intel_pstate.c revision adacdf3f2b8e65aa441613cf61c4f598e9042690
1/*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
28#include <linux/acpi.h>
29#include <trace/events/power.h>
30
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34
35#define SAMPLE_COUNT		3
36
37#define BYT_RATIOS		0x66a
38#define BYT_VIDS		0x66b
39#define BYT_TURBO_RATIOS	0x66c
40#define BYT_TURBO_VIDS		0x66d
41
42
43#define FRAC_BITS 6
44#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
45#define fp_toint(X) ((X) >> FRAC_BITS)
46#define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
47
48static inline int32_t mul_fp(int32_t x, int32_t y)
49{
50	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51}
52
53static inline int32_t div_fp(int32_t x, int32_t y)
54{
55	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
56}
57
58struct sample {
59	int32_t core_pct_busy;
60	u64 aperf;
61	u64 mperf;
62	int freq;
63};
64
65struct pstate_data {
66	int	current_pstate;
67	int	min_pstate;
68	int	max_pstate;
69	int	turbo_pstate;
70};
71
72struct vid_data {
73	int min;
74	int max;
75	int turbo;
76	int32_t ratio;
77};
78
79struct _pid {
80	int setpoint;
81	int32_t integral;
82	int32_t p_gain;
83	int32_t i_gain;
84	int32_t d_gain;
85	int deadband;
86	int32_t last_err;
87};
88
89struct cpudata {
90	int cpu;
91
92	char name[64];
93
94	struct timer_list timer;
95
96	struct pstate_data pstate;
97	struct vid_data vid;
98	struct _pid pid;
99
100	u64	prev_aperf;
101	u64	prev_mperf;
102	struct sample sample;
103};
104
105static struct cpudata **all_cpu_data;
106struct pstate_adjust_policy {
107	int sample_rate_ms;
108	int deadband;
109	int setpoint;
110	int p_gain_pct;
111	int d_gain_pct;
112	int i_gain_pct;
113};
114
115struct pstate_funcs {
116	int (*get_max)(void);
117	int (*get_min)(void);
118	int (*get_turbo)(void);
119	void (*set)(struct cpudata*, int pstate);
120	void (*get_vid)(struct cpudata *);
121};
122
123struct cpu_defaults {
124	struct pstate_adjust_policy pid_policy;
125	struct pstate_funcs funcs;
126};
127
128static struct pstate_adjust_policy pid_params;
129static struct pstate_funcs pstate_funcs;
130
131struct perf_limits {
132	int no_turbo;
133	int max_perf_pct;
134	int min_perf_pct;
135	int32_t max_perf;
136	int32_t min_perf;
137	int max_policy_pct;
138	int max_sysfs_pct;
139};
140
141static struct perf_limits limits = {
142	.no_turbo = 0,
143	.max_perf_pct = 100,
144	.max_perf = int_tofp(1),
145	.min_perf_pct = 0,
146	.min_perf = 0,
147	.max_policy_pct = 100,
148	.max_sysfs_pct = 100,
149};
150
151static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
152			int deadband, int integral) {
153	pid->setpoint = setpoint;
154	pid->deadband  = deadband;
155	pid->integral  = int_tofp(integral);
156	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
157}
158
159static inline void pid_p_gain_set(struct _pid *pid, int percent)
160{
161	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
162}
163
164static inline void pid_i_gain_set(struct _pid *pid, int percent)
165{
166	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
167}
168
169static inline void pid_d_gain_set(struct _pid *pid, int percent)
170{
171
172	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
173}
174
175static signed int pid_calc(struct _pid *pid, int32_t busy)
176{
177	signed int result;
178	int32_t pterm, dterm, fp_error;
179	int32_t integral_limit;
180
181	fp_error = int_tofp(pid->setpoint) - busy;
182
183	if (abs(fp_error) <= int_tofp(pid->deadband))
184		return 0;
185
186	pterm = mul_fp(pid->p_gain, fp_error);
187
188	pid->integral += fp_error;
189
190	/* limit the integral term */
191	integral_limit = int_tofp(30);
192	if (pid->integral > integral_limit)
193		pid->integral = integral_limit;
194	if (pid->integral < -integral_limit)
195		pid->integral = -integral_limit;
196
197	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
198	pid->last_err = fp_error;
199
200	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
201
202	return (signed int)fp_toint(result);
203}
204
205static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
206{
207	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
208	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
209	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
210
211	pid_reset(&cpu->pid,
212		pid_params.setpoint,
213		100,
214		pid_params.deadband,
215		0);
216}
217
218static inline void intel_pstate_reset_all_pid(void)
219{
220	unsigned int cpu;
221	for_each_online_cpu(cpu) {
222		if (all_cpu_data[cpu])
223			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
224	}
225}
226
227/************************** debugfs begin ************************/
228static int pid_param_set(void *data, u64 val)
229{
230	*(u32 *)data = val;
231	intel_pstate_reset_all_pid();
232	return 0;
233}
234static int pid_param_get(void *data, u64 *val)
235{
236	*val = *(u32 *)data;
237	return 0;
238}
239DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
240			pid_param_set, "%llu\n");
241
242struct pid_param {
243	char *name;
244	void *value;
245};
246
247static struct pid_param pid_files[] = {
248	{"sample_rate_ms", &pid_params.sample_rate_ms},
249	{"d_gain_pct", &pid_params.d_gain_pct},
250	{"i_gain_pct", &pid_params.i_gain_pct},
251	{"deadband", &pid_params.deadband},
252	{"setpoint", &pid_params.setpoint},
253	{"p_gain_pct", &pid_params.p_gain_pct},
254	{NULL, NULL}
255};
256
257static struct dentry *debugfs_parent;
258static void intel_pstate_debug_expose_params(void)
259{
260	int i = 0;
261
262	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
263	if (IS_ERR_OR_NULL(debugfs_parent))
264		return;
265	while (pid_files[i].name) {
266		debugfs_create_file(pid_files[i].name, 0660,
267				debugfs_parent, pid_files[i].value,
268				&fops_pid_param);
269		i++;
270	}
271}
272
273/************************** debugfs end ************************/
274
275/************************** sysfs begin ************************/
276#define show_one(file_name, object)					\
277	static ssize_t show_##file_name					\
278	(struct kobject *kobj, struct attribute *attr, char *buf)	\
279	{								\
280		return sprintf(buf, "%u\n", limits.object);		\
281	}
282
283static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
284				const char *buf, size_t count)
285{
286	unsigned int input;
287	int ret;
288	ret = sscanf(buf, "%u", &input);
289	if (ret != 1)
290		return -EINVAL;
291	limits.no_turbo = clamp_t(int, input, 0 , 1);
292
293	return count;
294}
295
296static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
297				const char *buf, size_t count)
298{
299	unsigned int input;
300	int ret;
301	ret = sscanf(buf, "%u", &input);
302	if (ret != 1)
303		return -EINVAL;
304
305	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
306	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
307	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
308	return count;
309}
310
311static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312				const char *buf, size_t count)
313{
314	unsigned int input;
315	int ret;
316	ret = sscanf(buf, "%u", &input);
317	if (ret != 1)
318		return -EINVAL;
319	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
320	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
321
322	return count;
323}
324
325show_one(no_turbo, no_turbo);
326show_one(max_perf_pct, max_perf_pct);
327show_one(min_perf_pct, min_perf_pct);
328
329define_one_global_rw(no_turbo);
330define_one_global_rw(max_perf_pct);
331define_one_global_rw(min_perf_pct);
332
333static struct attribute *intel_pstate_attributes[] = {
334	&no_turbo.attr,
335	&max_perf_pct.attr,
336	&min_perf_pct.attr,
337	NULL
338};
339
340static struct attribute_group intel_pstate_attr_group = {
341	.attrs = intel_pstate_attributes,
342};
343static struct kobject *intel_pstate_kobject;
344
345static void intel_pstate_sysfs_expose_params(void)
346{
347	int rc;
348
349	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
350						&cpu_subsys.dev_root->kobj);
351	BUG_ON(!intel_pstate_kobject);
352	rc = sysfs_create_group(intel_pstate_kobject,
353				&intel_pstate_attr_group);
354	BUG_ON(rc);
355}
356
357/************************** sysfs end ************************/
358static int byt_get_min_pstate(void)
359{
360	u64 value;
361	rdmsrl(BYT_RATIOS, value);
362	return (value >> 8) & 0x3F;
363}
364
365static int byt_get_max_pstate(void)
366{
367	u64 value;
368	rdmsrl(BYT_RATIOS, value);
369	return (value >> 16) & 0x3F;
370}
371
372static int byt_get_turbo_pstate(void)
373{
374	u64 value;
375	rdmsrl(BYT_TURBO_RATIOS, value);
376	return value & 0x3F;
377}
378
379static void byt_set_pstate(struct cpudata *cpudata, int pstate)
380{
381	u64 val;
382	int32_t vid_fp;
383	u32 vid;
384
385	val = pstate << 8;
386	if (limits.no_turbo)
387		val |= (u64)1 << 32;
388
389	vid_fp = cpudata->vid.min + mul_fp(
390		int_tofp(pstate - cpudata->pstate.min_pstate),
391		cpudata->vid.ratio);
392
393	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
394	vid = fp_toint(vid_fp);
395
396	if (pstate > cpudata->pstate.max_pstate)
397		vid = cpudata->vid.turbo;
398
399	val |= vid;
400
401	wrmsrl(MSR_IA32_PERF_CTL, val);
402}
403
404static void byt_get_vid(struct cpudata *cpudata)
405{
406	u64 value;
407
408
409	rdmsrl(BYT_VIDS, value);
410	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
411	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
412	cpudata->vid.ratio = div_fp(
413		cpudata->vid.max - cpudata->vid.min,
414		int_tofp(cpudata->pstate.max_pstate -
415			cpudata->pstate.min_pstate));
416
417	rdmsrl(BYT_TURBO_VIDS, value);
418	cpudata->vid.turbo = value & 0x7f;
419}
420
421
422static int core_get_min_pstate(void)
423{
424	u64 value;
425	rdmsrl(MSR_PLATFORM_INFO, value);
426	return (value >> 40) & 0xFF;
427}
428
429static int core_get_max_pstate(void)
430{
431	u64 value;
432	rdmsrl(MSR_PLATFORM_INFO, value);
433	return (value >> 8) & 0xFF;
434}
435
436static int core_get_turbo_pstate(void)
437{
438	u64 value;
439	int nont, ret;
440	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
441	nont = core_get_max_pstate();
442	ret = ((value) & 255);
443	if (ret <= nont)
444		ret = nont;
445	return ret;
446}
447
448static void core_set_pstate(struct cpudata *cpudata, int pstate)
449{
450	u64 val;
451
452	val = pstate << 8;
453	if (limits.no_turbo)
454		val |= (u64)1 << 32;
455
456	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
457}
458
459static struct cpu_defaults core_params = {
460	.pid_policy = {
461		.sample_rate_ms = 10,
462		.deadband = 0,
463		.setpoint = 97,
464		.p_gain_pct = 20,
465		.d_gain_pct = 0,
466		.i_gain_pct = 0,
467	},
468	.funcs = {
469		.get_max = core_get_max_pstate,
470		.get_min = core_get_min_pstate,
471		.get_turbo = core_get_turbo_pstate,
472		.set = core_set_pstate,
473	},
474};
475
476static struct cpu_defaults byt_params = {
477	.pid_policy = {
478		.sample_rate_ms = 10,
479		.deadband = 0,
480		.setpoint = 97,
481		.p_gain_pct = 14,
482		.d_gain_pct = 0,
483		.i_gain_pct = 4,
484	},
485	.funcs = {
486		.get_max = byt_get_max_pstate,
487		.get_min = byt_get_min_pstate,
488		.get_turbo = byt_get_turbo_pstate,
489		.set = byt_set_pstate,
490		.get_vid = byt_get_vid,
491	},
492};
493
494
495static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
496{
497	int max_perf = cpu->pstate.turbo_pstate;
498	int max_perf_adj;
499	int min_perf;
500	if (limits.no_turbo)
501		max_perf = cpu->pstate.max_pstate;
502
503	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
504	*max = clamp_t(int, max_perf_adj,
505			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
506
507	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
508	*min = clamp_t(int, min_perf,
509			cpu->pstate.min_pstate, max_perf);
510}
511
512static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
513{
514	int max_perf, min_perf;
515
516	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
517
518	pstate = clamp_t(int, pstate, min_perf, max_perf);
519
520	if (pstate == cpu->pstate.current_pstate)
521		return;
522
523	trace_cpu_frequency(pstate * 100000, cpu->cpu);
524
525	cpu->pstate.current_pstate = pstate;
526
527	pstate_funcs.set(cpu, pstate);
528}
529
530static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
531{
532	int target;
533	target = cpu->pstate.current_pstate + steps;
534
535	intel_pstate_set_pstate(cpu, target);
536}
537
538static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
539{
540	int target;
541	target = cpu->pstate.current_pstate - steps;
542	intel_pstate_set_pstate(cpu, target);
543}
544
545static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
546{
547	sprintf(cpu->name, "Intel 2nd generation core");
548
549	cpu->pstate.min_pstate = pstate_funcs.get_min();
550	cpu->pstate.max_pstate = pstate_funcs.get_max();
551	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
552
553	if (pstate_funcs.get_vid)
554		pstate_funcs.get_vid(cpu);
555	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
556}
557
558static inline void intel_pstate_calc_busy(struct cpudata *cpu,
559					struct sample *sample)
560{
561	int32_t core_pct;
562
563	core_pct = div_fp(int_tofp((sample->aperf)),
564			int_tofp((sample->mperf)));
565	core_pct = mul_fp(core_pct, int_tofp(100));
566	FP_ROUNDUP(core_pct);
567
568	sample->freq = fp_toint(
569		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
570
571	sample->core_pct_busy = core_pct;
572}
573
574static inline void intel_pstate_sample(struct cpudata *cpu)
575{
576	u64 aperf, mperf;
577
578	rdmsrl(MSR_IA32_APERF, aperf);
579	rdmsrl(MSR_IA32_MPERF, mperf);
580
581	aperf = aperf >> FRAC_BITS;
582	mperf = mperf >> FRAC_BITS;
583
584	cpu->sample.aperf = aperf;
585	cpu->sample.mperf = mperf;
586	cpu->sample.aperf -= cpu->prev_aperf;
587	cpu->sample.mperf -= cpu->prev_mperf;
588
589	intel_pstate_calc_busy(cpu, &cpu->sample);
590
591	cpu->prev_aperf = aperf;
592	cpu->prev_mperf = mperf;
593}
594
595static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
596{
597	int sample_time, delay;
598
599	sample_time = pid_params.sample_rate_ms;
600	delay = msecs_to_jiffies(sample_time);
601	mod_timer_pinned(&cpu->timer, jiffies + delay);
602}
603
604static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
605{
606	int32_t core_busy, max_pstate, current_pstate;
607
608	core_busy = cpu->sample.core_pct_busy;
609	max_pstate = int_tofp(cpu->pstate.max_pstate);
610	current_pstate = int_tofp(cpu->pstate.current_pstate);
611	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
612	return FP_ROUNDUP(core_busy);
613}
614
615static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
616{
617	int32_t busy_scaled;
618	struct _pid *pid;
619	signed int ctl = 0;
620	int steps;
621
622	pid = &cpu->pid;
623	busy_scaled = intel_pstate_get_scaled_busy(cpu);
624
625	ctl = pid_calc(pid, busy_scaled);
626
627	steps = abs(ctl);
628
629	if (ctl < 0)
630		intel_pstate_pstate_increase(cpu, steps);
631	else
632		intel_pstate_pstate_decrease(cpu, steps);
633}
634
635static void intel_pstate_timer_func(unsigned long __data)
636{
637	struct cpudata *cpu = (struct cpudata *) __data;
638	struct sample *sample;
639
640	intel_pstate_sample(cpu);
641
642	sample = &cpu->sample;
643
644	intel_pstate_adjust_busy_pstate(cpu);
645
646	trace_pstate_sample(fp_toint(sample->core_pct_busy),
647			fp_toint(intel_pstate_get_scaled_busy(cpu)),
648			cpu->pstate.current_pstate,
649			sample->mperf,
650			sample->aperf,
651			sample->freq);
652
653	intel_pstate_set_sample_time(cpu);
654}
655
656#define ICPU(model, policy) \
657	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
658			(unsigned long)&policy }
659
660static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
661	ICPU(0x2a, core_params),
662	ICPU(0x2d, core_params),
663	ICPU(0x37, byt_params),
664	ICPU(0x3a, core_params),
665	ICPU(0x3c, core_params),
666	ICPU(0x3e, core_params),
667	ICPU(0x3f, core_params),
668	ICPU(0x45, core_params),
669	ICPU(0x46, core_params),
670	{}
671};
672MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
673
674static int intel_pstate_init_cpu(unsigned int cpunum)
675{
676
677	const struct x86_cpu_id *id;
678	struct cpudata *cpu;
679
680	id = x86_match_cpu(intel_pstate_cpu_ids);
681	if (!id)
682		return -ENODEV;
683
684	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
685	if (!all_cpu_data[cpunum])
686		return -ENOMEM;
687
688	cpu = all_cpu_data[cpunum];
689
690	intel_pstate_get_cpu_pstates(cpu);
691
692	cpu->cpu = cpunum;
693
694	init_timer_deferrable(&cpu->timer);
695	cpu->timer.function = intel_pstate_timer_func;
696	cpu->timer.data =
697		(unsigned long)cpu;
698	cpu->timer.expires = jiffies + HZ/100;
699	intel_pstate_busy_pid_reset(cpu);
700	intel_pstate_sample(cpu);
701
702	add_timer_on(&cpu->timer, cpunum);
703
704	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
705
706	return 0;
707}
708
709static unsigned int intel_pstate_get(unsigned int cpu_num)
710{
711	struct sample *sample;
712	struct cpudata *cpu;
713
714	cpu = all_cpu_data[cpu_num];
715	if (!cpu)
716		return 0;
717	sample = &cpu->sample;
718	return sample->freq;
719}
720
721static int intel_pstate_set_policy(struct cpufreq_policy *policy)
722{
723	struct cpudata *cpu;
724
725	cpu = all_cpu_data[policy->cpu];
726
727	if (!policy->cpuinfo.max_freq)
728		return -ENODEV;
729
730	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
731		limits.min_perf_pct = 100;
732		limits.min_perf = int_tofp(1);
733		limits.max_perf_pct = 100;
734		limits.max_perf = int_tofp(1);
735		limits.no_turbo = 0;
736		return 0;
737	}
738	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
739	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
740	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
741
742	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
743	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
744	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
745	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
746
747	return 0;
748}
749
750static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
751{
752	cpufreq_verify_within_cpu_limits(policy);
753
754	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
755		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
756		return -EINVAL;
757
758	return 0;
759}
760
761static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
762{
763	int cpu_num = policy->cpu;
764	struct cpudata *cpu = all_cpu_data[cpu_num];
765
766	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
767
768	del_timer_sync(&all_cpu_data[cpu_num]->timer);
769	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
770	kfree(all_cpu_data[cpu_num]);
771	all_cpu_data[cpu_num] = NULL;
772}
773
774static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
775{
776	struct cpudata *cpu;
777	int rc;
778
779	rc = intel_pstate_init_cpu(policy->cpu);
780	if (rc)
781		return rc;
782
783	cpu = all_cpu_data[policy->cpu];
784
785	if (!limits.no_turbo &&
786		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
787		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
788	else
789		policy->policy = CPUFREQ_POLICY_POWERSAVE;
790
791	policy->min = cpu->pstate.min_pstate * 100000;
792	policy->max = cpu->pstate.turbo_pstate * 100000;
793
794	/* cpuinfo and default policy values */
795	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
796	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
797	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
798	cpumask_set_cpu(policy->cpu, policy->cpus);
799
800	return 0;
801}
802
803static struct cpufreq_driver intel_pstate_driver = {
804	.flags		= CPUFREQ_CONST_LOOPS,
805	.verify		= intel_pstate_verify_policy,
806	.setpolicy	= intel_pstate_set_policy,
807	.get		= intel_pstate_get,
808	.init		= intel_pstate_cpu_init,
809	.stop_cpu	= intel_pstate_stop_cpu,
810	.name		= "intel_pstate",
811};
812
813static int __initdata no_load;
814
815static int intel_pstate_msrs_not_valid(void)
816{
817	/* Check that all the msr's we are using are valid. */
818	u64 aperf, mperf, tmp;
819
820	rdmsrl(MSR_IA32_APERF, aperf);
821	rdmsrl(MSR_IA32_MPERF, mperf);
822
823	if (!pstate_funcs.get_max() ||
824		!pstate_funcs.get_min() ||
825		!pstate_funcs.get_turbo())
826		return -ENODEV;
827
828	rdmsrl(MSR_IA32_APERF, tmp);
829	if (!(tmp - aperf))
830		return -ENODEV;
831
832	rdmsrl(MSR_IA32_MPERF, tmp);
833	if (!(tmp - mperf))
834		return -ENODEV;
835
836	return 0;
837}
838
839static void copy_pid_params(struct pstate_adjust_policy *policy)
840{
841	pid_params.sample_rate_ms = policy->sample_rate_ms;
842	pid_params.p_gain_pct = policy->p_gain_pct;
843	pid_params.i_gain_pct = policy->i_gain_pct;
844	pid_params.d_gain_pct = policy->d_gain_pct;
845	pid_params.deadband = policy->deadband;
846	pid_params.setpoint = policy->setpoint;
847}
848
849static void copy_cpu_funcs(struct pstate_funcs *funcs)
850{
851	pstate_funcs.get_max   = funcs->get_max;
852	pstate_funcs.get_min   = funcs->get_min;
853	pstate_funcs.get_turbo = funcs->get_turbo;
854	pstate_funcs.set       = funcs->set;
855	pstate_funcs.get_vid   = funcs->get_vid;
856}
857
858#if IS_ENABLED(CONFIG_ACPI)
859#include <acpi/processor.h>
860
861static bool intel_pstate_no_acpi_pss(void)
862{
863	int i;
864
865	for_each_possible_cpu(i) {
866		acpi_status status;
867		union acpi_object *pss;
868		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
869		struct acpi_processor *pr = per_cpu(processors, i);
870
871		if (!pr)
872			continue;
873
874		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
875		if (ACPI_FAILURE(status))
876			continue;
877
878		pss = buffer.pointer;
879		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
880			kfree(pss);
881			return false;
882		}
883
884		kfree(pss);
885	}
886
887	return true;
888}
889
890struct hw_vendor_info {
891	u16  valid;
892	char oem_id[ACPI_OEM_ID_SIZE];
893	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
894};
895
896/* Hardware vendor-specific info that has its own power management modes */
897static struct hw_vendor_info vendor_info[] = {
898	{1, "HP    ", "ProLiant"},
899	{0, "", ""},
900};
901
902static bool intel_pstate_platform_pwr_mgmt_exists(void)
903{
904	struct acpi_table_header hdr;
905	struct hw_vendor_info *v_info;
906
907	if (acpi_disabled
908	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
909		return false;
910
911	for (v_info = vendor_info; v_info->valid; v_info++) {
912		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
913		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
914		    && intel_pstate_no_acpi_pss())
915			return true;
916	}
917
918	return false;
919}
920#else /* CONFIG_ACPI not enabled */
921static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
922#endif /* CONFIG_ACPI */
923
924static int __init intel_pstate_init(void)
925{
926	int cpu, rc = 0;
927	const struct x86_cpu_id *id;
928	struct cpu_defaults *cpu_info;
929
930	if (no_load)
931		return -ENODEV;
932
933	id = x86_match_cpu(intel_pstate_cpu_ids);
934	if (!id)
935		return -ENODEV;
936
937	/*
938	 * The Intel pstate driver will be ignored if the platform
939	 * firmware has its own power management modes.
940	 */
941	if (intel_pstate_platform_pwr_mgmt_exists())
942		return -ENODEV;
943
944	cpu_info = (struct cpu_defaults *)id->driver_data;
945
946	copy_pid_params(&cpu_info->pid_policy);
947	copy_cpu_funcs(&cpu_info->funcs);
948
949	if (intel_pstate_msrs_not_valid())
950		return -ENODEV;
951
952	pr_info("Intel P-state driver initializing.\n");
953
954	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
955	if (!all_cpu_data)
956		return -ENOMEM;
957
958	rc = cpufreq_register_driver(&intel_pstate_driver);
959	if (rc)
960		goto out;
961
962	intel_pstate_debug_expose_params();
963	intel_pstate_sysfs_expose_params();
964
965	return rc;
966out:
967	get_online_cpus();
968	for_each_online_cpu(cpu) {
969		if (all_cpu_data[cpu]) {
970			del_timer_sync(&all_cpu_data[cpu]->timer);
971			kfree(all_cpu_data[cpu]);
972		}
973	}
974
975	put_online_cpus();
976	vfree(all_cpu_data);
977	return -ENODEV;
978}
979device_initcall(intel_pstate_init);
980
981static int __init intel_pstate_setup(char *str)
982{
983	if (!str)
984		return -EINVAL;
985
986	if (!strcmp(str, "disable"))
987		no_load = 1;
988	return 0;
989}
990early_param("intel_pstate", intel_pstate_setup);
991
992MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
993MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
994MODULE_LICENSE("GPL");
995