intel_pstate.c revision d022a65ed2473fac4a600e3424503dc571160a3e
1/*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
28#include <linux/acpi.h>
29#include <trace/events/power.h>
30
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34
35#define BYT_RATIOS		0x66a
36#define BYT_VIDS		0x66b
37#define BYT_TURBO_RATIOS	0x66c
38#define BYT_TURBO_VIDS		0x66d
39
40#define FRAC_BITS 8
41#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42#define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45static inline int32_t mul_fp(int32_t x, int32_t y)
46{
47	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48}
49
50static inline int32_t div_fp(int32_t x, int32_t y)
51{
52	return div_s64((int64_t)x << FRAC_BITS, y);
53}
54
55static inline int ceiling_fp(int32_t x)
56{
57	int mask, ret;
58
59	ret = fp_toint(x);
60	mask = (1 << FRAC_BITS) - 1;
61	if (x & mask)
62		ret += 1;
63	return ret;
64}
65
66struct sample {
67	int32_t core_pct_busy;
68	u64 aperf;
69	u64 mperf;
70	int freq;
71	ktime_t time;
72};
73
74struct pstate_data {
75	int	current_pstate;
76	int	min_pstate;
77	int	max_pstate;
78	int	scaling;
79	int	turbo_pstate;
80};
81
82struct vid_data {
83	int min;
84	int max;
85	int turbo;
86	int32_t ratio;
87};
88
89struct _pid {
90	int setpoint;
91	int32_t integral;
92	int32_t p_gain;
93	int32_t i_gain;
94	int32_t d_gain;
95	int deadband;
96	int32_t last_err;
97};
98
99struct cpudata {
100	int cpu;
101
102	struct timer_list timer;
103
104	struct pstate_data pstate;
105	struct vid_data vid;
106	struct _pid pid;
107
108	ktime_t last_sample_time;
109	u64	prev_aperf;
110	u64	prev_mperf;
111	struct sample sample;
112};
113
114static struct cpudata **all_cpu_data;
115struct pstate_adjust_policy {
116	int sample_rate_ms;
117	int deadband;
118	int setpoint;
119	int p_gain_pct;
120	int d_gain_pct;
121	int i_gain_pct;
122};
123
124struct pstate_funcs {
125	int (*get_max)(void);
126	int (*get_min)(void);
127	int (*get_turbo)(void);
128	int (*get_scaling)(void);
129	void (*set)(struct cpudata*, int pstate);
130	void (*get_vid)(struct cpudata *);
131};
132
133struct cpu_defaults {
134	struct pstate_adjust_policy pid_policy;
135	struct pstate_funcs funcs;
136};
137
138static struct pstate_adjust_policy pid_params;
139static struct pstate_funcs pstate_funcs;
140
141struct perf_limits {
142	int no_turbo;
143	int turbo_disabled;
144	int max_perf_pct;
145	int min_perf_pct;
146	int32_t max_perf;
147	int32_t min_perf;
148	int max_policy_pct;
149	int max_sysfs_pct;
150};
151
152static struct perf_limits limits = {
153	.no_turbo = 0,
154	.turbo_disabled = 0,
155	.max_perf_pct = 100,
156	.max_perf = int_tofp(1),
157	.min_perf_pct = 0,
158	.min_perf = 0,
159	.max_policy_pct = 100,
160	.max_sysfs_pct = 100,
161};
162
163static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
164			     int deadband, int integral) {
165	pid->setpoint = setpoint;
166	pid->deadband  = deadband;
167	pid->integral  = int_tofp(integral);
168	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
169}
170
171static inline void pid_p_gain_set(struct _pid *pid, int percent)
172{
173	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
174}
175
176static inline void pid_i_gain_set(struct _pid *pid, int percent)
177{
178	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
179}
180
181static inline void pid_d_gain_set(struct _pid *pid, int percent)
182{
183	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
184}
185
186static signed int pid_calc(struct _pid *pid, int32_t busy)
187{
188	signed int result;
189	int32_t pterm, dterm, fp_error;
190	int32_t integral_limit;
191
192	fp_error = int_tofp(pid->setpoint) - busy;
193
194	if (abs(fp_error) <= int_tofp(pid->deadband))
195		return 0;
196
197	pterm = mul_fp(pid->p_gain, fp_error);
198
199	pid->integral += fp_error;
200
201	/* limit the integral term */
202	integral_limit = int_tofp(30);
203	if (pid->integral > integral_limit)
204		pid->integral = integral_limit;
205	if (pid->integral < -integral_limit)
206		pid->integral = -integral_limit;
207
208	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
209	pid->last_err = fp_error;
210
211	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
212	result = result + (1 << (FRAC_BITS-1));
213	return (signed int)fp_toint(result);
214}
215
216static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
217{
218	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
219	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
220	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
221
222	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
223}
224
225static inline void intel_pstate_reset_all_pid(void)
226{
227	unsigned int cpu;
228
229	for_each_online_cpu(cpu) {
230		if (all_cpu_data[cpu])
231			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
232	}
233}
234
235static inline void update_turbo_state(void)
236{
237	u64 misc_en;
238	struct cpudata *cpu;
239
240	cpu = all_cpu_data[0];
241	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
242	limits.turbo_disabled =
243		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
244		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
245}
246
247/************************** debugfs begin ************************/
248static int pid_param_set(void *data, u64 val)
249{
250	*(u32 *)data = val;
251	intel_pstate_reset_all_pid();
252	return 0;
253}
254
255static int pid_param_get(void *data, u64 *val)
256{
257	*val = *(u32 *)data;
258	return 0;
259}
260DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
261
262struct pid_param {
263	char *name;
264	void *value;
265};
266
267static struct pid_param pid_files[] = {
268	{"sample_rate_ms", &pid_params.sample_rate_ms},
269	{"d_gain_pct", &pid_params.d_gain_pct},
270	{"i_gain_pct", &pid_params.i_gain_pct},
271	{"deadband", &pid_params.deadband},
272	{"setpoint", &pid_params.setpoint},
273	{"p_gain_pct", &pid_params.p_gain_pct},
274	{NULL, NULL}
275};
276
277static void __init intel_pstate_debug_expose_params(void)
278{
279	struct dentry *debugfs_parent;
280	int i = 0;
281
282	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
283	if (IS_ERR_OR_NULL(debugfs_parent))
284		return;
285	while (pid_files[i].name) {
286		debugfs_create_file(pid_files[i].name, 0660,
287				    debugfs_parent, pid_files[i].value,
288				    &fops_pid_param);
289		i++;
290	}
291}
292
293/************************** debugfs end ************************/
294
295/************************** sysfs begin ************************/
296#define show_one(file_name, object)					\
297	static ssize_t show_##file_name					\
298	(struct kobject *kobj, struct attribute *attr, char *buf)	\
299	{								\
300		return sprintf(buf, "%u\n", limits.object);		\
301	}
302
303static ssize_t show_no_turbo(struct kobject *kobj,
304			     struct attribute *attr, char *buf)
305{
306	ssize_t ret;
307
308	update_turbo_state();
309	if (limits.turbo_disabled)
310		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
311	else
312		ret = sprintf(buf, "%u\n", limits.no_turbo);
313
314	return ret;
315}
316
317static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
318			      const char *buf, size_t count)
319{
320	unsigned int input;
321	int ret;
322
323	ret = sscanf(buf, "%u", &input);
324	if (ret != 1)
325		return -EINVAL;
326
327	update_turbo_state();
328	if (limits.turbo_disabled) {
329		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
330		return -EPERM;
331	}
332	limits.no_turbo = clamp_t(int, input, 0, 1);
333
334	return count;
335}
336
337static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
338				  const char *buf, size_t count)
339{
340	unsigned int input;
341	int ret;
342
343	ret = sscanf(buf, "%u", &input);
344	if (ret != 1)
345		return -EINVAL;
346
347	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
348	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
349	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
350
351	return count;
352}
353
354static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
355				  const char *buf, size_t count)
356{
357	unsigned int input;
358	int ret;
359
360	ret = sscanf(buf, "%u", &input);
361	if (ret != 1)
362		return -EINVAL;
363	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
364	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
365
366	return count;
367}
368
369show_one(max_perf_pct, max_perf_pct);
370show_one(min_perf_pct, min_perf_pct);
371
372define_one_global_rw(no_turbo);
373define_one_global_rw(max_perf_pct);
374define_one_global_rw(min_perf_pct);
375
376static struct attribute *intel_pstate_attributes[] = {
377	&no_turbo.attr,
378	&max_perf_pct.attr,
379	&min_perf_pct.attr,
380	NULL
381};
382
383static struct attribute_group intel_pstate_attr_group = {
384	.attrs = intel_pstate_attributes,
385};
386
387static void __init intel_pstate_sysfs_expose_params(void)
388{
389	struct kobject *intel_pstate_kobject;
390	int rc;
391
392	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
393						&cpu_subsys.dev_root->kobj);
394	BUG_ON(!intel_pstate_kobject);
395	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
396	BUG_ON(rc);
397}
398
399/************************** sysfs end ************************/
400static int byt_get_min_pstate(void)
401{
402	u64 value;
403
404	rdmsrl(BYT_RATIOS, value);
405	return (value >> 8) & 0x7F;
406}
407
408static int byt_get_max_pstate(void)
409{
410	u64 value;
411
412	rdmsrl(BYT_RATIOS, value);
413	return (value >> 16) & 0x7F;
414}
415
416static int byt_get_turbo_pstate(void)
417{
418	u64 value;
419
420	rdmsrl(BYT_TURBO_RATIOS, value);
421	return value & 0x7F;
422}
423
424static void byt_set_pstate(struct cpudata *cpudata, int pstate)
425{
426	u64 val;
427	int32_t vid_fp;
428	u32 vid;
429
430	val = pstate << 8;
431	if (limits.no_turbo && !limits.turbo_disabled)
432		val |= (u64)1 << 32;
433
434	vid_fp = cpudata->vid.min + mul_fp(
435		int_tofp(pstate - cpudata->pstate.min_pstate),
436		cpudata->vid.ratio);
437
438	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
439	vid = ceiling_fp(vid_fp);
440
441	if (pstate > cpudata->pstate.max_pstate)
442		vid = cpudata->vid.turbo;
443
444	val |= vid;
445
446	wrmsrl(MSR_IA32_PERF_CTL, val);
447}
448
449#define BYT_BCLK_FREQS 5
450static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
451
452static int byt_get_scaling(void)
453{
454	u64 value;
455	int i;
456
457	rdmsrl(MSR_FSB_FREQ, value);
458	i = value & 0x3;
459
460	BUG_ON(i > BYT_BCLK_FREQS);
461
462	return byt_freq_table[i] * 100;
463}
464
465static void byt_get_vid(struct cpudata *cpudata)
466{
467	u64 value;
468
469	rdmsrl(BYT_VIDS, value);
470	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
471	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
472	cpudata->vid.ratio = div_fp(
473		cpudata->vid.max - cpudata->vid.min,
474		int_tofp(cpudata->pstate.max_pstate -
475			cpudata->pstate.min_pstate));
476
477	rdmsrl(BYT_TURBO_VIDS, value);
478	cpudata->vid.turbo = value & 0x7f;
479}
480
481static int core_get_min_pstate(void)
482{
483	u64 value;
484
485	rdmsrl(MSR_PLATFORM_INFO, value);
486	return (value >> 40) & 0xFF;
487}
488
489static int core_get_max_pstate(void)
490{
491	u64 value;
492
493	rdmsrl(MSR_PLATFORM_INFO, value);
494	return (value >> 8) & 0xFF;
495}
496
497static int core_get_turbo_pstate(void)
498{
499	u64 value;
500	int nont, ret;
501
502	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
503	nont = core_get_max_pstate();
504	ret = (value) & 255;
505	if (ret <= nont)
506		ret = nont;
507	return ret;
508}
509
510static inline int core_get_scaling(void)
511{
512	return 100000;
513}
514
515static void core_set_pstate(struct cpudata *cpudata, int pstate)
516{
517	u64 val;
518
519	val = pstate << 8;
520	if (limits.no_turbo && !limits.turbo_disabled)
521		val |= (u64)1 << 32;
522
523	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
524}
525
526static struct cpu_defaults core_params = {
527	.pid_policy = {
528		.sample_rate_ms = 10,
529		.deadband = 0,
530		.setpoint = 97,
531		.p_gain_pct = 20,
532		.d_gain_pct = 0,
533		.i_gain_pct = 0,
534	},
535	.funcs = {
536		.get_max = core_get_max_pstate,
537		.get_min = core_get_min_pstate,
538		.get_turbo = core_get_turbo_pstate,
539		.get_scaling = core_get_scaling,
540		.set = core_set_pstate,
541	},
542};
543
544static struct cpu_defaults byt_params = {
545	.pid_policy = {
546		.sample_rate_ms = 10,
547		.deadband = 0,
548		.setpoint = 97,
549		.p_gain_pct = 14,
550		.d_gain_pct = 0,
551		.i_gain_pct = 4,
552	},
553	.funcs = {
554		.get_max = byt_get_max_pstate,
555		.get_min = byt_get_min_pstate,
556		.get_turbo = byt_get_turbo_pstate,
557		.set = byt_set_pstate,
558		.get_scaling = byt_get_scaling,
559		.get_vid = byt_get_vid,
560	},
561};
562
563static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
564{
565	int max_perf = cpu->pstate.turbo_pstate;
566	int max_perf_adj;
567	int min_perf;
568
569	if (limits.no_turbo || limits.turbo_disabled)
570		max_perf = cpu->pstate.max_pstate;
571
572	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
573	*max = clamp_t(int, max_perf_adj,
574			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
575
576	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
577	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
578}
579
580static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
581{
582	int max_perf, min_perf;
583
584	update_turbo_state();
585
586	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
587
588	pstate = clamp_t(int, pstate, min_perf, max_perf);
589
590	if (pstate == cpu->pstate.current_pstate)
591		return;
592
593	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
594
595	cpu->pstate.current_pstate = pstate;
596
597	pstate_funcs.set(cpu, pstate);
598}
599
600static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
601{
602	cpu->pstate.min_pstate = pstate_funcs.get_min();
603	cpu->pstate.max_pstate = pstate_funcs.get_max();
604	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
605	cpu->pstate.scaling = pstate_funcs.get_scaling();
606
607	if (pstate_funcs.get_vid)
608		pstate_funcs.get_vid(cpu);
609	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
610}
611
612static inline void intel_pstate_calc_busy(struct cpudata *cpu)
613{
614	struct sample *sample = &cpu->sample;
615	int64_t core_pct;
616
617	core_pct = int_tofp(sample->aperf) * int_tofp(100);
618	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
619
620	sample->freq = fp_toint(
621		mul_fp(int_tofp(
622			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
623			core_pct));
624
625	sample->core_pct_busy = (int32_t)core_pct;
626}
627
628static inline void intel_pstate_sample(struct cpudata *cpu)
629{
630	u64 aperf, mperf;
631	unsigned long flags;
632
633	local_irq_save(flags);
634	rdmsrl(MSR_IA32_APERF, aperf);
635	rdmsrl(MSR_IA32_MPERF, mperf);
636	local_irq_restore(flags);
637
638	cpu->last_sample_time = cpu->sample.time;
639	cpu->sample.time = ktime_get();
640	cpu->sample.aperf = aperf;
641	cpu->sample.mperf = mperf;
642	cpu->sample.aperf -= cpu->prev_aperf;
643	cpu->sample.mperf -= cpu->prev_mperf;
644
645	intel_pstate_calc_busy(cpu);
646
647	cpu->prev_aperf = aperf;
648	cpu->prev_mperf = mperf;
649}
650
651static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
652{
653	int delay;
654
655	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
656	mod_timer_pinned(&cpu->timer, jiffies + delay);
657}
658
659static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
660{
661	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
662	u32 duration_us;
663	u32 sample_time;
664
665	core_busy = cpu->sample.core_pct_busy;
666	max_pstate = int_tofp(cpu->pstate.max_pstate);
667	current_pstate = int_tofp(cpu->pstate.current_pstate);
668	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
669
670	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
671	duration_us = (u32) ktime_us_delta(cpu->sample.time,
672					   cpu->last_sample_time);
673	if (duration_us > sample_time * 3) {
674		sample_ratio = div_fp(int_tofp(sample_time),
675				      int_tofp(duration_us));
676		core_busy = mul_fp(core_busy, sample_ratio);
677	}
678
679	return core_busy;
680}
681
682static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
683{
684	int32_t busy_scaled;
685	struct _pid *pid;
686	signed int ctl;
687
688	pid = &cpu->pid;
689	busy_scaled = intel_pstate_get_scaled_busy(cpu);
690
691	ctl = pid_calc(pid, busy_scaled);
692
693	/* Negative values of ctl increase the pstate and vice versa */
694	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
695}
696
697static void intel_pstate_timer_func(unsigned long __data)
698{
699	struct cpudata *cpu = (struct cpudata *) __data;
700	struct sample *sample;
701
702	intel_pstate_sample(cpu);
703
704	sample = &cpu->sample;
705
706	intel_pstate_adjust_busy_pstate(cpu);
707
708	trace_pstate_sample(fp_toint(sample->core_pct_busy),
709			fp_toint(intel_pstate_get_scaled_busy(cpu)),
710			cpu->pstate.current_pstate,
711			sample->mperf,
712			sample->aperf,
713			sample->freq);
714
715	intel_pstate_set_sample_time(cpu);
716}
717
718#define ICPU(model, policy) \
719	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
720			(unsigned long)&policy }
721
722static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
723	ICPU(0x2a, core_params),
724	ICPU(0x2d, core_params),
725	ICPU(0x37, byt_params),
726	ICPU(0x3a, core_params),
727	ICPU(0x3c, core_params),
728	ICPU(0x3d, core_params),
729	ICPU(0x3e, core_params),
730	ICPU(0x3f, core_params),
731	ICPU(0x45, core_params),
732	ICPU(0x46, core_params),
733	ICPU(0x4c, byt_params),
734	ICPU(0x4f, core_params),
735	ICPU(0x56, core_params),
736	{}
737};
738MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
739
740static int intel_pstate_init_cpu(unsigned int cpunum)
741{
742	struct cpudata *cpu;
743
744	if (!all_cpu_data[cpunum])
745		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
746					       GFP_KERNEL);
747	if (!all_cpu_data[cpunum])
748		return -ENOMEM;
749
750	cpu = all_cpu_data[cpunum];
751
752	cpu->cpu = cpunum;
753	intel_pstate_get_cpu_pstates(cpu);
754
755	init_timer_deferrable(&cpu->timer);
756	cpu->timer.function = intel_pstate_timer_func;
757	cpu->timer.data = (unsigned long)cpu;
758	cpu->timer.expires = jiffies + HZ/100;
759	intel_pstate_busy_pid_reset(cpu);
760	intel_pstate_sample(cpu);
761
762	add_timer_on(&cpu->timer, cpunum);
763
764	pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
765
766	return 0;
767}
768
769static unsigned int intel_pstate_get(unsigned int cpu_num)
770{
771	struct sample *sample;
772	struct cpudata *cpu;
773
774	cpu = all_cpu_data[cpu_num];
775	if (!cpu)
776		return 0;
777	sample = &cpu->sample;
778	return sample->freq;
779}
780
781static int intel_pstate_set_policy(struct cpufreq_policy *policy)
782{
783	if (!policy->cpuinfo.max_freq)
784		return -ENODEV;
785
786	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
787		limits.min_perf_pct = 100;
788		limits.min_perf = int_tofp(1);
789		limits.max_policy_pct = 100;
790		limits.max_perf_pct = 100;
791		limits.max_perf = int_tofp(1);
792		limits.no_turbo = 0;
793		return 0;
794	}
795	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
796	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
797	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
798
799	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
800	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
801	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
802	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
803
804	return 0;
805}
806
807static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
808{
809	cpufreq_verify_within_cpu_limits(policy);
810
811	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
812	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
813		return -EINVAL;
814
815	return 0;
816}
817
818static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
819{
820	int cpu_num = policy->cpu;
821	struct cpudata *cpu = all_cpu_data[cpu_num];
822
823	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
824
825	del_timer_sync(&all_cpu_data[cpu_num]->timer);
826	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
827}
828
829static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
830{
831	struct cpudata *cpu;
832	int rc;
833
834	rc = intel_pstate_init_cpu(policy->cpu);
835	if (rc)
836		return rc;
837
838	cpu = all_cpu_data[policy->cpu];
839
840	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
841		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
842	else
843		policy->policy = CPUFREQ_POLICY_POWERSAVE;
844
845	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
846	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
847
848	/* cpuinfo and default policy values */
849	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
850	policy->cpuinfo.max_freq =
851		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
852	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
853	cpumask_set_cpu(policy->cpu, policy->cpus);
854
855	return 0;
856}
857
858static struct cpufreq_driver intel_pstate_driver = {
859	.flags		= CPUFREQ_CONST_LOOPS,
860	.verify		= intel_pstate_verify_policy,
861	.setpolicy	= intel_pstate_set_policy,
862	.get		= intel_pstate_get,
863	.init		= intel_pstate_cpu_init,
864	.stop_cpu	= intel_pstate_stop_cpu,
865	.name		= "intel_pstate",
866};
867
868static int __initdata no_load;
869
870static int intel_pstate_msrs_not_valid(void)
871{
872	/* Check that all the msr's we are using are valid. */
873	u64 aperf, mperf, tmp;
874
875	rdmsrl(MSR_IA32_APERF, aperf);
876	rdmsrl(MSR_IA32_MPERF, mperf);
877
878	if (!pstate_funcs.get_max() ||
879	    !pstate_funcs.get_min() ||
880	    !pstate_funcs.get_turbo())
881		return -ENODEV;
882
883	rdmsrl(MSR_IA32_APERF, tmp);
884	if (!(tmp - aperf))
885		return -ENODEV;
886
887	rdmsrl(MSR_IA32_MPERF, tmp);
888	if (!(tmp - mperf))
889		return -ENODEV;
890
891	return 0;
892}
893
894static void copy_pid_params(struct pstate_adjust_policy *policy)
895{
896	pid_params.sample_rate_ms = policy->sample_rate_ms;
897	pid_params.p_gain_pct = policy->p_gain_pct;
898	pid_params.i_gain_pct = policy->i_gain_pct;
899	pid_params.d_gain_pct = policy->d_gain_pct;
900	pid_params.deadband = policy->deadband;
901	pid_params.setpoint = policy->setpoint;
902}
903
904static void copy_cpu_funcs(struct pstate_funcs *funcs)
905{
906	pstate_funcs.get_max   = funcs->get_max;
907	pstate_funcs.get_min   = funcs->get_min;
908	pstate_funcs.get_turbo = funcs->get_turbo;
909	pstate_funcs.get_scaling = funcs->get_scaling;
910	pstate_funcs.set       = funcs->set;
911	pstate_funcs.get_vid   = funcs->get_vid;
912}
913
914#if IS_ENABLED(CONFIG_ACPI)
915#include <acpi/processor.h>
916
917static bool intel_pstate_no_acpi_pss(void)
918{
919	int i;
920
921	for_each_possible_cpu(i) {
922		acpi_status status;
923		union acpi_object *pss;
924		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
925		struct acpi_processor *pr = per_cpu(processors, i);
926
927		if (!pr)
928			continue;
929
930		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
931		if (ACPI_FAILURE(status))
932			continue;
933
934		pss = buffer.pointer;
935		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
936			kfree(pss);
937			return false;
938		}
939
940		kfree(pss);
941	}
942
943	return true;
944}
945
946struct hw_vendor_info {
947	u16  valid;
948	char oem_id[ACPI_OEM_ID_SIZE];
949	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
950};
951
952/* Hardware vendor-specific info that has its own power management modes */
953static struct hw_vendor_info vendor_info[] = {
954	{1, "HP    ", "ProLiant"},
955	{0, "", ""},
956};
957
958static bool intel_pstate_platform_pwr_mgmt_exists(void)
959{
960	struct acpi_table_header hdr;
961	struct hw_vendor_info *v_info;
962
963	if (acpi_disabled ||
964	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
965		return false;
966
967	for (v_info = vendor_info; v_info->valid; v_info++) {
968		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
969		    !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
970		    intel_pstate_no_acpi_pss())
971			return true;
972	}
973
974	return false;
975}
976#else /* CONFIG_ACPI not enabled */
977static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
978#endif /* CONFIG_ACPI */
979
980static int __init intel_pstate_init(void)
981{
982	int cpu, rc = 0;
983	const struct x86_cpu_id *id;
984	struct cpu_defaults *cpu_info;
985
986	if (no_load)
987		return -ENODEV;
988
989	id = x86_match_cpu(intel_pstate_cpu_ids);
990	if (!id)
991		return -ENODEV;
992
993	/*
994	 * The Intel pstate driver will be ignored if the platform
995	 * firmware has its own power management modes.
996	 */
997	if (intel_pstate_platform_pwr_mgmt_exists())
998		return -ENODEV;
999
1000	cpu_info = (struct cpu_defaults *)id->driver_data;
1001
1002	copy_pid_params(&cpu_info->pid_policy);
1003	copy_cpu_funcs(&cpu_info->funcs);
1004
1005	if (intel_pstate_msrs_not_valid())
1006		return -ENODEV;
1007
1008	pr_info("Intel P-state driver initializing.\n");
1009
1010	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1011	if (!all_cpu_data)
1012		return -ENOMEM;
1013
1014	rc = cpufreq_register_driver(&intel_pstate_driver);
1015	if (rc)
1016		goto out;
1017
1018	intel_pstate_debug_expose_params();
1019	intel_pstate_sysfs_expose_params();
1020
1021	return rc;
1022out:
1023	get_online_cpus();
1024	for_each_online_cpu(cpu) {
1025		if (all_cpu_data[cpu]) {
1026			del_timer_sync(&all_cpu_data[cpu]->timer);
1027			kfree(all_cpu_data[cpu]);
1028		}
1029	}
1030
1031	put_online_cpus();
1032	vfree(all_cpu_data);
1033	return -ENODEV;
1034}
1035device_initcall(intel_pstate_init);
1036
1037static int __init intel_pstate_setup(char *str)
1038{
1039	if (!str)
1040		return -EINVAL;
1041
1042	if (!strcmp(str, "disable"))
1043		no_load = 1;
1044	return 0;
1045}
1046early_param("intel_pstate", intel_pstate_setup);
1047
1048MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1049MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1050MODULE_LICENSE("GPL");
1051