intel_pstate.c revision f0fe3cd7e12d8290c82284b5c8aee723cbd0371a
1/*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
28#include <linux/acpi.h>
29#include <trace/events/power.h>
30
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34
35#define SAMPLE_COUNT		3
36
37#define BYT_RATIOS		0x66a
38#define BYT_VIDS		0x66b
39#define BYT_TURBO_RATIOS	0x66c
40#define BYT_TURBO_VIDS		0x66d
41
42
43#define FRAC_BITS 8
44#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
45#define fp_toint(X) ((X) >> FRAC_BITS)
46
47
48static inline int32_t mul_fp(int32_t x, int32_t y)
49{
50	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51}
52
53static inline int32_t div_fp(int32_t x, int32_t y)
54{
55	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
56}
57
58struct sample {
59	int32_t core_pct_busy;
60	u64 aperf;
61	u64 mperf;
62	int freq;
63};
64
65struct pstate_data {
66	int	current_pstate;
67	int	min_pstate;
68	int	max_pstate;
69	int	turbo_pstate;
70};
71
72struct vid_data {
73	int min;
74	int max;
75	int turbo;
76	int32_t ratio;
77};
78
79struct _pid {
80	int setpoint;
81	int32_t integral;
82	int32_t p_gain;
83	int32_t i_gain;
84	int32_t d_gain;
85	int deadband;
86	int32_t last_err;
87};
88
89struct cpudata {
90	int cpu;
91
92	char name[64];
93
94	struct timer_list timer;
95
96	struct pstate_data pstate;
97	struct vid_data vid;
98	struct _pid pid;
99
100	u64	prev_aperf;
101	u64	prev_mperf;
102	struct sample sample;
103};
104
105static struct cpudata **all_cpu_data;
106struct pstate_adjust_policy {
107	int sample_rate_ms;
108	int deadband;
109	int setpoint;
110	int p_gain_pct;
111	int d_gain_pct;
112	int i_gain_pct;
113};
114
115struct pstate_funcs {
116	int (*get_max)(void);
117	int (*get_min)(void);
118	int (*get_turbo)(void);
119	void (*set)(struct cpudata*, int pstate);
120	void (*get_vid)(struct cpudata *);
121};
122
123struct cpu_defaults {
124	struct pstate_adjust_policy pid_policy;
125	struct pstate_funcs funcs;
126};
127
128static struct pstate_adjust_policy pid_params;
129static struct pstate_funcs pstate_funcs;
130
131struct perf_limits {
132	int no_turbo;
133	int max_perf_pct;
134	int min_perf_pct;
135	int32_t max_perf;
136	int32_t min_perf;
137	int max_policy_pct;
138	int max_sysfs_pct;
139};
140
141static struct perf_limits limits = {
142	.no_turbo = 0,
143	.max_perf_pct = 100,
144	.max_perf = int_tofp(1),
145	.min_perf_pct = 0,
146	.min_perf = 0,
147	.max_policy_pct = 100,
148	.max_sysfs_pct = 100,
149};
150
151static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
152			int deadband, int integral) {
153	pid->setpoint = setpoint;
154	pid->deadband  = deadband;
155	pid->integral  = int_tofp(integral);
156	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
157}
158
159static inline void pid_p_gain_set(struct _pid *pid, int percent)
160{
161	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
162}
163
164static inline void pid_i_gain_set(struct _pid *pid, int percent)
165{
166	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
167}
168
169static inline void pid_d_gain_set(struct _pid *pid, int percent)
170{
171
172	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
173}
174
175static signed int pid_calc(struct _pid *pid, int32_t busy)
176{
177	signed int result;
178	int32_t pterm, dterm, fp_error;
179	int32_t integral_limit;
180
181	fp_error = int_tofp(pid->setpoint) - busy;
182
183	if (abs(fp_error) <= int_tofp(pid->deadband))
184		return 0;
185
186	pterm = mul_fp(pid->p_gain, fp_error);
187
188	pid->integral += fp_error;
189
190	/* limit the integral term */
191	integral_limit = int_tofp(30);
192	if (pid->integral > integral_limit)
193		pid->integral = integral_limit;
194	if (pid->integral < -integral_limit)
195		pid->integral = -integral_limit;
196
197	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
198	pid->last_err = fp_error;
199
200	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
201	if (result >= 0)
202		result = result + (1 << (FRAC_BITS-1));
203	else
204		result = result - (1 << (FRAC_BITS-1));
205	return (signed int)fp_toint(result);
206}
207
208static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
209{
210	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
211	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
212	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
213
214	pid_reset(&cpu->pid,
215		pid_params.setpoint,
216		100,
217		pid_params.deadband,
218		0);
219}
220
221static inline void intel_pstate_reset_all_pid(void)
222{
223	unsigned int cpu;
224	for_each_online_cpu(cpu) {
225		if (all_cpu_data[cpu])
226			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
227	}
228}
229
230/************************** debugfs begin ************************/
231static int pid_param_set(void *data, u64 val)
232{
233	*(u32 *)data = val;
234	intel_pstate_reset_all_pid();
235	return 0;
236}
237static int pid_param_get(void *data, u64 *val)
238{
239	*val = *(u32 *)data;
240	return 0;
241}
242DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
243			pid_param_set, "%llu\n");
244
245struct pid_param {
246	char *name;
247	void *value;
248};
249
250static struct pid_param pid_files[] = {
251	{"sample_rate_ms", &pid_params.sample_rate_ms},
252	{"d_gain_pct", &pid_params.d_gain_pct},
253	{"i_gain_pct", &pid_params.i_gain_pct},
254	{"deadband", &pid_params.deadband},
255	{"setpoint", &pid_params.setpoint},
256	{"p_gain_pct", &pid_params.p_gain_pct},
257	{NULL, NULL}
258};
259
260static struct dentry *debugfs_parent;
261static void intel_pstate_debug_expose_params(void)
262{
263	int i = 0;
264
265	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
266	if (IS_ERR_OR_NULL(debugfs_parent))
267		return;
268	while (pid_files[i].name) {
269		debugfs_create_file(pid_files[i].name, 0660,
270				debugfs_parent, pid_files[i].value,
271				&fops_pid_param);
272		i++;
273	}
274}
275
276/************************** debugfs end ************************/
277
278/************************** sysfs begin ************************/
279#define show_one(file_name, object)					\
280	static ssize_t show_##file_name					\
281	(struct kobject *kobj, struct attribute *attr, char *buf)	\
282	{								\
283		return sprintf(buf, "%u\n", limits.object);		\
284	}
285
286static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
287				const char *buf, size_t count)
288{
289	unsigned int input;
290	int ret;
291	ret = sscanf(buf, "%u", &input);
292	if (ret != 1)
293		return -EINVAL;
294	limits.no_turbo = clamp_t(int, input, 0 , 1);
295
296	return count;
297}
298
299static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
300				const char *buf, size_t count)
301{
302	unsigned int input;
303	int ret;
304	ret = sscanf(buf, "%u", &input);
305	if (ret != 1)
306		return -EINVAL;
307
308	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
309	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
310	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
311	return count;
312}
313
314static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
315				const char *buf, size_t count)
316{
317	unsigned int input;
318	int ret;
319	ret = sscanf(buf, "%u", &input);
320	if (ret != 1)
321		return -EINVAL;
322	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
323	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
324
325	return count;
326}
327
328show_one(no_turbo, no_turbo);
329show_one(max_perf_pct, max_perf_pct);
330show_one(min_perf_pct, min_perf_pct);
331
332define_one_global_rw(no_turbo);
333define_one_global_rw(max_perf_pct);
334define_one_global_rw(min_perf_pct);
335
336static struct attribute *intel_pstate_attributes[] = {
337	&no_turbo.attr,
338	&max_perf_pct.attr,
339	&min_perf_pct.attr,
340	NULL
341};
342
343static struct attribute_group intel_pstate_attr_group = {
344	.attrs = intel_pstate_attributes,
345};
346static struct kobject *intel_pstate_kobject;
347
348static void intel_pstate_sysfs_expose_params(void)
349{
350	int rc;
351
352	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
353						&cpu_subsys.dev_root->kobj);
354	BUG_ON(!intel_pstate_kobject);
355	rc = sysfs_create_group(intel_pstate_kobject,
356				&intel_pstate_attr_group);
357	BUG_ON(rc);
358}
359
360/************************** sysfs end ************************/
361static int byt_get_min_pstate(void)
362{
363	u64 value;
364	rdmsrl(BYT_RATIOS, value);
365	return (value >> 8) & 0x3F;
366}
367
368static int byt_get_max_pstate(void)
369{
370	u64 value;
371	rdmsrl(BYT_RATIOS, value);
372	return (value >> 16) & 0x3F;
373}
374
375static int byt_get_turbo_pstate(void)
376{
377	u64 value;
378	rdmsrl(BYT_TURBO_RATIOS, value);
379	return value & 0x3F;
380}
381
382static void byt_set_pstate(struct cpudata *cpudata, int pstate)
383{
384	u64 val;
385	int32_t vid_fp;
386	u32 vid;
387
388	val = pstate << 8;
389	if (limits.no_turbo)
390		val |= (u64)1 << 32;
391
392	vid_fp = cpudata->vid.min + mul_fp(
393		int_tofp(pstate - cpudata->pstate.min_pstate),
394		cpudata->vid.ratio);
395
396	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
397	vid = fp_toint(vid_fp);
398
399	if (pstate > cpudata->pstate.max_pstate)
400		vid = cpudata->vid.turbo;
401
402	val |= vid;
403
404	wrmsrl(MSR_IA32_PERF_CTL, val);
405}
406
407static void byt_get_vid(struct cpudata *cpudata)
408{
409	u64 value;
410
411
412	rdmsrl(BYT_VIDS, value);
413	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
414	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
415	cpudata->vid.ratio = div_fp(
416		cpudata->vid.max - cpudata->vid.min,
417		int_tofp(cpudata->pstate.max_pstate -
418			cpudata->pstate.min_pstate));
419
420	rdmsrl(BYT_TURBO_VIDS, value);
421	cpudata->vid.turbo = value & 0x7f;
422}
423
424
425static int core_get_min_pstate(void)
426{
427	u64 value;
428	rdmsrl(MSR_PLATFORM_INFO, value);
429	return (value >> 40) & 0xFF;
430}
431
432static int core_get_max_pstate(void)
433{
434	u64 value;
435	rdmsrl(MSR_PLATFORM_INFO, value);
436	return (value >> 8) & 0xFF;
437}
438
439static int core_get_turbo_pstate(void)
440{
441	u64 value;
442	int nont, ret;
443	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
444	nont = core_get_max_pstate();
445	ret = ((value) & 255);
446	if (ret <= nont)
447		ret = nont;
448	return ret;
449}
450
451static void core_set_pstate(struct cpudata *cpudata, int pstate)
452{
453	u64 val;
454
455	val = pstate << 8;
456	if (limits.no_turbo)
457		val |= (u64)1 << 32;
458
459	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
460}
461
462static struct cpu_defaults core_params = {
463	.pid_policy = {
464		.sample_rate_ms = 10,
465		.deadband = 0,
466		.setpoint = 97,
467		.p_gain_pct = 20,
468		.d_gain_pct = 0,
469		.i_gain_pct = 0,
470	},
471	.funcs = {
472		.get_max = core_get_max_pstate,
473		.get_min = core_get_min_pstate,
474		.get_turbo = core_get_turbo_pstate,
475		.set = core_set_pstate,
476	},
477};
478
479static struct cpu_defaults byt_params = {
480	.pid_policy = {
481		.sample_rate_ms = 10,
482		.deadband = 0,
483		.setpoint = 97,
484		.p_gain_pct = 14,
485		.d_gain_pct = 0,
486		.i_gain_pct = 4,
487	},
488	.funcs = {
489		.get_max = byt_get_max_pstate,
490		.get_min = byt_get_min_pstate,
491		.get_turbo = byt_get_turbo_pstate,
492		.set = byt_set_pstate,
493		.get_vid = byt_get_vid,
494	},
495};
496
497
498static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
499{
500	int max_perf = cpu->pstate.turbo_pstate;
501	int max_perf_adj;
502	int min_perf;
503	if (limits.no_turbo)
504		max_perf = cpu->pstate.max_pstate;
505
506	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
507	*max = clamp_t(int, max_perf_adj,
508			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
509
510	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
511	*min = clamp_t(int, min_perf,
512			cpu->pstate.min_pstate, max_perf);
513}
514
515static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
516{
517	int max_perf, min_perf;
518
519	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
520
521	pstate = clamp_t(int, pstate, min_perf, max_perf);
522
523	if (pstate == cpu->pstate.current_pstate)
524		return;
525
526	trace_cpu_frequency(pstate * 100000, cpu->cpu);
527
528	cpu->pstate.current_pstate = pstate;
529
530	pstate_funcs.set(cpu, pstate);
531}
532
533static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
534{
535	int target;
536	target = cpu->pstate.current_pstate + steps;
537
538	intel_pstate_set_pstate(cpu, target);
539}
540
541static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
542{
543	int target;
544	target = cpu->pstate.current_pstate - steps;
545	intel_pstate_set_pstate(cpu, target);
546}
547
548static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
549{
550	sprintf(cpu->name, "Intel 2nd generation core");
551
552	cpu->pstate.min_pstate = pstate_funcs.get_min();
553	cpu->pstate.max_pstate = pstate_funcs.get_max();
554	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
555
556	if (pstate_funcs.get_vid)
557		pstate_funcs.get_vid(cpu);
558	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
559}
560
561static inline void intel_pstate_calc_busy(struct cpudata *cpu,
562					struct sample *sample)
563{
564	int32_t core_pct;
565
566	core_pct = div_fp(int_tofp((sample->aperf)),
567			int_tofp((sample->mperf)));
568	core_pct = mul_fp(core_pct, int_tofp(100));
569
570	sample->freq = fp_toint(
571		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
572
573	sample->core_pct_busy = core_pct;
574}
575
576static inline void intel_pstate_sample(struct cpudata *cpu)
577{
578	u64 aperf, mperf;
579
580	rdmsrl(MSR_IA32_APERF, aperf);
581	rdmsrl(MSR_IA32_MPERF, mperf);
582
583	aperf = aperf >> FRAC_BITS;
584	mperf = mperf >> FRAC_BITS;
585
586	cpu->sample.aperf = aperf;
587	cpu->sample.mperf = mperf;
588	cpu->sample.aperf -= cpu->prev_aperf;
589	cpu->sample.mperf -= cpu->prev_mperf;
590
591	intel_pstate_calc_busy(cpu, &cpu->sample);
592
593	cpu->prev_aperf = aperf;
594	cpu->prev_mperf = mperf;
595}
596
597static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
598{
599	int sample_time, delay;
600
601	sample_time = pid_params.sample_rate_ms;
602	delay = msecs_to_jiffies(sample_time);
603	mod_timer_pinned(&cpu->timer, jiffies + delay);
604}
605
606static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
607{
608	int32_t core_busy, max_pstate, current_pstate;
609
610	core_busy = cpu->sample.core_pct_busy;
611	max_pstate = int_tofp(cpu->pstate.max_pstate);
612	current_pstate = int_tofp(cpu->pstate.current_pstate);
613	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
614	return core_busy;
615}
616
617static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
618{
619	int32_t busy_scaled;
620	struct _pid *pid;
621	signed int ctl = 0;
622	int steps;
623
624	pid = &cpu->pid;
625	busy_scaled = intel_pstate_get_scaled_busy(cpu);
626
627	ctl = pid_calc(pid, busy_scaled);
628
629	steps = abs(ctl);
630
631	if (ctl < 0)
632		intel_pstate_pstate_increase(cpu, steps);
633	else
634		intel_pstate_pstate_decrease(cpu, steps);
635}
636
637static void intel_pstate_timer_func(unsigned long __data)
638{
639	struct cpudata *cpu = (struct cpudata *) __data;
640	struct sample *sample;
641
642	intel_pstate_sample(cpu);
643
644	sample = &cpu->sample;
645
646	intel_pstate_adjust_busy_pstate(cpu);
647
648	trace_pstate_sample(fp_toint(sample->core_pct_busy),
649			fp_toint(intel_pstate_get_scaled_busy(cpu)),
650			cpu->pstate.current_pstate,
651			sample->mperf,
652			sample->aperf,
653			sample->freq);
654
655	intel_pstate_set_sample_time(cpu);
656}
657
658#define ICPU(model, policy) \
659	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
660			(unsigned long)&policy }
661
662static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
663	ICPU(0x2a, core_params),
664	ICPU(0x2d, core_params),
665	ICPU(0x37, byt_params),
666	ICPU(0x3a, core_params),
667	ICPU(0x3c, core_params),
668	ICPU(0x3e, core_params),
669	ICPU(0x3f, core_params),
670	ICPU(0x45, core_params),
671	ICPU(0x46, core_params),
672	{}
673};
674MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
675
676static int intel_pstate_init_cpu(unsigned int cpunum)
677{
678
679	const struct x86_cpu_id *id;
680	struct cpudata *cpu;
681
682	id = x86_match_cpu(intel_pstate_cpu_ids);
683	if (!id)
684		return -ENODEV;
685
686	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
687	if (!all_cpu_data[cpunum])
688		return -ENOMEM;
689
690	cpu = all_cpu_data[cpunum];
691
692	intel_pstate_get_cpu_pstates(cpu);
693
694	cpu->cpu = cpunum;
695
696	init_timer_deferrable(&cpu->timer);
697	cpu->timer.function = intel_pstate_timer_func;
698	cpu->timer.data =
699		(unsigned long)cpu;
700	cpu->timer.expires = jiffies + HZ/100;
701	intel_pstate_busy_pid_reset(cpu);
702	intel_pstate_sample(cpu);
703
704	add_timer_on(&cpu->timer, cpunum);
705
706	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
707
708	return 0;
709}
710
711static unsigned int intel_pstate_get(unsigned int cpu_num)
712{
713	struct sample *sample;
714	struct cpudata *cpu;
715
716	cpu = all_cpu_data[cpu_num];
717	if (!cpu)
718		return 0;
719	sample = &cpu->sample;
720	return sample->freq;
721}
722
723static int intel_pstate_set_policy(struct cpufreq_policy *policy)
724{
725	struct cpudata *cpu;
726
727	cpu = all_cpu_data[policy->cpu];
728
729	if (!policy->cpuinfo.max_freq)
730		return -ENODEV;
731
732	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
733		limits.min_perf_pct = 100;
734		limits.min_perf = int_tofp(1);
735		limits.max_perf_pct = 100;
736		limits.max_perf = int_tofp(1);
737		limits.no_turbo = 0;
738		return 0;
739	}
740	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
741	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
742	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
743
744	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
745	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
746	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
747	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
748
749	return 0;
750}
751
752static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
753{
754	cpufreq_verify_within_cpu_limits(policy);
755
756	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
757		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
758		return -EINVAL;
759
760	return 0;
761}
762
763static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
764{
765	int cpu_num = policy->cpu;
766	struct cpudata *cpu = all_cpu_data[cpu_num];
767
768	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
769
770	del_timer_sync(&all_cpu_data[cpu_num]->timer);
771	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
772	kfree(all_cpu_data[cpu_num]);
773	all_cpu_data[cpu_num] = NULL;
774}
775
776static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
777{
778	struct cpudata *cpu;
779	int rc;
780
781	rc = intel_pstate_init_cpu(policy->cpu);
782	if (rc)
783		return rc;
784
785	cpu = all_cpu_data[policy->cpu];
786
787	if (!limits.no_turbo &&
788		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
789		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
790	else
791		policy->policy = CPUFREQ_POLICY_POWERSAVE;
792
793	policy->min = cpu->pstate.min_pstate * 100000;
794	policy->max = cpu->pstate.turbo_pstate * 100000;
795
796	/* cpuinfo and default policy values */
797	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
798	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
799	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
800	cpumask_set_cpu(policy->cpu, policy->cpus);
801
802	return 0;
803}
804
805static struct cpufreq_driver intel_pstate_driver = {
806	.flags		= CPUFREQ_CONST_LOOPS,
807	.verify		= intel_pstate_verify_policy,
808	.setpolicy	= intel_pstate_set_policy,
809	.get		= intel_pstate_get,
810	.init		= intel_pstate_cpu_init,
811	.stop_cpu	= intel_pstate_stop_cpu,
812	.name		= "intel_pstate",
813};
814
815static int __initdata no_load;
816
817static int intel_pstate_msrs_not_valid(void)
818{
819	/* Check that all the msr's we are using are valid. */
820	u64 aperf, mperf, tmp;
821
822	rdmsrl(MSR_IA32_APERF, aperf);
823	rdmsrl(MSR_IA32_MPERF, mperf);
824
825	if (!pstate_funcs.get_max() ||
826		!pstate_funcs.get_min() ||
827		!pstate_funcs.get_turbo())
828		return -ENODEV;
829
830	rdmsrl(MSR_IA32_APERF, tmp);
831	if (!(tmp - aperf))
832		return -ENODEV;
833
834	rdmsrl(MSR_IA32_MPERF, tmp);
835	if (!(tmp - mperf))
836		return -ENODEV;
837
838	return 0;
839}
840
841static void copy_pid_params(struct pstate_adjust_policy *policy)
842{
843	pid_params.sample_rate_ms = policy->sample_rate_ms;
844	pid_params.p_gain_pct = policy->p_gain_pct;
845	pid_params.i_gain_pct = policy->i_gain_pct;
846	pid_params.d_gain_pct = policy->d_gain_pct;
847	pid_params.deadband = policy->deadband;
848	pid_params.setpoint = policy->setpoint;
849}
850
851static void copy_cpu_funcs(struct pstate_funcs *funcs)
852{
853	pstate_funcs.get_max   = funcs->get_max;
854	pstate_funcs.get_min   = funcs->get_min;
855	pstate_funcs.get_turbo = funcs->get_turbo;
856	pstate_funcs.set       = funcs->set;
857	pstate_funcs.get_vid   = funcs->get_vid;
858}
859
860#if IS_ENABLED(CONFIG_ACPI)
861#include <acpi/processor.h>
862
863static bool intel_pstate_no_acpi_pss(void)
864{
865	int i;
866
867	for_each_possible_cpu(i) {
868		acpi_status status;
869		union acpi_object *pss;
870		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
871		struct acpi_processor *pr = per_cpu(processors, i);
872
873		if (!pr)
874			continue;
875
876		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
877		if (ACPI_FAILURE(status))
878			continue;
879
880		pss = buffer.pointer;
881		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
882			kfree(pss);
883			return false;
884		}
885
886		kfree(pss);
887	}
888
889	return true;
890}
891
892struct hw_vendor_info {
893	u16  valid;
894	char oem_id[ACPI_OEM_ID_SIZE];
895	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
896};
897
898/* Hardware vendor-specific info that has its own power management modes */
899static struct hw_vendor_info vendor_info[] = {
900	{1, "HP    ", "ProLiant"},
901	{0, "", ""},
902};
903
904static bool intel_pstate_platform_pwr_mgmt_exists(void)
905{
906	struct acpi_table_header hdr;
907	struct hw_vendor_info *v_info;
908
909	if (acpi_disabled
910	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
911		return false;
912
913	for (v_info = vendor_info; v_info->valid; v_info++) {
914		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
915		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
916		    && intel_pstate_no_acpi_pss())
917			return true;
918	}
919
920	return false;
921}
922#else /* CONFIG_ACPI not enabled */
923static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
924#endif /* CONFIG_ACPI */
925
926static int __init intel_pstate_init(void)
927{
928	int cpu, rc = 0;
929	const struct x86_cpu_id *id;
930	struct cpu_defaults *cpu_info;
931
932	if (no_load)
933		return -ENODEV;
934
935	id = x86_match_cpu(intel_pstate_cpu_ids);
936	if (!id)
937		return -ENODEV;
938
939	/*
940	 * The Intel pstate driver will be ignored if the platform
941	 * firmware has its own power management modes.
942	 */
943	if (intel_pstate_platform_pwr_mgmt_exists())
944		return -ENODEV;
945
946	cpu_info = (struct cpu_defaults *)id->driver_data;
947
948	copy_pid_params(&cpu_info->pid_policy);
949	copy_cpu_funcs(&cpu_info->funcs);
950
951	if (intel_pstate_msrs_not_valid())
952		return -ENODEV;
953
954	pr_info("Intel P-state driver initializing.\n");
955
956	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
957	if (!all_cpu_data)
958		return -ENOMEM;
959
960	rc = cpufreq_register_driver(&intel_pstate_driver);
961	if (rc)
962		goto out;
963
964	intel_pstate_debug_expose_params();
965	intel_pstate_sysfs_expose_params();
966
967	return rc;
968out:
969	get_online_cpus();
970	for_each_online_cpu(cpu) {
971		if (all_cpu_data[cpu]) {
972			del_timer_sync(&all_cpu_data[cpu]->timer);
973			kfree(all_cpu_data[cpu]);
974		}
975	}
976
977	put_online_cpus();
978	vfree(all_cpu_data);
979	return -ENODEV;
980}
981device_initcall(intel_pstate_init);
982
983static int __init intel_pstate_setup(char *str)
984{
985	if (!str)
986		return -EINVAL;
987
988	if (!strcmp(str, "disable"))
989		no_load = 1;
990	return 0;
991}
992early_param("intel_pstate", intel_pstate_setup);
993
994MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
995MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
996MODULE_LICENSE("GPL");
997