powernow-k8.c revision a2060958569a8e8e36202c373a55c458ff84856d
1/*
2 *   (c) 2003-2012 Advanced Micro Devices, Inc.
3 *  Your use of this code is subject to the terms and conditions of the
4 *  GNU general public license version 2. See "COPYING" or
5 *  http://www.gnu.org/licenses/gpl.html
6 *
7 *  Maintainer:
8 *  Andreas Herrmann <andreas.herrmann3@amd.com>
9 *
10 *  Based on the powernow-k7.c module written by Dave Jones.
11 *  (C) 2003 Dave Jones on behalf of SuSE Labs
12 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13 *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14 *  Licensed under the terms of the GNU GPL License version 2.
15 *  Based upon datasheets & sample CPUs kindly provided by AMD.
16 *
17 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18 *  Dominik Brodowski, Jacob Shin, and others.
19 *  Originally developed by Paul Devriendt.
20 *
21 *  Processor information obtained from Chapter 9 (Power and Thermal
22 *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 *  Power Management" in BKDGs for newer AMD CPU families.
25 *
26 *  Tables for specific CPUs can be inferred from AMD's processor
27 *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28 */
29
30#include <linux/kernel.h>
31#include <linux/smp.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/cpufreq.h>
35#include <linux/slab.h>
36#include <linux/string.h>
37#include <linux/cpumask.h>
38#include <linux/sched.h>	/* for current / set_cpus_allowed() */
39#include <linux/io.h>
40#include <linux/delay.h>
41
42#include <asm/msr.h>
43#include <asm/cpu_device_id.h>
44
45#include <linux/acpi.h>
46#include <linux/mutex.h>
47#include <acpi/processor.h>
48
49#define PFX "powernow-k8: "
50#define VERSION "version 2.20.00"
51#include "powernow-k8.h"
52#include "mperf.h"
53
54/* serialize freq changes  */
55static DEFINE_MUTEX(fidvid_mutex);
56
57static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
58
59static int cpu_family = CPU_OPTERON;
60
61/* array to map SW pstate number to acpi state */
62static u32 ps_to_as[8];
63
64/* core performance boost */
65static bool cpb_capable, cpb_enabled;
66static struct msr __percpu *msrs;
67
68static struct cpufreq_driver cpufreq_amd64_driver;
69
70#ifndef CONFIG_SMP
71static inline const struct cpumask *cpu_core_mask(int cpu)
72{
73	return cpumask_of(0);
74}
75#endif
76
77/* Return a frequency in MHz, given an input fid */
78static u32 find_freq_from_fid(u32 fid)
79{
80	return 800 + (fid * 100);
81}
82
83/* Return a frequency in KHz, given an input fid */
84static u32 find_khz_freq_from_fid(u32 fid)
85{
86	return 1000 * find_freq_from_fid(fid);
87}
88
89static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
90				     u32 pstate)
91{
92	return data[ps_to_as[pstate]].frequency;
93}
94
95/* Return the vco fid for an input fid
96 *
97 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
98 * only from corresponding high fids. This returns "high" fid corresponding to
99 * "low" one.
100 */
101static u32 convert_fid_to_vco_fid(u32 fid)
102{
103	if (fid < HI_FID_TABLE_BOTTOM)
104		return 8 + (2 * fid);
105	else
106		return fid;
107}
108
109/*
110 * Return 1 if the pending bit is set. Unless we just instructed the processor
111 * to transition to a new state, seeing this bit set is really bad news.
112 */
113static int pending_bit_stuck(void)
114{
115	u32 lo, hi;
116
117	if (cpu_family == CPU_HW_PSTATE)
118		return 0;
119
120	rdmsr(MSR_FIDVID_STATUS, lo, hi);
121	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
122}
123
124/*
125 * Update the global current fid / vid values from the status msr.
126 * Returns 1 on error.
127 */
128static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
129{
130	u32 lo, hi;
131	u32 i = 0;
132
133	if (cpu_family == CPU_HW_PSTATE) {
134		rdmsr(MSR_PSTATE_STATUS, lo, hi);
135		i = lo & HW_PSTATE_MASK;
136		data->currpstate = i;
137
138		/*
139		 * a workaround for family 11h erratum 311 might cause
140		 * an "out-of-range Pstate if the core is in Pstate-0
141		 */
142		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
143			data->currpstate = HW_PSTATE_0;
144
145		return 0;
146	}
147	do {
148		if (i++ > 10000) {
149			pr_debug("detected change pending stuck\n");
150			return 1;
151		}
152		rdmsr(MSR_FIDVID_STATUS, lo, hi);
153	} while (lo & MSR_S_LO_CHANGE_PENDING);
154
155	data->currvid = hi & MSR_S_HI_CURRENT_VID;
156	data->currfid = lo & MSR_S_LO_CURRENT_FID;
157
158	return 0;
159}
160
161/* the isochronous relief time */
162static void count_off_irt(struct powernow_k8_data *data)
163{
164	udelay((1 << data->irt) * 10);
165	return;
166}
167
168/* the voltage stabilization time */
169static void count_off_vst(struct powernow_k8_data *data)
170{
171	udelay(data->vstable * VST_UNITS_20US);
172	return;
173}
174
175/* need to init the control msr to a safe value (for each cpu) */
176static void fidvid_msr_init(void)
177{
178	u32 lo, hi;
179	u8 fid, vid;
180
181	rdmsr(MSR_FIDVID_STATUS, lo, hi);
182	vid = hi & MSR_S_HI_CURRENT_VID;
183	fid = lo & MSR_S_LO_CURRENT_FID;
184	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185	hi = MSR_C_HI_STP_GNT_BENIGN;
186	pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187	wrmsr(MSR_FIDVID_CTL, lo, hi);
188}
189
190/* write the new fid value along with the other control fields to the msr */
191static int write_new_fid(struct powernow_k8_data *data, u32 fid)
192{
193	u32 lo;
194	u32 savevid = data->currvid;
195	u32 i = 0;
196
197	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
198		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
199		return 1;
200	}
201
202	lo = fid;
203	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
204	lo |= MSR_C_LO_INIT_FID_VID;
205
206	pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
207		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
208
209	do {
210		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
211		if (i++ > 100) {
212			printk(KERN_ERR PFX
213				"Hardware error - pending bit very stuck - "
214				"no further pstate changes possible\n");
215			return 1;
216		}
217	} while (query_current_values_with_pending_wait(data));
218
219	count_off_irt(data);
220
221	if (savevid != data->currvid) {
222		printk(KERN_ERR PFX
223			"vid change on fid trans, old 0x%x, new 0x%x\n",
224			savevid, data->currvid);
225		return 1;
226	}
227
228	if (fid != data->currfid) {
229		printk(KERN_ERR PFX
230			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
231			data->currfid);
232		return 1;
233	}
234
235	return 0;
236}
237
238/* Write a new vid to the hardware */
239static int write_new_vid(struct powernow_k8_data *data, u32 vid)
240{
241	u32 lo;
242	u32 savefid = data->currfid;
243	int i = 0;
244
245	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
246		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
247		return 1;
248	}
249
250	lo = data->currfid;
251	lo |= (vid << MSR_C_LO_VID_SHIFT);
252	lo |= MSR_C_LO_INIT_FID_VID;
253
254	pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
255		vid, lo, STOP_GRANT_5NS);
256
257	do {
258		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
259		if (i++ > 100) {
260			printk(KERN_ERR PFX "internal error - pending bit "
261					"very stuck - no further pstate "
262					"changes possible\n");
263			return 1;
264		}
265	} while (query_current_values_with_pending_wait(data));
266
267	if (savefid != data->currfid) {
268		printk(KERN_ERR PFX "fid changed on vid trans, old "
269			"0x%x new 0x%x\n",
270		       savefid, data->currfid);
271		return 1;
272	}
273
274	if (vid != data->currvid) {
275		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
276				"curr 0x%x\n",
277				vid, data->currvid);
278		return 1;
279	}
280
281	return 0;
282}
283
284/*
285 * Reduce the vid by the max of step or reqvid.
286 * Decreasing vid codes represent increasing voltages:
287 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
288 */
289static int decrease_vid_code_by_step(struct powernow_k8_data *data,
290		u32 reqvid, u32 step)
291{
292	if ((data->currvid - reqvid) > step)
293		reqvid = data->currvid - step;
294
295	if (write_new_vid(data, reqvid))
296		return 1;
297
298	count_off_vst(data);
299
300	return 0;
301}
302
303/* Change hardware pstate by single MSR write */
304static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
305{
306	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
307	data->currpstate = pstate;
308	return 0;
309}
310
311/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
312static int transition_fid_vid(struct powernow_k8_data *data,
313		u32 reqfid, u32 reqvid)
314{
315	if (core_voltage_pre_transition(data, reqvid, reqfid))
316		return 1;
317
318	if (core_frequency_transition(data, reqfid))
319		return 1;
320
321	if (core_voltage_post_transition(data, reqvid))
322		return 1;
323
324	if (query_current_values_with_pending_wait(data))
325		return 1;
326
327	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
328		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
329				"curr 0x%x 0x%x\n",
330				smp_processor_id(),
331				reqfid, reqvid, data->currfid, data->currvid);
332		return 1;
333	}
334
335	pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
336		smp_processor_id(), data->currfid, data->currvid);
337
338	return 0;
339}
340
341/* Phase 1 - core voltage transition ... setup voltage */
342static int core_voltage_pre_transition(struct powernow_k8_data *data,
343		u32 reqvid, u32 reqfid)
344{
345	u32 rvosteps = data->rvo;
346	u32 savefid = data->currfid;
347	u32 maxvid, lo, rvomult = 1;
348
349	pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
350		"reqvid 0x%x, rvo 0x%x\n",
351		smp_processor_id(),
352		data->currfid, data->currvid, reqvid, data->rvo);
353
354	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
355		rvomult = 2;
356	rvosteps *= rvomult;
357	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
358	maxvid = 0x1f & (maxvid >> 16);
359	pr_debug("ph1 maxvid=0x%x\n", maxvid);
360	if (reqvid < maxvid) /* lower numbers are higher voltages */
361		reqvid = maxvid;
362
363	while (data->currvid > reqvid) {
364		pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
365			data->currvid, reqvid);
366		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
367			return 1;
368	}
369
370	while ((rvosteps > 0) &&
371			((rvomult * data->rvo + data->currvid) > reqvid)) {
372		if (data->currvid == maxvid) {
373			rvosteps = 0;
374		} else {
375			pr_debug("ph1: changing vid for rvo, req 0x%x\n",
376				data->currvid - 1);
377			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
378				return 1;
379			rvosteps--;
380		}
381	}
382
383	if (query_current_values_with_pending_wait(data))
384		return 1;
385
386	if (savefid != data->currfid) {
387		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
388				data->currfid);
389		return 1;
390	}
391
392	pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
393		data->currfid, data->currvid);
394
395	return 0;
396}
397
398/* Phase 2 - core frequency transition */
399static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
400{
401	u32 vcoreqfid, vcocurrfid, vcofiddiff;
402	u32 fid_interval, savevid = data->currvid;
403
404	if (data->currfid == reqfid) {
405		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
406				data->currfid);
407		return 0;
408	}
409
410	pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
411		"reqfid 0x%x\n",
412		smp_processor_id(),
413		data->currfid, data->currvid, reqfid);
414
415	vcoreqfid = convert_fid_to_vco_fid(reqfid);
416	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
417	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
418	    : vcoreqfid - vcocurrfid;
419
420	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
421		vcofiddiff = 0;
422
423	while (vcofiddiff > 2) {
424		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
425
426		if (reqfid > data->currfid) {
427			if (data->currfid > LO_FID_TABLE_TOP) {
428				if (write_new_fid(data,
429						data->currfid + fid_interval))
430					return 1;
431			} else {
432				if (write_new_fid
433				    (data,
434				     2 + convert_fid_to_vco_fid(data->currfid)))
435					return 1;
436			}
437		} else {
438			if (write_new_fid(data, data->currfid - fid_interval))
439				return 1;
440		}
441
442		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
443		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
444		    : vcoreqfid - vcocurrfid;
445	}
446
447	if (write_new_fid(data, reqfid))
448		return 1;
449
450	if (query_current_values_with_pending_wait(data))
451		return 1;
452
453	if (data->currfid != reqfid) {
454		printk(KERN_ERR PFX
455			"ph2: mismatch, failed fid transition, "
456			"curr 0x%x, req 0x%x\n",
457			data->currfid, reqfid);
458		return 1;
459	}
460
461	if (savevid != data->currvid) {
462		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
463			savevid, data->currvid);
464		return 1;
465	}
466
467	pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
468		data->currfid, data->currvid);
469
470	return 0;
471}
472
473/* Phase 3 - core voltage transition flow ... jump to the final vid. */
474static int core_voltage_post_transition(struct powernow_k8_data *data,
475		u32 reqvid)
476{
477	u32 savefid = data->currfid;
478	u32 savereqvid = reqvid;
479
480	pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
481		smp_processor_id(),
482		data->currfid, data->currvid);
483
484	if (reqvid != data->currvid) {
485		if (write_new_vid(data, reqvid))
486			return 1;
487
488		if (savefid != data->currfid) {
489			printk(KERN_ERR PFX
490			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
491			       savefid, data->currfid);
492			return 1;
493		}
494
495		if (data->currvid != reqvid) {
496			printk(KERN_ERR PFX
497			       "ph3: failed vid transition\n, "
498			       "req 0x%x, curr 0x%x",
499			       reqvid, data->currvid);
500			return 1;
501		}
502	}
503
504	if (query_current_values_with_pending_wait(data))
505		return 1;
506
507	if (savereqvid != data->currvid) {
508		pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
509		return 1;
510	}
511
512	if (savefid != data->currfid) {
513		pr_debug("ph3 failed, currfid changed 0x%x\n",
514			data->currfid);
515		return 1;
516	}
517
518	pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
519		data->currfid, data->currvid);
520
521	return 0;
522}
523
524static const struct x86_cpu_id powernow_k8_ids[] = {
525	/* IO based frequency switching */
526	{ X86_VENDOR_AMD, 0xf },
527	/* MSR based frequency switching supported */
528	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
529	{}
530};
531MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
532
533static void check_supported_cpu(void *_rc)
534{
535	u32 eax, ebx, ecx, edx;
536	int *rc = _rc;
537
538	*rc = -ENODEV;
539
540	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
541
542	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
543		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
544		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
545			printk(KERN_INFO PFX
546				"Processor cpuid %x not supported\n", eax);
547			return;
548		}
549
550		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
551		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
552			printk(KERN_INFO PFX
553			       "No frequency change capabilities detected\n");
554			return;
555		}
556
557		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
558		if ((edx & P_STATE_TRANSITION_CAPABLE)
559			!= P_STATE_TRANSITION_CAPABLE) {
560			printk(KERN_INFO PFX
561				"Power state transitions not supported\n");
562			return;
563		}
564	} else { /* must be a HW Pstate capable processor */
565		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
566		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
567			cpu_family = CPU_HW_PSTATE;
568		else
569			return;
570	}
571
572	*rc = 0;
573}
574
575static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
576		u8 maxvid)
577{
578	unsigned int j;
579	u8 lastfid = 0xff;
580
581	for (j = 0; j < data->numps; j++) {
582		if (pst[j].vid > LEAST_VID) {
583			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
584			       j, pst[j].vid);
585			return -EINVAL;
586		}
587		if (pst[j].vid < data->rvo) {
588			/* vid + rvo >= 0 */
589			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
590			       " %d\n", j);
591			return -ENODEV;
592		}
593		if (pst[j].vid < maxvid + data->rvo) {
594			/* vid + rvo >= maxvid */
595			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
596			       " %d\n", j);
597			return -ENODEV;
598		}
599		if (pst[j].fid > MAX_FID) {
600			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
601			       " %d\n", j);
602			return -ENODEV;
603		}
604		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
605			/* Only first fid is allowed to be in "low" range */
606			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
607			       "0x%x\n", j, pst[j].fid);
608			return -EINVAL;
609		}
610		if (pst[j].fid < lastfid)
611			lastfid = pst[j].fid;
612	}
613	if (lastfid & 1) {
614		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
615		return -EINVAL;
616	}
617	if (lastfid > LO_FID_TABLE_TOP)
618		printk(KERN_INFO FW_BUG PFX
619			"first fid not from lo freq table\n");
620
621	return 0;
622}
623
624static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
625		unsigned int entry)
626{
627	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
628}
629
630static void print_basics(struct powernow_k8_data *data)
631{
632	int j;
633	for (j = 0; j < data->numps; j++) {
634		if (data->powernow_table[j].frequency !=
635				CPUFREQ_ENTRY_INVALID) {
636			if (cpu_family == CPU_HW_PSTATE) {
637				printk(KERN_INFO PFX
638					"   %d : pstate %d (%d MHz)\n", j,
639					data->powernow_table[j].index,
640					data->powernow_table[j].frequency/1000);
641			} else {
642				printk(KERN_INFO PFX
643					"fid 0x%x (%d MHz), vid 0x%x\n",
644					data->powernow_table[j].index & 0xff,
645					data->powernow_table[j].frequency/1000,
646					data->powernow_table[j].index >> 8);
647			}
648		}
649	}
650	if (data->batps)
651		printk(KERN_INFO PFX "Only %d pstates on battery\n",
652				data->batps);
653}
654
655static u32 freq_from_fid_did(u32 fid, u32 did)
656{
657	u32 mhz = 0;
658
659	if (boot_cpu_data.x86 == 0x10)
660		mhz = (100 * (fid + 0x10)) >> did;
661	else if (boot_cpu_data.x86 == 0x11)
662		mhz = (100 * (fid + 8)) >> did;
663	else
664		BUG();
665
666	return mhz * 1000;
667}
668
669static int fill_powernow_table(struct powernow_k8_data *data,
670		struct pst_s *pst, u8 maxvid)
671{
672	struct cpufreq_frequency_table *powernow_table;
673	unsigned int j;
674
675	if (data->batps) {
676		/* use ACPI support to get full speed on mains power */
677		printk(KERN_WARNING PFX
678			"Only %d pstates usable (use ACPI driver for full "
679			"range\n", data->batps);
680		data->numps = data->batps;
681	}
682
683	for (j = 1; j < data->numps; j++) {
684		if (pst[j-1].fid >= pst[j].fid) {
685			printk(KERN_ERR PFX "PST out of sequence\n");
686			return -EINVAL;
687		}
688	}
689
690	if (data->numps < 2) {
691		printk(KERN_ERR PFX "no p states to transition\n");
692		return -ENODEV;
693	}
694
695	if (check_pst_table(data, pst, maxvid))
696		return -EINVAL;
697
698	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
699		* (data->numps + 1)), GFP_KERNEL);
700	if (!powernow_table) {
701		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
702		return -ENOMEM;
703	}
704
705	for (j = 0; j < data->numps; j++) {
706		int freq;
707		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
708		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
709		freq = find_khz_freq_from_fid(pst[j].fid);
710		powernow_table[j].frequency = freq;
711	}
712	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
713	powernow_table[data->numps].index = 0;
714
715	if (query_current_values_with_pending_wait(data)) {
716		kfree(powernow_table);
717		return -EIO;
718	}
719
720	pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
721	data->powernow_table = powernow_table;
722	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
723		print_basics(data);
724
725	for (j = 0; j < data->numps; j++)
726		if ((pst[j].fid == data->currfid) &&
727		    (pst[j].vid == data->currvid))
728			return 0;
729
730	pr_debug("currfid/vid do not match PST, ignoring\n");
731	return 0;
732}
733
734/* Find and validate the PSB/PST table in BIOS. */
735static int find_psb_table(struct powernow_k8_data *data)
736{
737	struct psb_s *psb;
738	unsigned int i;
739	u32 mvs;
740	u8 maxvid;
741	u32 cpst = 0;
742	u32 thiscpuid;
743
744	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
745		/* Scan BIOS looking for the signature. */
746		/* It can not be at ffff0 - it is too big. */
747
748		psb = phys_to_virt(i);
749		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
750			continue;
751
752		pr_debug("found PSB header at 0x%p\n", psb);
753
754		pr_debug("table vers: 0x%x\n", psb->tableversion);
755		if (psb->tableversion != PSB_VERSION_1_4) {
756			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
757			return -ENODEV;
758		}
759
760		pr_debug("flags: 0x%x\n", psb->flags1);
761		if (psb->flags1) {
762			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
763			return -ENODEV;
764		}
765
766		data->vstable = psb->vstable;
767		pr_debug("voltage stabilization time: %d(*20us)\n",
768				data->vstable);
769
770		pr_debug("flags2: 0x%x\n", psb->flags2);
771		data->rvo = psb->flags2 & 3;
772		data->irt = ((psb->flags2) >> 2) & 3;
773		mvs = ((psb->flags2) >> 4) & 3;
774		data->vidmvs = 1 << mvs;
775		data->batps = ((psb->flags2) >> 6) & 3;
776
777		pr_debug("ramp voltage offset: %d\n", data->rvo);
778		pr_debug("isochronous relief time: %d\n", data->irt);
779		pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
780
781		pr_debug("numpst: 0x%x\n", psb->num_tables);
782		cpst = psb->num_tables;
783		if ((psb->cpuid == 0x00000fc0) ||
784		    (psb->cpuid == 0x00000fe0)) {
785			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
786			if ((thiscpuid == 0x00000fc0) ||
787			    (thiscpuid == 0x00000fe0))
788				cpst = 1;
789		}
790		if (cpst != 1) {
791			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
792			return -ENODEV;
793		}
794
795		data->plllock = psb->plllocktime;
796		pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
797		pr_debug("maxfid: 0x%x\n", psb->maxfid);
798		pr_debug("maxvid: 0x%x\n", psb->maxvid);
799		maxvid = psb->maxvid;
800
801		data->numps = psb->numps;
802		pr_debug("numpstates: 0x%x\n", data->numps);
803		return fill_powernow_table(data,
804				(struct pst_s *)(psb+1), maxvid);
805	}
806	/*
807	 * If you see this message, complain to BIOS manufacturer. If
808	 * he tells you "we do not support Linux" or some similar
809	 * nonsense, remember that Windows 2000 uses the same legacy
810	 * mechanism that the old Linux PSB driver uses. Tell them it
811	 * is broken with Windows 2000.
812	 *
813	 * The reference to the AMD documentation is chapter 9 in the
814	 * BIOS and Kernel Developer's Guide, which is available on
815	 * www.amd.com
816	 */
817	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
818	printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
819		" and Cool'N'Quiet support is enabled in BIOS setup\n");
820	return -ENODEV;
821}
822
823static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
824		unsigned int index)
825{
826	u64 control;
827
828	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
829		return;
830
831	control = data->acpi_data.states[index].control;
832	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
833	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
834	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
835	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
836	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
837	data->vstable = (control >> VST_SHIFT) & VST_MASK;
838}
839
840static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
841{
842	struct cpufreq_frequency_table *powernow_table;
843	int ret_val = -ENODEV;
844	u64 control, status;
845
846	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
847		pr_debug("register performance failed: bad ACPI data\n");
848		return -EIO;
849	}
850
851	/* verify the data contained in the ACPI structures */
852	if (data->acpi_data.state_count <= 1) {
853		pr_debug("No ACPI P-States\n");
854		goto err_out;
855	}
856
857	control = data->acpi_data.control_register.space_id;
858	status = data->acpi_data.status_register.space_id;
859
860	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
861	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
862		pr_debug("Invalid control/status registers (%llx - %llx)\n",
863			control, status);
864		goto err_out;
865	}
866
867	/* fill in data->powernow_table */
868	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
869		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
870	if (!powernow_table) {
871		pr_debug("powernow_table memory alloc failure\n");
872		goto err_out;
873	}
874
875	/* fill in data */
876	data->numps = data->acpi_data.state_count;
877	powernow_k8_acpi_pst_values(data, 0);
878
879	if (cpu_family == CPU_HW_PSTATE)
880		ret_val = fill_powernow_table_pstate(data, powernow_table);
881	else
882		ret_val = fill_powernow_table_fidvid(data, powernow_table);
883	if (ret_val)
884		goto err_out_mem;
885
886	powernow_table[data->acpi_data.state_count].frequency =
887		CPUFREQ_TABLE_END;
888	powernow_table[data->acpi_data.state_count].index = 0;
889	data->powernow_table = powernow_table;
890
891	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
892		print_basics(data);
893
894	/* notify BIOS that we exist */
895	acpi_processor_notify_smm(THIS_MODULE);
896
897	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
898		printk(KERN_ERR PFX
899				"unable to alloc powernow_k8_data cpumask\n");
900		ret_val = -ENOMEM;
901		goto err_out_mem;
902	}
903
904	return 0;
905
906err_out_mem:
907	kfree(powernow_table);
908
909err_out:
910	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
911
912	/* data->acpi_data.state_count informs us at ->exit()
913	 * whether ACPI was used */
914	data->acpi_data.state_count = 0;
915
916	return ret_val;
917}
918
919static int fill_powernow_table_pstate(struct powernow_k8_data *data,
920		struct cpufreq_frequency_table *powernow_table)
921{
922	int i;
923	u32 hi = 0, lo = 0;
924	rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
925	data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
926
927	for (i = 0; i < data->acpi_data.state_count; i++) {
928		u32 index;
929
930		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
931		if (index > data->max_hw_pstate) {
932			printk(KERN_ERR PFX "invalid pstate %d - "
933					"bad value %d.\n", i, index);
934			printk(KERN_ERR PFX "Please report to BIOS "
935					"manufacturer\n");
936			invalidate_entry(powernow_table, i);
937			continue;
938		}
939
940		ps_to_as[index] = i;
941
942		/* Frequency may be rounded for these */
943		if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
944				 || boot_cpu_data.x86 == 0x11) {
945
946			rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
947			if (!(hi & HW_PSTATE_VALID_MASK)) {
948				pr_debug("invalid pstate %d, ignoring\n", index);
949				invalidate_entry(powernow_table, i);
950				continue;
951			}
952
953			powernow_table[i].frequency =
954				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
955		} else
956			powernow_table[i].frequency =
957				data->acpi_data.states[i].core_frequency * 1000;
958
959		powernow_table[i].index = index;
960	}
961	return 0;
962}
963
964static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
965		struct cpufreq_frequency_table *powernow_table)
966{
967	int i;
968
969	for (i = 0; i < data->acpi_data.state_count; i++) {
970		u32 fid;
971		u32 vid;
972		u32 freq, index;
973		u64 status, control;
974
975		if (data->exttype) {
976			status =  data->acpi_data.states[i].status;
977			fid = status & EXT_FID_MASK;
978			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
979		} else {
980			control =  data->acpi_data.states[i].control;
981			fid = control & FID_MASK;
982			vid = (control >> VID_SHIFT) & VID_MASK;
983		}
984
985		pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
986
987		index = fid | (vid<<8);
988		powernow_table[i].index = index;
989
990		freq = find_khz_freq_from_fid(fid);
991		powernow_table[i].frequency = freq;
992
993		/* verify frequency is OK */
994		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
995			pr_debug("invalid freq %u kHz, ignoring\n", freq);
996			invalidate_entry(powernow_table, i);
997			continue;
998		}
999
1000		/* verify voltage is OK -
1001		 * BIOSs are using "off" to indicate invalid */
1002		if (vid == VID_OFF) {
1003			pr_debug("invalid vid %u, ignoring\n", vid);
1004			invalidate_entry(powernow_table, i);
1005			continue;
1006		}
1007
1008		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1009			printk(KERN_INFO PFX "invalid freq entries "
1010				"%u kHz vs. %u kHz\n", freq,
1011				(unsigned int)
1012				(data->acpi_data.states[i].core_frequency
1013				 * 1000));
1014			invalidate_entry(powernow_table, i);
1015			continue;
1016		}
1017	}
1018	return 0;
1019}
1020
1021static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1022{
1023	if (data->acpi_data.state_count)
1024		acpi_processor_unregister_performance(&data->acpi_data,
1025				data->cpu);
1026	free_cpumask_var(data->acpi_data.shared_cpu_map);
1027}
1028
1029static int get_transition_latency(struct powernow_k8_data *data)
1030{
1031	int max_latency = 0;
1032	int i;
1033	for (i = 0; i < data->acpi_data.state_count; i++) {
1034		int cur_latency = data->acpi_data.states[i].transition_latency
1035			+ data->acpi_data.states[i].bus_master_latency;
1036		if (cur_latency > max_latency)
1037			max_latency = cur_latency;
1038	}
1039	if (max_latency == 0) {
1040		/*
1041		 * Fam 11h and later may return 0 as transition latency. This
1042		 * is intended and means "very fast". While cpufreq core and
1043		 * governors currently can handle that gracefully, better set it
1044		 * to 1 to avoid problems in the future.
1045		 */
1046		if (boot_cpu_data.x86 < 0x11)
1047			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1048				"latency\n");
1049		max_latency = 1;
1050	}
1051	/* value in usecs, needs to be in nanoseconds */
1052	return 1000 * max_latency;
1053}
1054
1055/* Take a frequency, and issue the fid/vid transition command */
1056static int transition_frequency_fidvid(struct powernow_k8_data *data,
1057		unsigned int index)
1058{
1059	u32 fid = 0;
1060	u32 vid = 0;
1061	int res, i;
1062	struct cpufreq_freqs freqs;
1063
1064	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1065
1066	/* fid/vid correctness check for k8 */
1067	/* fid are the lower 8 bits of the index we stored into
1068	 * the cpufreq frequency table in find_psb_table, vid
1069	 * are the upper 8 bits.
1070	 */
1071	fid = data->powernow_table[index].index & 0xFF;
1072	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1073
1074	pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1075
1076	if (query_current_values_with_pending_wait(data))
1077		return 1;
1078
1079	if ((data->currvid == vid) && (data->currfid == fid)) {
1080		pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1081			fid, vid);
1082		return 0;
1083	}
1084
1085	pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1086		smp_processor_id(), fid, vid);
1087	freqs.old = find_khz_freq_from_fid(data->currfid);
1088	freqs.new = find_khz_freq_from_fid(fid);
1089
1090	for_each_cpu(i, data->available_cores) {
1091		freqs.cpu = i;
1092		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1093	}
1094
1095	res = transition_fid_vid(data, fid, vid);
1096	if (res)
1097		return res;
1098
1099	freqs.new = find_khz_freq_from_fid(data->currfid);
1100
1101	for_each_cpu(i, data->available_cores) {
1102		freqs.cpu = i;
1103		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1104	}
1105	return res;
1106}
1107
1108/* Take a frequency, and issue the hardware pstate transition command */
1109static int transition_frequency_pstate(struct powernow_k8_data *data,
1110		unsigned int index)
1111{
1112	u32 pstate = 0;
1113	int res, i;
1114	struct cpufreq_freqs freqs;
1115
1116	pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1117
1118	/* get MSR index for hardware pstate transition */
1119	pstate = index & HW_PSTATE_MASK;
1120	if (pstate > data->max_hw_pstate)
1121		return -EINVAL;
1122
1123	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1124			data->currpstate);
1125	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1126
1127	for_each_cpu(i, data->available_cores) {
1128		freqs.cpu = i;
1129		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1130	}
1131
1132	res = transition_pstate(data, pstate);
1133	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1134
1135	for_each_cpu(i, data->available_cores) {
1136		freqs.cpu = i;
1137		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1138	}
1139	return res;
1140}
1141
1142/* Driver entry point to switch to the target frequency */
1143static int powernowk8_target(struct cpufreq_policy *pol,
1144		unsigned targfreq, unsigned relation)
1145{
1146	cpumask_var_t oldmask;
1147	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1148	u32 checkfid;
1149	u32 checkvid;
1150	unsigned int newstate;
1151	int ret = -EIO;
1152
1153	if (!data)
1154		return -EINVAL;
1155
1156	checkfid = data->currfid;
1157	checkvid = data->currvid;
1158
1159	/* only run on specific CPU from here on. */
1160	/* This is poor form: use a workqueue or smp_call_function_single */
1161	if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1162		return -ENOMEM;
1163
1164	cpumask_copy(oldmask, tsk_cpus_allowed(current));
1165	set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1166
1167	if (smp_processor_id() != pol->cpu) {
1168		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1169		goto err_out;
1170	}
1171
1172	if (pending_bit_stuck()) {
1173		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1174		goto err_out;
1175	}
1176
1177	pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1178		pol->cpu, targfreq, pol->min, pol->max, relation);
1179
1180	if (query_current_values_with_pending_wait(data))
1181		goto err_out;
1182
1183	if (cpu_family != CPU_HW_PSTATE) {
1184		pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1185		data->currfid, data->currvid);
1186
1187		if ((checkvid != data->currvid) ||
1188		    (checkfid != data->currfid)) {
1189			printk(KERN_INFO PFX
1190				"error - out of sync, fix 0x%x 0x%x, "
1191				"vid 0x%x 0x%x\n",
1192				checkfid, data->currfid,
1193				checkvid, data->currvid);
1194		}
1195	}
1196
1197	if (cpufreq_frequency_table_target(pol, data->powernow_table,
1198				targfreq, relation, &newstate))
1199		goto err_out;
1200
1201	mutex_lock(&fidvid_mutex);
1202
1203	powernow_k8_acpi_pst_values(data, newstate);
1204
1205	if (cpu_family == CPU_HW_PSTATE)
1206		ret = transition_frequency_pstate(data,
1207			data->powernow_table[newstate].index);
1208	else
1209		ret = transition_frequency_fidvid(data, newstate);
1210	if (ret) {
1211		printk(KERN_ERR PFX "transition frequency failed\n");
1212		ret = 1;
1213		mutex_unlock(&fidvid_mutex);
1214		goto err_out;
1215	}
1216	mutex_unlock(&fidvid_mutex);
1217
1218	if (cpu_family == CPU_HW_PSTATE)
1219		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1220				data->powernow_table[newstate].index);
1221	else
1222		pol->cur = find_khz_freq_from_fid(data->currfid);
1223	ret = 0;
1224
1225err_out:
1226	set_cpus_allowed_ptr(current, oldmask);
1227	free_cpumask_var(oldmask);
1228	return ret;
1229}
1230
1231/* Driver entry point to verify the policy and range of frequencies */
1232static int powernowk8_verify(struct cpufreq_policy *pol)
1233{
1234	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1235
1236	if (!data)
1237		return -EINVAL;
1238
1239	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1240}
1241
1242struct init_on_cpu {
1243	struct powernow_k8_data *data;
1244	int rc;
1245};
1246
1247static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1248{
1249	struct init_on_cpu *init_on_cpu = _init_on_cpu;
1250
1251	if (pending_bit_stuck()) {
1252		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1253		init_on_cpu->rc = -ENODEV;
1254		return;
1255	}
1256
1257	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1258		init_on_cpu->rc = -ENODEV;
1259		return;
1260	}
1261
1262	if (cpu_family == CPU_OPTERON)
1263		fidvid_msr_init();
1264
1265	init_on_cpu->rc = 0;
1266}
1267
1268static const char missing_pss_msg[] =
1269	KERN_ERR
1270	FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1271	FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n"
1272	FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n";
1273
1274/* per CPU init entry point to the driver */
1275static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1276{
1277	struct powernow_k8_data *data;
1278	struct init_on_cpu init_on_cpu;
1279	int rc;
1280	struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1281
1282	if (!cpu_online(pol->cpu))
1283		return -ENODEV;
1284
1285	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1286	if (rc)
1287		return -ENODEV;
1288
1289	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1290	if (!data) {
1291		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1292		return -ENOMEM;
1293	}
1294
1295	data->cpu = pol->cpu;
1296	data->currpstate = HW_PSTATE_INVALID;
1297
1298	if (powernow_k8_cpu_init_acpi(data)) {
1299		/*
1300		 * Use the PSB BIOS structure. This is only available on
1301		 * an UP version, and is deprecated by AMD.
1302		 */
1303		if (num_online_cpus() != 1) {
1304			printk_once(missing_pss_msg);
1305			goto err_out;
1306		}
1307		if (pol->cpu != 0) {
1308			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1309			       "CPU other than CPU0. Complain to your BIOS "
1310			       "vendor.\n");
1311			goto err_out;
1312		}
1313		rc = find_psb_table(data);
1314		if (rc)
1315			goto err_out;
1316
1317		/* Take a crude guess here.
1318		 * That guess was in microseconds, so multiply with 1000 */
1319		pol->cpuinfo.transition_latency = (
1320			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1321			 ((1 << data->irt) * 30)) * 1000;
1322	} else /* ACPI _PSS objects available */
1323		pol->cpuinfo.transition_latency = get_transition_latency(data);
1324
1325	/* only run on specific CPU from here on */
1326	init_on_cpu.data = data;
1327	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1328				 &init_on_cpu, 1);
1329	rc = init_on_cpu.rc;
1330	if (rc != 0)
1331		goto err_out_exit_acpi;
1332
1333	if (cpu_family == CPU_HW_PSTATE)
1334		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1335	else
1336		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1337	data->available_cores = pol->cpus;
1338
1339	if (cpu_family == CPU_HW_PSTATE)
1340		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1341				data->currpstate);
1342	else
1343		pol->cur = find_khz_freq_from_fid(data->currfid);
1344	pr_debug("policy current frequency %d kHz\n", pol->cur);
1345
1346	/* min/max the cpu is capable of */
1347	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1348		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1349		powernow_k8_cpu_exit_acpi(data);
1350		kfree(data->powernow_table);
1351		kfree(data);
1352		return -EINVAL;
1353	}
1354
1355	/* Check for APERF/MPERF support in hardware */
1356	if (cpu_has(c, X86_FEATURE_APERFMPERF))
1357		cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1358
1359	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1360
1361	if (cpu_family == CPU_HW_PSTATE)
1362		pr_debug("cpu_init done, current pstate 0x%x\n",
1363				data->currpstate);
1364	else
1365		pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1366			data->currfid, data->currvid);
1367
1368	per_cpu(powernow_data, pol->cpu) = data;
1369
1370	return 0;
1371
1372err_out_exit_acpi:
1373	powernow_k8_cpu_exit_acpi(data);
1374
1375err_out:
1376	kfree(data);
1377	return -ENODEV;
1378}
1379
1380static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1381{
1382	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1383
1384	if (!data)
1385		return -EINVAL;
1386
1387	powernow_k8_cpu_exit_acpi(data);
1388
1389	cpufreq_frequency_table_put_attr(pol->cpu);
1390
1391	kfree(data->powernow_table);
1392	kfree(data);
1393	per_cpu(powernow_data, pol->cpu) = NULL;
1394
1395	return 0;
1396}
1397
1398static void query_values_on_cpu(void *_err)
1399{
1400	int *err = _err;
1401	struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1402
1403	*err = query_current_values_with_pending_wait(data);
1404}
1405
1406static unsigned int powernowk8_get(unsigned int cpu)
1407{
1408	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1409	unsigned int khz = 0;
1410	int err;
1411
1412	if (!data)
1413		return 0;
1414
1415	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1416	if (err)
1417		goto out;
1418
1419	if (cpu_family == CPU_HW_PSTATE)
1420		khz = find_khz_freq_from_pstate(data->powernow_table,
1421						data->currpstate);
1422	else
1423		khz = find_khz_freq_from_fid(data->currfid);
1424
1425
1426out:
1427	return khz;
1428}
1429
1430static void _cpb_toggle_msrs(bool t)
1431{
1432	int cpu;
1433
1434	get_online_cpus();
1435
1436	rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1437
1438	for_each_cpu(cpu, cpu_online_mask) {
1439		struct msr *reg = per_cpu_ptr(msrs, cpu);
1440		if (t)
1441			reg->l &= ~BIT(25);
1442		else
1443			reg->l |= BIT(25);
1444	}
1445	wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1446
1447	put_online_cpus();
1448}
1449
1450/*
1451 * Switch on/off core performance boosting.
1452 *
1453 * 0=disable
1454 * 1=enable.
1455 */
1456static void cpb_toggle(bool t)
1457{
1458	if (!cpb_capable)
1459		return;
1460
1461	if (t && !cpb_enabled) {
1462		cpb_enabled = true;
1463		_cpb_toggle_msrs(t);
1464		printk(KERN_INFO PFX "Core Boosting enabled.\n");
1465	} else if (!t && cpb_enabled) {
1466		cpb_enabled = false;
1467		_cpb_toggle_msrs(t);
1468		printk(KERN_INFO PFX "Core Boosting disabled.\n");
1469	}
1470}
1471
1472static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1473				 size_t count)
1474{
1475	int ret = -EINVAL;
1476	unsigned long val = 0;
1477
1478	ret = strict_strtoul(buf, 10, &val);
1479	if (!ret && (val == 0 || val == 1) && cpb_capable)
1480		cpb_toggle(val);
1481	else
1482		return -EINVAL;
1483
1484	return count;
1485}
1486
1487static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1488{
1489	return sprintf(buf, "%u\n", cpb_enabled);
1490}
1491
1492#define define_one_rw(_name) \
1493static struct freq_attr _name = \
1494__ATTR(_name, 0644, show_##_name, store_##_name)
1495
1496define_one_rw(cpb);
1497
1498static struct freq_attr *powernow_k8_attr[] = {
1499	&cpufreq_freq_attr_scaling_available_freqs,
1500	&cpb,
1501	NULL,
1502};
1503
1504static struct cpufreq_driver cpufreq_amd64_driver = {
1505	.verify		= powernowk8_verify,
1506	.target		= powernowk8_target,
1507	.bios_limit	= acpi_processor_get_bios_limit,
1508	.init		= powernowk8_cpu_init,
1509	.exit		= __devexit_p(powernowk8_cpu_exit),
1510	.get		= powernowk8_get,
1511	.name		= "powernow-k8",
1512	.owner		= THIS_MODULE,
1513	.attr		= powernow_k8_attr,
1514};
1515
1516/*
1517 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1518 * cannot block the remaining ones from boosting. On the CPU_UP path we
1519 * simply keep the boost-disable flag in sync with the current global
1520 * state.
1521 */
1522static int cpb_notify(struct notifier_block *nb, unsigned long action,
1523		      void *hcpu)
1524{
1525	unsigned cpu = (long)hcpu;
1526	u32 lo, hi;
1527
1528	switch (action) {
1529	case CPU_UP_PREPARE:
1530	case CPU_UP_PREPARE_FROZEN:
1531
1532		if (!cpb_enabled) {
1533			rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1534			lo |= BIT(25);
1535			wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1536		}
1537		break;
1538
1539	case CPU_DOWN_PREPARE:
1540	case CPU_DOWN_PREPARE_FROZEN:
1541		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1542		lo &= ~BIT(25);
1543		wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1544		break;
1545
1546	default:
1547		break;
1548	}
1549
1550	return NOTIFY_OK;
1551}
1552
1553static struct notifier_block cpb_nb = {
1554	.notifier_call		= cpb_notify,
1555};
1556
1557/* driver entry point for init */
1558static int __cpuinit powernowk8_init(void)
1559{
1560	unsigned int i, supported_cpus = 0, cpu;
1561	int rv;
1562
1563	if (!x86_match_cpu(powernow_k8_ids))
1564		return -ENODEV;
1565
1566	if (static_cpu_has(X86_FEATURE_HW_PSTATE))
1567		pr_warn(PFX "support for this CPU is deprecated, use acpi-cpufreq instead.\n");
1568
1569	for_each_online_cpu(i) {
1570		int rc;
1571		smp_call_function_single(i, check_supported_cpu, &rc, 1);
1572		if (rc == 0)
1573			supported_cpus++;
1574	}
1575
1576	if (supported_cpus != num_online_cpus())
1577		return -ENODEV;
1578
1579	if (boot_cpu_has(X86_FEATURE_CPB)) {
1580
1581		cpb_capable = true;
1582
1583		msrs = msrs_alloc();
1584		if (!msrs) {
1585			printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1586			return -ENOMEM;
1587		}
1588
1589		register_cpu_notifier(&cpb_nb);
1590
1591		rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1592
1593		for_each_cpu(cpu, cpu_online_mask) {
1594			struct msr *reg = per_cpu_ptr(msrs, cpu);
1595			cpb_enabled |= !(!!(reg->l & BIT(25)));
1596		}
1597	}
1598
1599	rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1600
1601	if (!rv)
1602		pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1603			num_online_nodes(), boot_cpu_data.x86_model_id,
1604			supported_cpus);
1605
1606	if (boot_cpu_has(X86_FEATURE_CPB)) {
1607		if (rv < 0) {
1608			unregister_cpu_notifier(&cpb_nb);
1609			msrs_free(msrs);
1610			msrs = NULL;
1611		} else
1612			pr_info(PFX "Core Performance Boosting: %s.\n",
1613				(cpb_enabled ? "on" : "off"));
1614	}
1615	return rv;
1616}
1617
1618/* driver entry point for term */
1619static void __exit powernowk8_exit(void)
1620{
1621	pr_debug("exit\n");
1622
1623	if (boot_cpu_has(X86_FEATURE_CPB)) {
1624		msrs_free(msrs);
1625		msrs = NULL;
1626
1627		unregister_cpu_notifier(&cpb_nb);
1628	}
1629
1630	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1631}
1632
1633MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1634		"Mark Langsdorf <mark.langsdorf@amd.com>");
1635MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1636MODULE_LICENSE("GPL");
1637
1638late_initcall(powernowk8_init);
1639module_exit(powernowk8_exit);
1640