  fschan, &clk_name)) {
1119			break;
1120		}
1121
1122		/*
1123		 * If we read an empty clock name then the channel is unused
1124		 */
1125		if (*clk_name == '\0')
1126			continue;
1127
1128		clk = st_clk_register_quadfs_fsynth(clk_name, pll_name,
1129				quadfs, reg, fschan, lock);
1130
1131		/*
1132		 * If there was an error registering this clock output, clean
1133		 * up and move on to the next one.
1134		 */
1135		if (!IS_ERR(clk)) {
1136			clk_data->clks[fschan] = clk;
1137			pr_debug("%s: parent %s rate %u\n",
1138				__clk_get_name(clk),
1139				__clk_get_name(clk_get_parent(clk)),
1140				(unsigned int)clk_get_rate(clk));
1141		}
1142	}
1143
1144	of_clk_add_provider(np, of_clk_src_onecell_get, clk_data);
1145}
1146
1147static void __init st_of_quadfs_setup(struct device_node *np)
1148{
1149	const struct of_device_id *match;
1150	struct clk *clk;
1151	const char *pll_name, *clk_parent_name;
1152	void __iomem *reg;
1153	spinlock_t *lock;
1154
1155	match = of_match_node(quadfs_of_match, np);
1156	if (WARN_ON(!match))
1157		return;
1158
1159	reg = of_iomap(np, 0);
1160	if (!reg)
1161		return;
1162
1163	clk_parent_name = of_clk_get_parent_name(np, 0);
1164	if (!clk_parent_name)
1165		return;
1166
1167	pll_name = kasprintf(GFP_KERNEL, "%s.pll", np->name);
1168	if (!pll_name)
1169		return;
1170
1171	lock = kzalloc(sizeof(*lock), GFP_KERNEL);
1172	if (!lock)
1173		goto err_exit;
1174
1175	spin_lock_init(lock);
1176
1177	clk = st_clk_register_quadfs_pll(pll_name, clk_parent_name,
1178			(struct clkgen_quadfs_data *) match->data, reg, lock);
1179	if (IS_ERR(clk))
1180		goto err_exit;
1181	else
1182		pr_debug("%s: parent %s rate %u\n",
1183			__clk_get_name(clk),
1184			__clk_get_name(clk_get_parent(clk)),
1185			(unsigned int)clk_get_rate(clk));
1186
1187	st_of_create_quadfs_fsynths(np, pll_name,
1188				    (struct clkgen_quadfs_data *)match->data,
1189				    reg, lock);
1190
1191err_exit:
1192	kfree(pll_name); /* No longer need local copy of the PLL name */
1193}
1194CLK_OF_DECLARE(quadfs, "st,quadfs", st_of_quadfs_setup);
1195