intel_pstate.c revision bb18008f8086283f8f03e8e50fbbf17f213b9ea9
1/*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
28#include <linux/acpi.h>
29#include <trace/events/power.h>
30
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34
35#define SAMPLE_COUNT		3
36
37#define BYT_RATIOS		0x66a
38#define BYT_VIDS		0x66b
39#define BYT_TURBO_RATIOS	0x66c
40
41
42#define FRAC_BITS 6
43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44#define fp_toint(X) ((X) >> FRAC_BITS)
45#define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
46
47static inline int32_t mul_fp(int32_t x, int32_t y)
48{
49	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50}
51
52static inline int32_t div_fp(int32_t x, int32_t y)
53{
54	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
55}
56
57struct sample {
58	int32_t core_pct_busy;
59	u64 aperf;
60	u64 mperf;
61	unsigned long long tsc;
62	int freq;
63};
64
65struct pstate_data {
66	int	current_pstate;
67	int	min_pstate;
68	int	max_pstate;
69	int	turbo_pstate;
70};
71
72struct vid_data {
73	int32_t min;
74	int32_t max;
75	int32_t ratio;
76};
77
78struct _pid {
79	int setpoint;
80	int32_t integral;
81	int32_t p_gain;
82	int32_t i_gain;
83	int32_t d_gain;
84	int deadband;
85	int32_t last_err;
86};
87
88struct cpudata {
89	int cpu;
90
91	char name[64];
92
93	struct timer_list timer;
94
95	struct pstate_data pstate;
96	struct vid_data vid;
97	struct _pid pid;
98
99	u64	prev_aperf;
100	u64	prev_mperf;
101	unsigned long long prev_tsc;
102	struct sample sample;
103};
104
105static struct cpudata **all_cpu_data;
106struct pstate_adjust_policy {
107	int sample_rate_ms;
108	int deadband;
109	int setpoint;
110	int p_gain_pct;
111	int d_gain_pct;
112	int i_gain_pct;
113};
114
115struct pstate_funcs {
116	int (*get_max)(void);
117	int (*get_min)(void);
118	int (*get_turbo)(void);
119	void (*set)(struct cpudata*, int pstate);
120	void (*get_vid)(struct cpudata *);
121};
122
123struct cpu_defaults {
124	struct pstate_adjust_policy pid_policy;
125	struct pstate_funcs funcs;
126};
127
128static struct pstate_adjust_policy pid_params;
129static struct pstate_funcs pstate_funcs;
130
131struct perf_limits {
132	int no_turbo;
133	int max_perf_pct;
134	int min_perf_pct;
135	int32_t max_perf;
136	int32_t min_perf;
137	int max_policy_pct;
138	int max_sysfs_pct;
139};
140
141static struct perf_limits limits = {
142	.no_turbo = 0,
143	.max_perf_pct = 100,
144	.max_perf = int_tofp(1),
145	.min_perf_pct = 0,
146	.min_perf = 0,
147	.max_policy_pct = 100,
148	.max_sysfs_pct = 100,
149};
150
151static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
152			int deadband, int integral) {
153	pid->setpoint = setpoint;
154	pid->deadband  = deadband;
155	pid->integral  = int_tofp(integral);
156	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
157}
158
159static inline void pid_p_gain_set(struct _pid *pid, int percent)
160{
161	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
162}
163
164static inline void pid_i_gain_set(struct _pid *pid, int percent)
165{
166	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
167}
168
169static inline void pid_d_gain_set(struct _pid *pid, int percent)
170{
171
172	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
173}
174
175static signed int pid_calc(struct _pid *pid, int32_t busy)
176{
177	signed int result;
178	int32_t pterm, dterm, fp_error;
179	int32_t integral_limit;
180
181	fp_error = int_tofp(pid->setpoint) - busy;
182
183	if (abs(fp_error) <= int_tofp(pid->deadband))
184		return 0;
185
186	pterm = mul_fp(pid->p_gain, fp_error);
187
188	pid->integral += fp_error;
189
190	/* limit the integral term */
191	integral_limit = int_tofp(30);
192	if (pid->integral > integral_limit)
193		pid->integral = integral_limit;
194	if (pid->integral < -integral_limit)
195		pid->integral = -integral_limit;
196
197	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
198	pid->last_err = fp_error;
199
200	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
201
202	return (signed int)fp_toint(result);
203}
204
205static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
206{
207	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
208	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
209	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
210
211	pid_reset(&cpu->pid,
212		pid_params.setpoint,
213		100,
214		pid_params.deadband,
215		0);
216}
217
218static inline void intel_pstate_reset_all_pid(void)
219{
220	unsigned int cpu;
221	for_each_online_cpu(cpu) {
222		if (all_cpu_data[cpu])
223			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
224	}
225}
226
227/************************** debugfs begin ************************/
228static int pid_param_set(void *data, u64 val)
229{
230	*(u32 *)data = val;
231	intel_pstate_reset_all_pid();
232	return 0;
233}
234static int pid_param_get(void *data, u64 *val)
235{
236	*val = *(u32 *)data;
237	return 0;
238}
239DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
240			pid_param_set, "%llu\n");
241
242struct pid_param {
243	char *name;
244	void *value;
245};
246
247static struct pid_param pid_files[] = {
248	{"sample_rate_ms", &pid_params.sample_rate_ms},
249	{"d_gain_pct", &pid_params.d_gain_pct},
250	{"i_gain_pct", &pid_params.i_gain_pct},
251	{"deadband", &pid_params.deadband},
252	{"setpoint", &pid_params.setpoint},
253	{"p_gain_pct", &pid_params.p_gain_pct},
254	{NULL, NULL}
255};
256
257static struct dentry *debugfs_parent;
258static void intel_pstate_debug_expose_params(void)
259{
260	int i = 0;
261
262	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
263	if (IS_ERR_OR_NULL(debugfs_parent))
264		return;
265	while (pid_files[i].name) {
266		debugfs_create_file(pid_files[i].name, 0660,
267				debugfs_parent, pid_files[i].value,
268				&fops_pid_param);
269		i++;
270	}
271}
272
273/************************** debugfs end ************************/
274
275/************************** sysfs begin ************************/
276#define show_one(file_name, object)					\
277	static ssize_t show_##file_name					\
278	(struct kobject *kobj, struct attribute *attr, char *buf)	\
279	{								\
280		return sprintf(buf, "%u\n", limits.object);		\
281	}
282
283static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
284				const char *buf, size_t count)
285{
286	unsigned int input;
287	int ret;
288	ret = sscanf(buf, "%u", &input);
289	if (ret != 1)
290		return -EINVAL;
291	limits.no_turbo = clamp_t(int, input, 0 , 1);
292
293	return count;
294}
295
296static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
297				const char *buf, size_t count)
298{
299	unsigned int input;
300	int ret;
301	ret = sscanf(buf, "%u", &input);
302	if (ret != 1)
303		return -EINVAL;
304
305	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
306	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
307	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
308	return count;
309}
310
311static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312				const char *buf, size_t count)
313{
314	unsigned int input;
315	int ret;
316	ret = sscanf(buf, "%u", &input);
317	if (ret != 1)
318		return -EINVAL;
319	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
320	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
321
322	return count;
323}
324
325show_one(no_turbo, no_turbo);
326show_one(max_perf_pct, max_perf_pct);
327show_one(min_perf_pct, min_perf_pct);
328
329define_one_global_rw(no_turbo);
330define_one_global_rw(max_perf_pct);
331define_one_global_rw(min_perf_pct);
332
333static struct attribute *intel_pstate_attributes[] = {
334	&no_turbo.attr,
335	&max_perf_pct.attr,
336	&min_perf_pct.attr,
337	NULL
338};
339
340static struct attribute_group intel_pstate_attr_group = {
341	.attrs = intel_pstate_attributes,
342};
343static struct kobject *intel_pstate_kobject;
344
345static void intel_pstate_sysfs_expose_params(void)
346{
347	int rc;
348
349	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
350						&cpu_subsys.dev_root->kobj);
351	BUG_ON(!intel_pstate_kobject);
352	rc = sysfs_create_group(intel_pstate_kobject,
353				&intel_pstate_attr_group);
354	BUG_ON(rc);
355}
356
357/************************** sysfs end ************************/
358static int byt_get_min_pstate(void)
359{
360	u64 value;
361	rdmsrl(BYT_RATIOS, value);
362	return (value >> 8) & 0xFF;
363}
364
365static int byt_get_max_pstate(void)
366{
367	u64 value;
368	rdmsrl(BYT_RATIOS, value);
369	return (value >> 16) & 0xFF;
370}
371
372static int byt_get_turbo_pstate(void)
373{
374	u64 value;
375	rdmsrl(BYT_TURBO_RATIOS, value);
376	return value & 0x3F;
377}
378
379static void byt_set_pstate(struct cpudata *cpudata, int pstate)
380{
381	u64 val;
382	int32_t vid_fp;
383	u32 vid;
384
385	val = pstate << 8;
386	if (limits.no_turbo)
387		val |= (u64)1 << 32;
388
389	vid_fp = cpudata->vid.min + mul_fp(
390		int_tofp(pstate - cpudata->pstate.min_pstate),
391		cpudata->vid.ratio);
392
393	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
394	vid = fp_toint(vid_fp);
395
396	val |= vid;
397
398	wrmsrl(MSR_IA32_PERF_CTL, val);
399}
400
401static void byt_get_vid(struct cpudata *cpudata)
402{
403	u64 value;
404
405	rdmsrl(BYT_VIDS, value);
406	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
407	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
408	cpudata->vid.ratio = div_fp(
409		cpudata->vid.max - cpudata->vid.min,
410		int_tofp(cpudata->pstate.max_pstate -
411			cpudata->pstate.min_pstate));
412}
413
414
415static int core_get_min_pstate(void)
416{
417	u64 value;
418	rdmsrl(MSR_PLATFORM_INFO, value);
419	return (value >> 40) & 0xFF;
420}
421
422static int core_get_max_pstate(void)
423{
424	u64 value;
425	rdmsrl(MSR_PLATFORM_INFO, value);
426	return (value >> 8) & 0xFF;
427}
428
429static int core_get_turbo_pstate(void)
430{
431	u64 value;
432	int nont, ret;
433	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
434	nont = core_get_max_pstate();
435	ret = ((value) & 255);
436	if (ret <= nont)
437		ret = nont;
438	return ret;
439}
440
441static void core_set_pstate(struct cpudata *cpudata, int pstate)
442{
443	u64 val;
444
445	val = pstate << 8;
446	if (limits.no_turbo)
447		val |= (u64)1 << 32;
448
449	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
450}
451
452static struct cpu_defaults core_params = {
453	.pid_policy = {
454		.sample_rate_ms = 10,
455		.deadband = 0,
456		.setpoint = 97,
457		.p_gain_pct = 20,
458		.d_gain_pct = 0,
459		.i_gain_pct = 0,
460	},
461	.funcs = {
462		.get_max = core_get_max_pstate,
463		.get_min = core_get_min_pstate,
464		.get_turbo = core_get_turbo_pstate,
465		.set = core_set_pstate,
466	},
467};
468
469static struct cpu_defaults byt_params = {
470	.pid_policy = {
471		.sample_rate_ms = 10,
472		.deadband = 0,
473		.setpoint = 97,
474		.p_gain_pct = 14,
475		.d_gain_pct = 0,
476		.i_gain_pct = 4,
477	},
478	.funcs = {
479		.get_max = byt_get_max_pstate,
480		.get_min = byt_get_min_pstate,
481		.get_turbo = byt_get_turbo_pstate,
482		.set = byt_set_pstate,
483		.get_vid = byt_get_vid,
484	},
485};
486
487
488static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
489{
490	int max_perf = cpu->pstate.turbo_pstate;
491	int max_perf_adj;
492	int min_perf;
493	if (limits.no_turbo)
494		max_perf = cpu->pstate.max_pstate;
495
496	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
497	*max = clamp_t(int, max_perf_adj,
498			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
499
500	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
501	*min = clamp_t(int, min_perf,
502			cpu->pstate.min_pstate, max_perf);
503}
504
505static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
506{
507	int max_perf, min_perf;
508
509	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
510
511	pstate = clamp_t(int, pstate, min_perf, max_perf);
512
513	if (pstate == cpu->pstate.current_pstate)
514		return;
515
516	trace_cpu_frequency(pstate * 100000, cpu->cpu);
517
518	cpu->pstate.current_pstate = pstate;
519
520	pstate_funcs.set(cpu, pstate);
521}
522
523static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
524{
525	int target;
526	target = cpu->pstate.current_pstate + steps;
527
528	intel_pstate_set_pstate(cpu, target);
529}
530
531static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
532{
533	int target;
534	target = cpu->pstate.current_pstate - steps;
535	intel_pstate_set_pstate(cpu, target);
536}
537
538static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
539{
540	sprintf(cpu->name, "Intel 2nd generation core");
541
542	cpu->pstate.min_pstate = pstate_funcs.get_min();
543	cpu->pstate.max_pstate = pstate_funcs.get_max();
544	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
545
546	if (pstate_funcs.get_vid)
547		pstate_funcs.get_vid(cpu);
548
549	/*
550	 * goto max pstate so we don't slow up boot if we are built-in if we are
551	 * a module we will take care of it during normal operation
552	 */
553	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
554}
555
556static inline void intel_pstate_calc_busy(struct cpudata *cpu,
557					struct sample *sample)
558{
559	int32_t core_pct;
560	int32_t c0_pct;
561
562	core_pct = div_fp(int_tofp((sample->aperf)),
563			int_tofp((sample->mperf)));
564	core_pct = mul_fp(core_pct, int_tofp(100));
565	FP_ROUNDUP(core_pct);
566
567	c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
568
569	sample->freq = fp_toint(
570		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
571
572	sample->core_pct_busy = mul_fp(core_pct, c0_pct);
573}
574
575static inline void intel_pstate_sample(struct cpudata *cpu)
576{
577	u64 aperf, mperf;
578	unsigned long long tsc;
579
580	rdmsrl(MSR_IA32_APERF, aperf);
581	rdmsrl(MSR_IA32_MPERF, mperf);
582	tsc = native_read_tsc();
583
584	aperf = aperf >> FRAC_BITS;
585	mperf = mperf >> FRAC_BITS;
586	tsc = tsc >> FRAC_BITS;
587
588	cpu->sample.aperf = aperf;
589	cpu->sample.mperf = mperf;
590	cpu->sample.tsc = tsc;
591	cpu->sample.aperf -= cpu->prev_aperf;
592	cpu->sample.mperf -= cpu->prev_mperf;
593	cpu->sample.tsc -= cpu->prev_tsc;
594
595	intel_pstate_calc_busy(cpu, &cpu->sample);
596
597	cpu->prev_aperf = aperf;
598	cpu->prev_mperf = mperf;
599	cpu->prev_tsc = tsc;
600}
601
602static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
603{
604	int sample_time, delay;
605
606	sample_time = pid_params.sample_rate_ms;
607	delay = msecs_to_jiffies(sample_time);
608	mod_timer_pinned(&cpu->timer, jiffies + delay);
609}
610
611static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
612{
613	int32_t core_busy, max_pstate, current_pstate;
614
615	core_busy = cpu->sample.core_pct_busy;
616	max_pstate = int_tofp(cpu->pstate.max_pstate);
617	current_pstate = int_tofp(cpu->pstate.current_pstate);
618	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
619	return FP_ROUNDUP(core_busy);
620}
621
622static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
623{
624	int32_t busy_scaled;
625	struct _pid *pid;
626	signed int ctl = 0;
627	int steps;
628
629	pid = &cpu->pid;
630	busy_scaled = intel_pstate_get_scaled_busy(cpu);
631
632	ctl = pid_calc(pid, busy_scaled);
633
634	steps = abs(ctl);
635
636	if (ctl < 0)
637		intel_pstate_pstate_increase(cpu, steps);
638	else
639		intel_pstate_pstate_decrease(cpu, steps);
640}
641
642static void intel_pstate_timer_func(unsigned long __data)
643{
644	struct cpudata *cpu = (struct cpudata *) __data;
645	struct sample *sample;
646
647	intel_pstate_sample(cpu);
648
649	sample = &cpu->sample;
650
651	intel_pstate_adjust_busy_pstate(cpu);
652
653	trace_pstate_sample(fp_toint(sample->core_pct_busy),
654			fp_toint(intel_pstate_get_scaled_busy(cpu)),
655			cpu->pstate.current_pstate,
656			sample->mperf,
657			sample->aperf,
658			sample->freq);
659
660	intel_pstate_set_sample_time(cpu);
661}
662
663#define ICPU(model, policy) \
664	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
665			(unsigned long)&policy }
666
667static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
668	ICPU(0x2a, core_params),
669	ICPU(0x2d, core_params),
670	ICPU(0x37, byt_params),
671	ICPU(0x3a, core_params),
672	ICPU(0x3c, core_params),
673	ICPU(0x3e, core_params),
674	ICPU(0x3f, core_params),
675	ICPU(0x45, core_params),
676	ICPU(0x46, core_params),
677	{}
678};
679MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
680
681static int intel_pstate_init_cpu(unsigned int cpunum)
682{
683
684	const struct x86_cpu_id *id;
685	struct cpudata *cpu;
686
687	id = x86_match_cpu(intel_pstate_cpu_ids);
688	if (!id)
689		return -ENODEV;
690
691	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
692	if (!all_cpu_data[cpunum])
693		return -ENOMEM;
694
695	cpu = all_cpu_data[cpunum];
696
697	intel_pstate_get_cpu_pstates(cpu);
698	if (!cpu->pstate.current_pstate) {
699		all_cpu_data[cpunum] = NULL;
700		kfree(cpu);
701		return -ENODATA;
702	}
703
704	cpu->cpu = cpunum;
705
706	init_timer_deferrable(&cpu->timer);
707	cpu->timer.function = intel_pstate_timer_func;
708	cpu->timer.data =
709		(unsigned long)cpu;
710	cpu->timer.expires = jiffies + HZ/100;
711	intel_pstate_busy_pid_reset(cpu);
712	intel_pstate_sample(cpu);
713	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
714
715	add_timer_on(&cpu->timer, cpunum);
716
717	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
718
719	return 0;
720}
721
722static unsigned int intel_pstate_get(unsigned int cpu_num)
723{
724	struct sample *sample;
725	struct cpudata *cpu;
726
727	cpu = all_cpu_data[cpu_num];
728	if (!cpu)
729		return 0;
730	sample = &cpu->sample;
731	return sample->freq;
732}
733
734static int intel_pstate_set_policy(struct cpufreq_policy *policy)
735{
736	struct cpudata *cpu;
737
738	cpu = all_cpu_data[policy->cpu];
739
740	if (!policy->cpuinfo.max_freq)
741		return -ENODEV;
742
743	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
744		limits.min_perf_pct = 100;
745		limits.min_perf = int_tofp(1);
746		limits.max_perf_pct = 100;
747		limits.max_perf = int_tofp(1);
748		limits.no_turbo = 0;
749		return 0;
750	}
751	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
752	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
753	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
754
755	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
756	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
757	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
758	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
759
760	return 0;
761}
762
763static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
764{
765	cpufreq_verify_within_cpu_limits(policy);
766
767	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
768		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
769		return -EINVAL;
770
771	return 0;
772}
773
774static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
775{
776	int cpu_num = policy->cpu;
777	struct cpudata *cpu = all_cpu_data[cpu_num];
778
779	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
780
781	del_timer(&all_cpu_data[cpu_num]->timer);
782	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
783	kfree(all_cpu_data[cpu_num]);
784	all_cpu_data[cpu_num] = NULL;
785}
786
787static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
788{
789	struct cpudata *cpu;
790	int rc;
791
792	rc = intel_pstate_init_cpu(policy->cpu);
793	if (rc)
794		return rc;
795
796	cpu = all_cpu_data[policy->cpu];
797
798	if (!limits.no_turbo &&
799		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
800		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
801	else
802		policy->policy = CPUFREQ_POLICY_POWERSAVE;
803
804	policy->min = cpu->pstate.min_pstate * 100000;
805	policy->max = cpu->pstate.turbo_pstate * 100000;
806
807	/* cpuinfo and default policy values */
808	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
809	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
810	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
811	cpumask_set_cpu(policy->cpu, policy->cpus);
812
813	return 0;
814}
815
816static struct cpufreq_driver intel_pstate_driver = {
817	.flags		= CPUFREQ_CONST_LOOPS,
818	.verify		= intel_pstate_verify_policy,
819	.setpolicy	= intel_pstate_set_policy,
820	.get		= intel_pstate_get,
821	.init		= intel_pstate_cpu_init,
822	.stop_cpu	= intel_pstate_stop_cpu,
823	.name		= "intel_pstate",
824};
825
826static int __initdata no_load;
827
828static int intel_pstate_msrs_not_valid(void)
829{
830	/* Check that all the msr's we are using are valid. */
831	u64 aperf, mperf, tmp;
832
833	rdmsrl(MSR_IA32_APERF, aperf);
834	rdmsrl(MSR_IA32_MPERF, mperf);
835
836	if (!pstate_funcs.get_max() ||
837		!pstate_funcs.get_min() ||
838		!pstate_funcs.get_turbo())
839		return -ENODEV;
840
841	rdmsrl(MSR_IA32_APERF, tmp);
842	if (!(tmp - aperf))
843		return -ENODEV;
844
845	rdmsrl(MSR_IA32_MPERF, tmp);
846	if (!(tmp - mperf))
847		return -ENODEV;
848
849	return 0;
850}
851
852static void copy_pid_params(struct pstate_adjust_policy *policy)
853{
854	pid_params.sample_rate_ms = policy->sample_rate_ms;
855	pid_params.p_gain_pct = policy->p_gain_pct;
856	pid_params.i_gain_pct = policy->i_gain_pct;
857	pid_params.d_gain_pct = policy->d_gain_pct;
858	pid_params.deadband = policy->deadband;
859	pid_params.setpoint = policy->setpoint;
860}
861
862static void copy_cpu_funcs(struct pstate_funcs *funcs)
863{
864	pstate_funcs.get_max   = funcs->get_max;
865	pstate_funcs.get_min   = funcs->get_min;
866	pstate_funcs.get_turbo = funcs->get_turbo;
867	pstate_funcs.set       = funcs->set;
868	pstate_funcs.get_vid   = funcs->get_vid;
869}
870
871#if IS_ENABLED(CONFIG_ACPI)
872#include <acpi/processor.h>
873
874static bool intel_pstate_no_acpi_pss(void)
875{
876	int i;
877
878	for_each_possible_cpu(i) {
879		acpi_status status;
880		union acpi_object *pss;
881		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882		struct acpi_processor *pr = per_cpu(processors, i);
883
884		if (!pr)
885			continue;
886
887		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
888		if (ACPI_FAILURE(status))
889			continue;
890
891		pss = buffer.pointer;
892		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
893			kfree(pss);
894			return false;
895		}
896
897		kfree(pss);
898	}
899
900	return true;
901}
902
903struct hw_vendor_info {
904	u16  valid;
905	char oem_id[ACPI_OEM_ID_SIZE];
906	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
907};
908
909/* Hardware vendor-specific info that has its own power management modes */
910static struct hw_vendor_info vendor_info[] = {
911	{1, "HP    ", "ProLiant"},
912	{0, "", ""},
913};
914
915static bool intel_pstate_platform_pwr_mgmt_exists(void)
916{
917	struct acpi_table_header hdr;
918	struct hw_vendor_info *v_info;
919
920	if (acpi_disabled
921	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
922		return false;
923
924	for (v_info = vendor_info; v_info->valid; v_info++) {
925		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
926		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
927		    && intel_pstate_no_acpi_pss())
928			return true;
929	}
930
931	return false;
932}
933#else /* CONFIG_ACPI not enabled */
934static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
935#endif /* CONFIG_ACPI */
936
937static int __init intel_pstate_init(void)
938{
939	int cpu, rc = 0;
940	const struct x86_cpu_id *id;
941	struct cpu_defaults *cpu_info;
942
943	if (no_load)
944		return -ENODEV;
945
946	id = x86_match_cpu(intel_pstate_cpu_ids);
947	if (!id)
948		return -ENODEV;
949
950	/*
951	 * The Intel pstate driver will be ignored if the platform
952	 * firmware has its own power management modes.
953	 */
954	if (intel_pstate_platform_pwr_mgmt_exists())
955		return -ENODEV;
956
957	cpu_info = (struct cpu_defaults *)id->driver_data;
958
959	copy_pid_params(&cpu_info->pid_policy);
960	copy_cpu_funcs(&cpu_info->funcs);
961
962	if (intel_pstate_msrs_not_valid())
963		return -ENODEV;
964
965	pr_info("Intel P-state driver initializing.\n");
966
967	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
968	if (!all_cpu_data)
969		return -ENOMEM;
970
971	rc = cpufreq_register_driver(&intel_pstate_driver);
972	if (rc)
973		goto out;
974
975	intel_pstate_debug_expose_params();
976	intel_pstate_sysfs_expose_params();
977
978	return rc;
979out:
980	get_online_cpus();
981	for_each_online_cpu(cpu) {
982		if (all_cpu_data[cpu]) {
983			del_timer_sync(&all_cpu_data[cpu]->timer);
984			kfree(all_cpu_data[cpu]);
985		}
986	}
987
988	put_online_cpus();
989	vfree(all_cpu_data);
990	return -ENODEV;
991}
992device_initcall(intel_pstate_init);
993
994static int __init intel_pstate_setup(char *str)
995{
996	if (!str)
997		return -EINVAL;
998
999	if (!strcmp(str, "disable"))
1000		no_load = 1;
1001	return 0;
1002}
1003early_param("intel_pstate", intel_pstate_setup);
1004
1005MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1006MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1007MODULE_LICENSE("GPL");
1008