crypto4xx_core.c revision b48ae1df54b77daa3dc2382b7fd1d980329087bd
1/**
2 * AMCC SoC PPC4xx Crypto Driver
3 *
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
19 */
20
21#include <linux/kernel.h>
22#include <linux/interrupt.h>
23#include <linux/spinlock_types.h>
24#include <linux/random.h>
25#include <linux/scatterlist.h>
26#include <linux/crypto.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/init.h>
30#include <linux/of_platform.h>
31#include <linux/slab.h>
32#include <asm/dcr.h>
33#include <asm/dcr-regs.h>
34#include <asm/cacheflush.h>
35#include <crypto/aes.h>
36#include <crypto/sha.h>
37#include "crypto4xx_reg_def.h"
38#include "crypto4xx_core.h"
39#include "crypto4xx_sa.h"
40
41#define PPC4XX_SEC_VERSION_STR			"0.5"
42
43/**
44 * PPC4xx Crypto Engine Initialization Routine
45 */
46static void crypto4xx_hw_init(struct crypto4xx_device *dev)
47{
48	union ce_ring_size ring_size;
49	union ce_ring_contol ring_ctrl;
50	union ce_part_ring_size part_ring_size;
51	union ce_io_threshold io_threshold;
52	u32 rand_num;
53	union ce_pe_dma_cfg pe_dma_cfg;
54	u32 device_ctrl;
55
56	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
57	/* setup pe dma, include reset sg, pdr and pe, then release reset */
58	pe_dma_cfg.w = 0;
59	pe_dma_cfg.bf.bo_sgpd_en = 1;
60	pe_dma_cfg.bf.bo_data_en = 0;
61	pe_dma_cfg.bf.bo_sa_en = 1;
62	pe_dma_cfg.bf.bo_pd_en = 1;
63	pe_dma_cfg.bf.dynamic_sa_en = 1;
64	pe_dma_cfg.bf.reset_sg = 1;
65	pe_dma_cfg.bf.reset_pdr = 1;
66	pe_dma_cfg.bf.reset_pe = 1;
67	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
68	/* un reset pe,sg and pdr */
69	pe_dma_cfg.bf.pe_mode = 0;
70	pe_dma_cfg.bf.reset_sg = 0;
71	pe_dma_cfg.bf.reset_pdr = 0;
72	pe_dma_cfg.bf.reset_pe = 0;
73	pe_dma_cfg.bf.bo_td_en = 0;
74	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
75	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
76	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
77	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
78	get_random_bytes(&rand_num, sizeof(rand_num));
79	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
80	get_random_bytes(&rand_num, sizeof(rand_num));
81	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
82	ring_size.w = 0;
83	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
84	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
85	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
86	ring_ctrl.w = 0;
87	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
88	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
89	device_ctrl |= PPC4XX_DC_3DES_EN;
90	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
91	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
92	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
93	part_ring_size.w = 0;
94	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
95	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
96	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
97	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
98	io_threshold.w = 0;
99	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
100	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
101	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
102	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
103	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
104	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
105	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
106	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
107	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
108	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
109	/* un reset pe,sg and pdr */
110	pe_dma_cfg.bf.pe_mode = 1;
111	pe_dma_cfg.bf.reset_sg = 0;
112	pe_dma_cfg.bf.reset_pdr = 0;
113	pe_dma_cfg.bf.reset_pe = 0;
114	pe_dma_cfg.bf.bo_td_en = 0;
115	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
116	/*clear all pending interrupt*/
117	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
118	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
119	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
120	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
121	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
122}
123
124int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
125{
126	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
127					&ctx->sa_in_dma_addr, GFP_ATOMIC);
128	if (ctx->sa_in == NULL)
129		return -ENOMEM;
130
131	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
132					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
133	if (ctx->sa_out == NULL) {
134		dma_free_coherent(ctx->dev->core_dev->device,
135				  ctx->sa_len * 4,
136				  ctx->sa_in, ctx->sa_in_dma_addr);
137		return -ENOMEM;
138	}
139
140	memset(ctx->sa_in, 0, size * 4);
141	memset(ctx->sa_out, 0, size * 4);
142	ctx->sa_len = size;
143
144	return 0;
145}
146
147void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
148{
149	if (ctx->sa_in != NULL)
150		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
151				  ctx->sa_in, ctx->sa_in_dma_addr);
152	if (ctx->sa_out != NULL)
153		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
154				  ctx->sa_out, ctx->sa_out_dma_addr);
155
156	ctx->sa_in_dma_addr = 0;
157	ctx->sa_out_dma_addr = 0;
158	ctx->sa_len = 0;
159}
160
161u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
162{
163	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
164				sizeof(struct sa_state_record),
165				&ctx->state_record_dma_addr, GFP_ATOMIC);
166	if (!ctx->state_record_dma_addr)
167		return -ENOMEM;
168	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
169
170	return 0;
171}
172
173void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
174{
175	if (ctx->state_record != NULL)
176		dma_free_coherent(ctx->dev->core_dev->device,
177				  sizeof(struct sa_state_record),
178				  ctx->state_record,
179				  ctx->state_record_dma_addr);
180	ctx->state_record_dma_addr = 0;
181}
182
183/**
184 * alloc memory for the gather ring
185 * no need to alloc buf for the ring
186 * gdr_tail, gdr_head and gdr_count are initialized by this function
187 */
188static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
189{
190	int i;
191	struct pd_uinfo *pd_uinfo;
192	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
193				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
194				      &dev->pdr_pa, GFP_ATOMIC);
195	if (!dev->pdr)
196		return -ENOMEM;
197
198	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
199				GFP_KERNEL);
200	if (!dev->pdr_uinfo) {
201		dma_free_coherent(dev->core_dev->device,
202				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
203				  dev->pdr,
204				  dev->pdr_pa);
205		return -ENOMEM;
206	}
207	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
208	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
209				   256 * PPC4XX_NUM_PD,
210				   &dev->shadow_sa_pool_pa,
211				   GFP_ATOMIC);
212	if (!dev->shadow_sa_pool)
213		return -ENOMEM;
214
215	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
216			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
217			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
218	if (!dev->shadow_sr_pool)
219		return -ENOMEM;
220	for (i = 0; i < PPC4XX_NUM_PD; i++) {
221		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
222						sizeof(struct pd_uinfo) * i);
223
224		/* alloc 256 bytes which is enough for any kind of dynamic sa */
225		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
226		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
227
228		/* alloc state record */
229		pd_uinfo->sr_va = dev->shadow_sr_pool +
230		    sizeof(struct sa_state_record) * i;
231		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
232		    sizeof(struct sa_state_record) * i;
233	}
234
235	return 0;
236}
237
238static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
239{
240	if (dev->pdr != NULL)
241		dma_free_coherent(dev->core_dev->device,
242				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
243				  dev->pdr, dev->pdr_pa);
244	if (dev->shadow_sa_pool)
245		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
246				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
247	if (dev->shadow_sr_pool)
248		dma_free_coherent(dev->core_dev->device,
249			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
250			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
251
252	kfree(dev->pdr_uinfo);
253}
254
255static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
256{
257	u32 retval;
258	u32 tmp;
259
260	retval = dev->pdr_head;
261	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
262
263	if (tmp == dev->pdr_tail)
264		return ERING_WAS_FULL;
265
266	dev->pdr_head = tmp;
267
268	return retval;
269}
270
271static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
272{
273	struct pd_uinfo *pd_uinfo;
274	unsigned long flags;
275
276	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
277				       sizeof(struct pd_uinfo) * idx);
278	spin_lock_irqsave(&dev->core_dev->lock, flags);
279	if (dev->pdr_tail != PPC4XX_LAST_PD)
280		dev->pdr_tail++;
281	else
282		dev->pdr_tail = 0;
283	pd_uinfo->state = PD_ENTRY_FREE;
284	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
285
286	return 0;
287}
288
289static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
290				       dma_addr_t *pd_dma, u32 idx)
291{
292	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
293
294	return dev->pdr + sizeof(struct ce_pd) * idx;
295}
296
297/**
298 * alloc memory for the gather ring
299 * no need to alloc buf for the ring
300 * gdr_tail, gdr_head and gdr_count are initialized by this function
301 */
302static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
303{
304	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
305				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
306				      &dev->gdr_pa, GFP_ATOMIC);
307	if (!dev->gdr)
308		return -ENOMEM;
309
310	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
311
312	return 0;
313}
314
315static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
316{
317	dma_free_coherent(dev->core_dev->device,
318			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
319			  dev->gdr, dev->gdr_pa);
320}
321
322/*
323 * when this function is called.
324 * preemption or interrupt must be disabled
325 */
326u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
327{
328	u32 retval;
329	u32 tmp;
330	if (n >= PPC4XX_NUM_GD)
331		return ERING_WAS_FULL;
332
333	retval = dev->gdr_head;
334	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
335	if (dev->gdr_head > dev->gdr_tail) {
336		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
337			return ERING_WAS_FULL;
338	} else if (dev->gdr_head < dev->gdr_tail) {
339		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
340			return ERING_WAS_FULL;
341	}
342	dev->gdr_head = tmp;
343
344	return retval;
345}
346
347static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
348{
349	unsigned long flags;
350
351	spin_lock_irqsave(&dev->core_dev->lock, flags);
352	if (dev->gdr_tail == dev->gdr_head) {
353		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
354		return 0;
355	}
356
357	if (dev->gdr_tail != PPC4XX_LAST_GD)
358		dev->gdr_tail++;
359	else
360		dev->gdr_tail = 0;
361
362	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
363
364	return 0;
365}
366
367static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
368					      dma_addr_t *gd_dma, u32 idx)
369{
370	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
371
372	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
373}
374
375/**
376 * alloc memory for the scatter ring
377 * need to alloc buf for the ring
378 * sdr_tail, sdr_head and sdr_count are initialized by this function
379 */
380static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
381{
382	int i;
383	struct ce_sd *sd_array;
384
385	/* alloc memory for scatter descriptor ring */
386	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
387				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
388				      &dev->sdr_pa, GFP_ATOMIC);
389	if (!dev->sdr)
390		return -ENOMEM;
391
392	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
393	dev->scatter_buffer_va =
394		dma_alloc_coherent(dev->core_dev->device,
395			dev->scatter_buffer_size * PPC4XX_NUM_SD,
396			&dev->scatter_buffer_pa, GFP_ATOMIC);
397	if (!dev->scatter_buffer_va) {
398		dma_free_coherent(dev->core_dev->device,
399				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
400				  dev->sdr, dev->sdr_pa);
401		return -ENOMEM;
402	}
403
404	sd_array = dev->sdr;
405
406	for (i = 0; i < PPC4XX_NUM_SD; i++) {
407		sd_array[i].ptr = dev->scatter_buffer_pa +
408				  dev->scatter_buffer_size * i;
409	}
410
411	return 0;
412}
413
414static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
415{
416	if (dev->sdr != NULL)
417		dma_free_coherent(dev->core_dev->device,
418				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
419				  dev->sdr, dev->sdr_pa);
420
421	if (dev->scatter_buffer_va != NULL)
422		dma_free_coherent(dev->core_dev->device,
423				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
424				  dev->scatter_buffer_va,
425				  dev->scatter_buffer_pa);
426}
427
428/*
429 * when this function is called.
430 * preemption or interrupt must be disabled
431 */
432static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
433{
434	u32 retval;
435	u32 tmp;
436
437	if (n >= PPC4XX_NUM_SD)
438		return ERING_WAS_FULL;
439
440	retval = dev->sdr_head;
441	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
442	if (dev->sdr_head > dev->gdr_tail) {
443		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
444			return ERING_WAS_FULL;
445	} else if (dev->sdr_head < dev->sdr_tail) {
446		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
447			return ERING_WAS_FULL;
448	} /* the head = tail, or empty case is already take cared */
449	dev->sdr_head = tmp;
450
451	return retval;
452}
453
454static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
455{
456	unsigned long flags;
457
458	spin_lock_irqsave(&dev->core_dev->lock, flags);
459	if (dev->sdr_tail == dev->sdr_head) {
460		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
461		return 0;
462	}
463	if (dev->sdr_tail != PPC4XX_LAST_SD)
464		dev->sdr_tail++;
465	else
466		dev->sdr_tail = 0;
467	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
468
469	return 0;
470}
471
472static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
473					      dma_addr_t *sd_dma, u32 idx)
474{
475	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
476
477	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
478}
479
480static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
481				   dma_addr_t *addr, u32 *length,
482				   u32 *idx, u32 *offset, u32 *nbytes)
483{
484	u32 len;
485
486	if (*length > dev->scatter_buffer_size) {
487		memcpy(phys_to_virt(*addr),
488			dev->scatter_buffer_va +
489			*idx * dev->scatter_buffer_size + *offset,
490			dev->scatter_buffer_size);
491		*offset = 0;
492		*length -= dev->scatter_buffer_size;
493		*nbytes -= dev->scatter_buffer_size;
494		if (*idx == PPC4XX_LAST_SD)
495			*idx = 0;
496		else
497			(*idx)++;
498		*addr = *addr +  dev->scatter_buffer_size;
499		return 1;
500	} else if (*length < dev->scatter_buffer_size) {
501		memcpy(phys_to_virt(*addr),
502			dev->scatter_buffer_va +
503			*idx * dev->scatter_buffer_size + *offset, *length);
504		if ((*offset + *length) == dev->scatter_buffer_size) {
505			if (*idx == PPC4XX_LAST_SD)
506				*idx = 0;
507			else
508				(*idx)++;
509			*nbytes -= *length;
510			*offset = 0;
511		} else {
512			*nbytes -= *length;
513			*offset += *length;
514		}
515
516		return 0;
517	} else {
518		len = (*nbytes <= dev->scatter_buffer_size) ?
519				(*nbytes) : dev->scatter_buffer_size;
520		memcpy(phys_to_virt(*addr),
521			dev->scatter_buffer_va +
522			*idx * dev->scatter_buffer_size + *offset,
523			len);
524		*offset = 0;
525		*nbytes -= len;
526
527		if (*idx == PPC4XX_LAST_SD)
528			*idx = 0;
529		else
530			(*idx)++;
531
532		return 0;
533    }
534}
535
536static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
537				      struct ce_pd *pd,
538				      struct pd_uinfo *pd_uinfo,
539				      u32 nbytes,
540				      struct scatterlist *dst)
541{
542	dma_addr_t addr;
543	u32 this_sd;
544	u32 offset;
545	u32 len;
546	u32 i;
547	u32 sg_len;
548	struct scatterlist *sg;
549
550	this_sd = pd_uinfo->first_sd;
551	offset = 0;
552	i = 0;
553
554	while (nbytes) {
555		sg = &dst[i];
556		sg_len = sg->length;
557		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
558				sg->offset, sg->length, DMA_TO_DEVICE);
559
560		if (offset == 0) {
561			len = (nbytes <= sg->length) ? nbytes : sg->length;
562			while (crypto4xx_fill_one_page(dev, &addr, &len,
563				&this_sd, &offset, &nbytes))
564				;
565			if (!nbytes)
566				return;
567			i++;
568		} else {
569			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
570				nbytes : (dev->scatter_buffer_size - offset);
571			len = (sg->length < len) ? sg->length : len;
572			while (crypto4xx_fill_one_page(dev, &addr, &len,
573					       &this_sd, &offset, &nbytes))
574				;
575			if (!nbytes)
576				return;
577			sg_len -= len;
578			if (sg_len) {
579				addr += len;
580				while (crypto4xx_fill_one_page(dev, &addr,
581					&sg_len, &this_sd, &offset, &nbytes))
582					;
583			}
584			i++;
585		}
586	}
587}
588
589static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
590					struct crypto4xx_ctx *ctx)
591{
592	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
593	struct sa_state_record *state_record =
594				(struct sa_state_record *) pd_uinfo->sr_va;
595
596	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
597		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
598		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
599	}
600
601	return 0;
602}
603
604static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
605				  struct pd_uinfo *pd_uinfo)
606{
607	int i;
608	if (pd_uinfo->num_gd) {
609		for (i = 0; i < pd_uinfo->num_gd; i++)
610			crypto4xx_put_gd_to_gdr(dev);
611		pd_uinfo->first_gd = 0xffffffff;
612		pd_uinfo->num_gd = 0;
613	}
614	if (pd_uinfo->num_sd) {
615		for (i = 0; i < pd_uinfo->num_sd; i++)
616			crypto4xx_put_sd_to_sdr(dev);
617
618		pd_uinfo->first_sd = 0xffffffff;
619		pd_uinfo->num_sd = 0;
620	}
621}
622
623static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
624				     struct pd_uinfo *pd_uinfo,
625				     struct ce_pd *pd)
626{
627	struct crypto4xx_ctx *ctx;
628	struct ablkcipher_request *ablk_req;
629	struct scatterlist *dst;
630	dma_addr_t addr;
631
632	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
633	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
634
635	if (pd_uinfo->using_sd) {
636		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
637					  ablk_req->dst);
638	} else {
639		dst = pd_uinfo->dest_va;
640		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
641				    dst->offset, dst->length, DMA_FROM_DEVICE);
642	}
643	crypto4xx_ret_sg_desc(dev, pd_uinfo);
644	if (ablk_req->base.complete != NULL)
645		ablk_req->base.complete(&ablk_req->base, 0);
646
647	return 0;
648}
649
650static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
651				struct pd_uinfo *pd_uinfo)
652{
653	struct crypto4xx_ctx *ctx;
654	struct ahash_request *ahash_req;
655
656	ahash_req = ahash_request_cast(pd_uinfo->async_req);
657	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
658
659	crypto4xx_copy_digest_to_dst(pd_uinfo,
660				     crypto_tfm_ctx(ahash_req->base.tfm));
661	crypto4xx_ret_sg_desc(dev, pd_uinfo);
662	/* call user provided callback function x */
663	if (ahash_req->base.complete != NULL)
664		ahash_req->base.complete(&ahash_req->base, 0);
665
666	return 0;
667}
668
669static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
670{
671	struct ce_pd *pd;
672	struct pd_uinfo *pd_uinfo;
673
674	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
675	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
676	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
677			CRYPTO_ALG_TYPE_ABLKCIPHER)
678		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
679	else
680		return crypto4xx_ahash_done(dev, pd_uinfo);
681}
682
683/**
684 * Note: Only use this function to copy items that is word aligned.
685 */
686void crypto4xx_memcpy_le(unsigned int *dst,
687			 const unsigned char *buf,
688			 int len)
689{
690	u8 *tmp;
691	for (; len >= 4; buf += 4, len -= 4)
692		*dst++ = cpu_to_le32(*(unsigned int *) buf);
693
694	tmp = (u8 *)dst;
695	switch (len) {
696	case 3:
697		*tmp++ = 0;
698		*tmp++ = *(buf+2);
699		*tmp++ = *(buf+1);
700		*tmp++ = *buf;
701		break;
702	case 2:
703		*tmp++ = 0;
704		*tmp++ = 0;
705		*tmp++ = *(buf+1);
706		*tmp++ = *buf;
707		break;
708	case 1:
709		*tmp++ = 0;
710		*tmp++ = 0;
711		*tmp++ = 0;
712		*tmp++ = *buf;
713		break;
714	default:
715		break;
716	}
717}
718
719static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
720{
721	crypto4xx_destroy_pdr(core_dev->dev);
722	crypto4xx_destroy_gdr(core_dev->dev);
723	crypto4xx_destroy_sdr(core_dev->dev);
724	dev_set_drvdata(core_dev->device, NULL);
725	iounmap(core_dev->dev->ce_base);
726	kfree(core_dev->dev);
727	kfree(core_dev);
728}
729
730void crypto4xx_return_pd(struct crypto4xx_device *dev,
731			 u32 pd_entry, struct ce_pd *pd,
732			 struct pd_uinfo *pd_uinfo)
733{
734	/* irq should be already disabled */
735	dev->pdr_head = pd_entry;
736	pd->pd_ctl.w = 0;
737	pd->pd_ctl_len.w = 0;
738	pd_uinfo->state = PD_ENTRY_FREE;
739}
740
741/*
742 * derive number of elements in scatterlist
743 * Shamlessly copy from talitos.c
744 */
745static int get_sg_count(struct scatterlist *sg_list, int nbytes)
746{
747	struct scatterlist *sg = sg_list;
748	int sg_nents = 0;
749
750	while (nbytes) {
751		sg_nents++;
752		if (sg->length > nbytes)
753			break;
754		nbytes -= sg->length;
755		sg = sg_next(sg);
756	}
757
758	return sg_nents;
759}
760
761static u32 get_next_gd(u32 current)
762{
763	if (current != PPC4XX_LAST_GD)
764		return current + 1;
765	else
766		return 0;
767}
768
769static u32 get_next_sd(u32 current)
770{
771	if (current != PPC4XX_LAST_SD)
772		return current + 1;
773	else
774		return 0;
775}
776
777u32 crypto4xx_build_pd(struct crypto_async_request *req,
778		       struct crypto4xx_ctx *ctx,
779		       struct scatterlist *src,
780		       struct scatterlist *dst,
781		       unsigned int datalen,
782		       void *iv, u32 iv_len)
783{
784	struct crypto4xx_device *dev = ctx->dev;
785	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
786	struct dynamic_sa_ctl *sa;
787	struct scatterlist *sg;
788	struct ce_gd *gd;
789	struct ce_pd *pd;
790	u32 num_gd, num_sd;
791	u32 fst_gd = 0xffffffff;
792	u32 fst_sd = 0xffffffff;
793	u32 pd_entry;
794	unsigned long flags;
795	struct pd_uinfo *pd_uinfo = NULL;
796	unsigned int nbytes = datalen, idx;
797	unsigned int ivlen = 0;
798	u32 gd_idx = 0;
799
800	/* figure how many gd is needed */
801	num_gd = get_sg_count(src, datalen);
802	if (num_gd == 1)
803		num_gd = 0;
804
805	/* figure how many sd is needed */
806	if (sg_is_last(dst) || ctx->is_hash) {
807		num_sd = 0;
808	} else {
809		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
810			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
811			if (datalen % PPC4XX_SD_BUFFER_SIZE)
812				num_sd++;
813		} else {
814			num_sd = 1;
815		}
816	}
817
818	/*
819	 * The follow section of code needs to be protected
820	 * The gather ring and scatter ring needs to be consecutive
821	 * In case of run out of any kind of descriptor, the descriptor
822	 * already got must be return the original place.
823	 */
824	spin_lock_irqsave(&dev->core_dev->lock, flags);
825	if (num_gd) {
826		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
827		if (fst_gd == ERING_WAS_FULL) {
828			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
829			return -EAGAIN;
830		}
831	}
832	if (num_sd) {
833		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
834		if (fst_sd == ERING_WAS_FULL) {
835			if (num_gd)
836				dev->gdr_head = fst_gd;
837			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
838			return -EAGAIN;
839		}
840	}
841	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
842	if (pd_entry == ERING_WAS_FULL) {
843		if (num_gd)
844			dev->gdr_head = fst_gd;
845		if (num_sd)
846			dev->sdr_head = fst_sd;
847		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
848		return -EAGAIN;
849	}
850	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
851
852	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
853				       sizeof(struct pd_uinfo) * pd_entry);
854	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
855	pd_uinfo->async_req = req;
856	pd_uinfo->num_gd = num_gd;
857	pd_uinfo->num_sd = num_sd;
858
859	if (iv_len || ctx->is_hash) {
860		ivlen = iv_len;
861		pd->sa = pd_uinfo->sa_pa;
862		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
863		if (ctx->direction == DIR_INBOUND)
864			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
865		else
866			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
867
868		memcpy((void *) sa + ctx->offset_to_sr_ptr,
869			&pd_uinfo->sr_pa, 4);
870
871		if (iv_len)
872			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
873	} else {
874		if (ctx->direction == DIR_INBOUND) {
875			pd->sa = ctx->sa_in_dma_addr;
876			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
877		} else {
878			pd->sa = ctx->sa_out_dma_addr;
879			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
880		}
881	}
882	pd->sa_len = ctx->sa_len;
883	if (num_gd) {
884		/* get first gd we are going to use */
885		gd_idx = fst_gd;
886		pd_uinfo->first_gd = fst_gd;
887		pd_uinfo->num_gd = num_gd;
888		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
889		pd->src = gd_dma;
890		/* enable gather */
891		sa->sa_command_0.bf.gather = 1;
892		idx = 0;
893		src = &src[0];
894		/* walk the sg, and setup gather array */
895		while (nbytes) {
896			sg = &src[idx];
897			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
898				    sg->offset, sg->length, DMA_TO_DEVICE);
899			gd->ptr = addr;
900			gd->ctl_len.len = sg->length;
901			gd->ctl_len.done = 0;
902			gd->ctl_len.ready = 1;
903			if (sg->length >= nbytes)
904				break;
905			nbytes -= sg->length;
906			gd_idx = get_next_gd(gd_idx);
907			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
908			idx++;
909		}
910	} else {
911		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
912				src->offset, src->length, DMA_TO_DEVICE);
913		/*
914		 * Disable gather in sa command
915		 */
916		sa->sa_command_0.bf.gather = 0;
917		/*
918		 * Indicate gather array is not used
919		 */
920		pd_uinfo->first_gd = 0xffffffff;
921		pd_uinfo->num_gd = 0;
922	}
923	if (ctx->is_hash || sg_is_last(dst)) {
924		/*
925		 * we know application give us dst a whole piece of memory
926		 * no need to use scatter ring.
927		 * In case of is_hash, the icv is always at end of src data.
928		 */
929		pd_uinfo->using_sd = 0;
930		pd_uinfo->first_sd = 0xffffffff;
931		pd_uinfo->num_sd = 0;
932		pd_uinfo->dest_va = dst;
933		sa->sa_command_0.bf.scatter = 0;
934		if (ctx->is_hash)
935			pd->dest = virt_to_phys((void *)dst);
936		else
937			pd->dest = (u32)dma_map_page(dev->core_dev->device,
938					sg_page(dst), dst->offset,
939					dst->length, DMA_TO_DEVICE);
940	} else {
941		struct ce_sd *sd = NULL;
942		u32 sd_idx = fst_sd;
943		nbytes = datalen;
944		sa->sa_command_0.bf.scatter = 1;
945		pd_uinfo->using_sd = 1;
946		pd_uinfo->dest_va = dst;
947		pd_uinfo->first_sd = fst_sd;
948		pd_uinfo->num_sd = num_sd;
949		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
950		pd->dest = sd_dma;
951		/* setup scatter descriptor */
952		sd->ctl.done = 0;
953		sd->ctl.rdy = 1;
954		/* sd->ptr should be setup by sd_init routine*/
955		idx = 0;
956		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
957			nbytes -= PPC4XX_SD_BUFFER_SIZE;
958		else
959			nbytes = 0;
960		while (nbytes) {
961			sd_idx = get_next_sd(sd_idx);
962			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
963			/* setup scatter descriptor */
964			sd->ctl.done = 0;
965			sd->ctl.rdy = 1;
966			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
967				nbytes -= PPC4XX_SD_BUFFER_SIZE;
968			else
969				/*
970				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
971				 * which is more than nbytes, so done.
972				 */
973				nbytes = 0;
974		}
975	}
976
977	sa->sa_command_1.bf.hash_crypto_offset = 0;
978	pd->pd_ctl.w = ctx->pd_ctl;
979	pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
980	pd_uinfo->state = PD_ENTRY_INUSE;
981	wmb();
982	/* write any value to push engine to read a pd */
983	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
984	return -EINPROGRESS;
985}
986
987/**
988 * Algorithm Registration Functions
989 */
990static int crypto4xx_alg_init(struct crypto_tfm *tfm)
991{
992	struct crypto_alg *alg = tfm->__crt_alg;
993	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
994	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
995
996	ctx->dev = amcc_alg->dev;
997	ctx->sa_in = NULL;
998	ctx->sa_out = NULL;
999	ctx->sa_in_dma_addr = 0;
1000	ctx->sa_out_dma_addr = 0;
1001	ctx->sa_len = 0;
1002
1003	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1004	default:
1005		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1006		break;
1007	case CRYPTO_ALG_TYPE_AHASH:
1008		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1009					 sizeof(struct crypto4xx_ctx));
1010		break;
1011	}
1012
1013	return 0;
1014}
1015
1016static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1017{
1018	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1019
1020	crypto4xx_free_sa(ctx);
1021	crypto4xx_free_state_record(ctx);
1022}
1023
1024int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1025			   struct crypto4xx_alg_common *crypto_alg,
1026			   int array_size)
1027{
1028	struct crypto4xx_alg *alg;
1029	int i;
1030	int rc = 0;
1031
1032	for (i = 0; i < array_size; i++) {
1033		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1034		if (!alg)
1035			return -ENOMEM;
1036
1037		alg->alg = crypto_alg[i];
1038		alg->dev = sec_dev;
1039
1040		switch (alg->alg.type) {
1041		case CRYPTO_ALG_TYPE_AHASH:
1042			rc = crypto_register_ahash(&alg->alg.u.hash);
1043			break;
1044
1045		default:
1046			rc = crypto_register_alg(&alg->alg.u.cipher);
1047			break;
1048		}
1049
1050		if (rc) {
1051			list_del(&alg->entry);
1052			kfree(alg);
1053		} else {
1054			list_add_tail(&alg->entry, &sec_dev->alg_list);
1055		}
1056	}
1057
1058	return 0;
1059}
1060
1061static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1062{
1063	struct crypto4xx_alg *alg, *tmp;
1064
1065	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1066		list_del(&alg->entry);
1067		switch (alg->alg.type) {
1068		case CRYPTO_ALG_TYPE_AHASH:
1069			crypto_unregister_ahash(&alg->alg.u.hash);
1070			break;
1071
1072		default:
1073			crypto_unregister_alg(&alg->alg.u.cipher);
1074		}
1075		kfree(alg);
1076	}
1077}
1078
1079static void crypto4xx_bh_tasklet_cb(unsigned long data)
1080{
1081	struct device *dev = (struct device *)data;
1082	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1083	struct pd_uinfo *pd_uinfo;
1084	struct ce_pd *pd;
1085	u32 tail;
1086
1087	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1088		tail = core_dev->dev->pdr_tail;
1089		pd_uinfo = core_dev->dev->pdr_uinfo +
1090			sizeof(struct pd_uinfo)*tail;
1091		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1092		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1093				   pd->pd_ctl.bf.pe_done &&
1094				   !pd->pd_ctl.bf.host_ready) {
1095			pd->pd_ctl.bf.pe_done = 0;
1096			crypto4xx_pd_done(core_dev->dev, tail);
1097			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1098			pd_uinfo->state = PD_ENTRY_FREE;
1099		} else {
1100			/* if tail not done, break */
1101			break;
1102		}
1103	}
1104}
1105
1106/**
1107 * Top Half of isr.
1108 */
1109static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1110{
1111	struct device *dev = (struct device *)data;
1112	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1113
1114	if (core_dev->dev->ce_base == 0)
1115		return 0;
1116
1117	writel(PPC4XX_INTERRUPT_CLR,
1118	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1119	tasklet_schedule(&core_dev->tasklet);
1120
1121	return IRQ_HANDLED;
1122}
1123
1124/**
1125 * Supported Crypto Algorithms
1126 */
1127struct crypto4xx_alg_common crypto4xx_alg[] = {
1128	/* Crypto AES modes */
1129	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1130		.cra_name 	= "cbc(aes)",
1131		.cra_driver_name = "cbc-aes-ppc4xx",
1132		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1133		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1134		.cra_blocksize 	= AES_BLOCK_SIZE,
1135		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1136		.cra_type 	= &crypto_ablkcipher_type,
1137		.cra_init	= crypto4xx_alg_init,
1138		.cra_exit	= crypto4xx_alg_exit,
1139		.cra_module 	= THIS_MODULE,
1140		.cra_u 		= {
1141			.ablkcipher = {
1142				.min_keysize 	= AES_MIN_KEY_SIZE,
1143				.max_keysize 	= AES_MAX_KEY_SIZE,
1144				.ivsize		= AES_IV_SIZE,
1145				.setkey 	= crypto4xx_setkey_aes_cbc,
1146				.encrypt 	= crypto4xx_encrypt,
1147				.decrypt 	= crypto4xx_decrypt,
1148			}
1149		}
1150	}},
1151};
1152
1153/**
1154 * Module Initialization Routine
1155 */
1156static int __init crypto4xx_probe(struct platform_device *ofdev)
1157{
1158	int rc;
1159	struct resource res;
1160	struct device *dev = &ofdev->dev;
1161	struct crypto4xx_core_device *core_dev;
1162
1163	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1164	if (rc)
1165		return -ENODEV;
1166
1167	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1168		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1169		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1170		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1171		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1172	} else if (of_find_compatible_node(NULL, NULL,
1173			"amcc,ppc405ex-crypto")) {
1174		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1175		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1176		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1177		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1178	} else if (of_find_compatible_node(NULL, NULL,
1179			"amcc,ppc460sx-crypto")) {
1180		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1181		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1182		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1183		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1184	} else {
1185		printk(KERN_ERR "Crypto Function Not supported!\n");
1186		return -EINVAL;
1187	}
1188
1189	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1190	if (!core_dev)
1191		return -ENOMEM;
1192
1193	dev_set_drvdata(dev, core_dev);
1194	core_dev->ofdev = ofdev;
1195	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1196	if (!core_dev->dev)
1197		goto err_alloc_dev;
1198
1199	core_dev->dev->core_dev = core_dev;
1200	core_dev->device = dev;
1201	spin_lock_init(&core_dev->lock);
1202	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1203	rc = crypto4xx_build_pdr(core_dev->dev);
1204	if (rc)
1205		goto err_build_pdr;
1206
1207	rc = crypto4xx_build_gdr(core_dev->dev);
1208	if (rc)
1209		goto err_build_gdr;
1210
1211	rc = crypto4xx_build_sdr(core_dev->dev);
1212	if (rc)
1213		goto err_build_sdr;
1214
1215	/* Init tasklet for bottom half processing */
1216	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1217		     (unsigned long) dev);
1218
1219	/* Register for Crypto isr, Crypto Engine IRQ */
1220	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1221	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1222			 core_dev->dev->name, dev);
1223	if (rc)
1224		goto err_request_irq;
1225
1226	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1227	if (!core_dev->dev->ce_base) {
1228		dev_err(dev, "failed to of_iomap\n");
1229		rc = -ENOMEM;
1230		goto err_iomap;
1231	}
1232
1233	/* need to setup pdr, rdr, gdr and sdr before this */
1234	crypto4xx_hw_init(core_dev->dev);
1235
1236	/* Register security algorithms with Linux CryptoAPI */
1237	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1238			       ARRAY_SIZE(crypto4xx_alg));
1239	if (rc)
1240		goto err_start_dev;
1241
1242	return 0;
1243
1244err_start_dev:
1245	iounmap(core_dev->dev->ce_base);
1246err_iomap:
1247	free_irq(core_dev->irq, dev);
1248err_request_irq:
1249	irq_dispose_mapping(core_dev->irq);
1250	tasklet_kill(&core_dev->tasklet);
1251	crypto4xx_destroy_sdr(core_dev->dev);
1252err_build_sdr:
1253	crypto4xx_destroy_gdr(core_dev->dev);
1254err_build_gdr:
1255	crypto4xx_destroy_pdr(core_dev->dev);
1256err_build_pdr:
1257	kfree(core_dev->dev);
1258err_alloc_dev:
1259	kfree(core_dev);
1260
1261	return rc;
1262}
1263
1264static int __exit crypto4xx_remove(struct platform_device *ofdev)
1265{
1266	struct device *dev = &ofdev->dev;
1267	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1268
1269	free_irq(core_dev->irq, dev);
1270	irq_dispose_mapping(core_dev->irq);
1271
1272	tasklet_kill(&core_dev->tasklet);
1273	/* Un-register with Linux CryptoAPI */
1274	crypto4xx_unregister_alg(core_dev->dev);
1275	/* Free all allocated memory */
1276	crypto4xx_stop_all(core_dev);
1277
1278	return 0;
1279}
1280
1281static const struct of_device_id crypto4xx_match[] = {
1282	{ .compatible      = "amcc,ppc4xx-crypto",},
1283	{ },
1284};
1285
1286static struct platform_driver crypto4xx_driver = {
1287	.driver = {
1288		.name = "crypto4xx",
1289		.owner = THIS_MODULE,
1290		.of_match_table = crypto4xx_match,
1291	},
1292	.probe		= crypto4xx_probe,
1293	.remove		= crypto4xx_remove,
1294};
1295
1296module_platform_driver(crypto4xx_driver);
1297
1298MODULE_LICENSE("GPL");
1299MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1300MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1301
1302