powernow-k8.c revision 6889125b8b4e09c5e53e6ecab3433bed1ce198c9
1/*
2 *   (c) 2003-2012 Advanced Micro Devices, Inc.
3 *  Your use of this code is subject to the terms and conditions of the
4 *  GNU general public license version 2. See "COPYING" or
5 *  http://www.gnu.org/licenses/gpl.html
6 *
7 *  Maintainer:
8 *  Andreas Herrmann <andreas.herrmann3@amd.com>
9 *
10 *  Based on the powernow-k7.c module written by Dave Jones.
11 *  (C) 2003 Dave Jones on behalf of SuSE Labs
12 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14 *  Licensed under the terms of the GNU GPL License version 2.
15 *  Based upon datasheets & sample CPUs kindly provided by AMD.
16 *
17 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18 *  Dominik Brodowski, Jacob Shin, and others.
19 *  Originally developed by Paul Devriendt.
20 *
21 *  Processor information obtained from Chapter 9 (Power and Thermal
22 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 *  Power Management" in BKDGs for newer AMD CPU families.
25 *
26 *  Tables for specific CPUs can be inferred from AMD's processor
27 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28 */
29
30#include <linux/kernel.h>
31#include <linux/smp.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/cpufreq.h>
35#include <linux/slab.h>
36#include <linux/string.h>
37#include <linux/cpumask.h>
38#include <linux/io.h>
39#include <linux/delay.h>
40
41#include <asm/msr.h>
42#include <asm/cpu_device_id.h>
43
44#include <linux/acpi.h>
45#include <linux/mutex.h>
46#include <acpi/processor.h>
47
48#define PFX "powernow-k8: "
49#define VERSION "version 2.20.00"
50#include "powernow-k8.h"
51#include "mperf.h"
52
53/* serialize freq changes  */
54static DEFINE_MUTEX(fidvid_mutex);
55
56static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
57
58static int cpu_family = CPU_OPTERON;
59
60/* array to map SW pstate number to acpi state */
61static u32 ps_to_as[8];
62
63/* core performance boost */
64static bool cpb_capable, cpb_enabled;
65static struct msr __percpu *msrs;
66
67static struct cpufreq_driver cpufreq_amd64_driver;
68
69#ifndef CONFIG_SMP
70static inline const struct cpumask *cpu_core_mask(int cpu)
71{
72	return cpumask_of(0);
73}
74#endif
75
76/* Return a frequency in MHz, given an input fid */
77static u32 find_freq_from_fid(u32 fid)
78{
79	return 800 + (fid * 100);
80}
81
82/* Return a frequency in KHz, given an input fid */
83static u32 find_khz_freq_from_fid(u32 fid)
84{
85	return 1000 * find_freq_from_fid(fid);
86}
87
88static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89				     u32 pstate)
90{
91	return data[ps_to_as[pstate]].frequency;
92}
93
94/* Return the vco fid for an input fid
95 *
96 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97 * only from corresponding high fids. This returns "high" fid corresponding to
98 * "low" one.
99 */
100static u32 convert_fid_to_vco_fid(u32 fid)
101{
102	if (fid < HI_FID_TABLE_BOTTOM)
103		return 8 + (2 * fid);
104	else
105		return fid;
106}
107
108/*
109 * Return 1 if the pending bit is set. Unless we just instructed the processor
110 * to transition to a new state, seeing this bit set is really bad news.
111 */
112static int pending_bit_stuck(void)
113{
114	u32 lo, hi;
115
116	if (cpu_family == CPU_HW_PSTATE)
117		return 0;
118
119	rdmsr(MSR_FIDVID_STATUS, lo, hi);
120	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
121}
122
123/*
124 * Update the global current fid / vid values from the status msr.
125 * Returns 1 on error.
126 */
127static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
128{
129	u32 lo, hi;
130	u32 i = 0;
131
132	if (cpu_family == CPU_HW_PSTATE) {
133		rdmsr(MSR_PSTATE_STATUS, lo, hi);
134		i = lo & HW_PSTATE_MASK;
135		data->currpstate = i;
136
137		/*
138		 * a workaround for family 11h erratum 311 might cause
139		 * an "out-of-range Pstate if the core is in Pstate-0
140		 */
141		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142			data->currpstate = HW_PSTATE_0;
143
144		return 0;
145	}
146	do {
147		if (i++ > 10000) {
148			pr_debug("detected change pending stuck\n");
149			return 1;
150		}
151		rdmsr(MSR_FIDVID_STATUS, lo, hi);
152	} while (lo & MSR_S_LO_CHANGE_PENDING);
153
154	data->currvid = hi & MSR_S_HI_CURRENT_VID;
155	data->currfid = lo & MSR_S_LO_CURRENT_FID;
156
157	return 0;
158}
159
160/* the isochronous relief time */
161static void count_off_irt(struct powernow_k8_data *data)
162{
163	udelay((1 << data->irt) * 10);
164	return;
165}
166
167/* the voltage stabilization time */
168static void count_off_vst(struct powernow_k8_data *data)
169{
170	udelay(data->vstable * VST_UNITS_20US);
171	return;
172}
173
174/* need to init the control msr to a safe value (for each cpu) */
175static void fidvid_msr_init(void)
176{
177	u32 lo, hi;
178	u8 fid, vid;
179
180	rdmsr(MSR_FIDVID_STATUS, lo, hi);
181	vid = hi & MSR_S_HI_CURRENT_VID;
182	fid = lo & MSR_S_LO_CURRENT_FID;
183	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184	hi = MSR_C_HI_STP_GNT_BENIGN;
185	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186	wrmsr(MSR_FIDVID_CTL, lo, hi);
187}
188
189/* write the new fid value along with the other control fields to the msr */
190static int write_new_fid(struct powernow_k8_data *data, u32 fid)
191{
192	u32 lo;
193	u32 savevid = data->currvid;
194	u32 i = 0;
195
196	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198		return 1;
199	}
200
201	lo = fid;
202	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203	lo |= MSR_C_LO_INIT_FID_VID;
204
205	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207
208	do {
209		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210		if (i++ > 100) {
211			printk(KERN_ERR PFX
212				"Hardware error - pending bit very stuck - "
213				"no further pstate changes possible\n");
214			return 1;
215		}
216	} while (query_current_values_with_pending_wait(data));
217
218	count_off_irt(data);
219
220	if (savevid != data->currvid) {
221		printk(KERN_ERR PFX
222			"vid change on fid trans, old 0x%x, new 0x%x\n",
223			savevid, data->currvid);
224		return 1;
225	}
226
227	if (fid != data->currfid) {
228		printk(KERN_ERR PFX
229			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230			data->currfid);
231		return 1;
232	}
233
234	return 0;
235}
236
237/* Write a new vid to the hardware */
238static int write_new_vid(struct powernow_k8_data *data, u32 vid)
239{
240	u32 lo;
241	u32 savefid = data->currfid;
242	int i = 0;
243
244	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246		return 1;
247	}
248
249	lo = data->currfid;
250	lo |= (vid << MSR_C_LO_VID_SHIFT);
251	lo |= MSR_C_LO_INIT_FID_VID;
252
253	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254		vid, lo, STOP_GRANT_5NS);
255
256	do {
257		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258		if (i++ > 100) {
259			printk(KERN_ERR PFX "internal error - pending bit "
260					"very stuck - no further pstate "
261					"changes possible\n");
262			return 1;
263		}
264	} while (query_current_values_with_pending_wait(data));
265
266	if (savefid != data->currfid) {
267		printk(KERN_ERR PFX "fid changed on vid trans, old "
268			"0x%x new 0x%x\n",
269		       savefid, data->currfid);
270		return 1;
271	}
272
273	if (vid != data->currvid) {
274		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275				"curr 0x%x\n",
276				vid, data->currvid);
277		return 1;
278	}
279
280	return 0;
281}
282
283/*
284 * Reduce the vid by the max of step or reqvid.
285 * Decreasing vid codes represent increasing voltages:
286 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
287 */
288static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289		u32 reqvid, u32 step)
290{
291	if ((data->currvid - reqvid) > step)
292		reqvid = data->currvid - step;
293
294	if (write_new_vid(data, reqvid))
295		return 1;
296
297	count_off_vst(data);
298
299	return 0;
300}
301
302/* Change hardware pstate by single MSR write */
303static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
304{
305	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306	data->currpstate = pstate;
307	return 0;
308}
309
310/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311static int transition_fid_vid(struct powernow_k8_data *data,
312		u32 reqfid, u32 reqvid)
313{
314	if (core_voltage_pre_transition(data, reqvid, reqfid))
315		return 1;
316
317	if (core_frequency_transition(data, reqfid))
318		return 1;
319
320	if (core_voltage_post_transition(data, reqvid))
321		return 1;
322
323	if (query_current_values_with_pending_wait(data))
324		return 1;
325
326	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328				"curr 0x%x 0x%x\n",
329				smp_processor_id(),
330				reqfid, reqvid, data->currfid, data->currvid);
331		return 1;
332	}
333
334	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335		smp_processor_id(), data->currfid, data->currvid);
336
337	return 0;
338}
339
340/* Phase 1 - core voltage transition ... setup voltage */
341static int core_voltage_pre_transition(struct powernow_k8_data *data,
342		u32 reqvid, u32 reqfid)
343{
344	u32 rvosteps = data->rvo;
345	u32 savefid = data->currfid;
346	u32 maxvid, lo, rvomult = 1;
347
348	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349		"reqvid 0x%x, rvo 0x%x\n",
350		smp_processor_id(),
351		data->currfid, data->currvid, reqvid, data->rvo);
352
353	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354		rvomult = 2;
355	rvosteps *= rvomult;
356	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357	maxvid = 0x1f & (maxvid >> 16);
358	pr_debug("ph1 maxvid=0x%x\n", maxvid);
359	if (reqvid < maxvid) /* lower numbers are higher voltages */
360		reqvid = maxvid;
361
362	while (data->currvid > reqvid) {
363		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364			data->currvid, reqvid);
365		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366			return 1;
367	}
368
369	while ((rvosteps > 0) &&
370			((rvomult * data->rvo + data->currvid) > reqvid)) {
371		if (data->currvid == maxvid) {
372			rvosteps = 0;
373		} else {
374			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375				data->currvid - 1);
376			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377				return 1;
378			rvosteps--;
379		}
380	}
381
382	if (query_current_values_with_pending_wait(data))
383		return 1;
384
385	if (savefid != data->currfid) {
386		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387				data->currfid);
388		return 1;
389	}
390
391	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392		data->currfid, data->currvid);
393
394	return 0;
395}
396
397/* Phase 2 - core frequency transition */
398static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
399{
400	u32 vcoreqfid, vcocurrfid, vcofiddiff;
401	u32 fid_interval, savevid = data->currvid;
402
403	if (data->currfid == reqfid) {
404		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405				data->currfid);
406		return 0;
407	}
408
409	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410		"reqfid 0x%x\n",
411		smp_processor_id(),
412		data->currfid, data->currvid, reqfid);
413
414	vcoreqfid = convert_fid_to_vco_fid(reqfid);
415	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417	    : vcoreqfid - vcocurrfid;
418
419	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420		vcofiddiff = 0;
421
422	while (vcofiddiff > 2) {
423		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
424
425		if (reqfid > data->currfid) {
426			if (data->currfid > LO_FID_TABLE_TOP) {
427				if (write_new_fid(data,
428						data->currfid + fid_interval))
429					return 1;
430			} else {
431				if (write_new_fid
432				    (data,
433				     2 + convert_fid_to_vco_fid(data->currfid)))
434					return 1;
435			}
436		} else {
437			if (write_new_fid(data, data->currfid - fid_interval))
438				return 1;
439		}
440
441		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443		    : vcoreqfid - vcocurrfid;
444	}
445
446	if (write_new_fid(data, reqfid))
447		return 1;
448
449	if (query_current_values_with_pending_wait(data))
450		return 1;
451
452	if (data->currfid != reqfid) {
453		printk(KERN_ERR PFX
454			"ph2: mismatch, failed fid transition, "
455			"curr 0x%x, req 0x%x\n",
456			data->currfid, reqfid);
457		return 1;
458	}
459
460	if (savevid != data->currvid) {
461		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462			savevid, data->currvid);
463		return 1;
464	}
465
466	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467		data->currfid, data->currvid);
468
469	return 0;
470}
471
472/* Phase 3 - core voltage transition flow ... jump to the final vid. */
473static int core_voltage_post_transition(struct powernow_k8_data *data,
474		u32 reqvid)
475{
476	u32 savefid = data->currfid;
477	u32 savereqvid = reqvid;
478
479	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480		smp_processor_id(),
481		data->currfid, data->currvid);
482
483	if (reqvid != data->currvid) {
484		if (write_new_vid(data, reqvid))
485			return 1;
486
487		if (savefid != data->currfid) {
488			printk(KERN_ERR PFX
489			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490			       savefid, data->currfid);
491			return 1;
492		}
493
494		if (data->currvid != reqvid) {
495			printk(KERN_ERR PFX
496			       "ph3: failed vid transition\n, "
497			       "req 0x%x, curr 0x%x",
498			       reqvid, data->currvid);
499			return 1;
500		}
501	}
502
503	if (query_current_values_with_pending_wait(data))
504		return 1;
505
506	if (savereqvid != data->currvid) {
507		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508		return 1;
509	}
510
511	if (savefid != data->currfid) {
512		pr_debug("ph3 failed, currfid changed 0x%x\n",
513			data->currfid);
514		return 1;
515	}
516
517	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518		data->currfid, data->currvid);
519
520	return 0;
521}
522
523static const struct x86_cpu_id powernow_k8_ids[] = {
524	/* IO based frequency switching */
525	{ X86_VENDOR_AMD, 0xf },
526	/* MSR based frequency switching supported */
527	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
528	{}
529};
530MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
531
532static void check_supported_cpu(void *_rc)
533{
534	u32 eax, ebx, ecx, edx;
535	int *rc = _rc;
536
537	*rc = -ENODEV;
538
539	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
540
541	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
542		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
543		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
544			printk(KERN_INFO PFX
545				"Processor cpuid %x not supported\n", eax);
546			return;
547		}
548
549		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
550		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
551			printk(KERN_INFO PFX
552			       "No frequency change capabilities detected\n");
553			return;
554		}
555
556		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
557		if ((edx & P_STATE_TRANSITION_CAPABLE)
558			!= P_STATE_TRANSITION_CAPABLE) {
559			printk(KERN_INFO PFX
560				"Power state transitions not supported\n");
561			return;
562		}
563	} else { /* must be a HW Pstate capable processor */
564		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
565		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
566			cpu_family = CPU_HW_PSTATE;
567		else
568			return;
569	}
570
571	*rc = 0;
572}
573
574static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
575		u8 maxvid)
576{
577	unsigned int j;
578	u8 lastfid = 0xff;
579
580	for (j = 0; j < data->numps; j++) {
581		if (pst[j].vid > LEAST_VID) {
582			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
583			       j, pst[j].vid);
584			return -EINVAL;
585		}
586		if (pst[j].vid < data->rvo) {
587			/* vid + rvo >= 0 */
588			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
589			       " %d\n", j);
590			return -ENODEV;
591		}
592		if (pst[j].vid < maxvid + data->rvo) {
593			/* vid + rvo >= maxvid */
594			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
595			       " %d\n", j);
596			return -ENODEV;
597		}
598		if (pst[j].fid > MAX_FID) {
599			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
600			       " %d\n", j);
601			return -ENODEV;
602		}
603		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
604			/* Only first fid is allowed to be in "low" range */
605			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
606			       "0x%x\n", j, pst[j].fid);
607			return -EINVAL;
608		}
609		if (pst[j].fid < lastfid)
610			lastfid = pst[j].fid;
611	}
612	if (lastfid & 1) {
613		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
614		return -EINVAL;
615	}
616	if (lastfid > LO_FID_TABLE_TOP)
617		printk(KERN_INFO FW_BUG PFX
618			"first fid not from lo freq table\n");
619
620	return 0;
621}
622
623static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
624		unsigned int entry)
625{
626	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
627}
628
629static void print_basics(struct powernow_k8_data *data)
630{
631	int j;
632	for (j = 0; j < data->numps; j++) {
633		if (data->powernow_table[j].frequency !=
634				CPUFREQ_ENTRY_INVALID) {
635			if (cpu_family == CPU_HW_PSTATE) {
636				printk(KERN_INFO PFX
637					"   %d : pstate %d (%d MHz)\n", j,
638					data->powernow_table[j].index,
639					data->powernow_table[j].frequency/1000);
640			} else {
641				printk(KERN_INFO PFX
642					"fid 0x%x (%d MHz), vid 0x%x\n",
643					data->powernow_table[j].index & 0xff,
644					data->powernow_table[j].frequency/1000,
645					data->powernow_table[j].index >> 8);
646			}
647		}
648	}
649	if (data->batps)
650		printk(KERN_INFO PFX "Only %d pstates on battery\n",
651				data->batps);
652}
653
654static u32 freq_from_fid_did(u32 fid, u32 did)
655{
656	u32 mhz = 0;
657
658	if (boot_cpu_data.x86 == 0x10)
659		mhz = (100 * (fid + 0x10)) >> did;
660	else if (boot_cpu_data.x86 == 0x11)
661		mhz = (100 * (fid + 8)) >> did;
662	else
663		BUG();
664
665	return mhz * 1000;
666}
667
668static int fill_powernow_table(struct powernow_k8_data *data,
669		struct pst_s *pst, u8 maxvid)
670{
671	struct cpufreq_frequency_table *powernow_table;
672	unsigned int j;
673
674	if (data->batps) {
675		/* use ACPI support to get full speed on mains power */
676		printk(KERN_WARNING PFX
677			"Only %d pstates usable (use ACPI driver for full "
678			"range\n", data->batps);
679		data->numps = data->batps;
680	}
681
682	for (j = 1; j < data->numps; j++) {
683		if (pst[j-1].fid >= pst[j].fid) {
684			printk(KERN_ERR PFX "PST out of sequence\n");
685			return -EINVAL;
686		}
687	}
688
689	if (data->numps < 2) {
690		printk(KERN_ERR PFX "no p states to transition\n");
691		return -ENODEV;
692	}
693
694	if (check_pst_table(data, pst, maxvid))
695		return -EINVAL;
696
697	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
698		* (data->numps + 1)), GFP_KERNEL);
699	if (!powernow_table) {
700		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
701		return -ENOMEM;
702	}
703
704	for (j = 0; j < data->numps; j++) {
705		int freq;
706		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
707		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
708		freq = find_khz_freq_from_fid(pst[j].fid);
709		powernow_table[j].frequency = freq;
710	}
711	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
712	powernow_table[data->numps].index = 0;
713
714	if (query_current_values_with_pending_wait(data)) {
715		kfree(powernow_table);
716		return -EIO;
717	}
718
719	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
720	data->powernow_table = powernow_table;
721	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
722		print_basics(data);
723
724	for (j = 0; j < data->numps; j++)
725		if ((pst[j].fid == data->currfid) &&
726		    (pst[j].vid == data->currvid))
727			return 0;
728
729	pr_debug("currfid/vid do not match PST, ignoring\n");
730	return 0;
731}
732
733/* Find and validate the PSB/PST table in BIOS. */
734static int find_psb_table(struct powernow_k8_data *data)
735{
736	struct psb_s *psb;
737	unsigned int i;
738	u32 mvs;
739	u8 maxvid;
740	u32 cpst = 0;
741	u32 thiscpuid;
742
743	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
744		/* Scan BIOS looking for the signature. */
745		/* It can not be at ffff0 - it is too big. */
746
747		psb = phys_to_virt(i);
748		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
749			continue;
750
751		pr_debug("found PSB header at 0x%p\n", psb);
752
753		pr_debug("table vers: 0x%x\n", psb->tableversion);
754		if (psb->tableversion != PSB_VERSION_1_4) {
755			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
756			return -ENODEV;
757		}
758
759		pr_debug("flags: 0x%x\n", psb->flags1);
760		if (psb->flags1) {
761			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
762			return -ENODEV;
763		}
764
765		data->vstable = psb->vstable;
766		pr_debug("voltage stabilization time: %d(*20us)\n",
767				data->vstable);
768
769		pr_debug("flags2: 0x%x\n", psb->flags2);
770		data->rvo = psb->flags2 & 3;
771		data->irt = ((psb->flags2) >> 2) & 3;
772		mvs = ((psb->flags2) >> 4) & 3;
773		data->vidmvs = 1 << mvs;
774		data->batps = ((psb->flags2) >> 6) & 3;
775
776		pr_debug("ramp voltage offset: %d\n", data->rvo);
777		pr_debug("isochronous relief time: %d\n", data->irt);
778		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
779
780		pr_debug("numpst: 0x%x\n", psb->num_tables);
781		cpst = psb->num_tables;
782		if ((psb->cpuid == 0x00000fc0) ||
783		    (psb->cpuid == 0x00000fe0)) {
784			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
785			if ((thiscpuid == 0x00000fc0) ||
786			    (thiscpuid == 0x00000fe0))
787				cpst = 1;
788		}
789		if (cpst != 1) {
790			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
791			return -ENODEV;
792		}
793
794		data->plllock = psb->plllocktime;
795		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
796		pr_debug("maxfid: 0x%x\n", psb->maxfid);
797		pr_debug("maxvid: 0x%x\n", psb->maxvid);
798		maxvid = psb->maxvid;
799
800		data->numps = psb->numps;
801		pr_debug("numpstates: 0x%x\n", data->numps);
802		return fill_powernow_table(data,
803				(struct pst_s *)(psb+1), maxvid);
804	}
805	/*
806	 * If you see this message, complain to BIOS manufacturer. If
807	 * he tells you "we do not support Linux" or some similar
808	 * nonsense, remember that Windows 2000 uses the same legacy
809	 * mechanism that the old Linux PSB driver uses. Tell them it
810	 * is broken with Windows 2000.
811	 *
812	 * The reference to the AMD documentation is chapter 9 in the
813	 * BIOS and Kernel Developer's Guide, which is available on
814	 * www.amd.com
815	 */
816	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
817	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
818		" and Cool'N'Quiet support is enabled in BIOS setup\n");
819	return -ENODEV;
820}
821
822static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
823		unsigned int index)
824{
825	u64 control;
826
827	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
828		return;
829
830	control = data->acpi_data.states[index].control;
831	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
832	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
833	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
834	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
835	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
836	data->vstable = (control >> VST_SHIFT) & VST_MASK;
837}
838
839static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
840{
841	struct cpufreq_frequency_table *powernow_table;
842	int ret_val = -ENODEV;
843	u64 control, status;
844
845	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
846		pr_debug("register performance failed: bad ACPI data\n");
847		return -EIO;
848	}
849
850	/* verify the data contained in the ACPI structures */
851	if (data->acpi_data.state_count <= 1) {
852		pr_debug("No ACPI P-States\n");
853		goto err_out;
854	}
855
856	control = data->acpi_data.control_register.space_id;
857	status = data->acpi_data.status_register.space_id;
858
859	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
860	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
861		pr_debug("Invalid control/status registers (%llx - %llx)\n",
862			control, status);
863		goto err_out;
864	}
865
866	/* fill in data->powernow_table */
867	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
868		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
869	if (!powernow_table) {
870		pr_debug("powernow_table memory alloc failure\n");
871		goto err_out;
872	}
873
874	/* fill in data */
875	data->numps = data->acpi_data.state_count;
876	powernow_k8_acpi_pst_values(data, 0);
877
878	if (cpu_family == CPU_HW_PSTATE)
879		ret_val = fill_powernow_table_pstate(data, powernow_table);
880	else
881		ret_val = fill_powernow_table_fidvid(data, powernow_table);
882	if (ret_val)
883		goto err_out_mem;
884
885	powernow_table[data->acpi_data.state_count].frequency =
886		CPUFREQ_TABLE_END;
887	powernow_table[data->acpi_data.state_count].index = 0;
888	data->powernow_table = powernow_table;
889
890	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
891		print_basics(data);
892
893	/* notify BIOS that we exist */
894	acpi_processor_notify_smm(THIS_MODULE);
895
896	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
897		printk(KERN_ERR PFX
898				"unable to alloc powernow_k8_data cpumask\n");
899		ret_val = -ENOMEM;
900		goto err_out_mem;
901	}
902
903	return 0;
904
905err_out_mem:
906	kfree(powernow_table);
907
908err_out:
909	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
910
911	/* data->acpi_data.state_count informs us at ->exit()
912	 * whether ACPI was used */
913	data->acpi_data.state_count = 0;
914
915	return ret_val;
916}
917
918static int fill_powernow_table_pstate(struct powernow_k8_data *data,
919		struct cpufreq_frequency_table *powernow_table)
920{
921	int i;
922	u32 hi = 0, lo = 0;
923	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
924	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
925
926	for (i = 0; i < data->acpi_data.state_count; i++) {
927		u32 index;
928
929		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
930		if (index > data->max_hw_pstate) {
931			printk(KERN_ERR PFX "invalid pstate %d - "
932					"bad value %d.\n", i, index);
933			printk(KERN_ERR PFX "Please report to BIOS "
934					"manufacturer\n");
935			invalidate_entry(powernow_table, i);
936			continue;
937		}
938
939		ps_to_as[index] = i;
940
941		/* Frequency may be rounded for these */
942		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
943				 || boot_cpu_data.x86 == 0x11) {
944
945			rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
946			if (!(hi & HW_PSTATE_VALID_MASK)) {
947				pr_debug("invalid pstate %d, ignoring\n", index);
948				invalidate_entry(powernow_table, i);
949				continue;
950			}
951
952			powernow_table[i].frequency =
953				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
954		} else
955			powernow_table[i].frequency =
956				data->acpi_data.states[i].core_frequency * 1000;
957
958		powernow_table[i].index = index;
959	}
960	return 0;
961}
962
963static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
964		struct cpufreq_frequency_table *powernow_table)
965{
966	int i;
967
968	for (i = 0; i < data->acpi_data.state_count; i++) {
969		u32 fid;
970		u32 vid;
971		u32 freq, index;
972		u64 status, control;
973
974		if (data->exttype) {
975			status =  data->acpi_data.states[i].status;
976			fid = status & EXT_FID_MASK;
977			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
978		} else {
979			control =  data->acpi_data.states[i].control;
980			fid = control & FID_MASK;
981			vid = (control >> VID_SHIFT) & VID_MASK;
982		}
983
984		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
985
986		index = fid | (vid<<8);
987		powernow_table[i].index = index;
988
989		freq = find_khz_freq_from_fid(fid);
990		powernow_table[i].frequency = freq;
991
992		/* verify frequency is OK */
993		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
994			pr_debug("invalid freq %u kHz, ignoring\n", freq);
995			invalidate_entry(powernow_table, i);
996			continue;
997		}
998
999		/* verify voltage is OK -
1000		 * BIOSs are using "off" to indicate invalid */
1001		if (vid == VID_OFF) {
1002			pr_debug("invalid vid %u, ignoring\n", vid);
1003			invalidate_entry(powernow_table, i);
1004			continue;
1005		}
1006
1007		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008			printk(KERN_INFO PFX "invalid freq entries "
1009				"%u kHz vs. %u kHz\n", freq,
1010				(unsigned int)
1011				(data->acpi_data.states[i].core_frequency
1012				 * 1000));
1013			invalidate_entry(powernow_table, i);
1014			continue;
1015		}
1016	}
1017	return 0;
1018}
1019
1020static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1021{
1022	if (data->acpi_data.state_count)
1023		acpi_processor_unregister_performance(&data->acpi_data,
1024				data->cpu);
1025	free_cpumask_var(data->acpi_data.shared_cpu_map);
1026}
1027
1028static int get_transition_latency(struct powernow_k8_data *data)
1029{
1030	int max_latency = 0;
1031	int i;
1032	for (i = 0; i < data->acpi_data.state_count; i++) {
1033		int cur_latency = data->acpi_data.states[i].transition_latency
1034			+ data->acpi_data.states[i].bus_master_latency;
1035		if (cur_latency > max_latency)
1036			max_latency = cur_latency;
1037	}
1038	if (max_latency == 0) {
1039		/*
1040		 * Fam 11h and later may return 0 as transition latency. This
1041		 * is intended and means "very fast". While cpufreq core and
1042		 * governors currently can handle that gracefully, better set it
1043		 * to 1 to avoid problems in the future.
1044		 */
1045		if (boot_cpu_data.x86 < 0x11)
1046			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047				"latency\n");
1048		max_latency = 1;
1049	}
1050	/* value in usecs, needs to be in nanoseconds */
1051	return 1000 * max_latency;
1052}
1053
1054/* Take a frequency, and issue the fid/vid transition command */
1055static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056		unsigned int index)
1057{
1058	u32 fid = 0;
1059	u32 vid = 0;
1060	int res, i;
1061	struct cpufreq_freqs freqs;
1062
1063	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1064
1065	/* fid/vid correctness check for k8 */
1066	/* fid are the lower 8 bits of the index we stored into
1067	 * the cpufreq frequency table in find_psb_table, vid
1068	 * are the upper 8 bits.
1069	 */
1070	fid = data->powernow_table[index].index & 0xFF;
1071	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1072
1073	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1074
1075	if (query_current_values_with_pending_wait(data))
1076		return 1;
1077
1078	if ((data->currvid == vid) && (data->currfid == fid)) {
1079		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080			fid, vid);
1081		return 0;
1082	}
1083
1084	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085		smp_processor_id(), fid, vid);
1086	freqs.old = find_khz_freq_from_fid(data->currfid);
1087	freqs.new = find_khz_freq_from_fid(fid);
1088
1089	for_each_cpu(i, data->available_cores) {
1090		freqs.cpu = i;
1091		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1092	}
1093
1094	res = transition_fid_vid(data, fid, vid);
1095	if (res)
1096		return res;
1097
1098	freqs.new = find_khz_freq_from_fid(data->currfid);
1099
1100	for_each_cpu(i, data->available_cores) {
1101		freqs.cpu = i;
1102		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1103	}
1104	return res;
1105}
1106
1107/* Take a frequency, and issue the hardware pstate transition command */
1108static int transition_frequency_pstate(struct powernow_k8_data *data,
1109		unsigned int index)
1110{
1111	u32 pstate = 0;
1112	int res, i;
1113	struct cpufreq_freqs freqs;
1114
1115	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1116
1117	/* get MSR index for hardware pstate transition */
1118	pstate = index & HW_PSTATE_MASK;
1119	if (pstate > data->max_hw_pstate)
1120		return -EINVAL;
1121
1122	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123			data->currpstate);
1124	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1125
1126	for_each_cpu(i, data->available_cores) {
1127		freqs.cpu = i;
1128		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1129	}
1130
1131	res = transition_pstate(data, pstate);
1132	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1133
1134	for_each_cpu(i, data->available_cores) {
1135		freqs.cpu = i;
1136		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1137	}
1138	return res;
1139}
1140
1141struct powernowk8_target_arg {
1142	struct cpufreq_policy		*pol;
1143	unsigned			targfreq;
1144	unsigned			relation;
1145};
1146
1147static long powernowk8_target_fn(void *arg)
1148{
1149	struct powernowk8_target_arg *pta = arg;
1150	struct cpufreq_policy *pol = pta->pol;
1151	unsigned targfreq = pta->targfreq;
1152	unsigned relation = pta->relation;
1153	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154	u32 checkfid;
1155	u32 checkvid;
1156	unsigned int newstate;
1157	int ret;
1158
1159	if (!data)
1160		return -EINVAL;
1161
1162	checkfid = data->currfid;
1163	checkvid = data->currvid;
1164
1165	if (pending_bit_stuck()) {
1166		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167		return -EIO;
1168	}
1169
1170	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171		pol->cpu, targfreq, pol->min, pol->max, relation);
1172
1173	if (query_current_values_with_pending_wait(data))
1174		return -EIO;
1175
1176	if (cpu_family != CPU_HW_PSTATE) {
1177		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178		data->currfid, data->currvid);
1179
1180		if ((checkvid != data->currvid) ||
1181		    (checkfid != data->currfid)) {
1182			printk(KERN_INFO PFX
1183				"error - out of sync, fix 0x%x 0x%x, "
1184				"vid 0x%x 0x%x\n",
1185				checkfid, data->currfid,
1186				checkvid, data->currvid);
1187		}
1188	}
1189
1190	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191				targfreq, relation, &newstate))
1192		return -EIO;
1193
1194	mutex_lock(&fidvid_mutex);
1195
1196	powernow_k8_acpi_pst_values(data, newstate);
1197
1198	if (cpu_family == CPU_HW_PSTATE)
1199		ret = transition_frequency_pstate(data,
1200			data->powernow_table[newstate].index);
1201	else
1202		ret = transition_frequency_fidvid(data, newstate);
1203	if (ret) {
1204		printk(KERN_ERR PFX "transition frequency failed\n");
1205		mutex_unlock(&fidvid_mutex);
1206		return 1;
1207	}
1208	mutex_unlock(&fidvid_mutex);
1209
1210	if (cpu_family == CPU_HW_PSTATE)
1211		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212				data->powernow_table[newstate].index);
1213	else
1214		pol->cur = find_khz_freq_from_fid(data->currfid);
1215
1216	return 0;
1217}
1218
1219/* Driver entry point to switch to the target frequency */
1220static int powernowk8_target(struct cpufreq_policy *pol,
1221		unsigned targfreq, unsigned relation)
1222{
1223	struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224					     .relation = relation };
1225
1226	/*
1227	 * Must run on @pol->cpu.  cpufreq core is responsible for ensuring
1228	 * that we're bound to the current CPU and pol->cpu stays online.
1229	 */
1230	if (smp_processor_id() == pol->cpu)
1231		return powernowk8_target_fn(&pta);
1232	else
1233		return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1234}
1235
1236/* Driver entry point to verify the policy and range of frequencies */
1237static int powernowk8_verify(struct cpufreq_policy *pol)
1238{
1239	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1240
1241	if (!data)
1242		return -EINVAL;
1243
1244	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1245}
1246
1247struct init_on_cpu {
1248	struct powernow_k8_data *data;
1249	int rc;
1250};
1251
1252static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1253{
1254	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1255
1256	if (pending_bit_stuck()) {
1257		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1258		init_on_cpu->rc = -ENODEV;
1259		return;
1260	}
1261
1262	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1263		init_on_cpu->rc = -ENODEV;
1264		return;
1265	}
1266
1267	if (cpu_family == CPU_OPTERON)
1268		fidvid_msr_init();
1269
1270	init_on_cpu->rc = 0;
1271}
1272
1273/* per CPU init entry point to the driver */
1274static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1275{
1276	static const char ACPI_PSS_BIOS_BUG_MSG[] =
1277		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1278		FW_BUG PFX "Try again with latest BIOS.\n";
1279	struct powernow_k8_data *data;
1280	struct init_on_cpu init_on_cpu;
1281	int rc;
1282	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1283
1284	if (!cpu_online(pol->cpu))
1285		return -ENODEV;
1286
1287	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1288	if (rc)
1289		return -ENODEV;
1290
1291	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1292	if (!data) {
1293		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1294		return -ENOMEM;
1295	}
1296
1297	data->cpu = pol->cpu;
1298	data->currpstate = HW_PSTATE_INVALID;
1299
1300	if (powernow_k8_cpu_init_acpi(data)) {
1301		/*
1302		 * Use the PSB BIOS structure. This is only available on
1303		 * an UP version, and is deprecated by AMD.
1304		 */
1305		if (num_online_cpus() != 1) {
1306			printk_once(ACPI_PSS_BIOS_BUG_MSG);
1307			goto err_out;
1308		}
1309		if (pol->cpu != 0) {
1310			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1311			       "CPU other than CPU0. Complain to your BIOS "
1312			       "vendor.\n");
1313			goto err_out;
1314		}
1315		rc = find_psb_table(data);
1316		if (rc)
1317			goto err_out;
1318
1319		/* Take a crude guess here.
1320		 * That guess was in microseconds, so multiply with 1000 */
1321		pol->cpuinfo.transition_latency = (
1322			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1323			 ((1 << data->irt) * 30)) * 1000;
1324	} else /* ACPI _PSS objects available */
1325		pol->cpuinfo.transition_latency = get_transition_latency(data);
1326
1327	/* only run on specific CPU from here on */
1328	init_on_cpu.data = data;
1329	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1330				 &init_on_cpu, 1);
1331	rc = init_on_cpu.rc;
1332	if (rc != 0)
1333		goto err_out_exit_acpi;
1334
1335	if (cpu_family == CPU_HW_PSTATE)
1336		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1337	else
1338		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1339	data->available_cores = pol->cpus;
1340
1341	if (cpu_family == CPU_HW_PSTATE)
1342		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1343				data->currpstate);
1344	else
1345		pol->cur = find_khz_freq_from_fid(data->currfid);
1346	pr_debug("policy current frequency %d kHz\n", pol->cur);
1347
1348	/* min/max the cpu is capable of */
1349	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1350		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1351		powernow_k8_cpu_exit_acpi(data);
1352		kfree(data->powernow_table);
1353		kfree(data);
1354		return -EINVAL;
1355	}
1356
1357	/* Check for APERF/MPERF support in hardware */
1358	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1359		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1360
1361	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1362
1363	if (cpu_family == CPU_HW_PSTATE)
1364		pr_debug("cpu_init done, current pstate 0x%x\n",
1365				data->currpstate);
1366	else
1367		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1368			data->currfid, data->currvid);
1369
1370	per_cpu(powernow_data, pol->cpu) = data;
1371
1372	return 0;
1373
1374err_out_exit_acpi:
1375	powernow_k8_cpu_exit_acpi(data);
1376
1377err_out:
1378	kfree(data);
1379	return -ENODEV;
1380}
1381
1382static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1383{
1384	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1385
1386	if (!data)
1387		return -EINVAL;
1388
1389	powernow_k8_cpu_exit_acpi(data);
1390
1391	cpufreq_frequency_table_put_attr(pol->cpu);
1392
1393	kfree(data->powernow_table);
1394	kfree(data);
1395	per_cpu(powernow_data, pol->cpu) = NULL;
1396
1397	return 0;
1398}
1399
1400static void query_values_on_cpu(void *_err)
1401{
1402	int *err = _err;
1403	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1404
1405	*err = query_current_values_with_pending_wait(data);
1406}
1407
1408static unsigned int powernowk8_get(unsigned int cpu)
1409{
1410	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1411	unsigned int khz = 0;
1412	int err;
1413
1414	if (!data)
1415		return 0;
1416
1417	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1418	if (err)
1419		goto out;
1420
1421	if (cpu_family == CPU_HW_PSTATE)
1422		khz = find_khz_freq_from_pstate(data->powernow_table,
1423						data->currpstate);
1424	else
1425		khz = find_khz_freq_from_fid(data->currfid);
1426
1427
1428out:
1429	return khz;
1430}
1431
1432static void _cpb_toggle_msrs(bool t)
1433{
1434	int cpu;
1435
1436	get_online_cpus();
1437
1438	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439
1440	for_each_cpu(cpu, cpu_online_mask) {
1441		struct msr *reg = per_cpu_ptr(msrs, cpu);
1442		if (t)
1443			reg->l &= ~BIT(25);
1444		else
1445			reg->l |= BIT(25);
1446	}
1447	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1448
1449	put_online_cpus();
1450}
1451
1452/*
1453 * Switch on/off core performance boosting.
1454 *
1455 * 0=disable
1456 * 1=enable.
1457 */
1458static void cpb_toggle(bool t)
1459{
1460	if (!cpb_capable)
1461		return;
1462
1463	if (t && !cpb_enabled) {
1464		cpb_enabled = true;
1465		_cpb_toggle_msrs(t);
1466		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1467	} else if (!t && cpb_enabled) {
1468		cpb_enabled = false;
1469		_cpb_toggle_msrs(t);
1470		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1471	}
1472}
1473
1474static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1475				 size_t count)
1476{
1477	int ret = -EINVAL;
1478	unsigned long val = 0;
1479
1480	ret = strict_strtoul(buf, 10, &val);
1481	if (!ret && (val == 0 || val == 1) && cpb_capable)
1482		cpb_toggle(val);
1483	else
1484		return -EINVAL;
1485
1486	return count;
1487}
1488
1489static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1490{
1491	return sprintf(buf, "%u\n", cpb_enabled);
1492}
1493
1494#define define_one_rw(_name) \
1495static struct freq_attr _name = \
1496__ATTR(_name, 0644, show_##_name, store_##_name)
1497
1498define_one_rw(cpb);
1499
1500static struct freq_attr *powernow_k8_attr[] = {
1501	&cpufreq_freq_attr_scaling_available_freqs,
1502	&cpb,
1503	NULL,
1504};
1505
1506static struct cpufreq_driver cpufreq_amd64_driver = {
1507	.verify		= powernowk8_verify,
1508	.target		= powernowk8_target,
1509	.bios_limit	= acpi_processor_get_bios_limit,
1510	.init		= powernowk8_cpu_init,
1511	.exit		= __devexit_p(powernowk8_cpu_exit),
1512	.get		= powernowk8_get,
1513	.name		= "powernow-k8",
1514	.owner		= THIS_MODULE,
1515	.attr		= powernow_k8_attr,
1516};
1517
1518/*
1519 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1520 * cannot block the remaining ones from boosting. On the CPU_UP path we
1521 * simply keep the boost-disable flag in sync with the current global
1522 * state.
1523 */
1524static int cpb_notify(struct notifier_block *nb, unsigned long action,
1525		      void *hcpu)
1526{
1527	unsigned cpu = (long)hcpu;
1528	u32 lo, hi;
1529
1530	switch (action) {
1531	case CPU_UP_PREPARE:
1532	case CPU_UP_PREPARE_FROZEN:
1533
1534		if (!cpb_enabled) {
1535			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1536			lo |= BIT(25);
1537			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1538		}
1539		break;
1540
1541	case CPU_DOWN_PREPARE:
1542	case CPU_DOWN_PREPARE_FROZEN:
1543		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1544		lo &= ~BIT(25);
1545		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1546		break;
1547
1548	default:
1549		break;
1550	}
1551
1552	return NOTIFY_OK;
1553}
1554
1555static struct notifier_block cpb_nb = {
1556	.notifier_call		= cpb_notify,
1557};
1558
1559/* driver entry point for init */
1560static int __cpuinit powernowk8_init(void)
1561{
1562	unsigned int i, supported_cpus = 0, cpu;
1563	int rv;
1564
1565	if (!x86_match_cpu(powernow_k8_ids))
1566		return -ENODEV;
1567
1568	for_each_online_cpu(i) {
1569		int rc;
1570		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1571		if (rc == 0)
1572			supported_cpus++;
1573	}
1574
1575	if (supported_cpus != num_online_cpus())
1576		return -ENODEV;
1577
1578	printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1579		num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1580
1581	if (boot_cpu_has(X86_FEATURE_CPB)) {
1582
1583		cpb_capable = true;
1584
1585		msrs = msrs_alloc();
1586		if (!msrs) {
1587			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1588			return -ENOMEM;
1589		}
1590
1591		register_cpu_notifier(&cpb_nb);
1592
1593		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1594
1595		for_each_cpu(cpu, cpu_online_mask) {
1596			struct msr *reg = per_cpu_ptr(msrs, cpu);
1597			cpb_enabled |= !(!!(reg->l & BIT(25)));
1598		}
1599
1600		printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1601			(cpb_enabled ? "on" : "off"));
1602	}
1603
1604	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1605	if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1606		unregister_cpu_notifier(&cpb_nb);
1607		msrs_free(msrs);
1608		msrs = NULL;
1609	}
1610	return rv;
1611}
1612
1613/* driver entry point for term */
1614static void __exit powernowk8_exit(void)
1615{
1616	pr_debug("exit\n");
1617
1618	if (boot_cpu_has(X86_FEATURE_CPB)) {
1619		msrs_free(msrs);
1620		msrs = NULL;
1621
1622		unregister_cpu_notifier(&cpb_nb);
1623	}
1624
1625	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1626}
1627
1628MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1629		"Mark Langsdorf <mark.langsdorf@amd.com>");
1630MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1631MODULE_LICENSE("GPL");
1632
1633late_initcall(powernowk8_init);
1634module_exit(powernowk8_exit);
1635