intel_mid_dma.c revision 1fded07513ea57b5ee128958ff119e05588b7227
1/*
2 *  intel_mid_dma.c - Intel Langwell DMA Drivers
3 *
4 *  Copyright (C) 2008-10 Intel Corp
5 *  Author: Vinod Koul <vinod.koul@intel.com>
6 *  The driver design is based on dw_dmac driver
7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 *  This program is free software; you can redistribute it and/or modify
10 *  it under the terms of the GNU General Public License as published by
11 *  the Free Software Foundation; version 2 of the License.
12 *
13 *  This program is distributed in the hope that it will be useful, but
14 *  WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 *  General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License along
19 *  with this program; if not, write to the Free Software Foundation, Inc.,
20 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 *
25 */
26#include <linux/pci.h>
27#include <linux/interrupt.h>
28#include <linux/pm_runtime.h>
29#include <linux/intel_mid_dma.h>
30#include <linux/module.h>
31
32#define MAX_CHAN	4 /*max ch across controllers*/
33#include "intel_mid_dma_regs.h"
34
35#define INTEL_MID_DMAC1_ID		0x0814
36#define INTEL_MID_DMAC2_ID		0x0813
37#define INTEL_MID_GP_DMAC2_ID		0x0827
38#define INTEL_MFLD_DMAC1_ID		0x0830
39#define LNW_PERIPHRAL_MASK_BASE		0xFFAE8008
40#define LNW_PERIPHRAL_MASK_SIZE		0x10
41#define LNW_PERIPHRAL_STATUS		0x0
42#define LNW_PERIPHRAL_MASK		0x8
43
44struct intel_mid_dma_probe_info {
45	u8 max_chan;
46	u8 ch_base;
47	u16 block_size;
48	u32 pimr_mask;
49};
50
51#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
52	((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {	\
53		.max_chan = (_max_chan),			\
54		.ch_base = (_ch_base),				\
55		.block_size = (_block_size),			\
56		.pimr_mask = (_pimr_mask),			\
57	})
58
59/*****************************************************************************
60Utility Functions*/
61/**
62 * get_ch_index	-	convert status to channel
63 * @status: status mask
64 * @base: dma ch base value
65 *
66 * Modify the status mask and return the channel index needing
67 * attention (or -1 if neither)
68 */
69static int get_ch_index(int *status, unsigned int base)
70{
71	int i;
72	for (i = 0; i < MAX_CHAN; i++) {
73		if (*status & (1 << (i + base))) {
74			*status = *status & ~(1 << (i + base));
75			pr_debug("MDMA: index %d New status %x\n", i, *status);
76			return i;
77		}
78	}
79	return -1;
80}
81
82/**
83 * get_block_ts	-	calculates dma transaction length
84 * @len: dma transfer length
85 * @tx_width: dma transfer src width
86 * @block_size: dma controller max block size
87 *
88 * Based on src width calculate the DMA trsaction length in data items
89 * return data items or FFFF if exceeds max length for block
90 */
91static int get_block_ts(int len, int tx_width, int block_size)
92{
93	int byte_width = 0, block_ts = 0;
94
95	switch (tx_width) {
96	case DMA_SLAVE_BUSWIDTH_1_BYTE:
97		byte_width = 1;
98		break;
99	case DMA_SLAVE_BUSWIDTH_2_BYTES:
100		byte_width = 2;
101		break;
102	case DMA_SLAVE_BUSWIDTH_4_BYTES:
103	default:
104		byte_width = 4;
105		break;
106	}
107
108	block_ts = len/byte_width;
109	if (block_ts > block_size)
110		block_ts = 0xFFFF;
111	return block_ts;
112}
113
114/*****************************************************************************
115DMAC1 interrupt Functions*/
116
117/**
118 * dmac1_mask_periphral_intr -	mask the periphral interrupt
119 * @mid: dma device for which masking is required
120 *
121 * Masks the DMA periphral interrupt
122 * this is valid for DMAC1 family controllers only
123 * This controller should have periphral mask registers already mapped
124 */
125static void dmac1_mask_periphral_intr(struct middma_device *mid)
126{
127	u32 pimr;
128
129	if (mid->pimr_mask) {
130		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
131		pimr |= mid->pimr_mask;
132		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
133	}
134	return;
135}
136
137/**
138 * dmac1_unmask_periphral_intr -	unmask the periphral interrupt
139 * @midc: dma channel for which masking is required
140 *
141 * UnMasks the DMA periphral interrupt,
142 * this is valid for DMAC1 family controllers only
143 * This controller should have periphral mask registers already mapped
144 */
145static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
146{
147	u32 pimr;
148	struct middma_device *mid = to_middma_device(midc->chan.device);
149
150	if (mid->pimr_mask) {
151		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
152		pimr &= ~mid->pimr_mask;
153		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
154	}
155	return;
156}
157
158/**
159 * enable_dma_interrupt -	enable the periphral interrupt
160 * @midc: dma channel for which enable interrupt is required
161 *
162 * Enable the DMA periphral interrupt,
163 * this is valid for DMAC1 family controllers only
164 * This controller should have periphral mask registers already mapped
165 */
166static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
167{
168	dmac1_unmask_periphral_intr(midc);
169
170	/*en ch interrupts*/
171	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
172	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
173	return;
174}
175
176/**
177 * disable_dma_interrupt -	disable the periphral interrupt
178 * @midc: dma channel for which disable interrupt is required
179 *
180 * Disable the DMA periphral interrupt,
181 * this is valid for DMAC1 family controllers only
182 * This controller should have periphral mask registers already mapped
183 */
184static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
185{
186	/*Check LPE PISR, make sure fwd is disabled*/
187	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
188	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
189	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
190	return;
191}
192
193/*****************************************************************************
194DMA channel helper Functions*/
195/**
196 * mid_desc_get		-	get a descriptor
197 * @midc: dma channel for which descriptor is required
198 *
199 * Obtain a descriptor for the channel. Returns NULL if none are free.
200 * Once the descriptor is returned it is private until put on another
201 * list or freed
202 */
203static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
204{
205	struct intel_mid_dma_desc *desc, *_desc;
206	struct intel_mid_dma_desc *ret = NULL;
207
208	spin_lock_bh(&midc->lock);
209	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
210		if (async_tx_test_ack(&desc->txd)) {
211			list_del(&desc->desc_node);
212			ret = desc;
213			break;
214		}
215	}
216	spin_unlock_bh(&midc->lock);
217	return ret;
218}
219
220/**
221 * mid_desc_put		-	put a descriptor
222 * @midc: dma channel for which descriptor is required
223 * @desc: descriptor to put
224 *
225 * Return a descriptor from lwn_desc_get back to the free pool
226 */
227static void midc_desc_put(struct intel_mid_dma_chan *midc,
228			struct intel_mid_dma_desc *desc)
229{
230	if (desc) {
231		spin_lock_bh(&midc->lock);
232		list_add_tail(&desc->desc_node, &midc->free_list);
233		spin_unlock_bh(&midc->lock);
234	}
235}
236/**
237 * midc_dostart		-		begin a DMA transaction
238 * @midc: channel for which txn is to be started
239 * @first: first descriptor of series
240 *
241 * Load a transaction into the engine. This must be called with midc->lock
242 * held and bh disabled.
243 */
244static void midc_dostart(struct intel_mid_dma_chan *midc,
245			struct intel_mid_dma_desc *first)
246{
247	struct middma_device *mid = to_middma_device(midc->chan.device);
248
249	/*  channel is idle */
250	if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
251		/*error*/
252		pr_err("ERR_MDMA: channel is busy in start\n");
253		/* The tasklet will hopefully advance the queue... */
254		return;
255	}
256	midc->busy = true;
257	/*write registers and en*/
258	iowrite32(first->sar, midc->ch_regs + SAR);
259	iowrite32(first->dar, midc->ch_regs + DAR);
260	iowrite32(first->lli_phys, midc->ch_regs + LLP);
261	iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
262	iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
263	iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
264	iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
265	pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
266		(int)first->sar, (int)first->dar, first->cfg_hi,
267		first->cfg_lo, first->ctl_hi, first->ctl_lo);
268	first->status = DMA_IN_PROGRESS;
269
270	iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
271}
272
273/**
274 * midc_descriptor_complete	-	process completed descriptor
275 * @midc: channel owning the descriptor
276 * @desc: the descriptor itself
277 *
278 * Process a completed descriptor and perform any callbacks upon
279 * the completion. The completion handling drops the lock during the
280 * callbacks but must be called with the lock held.
281 */
282static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
283		struct intel_mid_dma_desc *desc)
284		__releases(&midc->lock) __acquires(&midc->lock)
285{
286	struct dma_async_tx_descriptor	*txd = &desc->txd;
287	dma_async_tx_callback callback_txd = NULL;
288	struct intel_mid_dma_lli	*llitem;
289	void *param_txd = NULL;
290
291	midc->completed = txd->cookie;
292	callback_txd = txd->callback;
293	param_txd = txd->callback_param;
294
295	if (desc->lli != NULL) {
296		/*clear the DONE bit of completed LLI in memory*/
297		llitem = desc->lli + desc->current_lli;
298		llitem->ctl_hi &= CLEAR_DONE;
299		if (desc->current_lli < desc->lli_length-1)
300			(desc->current_lli)++;
301		else
302			desc->current_lli = 0;
303	}
304	spin_unlock_bh(&midc->lock);
305	if (callback_txd) {
306		pr_debug("MDMA: TXD callback set ... calling\n");
307		callback_txd(param_txd);
308	}
309	if (midc->raw_tfr) {
310		desc->status = DMA_SUCCESS;
311		if (desc->lli != NULL) {
312			pci_pool_free(desc->lli_pool, desc->lli,
313						desc->lli_phys);
314			pci_pool_destroy(desc->lli_pool);
315			desc->lli = NULL;
316		}
317		list_move(&desc->desc_node, &midc->free_list);
318		midc->busy = false;
319	}
320	spin_lock_bh(&midc->lock);
321
322}
323/**
324 * midc_scan_descriptors -		check the descriptors in channel
325 *					mark completed when tx is completete
326 * @mid: device
327 * @midc: channel to scan
328 *
329 * Walk the descriptor chain for the device and process any entries
330 * that are complete.
331 */
332static void midc_scan_descriptors(struct middma_device *mid,
333				struct intel_mid_dma_chan *midc)
334{
335	struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
336
337	/*tx is complete*/
338	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
339		if (desc->status == DMA_IN_PROGRESS)
340			midc_descriptor_complete(midc, desc);
341	}
342	return;
343	}
344/**
345 * midc_lli_fill_sg -		Helper function to convert
346 *				SG list to Linked List Items.
347 *@midc: Channel
348 *@desc: DMA descriptor
349 *@sglist: Pointer to SG list
350 *@sglen: SG list length
351 *@flags: DMA transaction flags
352 *
353 * Walk through the SG list and convert the SG list into Linked
354 * List Items (LLI).
355 */
356static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
357				struct intel_mid_dma_desc *desc,
358				struct scatterlist *sglist,
359				unsigned int sglen,
360				unsigned int flags)
361{
362	struct intel_mid_dma_slave *mids;
363	struct scatterlist  *sg;
364	dma_addr_t lli_next, sg_phy_addr;
365	struct intel_mid_dma_lli *lli_bloc_desc;
366	union intel_mid_dma_ctl_lo ctl_lo;
367	union intel_mid_dma_ctl_hi ctl_hi;
368	int i;
369
370	pr_debug("MDMA: Entered midc_lli_fill_sg\n");
371	mids = midc->mid_slave;
372
373	lli_bloc_desc = desc->lli;
374	lli_next = desc->lli_phys;
375
376	ctl_lo.ctl_lo = desc->ctl_lo;
377	ctl_hi.ctl_hi = desc->ctl_hi;
378	for_each_sg(sglist, sg, sglen, i) {
379		/*Populate CTL_LOW and LLI values*/
380		if (i != sglen - 1) {
381			lli_next = lli_next +
382				sizeof(struct intel_mid_dma_lli);
383		} else {
384		/*Check for circular list, otherwise terminate LLI to ZERO*/
385			if (flags & DMA_PREP_CIRCULAR_LIST) {
386				pr_debug("MDMA: LLI is configured in circular mode\n");
387				lli_next = desc->lli_phys;
388			} else {
389				lli_next = 0;
390				ctl_lo.ctlx.llp_dst_en = 0;
391				ctl_lo.ctlx.llp_src_en = 0;
392			}
393		}
394		/*Populate CTL_HI values*/
395		ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
396							desc->width,
397							midc->dma->block_size);
398		/*Populate SAR and DAR values*/
399		sg_phy_addr = sg_phys(sg);
400		if (desc->dirn ==  DMA_MEM_TO_DEV) {
401			lli_bloc_desc->sar  = sg_phy_addr;
402			lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
403		} else if (desc->dirn ==  DMA_DEV_TO_MEM) {
404			lli_bloc_desc->sar  = mids->dma_slave.src_addr;
405			lli_bloc_desc->dar  = sg_phy_addr;
406		}
407		/*Copy values into block descriptor in system memroy*/
408		lli_bloc_desc->llp = lli_next;
409		lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
410		lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
411
412		lli_bloc_desc++;
413	}
414	/*Copy very first LLI values to descriptor*/
415	desc->ctl_lo = desc->lli->ctl_lo;
416	desc->ctl_hi = desc->lli->ctl_hi;
417	desc->sar = desc->lli->sar;
418	desc->dar = desc->lli->dar;
419
420	return 0;
421}
422/*****************************************************************************
423DMA engine callback Functions*/
424/**
425 * intel_mid_dma_tx_submit -	callback to submit DMA transaction
426 * @tx: dma engine descriptor
427 *
428 * Submit the DMA trasaction for this descriptor, start if ch idle
429 */
430static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
431{
432	struct intel_mid_dma_desc	*desc = to_intel_mid_dma_desc(tx);
433	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(tx->chan);
434	dma_cookie_t		cookie;
435
436	spin_lock_bh(&midc->lock);
437	cookie = midc->chan.cookie;
438
439	if (++cookie < 0)
440		cookie = 1;
441
442	midc->chan.cookie = cookie;
443	desc->txd.cookie = cookie;
444
445
446	if (list_empty(&midc->active_list))
447		list_add_tail(&desc->desc_node, &midc->active_list);
448	else
449		list_add_tail(&desc->desc_node, &midc->queue);
450
451	midc_dostart(midc, desc);
452	spin_unlock_bh(&midc->lock);
453
454	return cookie;
455}
456
457/**
458 * intel_mid_dma_issue_pending -	callback to issue pending txn
459 * @chan: chan where pending trascation needs to be checked and submitted
460 *
461 * Call for scan to issue pending descriptors
462 */
463static void intel_mid_dma_issue_pending(struct dma_chan *chan)
464{
465	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
466
467	spin_lock_bh(&midc->lock);
468	if (!list_empty(&midc->queue))
469		midc_scan_descriptors(to_middma_device(chan->device), midc);
470	spin_unlock_bh(&midc->lock);
471}
472
473/**
474 * intel_mid_dma_tx_status -	Return status of txn
475 * @chan: chan for where status needs to be checked
476 * @cookie: cookie for txn
477 * @txstate: DMA txn state
478 *
479 * Return status of DMA txn
480 */
481static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
482						dma_cookie_t cookie,
483						struct dma_tx_state *txstate)
484{
485	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
486	dma_cookie_t		last_used;
487	dma_cookie_t		last_complete;
488	int				ret;
489
490	last_complete = midc->completed;
491	last_used = chan->cookie;
492
493	ret = dma_async_is_complete(cookie, last_complete, last_used);
494	if (ret != DMA_SUCCESS) {
495		spin_lock_bh(&midc->lock);
496		midc_scan_descriptors(to_middma_device(chan->device), midc);
497		spin_unlock_bh(&midc->lock);
498
499		last_complete = midc->completed;
500		last_used = chan->cookie;
501
502		ret = dma_async_is_complete(cookie, last_complete, last_used);
503	}
504
505	if (txstate) {
506		txstate->last = last_complete;
507		txstate->used = last_used;
508		txstate->residue = 0;
509	}
510	return ret;
511}
512
513static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
514{
515	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
516	struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
517	struct intel_mid_dma_slave *mid_slave;
518
519	BUG_ON(!midc);
520	BUG_ON(!slave);
521	pr_debug("MDMA: slave control called\n");
522
523	mid_slave = to_intel_mid_dma_slave(slave);
524
525	BUG_ON(!mid_slave);
526
527	midc->mid_slave = mid_slave;
528	return 0;
529}
530/**
531 * intel_mid_dma_device_control -	DMA device control
532 * @chan: chan for DMA control
533 * @cmd: control cmd
534 * @arg: cmd arg value
535 *
536 * Perform DMA control command
537 */
538static int intel_mid_dma_device_control(struct dma_chan *chan,
539			enum dma_ctrl_cmd cmd, unsigned long arg)
540{
541	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
542	struct middma_device	*mid = to_middma_device(chan->device);
543	struct intel_mid_dma_desc	*desc, *_desc;
544	union intel_mid_dma_cfg_lo cfg_lo;
545
546	if (cmd == DMA_SLAVE_CONFIG)
547		return dma_slave_control(chan, arg);
548
549	if (cmd != DMA_TERMINATE_ALL)
550		return -ENXIO;
551
552	spin_lock_bh(&midc->lock);
553	if (midc->busy == false) {
554		spin_unlock_bh(&midc->lock);
555		return 0;
556	}
557	/*Suspend and disable the channel*/
558	cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
559	cfg_lo.cfgx.ch_susp = 1;
560	iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
561	iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
562	midc->busy = false;
563	/* Disable interrupts */
564	disable_dma_interrupt(midc);
565	midc->descs_allocated = 0;
566
567	spin_unlock_bh(&midc->lock);
568	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
569		if (desc->lli != NULL) {
570			pci_pool_free(desc->lli_pool, desc->lli,
571						desc->lli_phys);
572			pci_pool_destroy(desc->lli_pool);
573			desc->lli = NULL;
574		}
575		list_move(&desc->desc_node, &midc->free_list);
576	}
577	return 0;
578}
579
580
581/**
582 * intel_mid_dma_prep_memcpy -	Prep memcpy txn
583 * @chan: chan for DMA transfer
584 * @dest: destn address
585 * @src: src address
586 * @len: DMA transfer len
587 * @flags: DMA flags
588 *
589 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
590 * The periphral txn details should be filled in slave structure properly
591 * Returns the descriptor for this txn
592 */
593static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
594			struct dma_chan *chan, dma_addr_t dest,
595			dma_addr_t src, size_t len, unsigned long flags)
596{
597	struct intel_mid_dma_chan *midc;
598	struct intel_mid_dma_desc *desc = NULL;
599	struct intel_mid_dma_slave *mids;
600	union intel_mid_dma_ctl_lo ctl_lo;
601	union intel_mid_dma_ctl_hi ctl_hi;
602	union intel_mid_dma_cfg_lo cfg_lo;
603	union intel_mid_dma_cfg_hi cfg_hi;
604	enum dma_slave_buswidth width;
605
606	pr_debug("MDMA: Prep for memcpy\n");
607	BUG_ON(!chan);
608	if (!len)
609		return NULL;
610
611	midc = to_intel_mid_dma_chan(chan);
612	BUG_ON(!midc);
613
614	mids = midc->mid_slave;
615	BUG_ON(!mids);
616
617	pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
618				midc->dma->pci_id, midc->ch_id, len);
619	pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
620			mids->cfg_mode, mids->dma_slave.direction,
621			mids->hs_mode, mids->dma_slave.src_addr_width);
622
623	/*calculate CFG_LO*/
624	if (mids->hs_mode == LNW_DMA_SW_HS) {
625		cfg_lo.cfg_lo = 0;
626		cfg_lo.cfgx.hs_sel_dst = 1;
627		cfg_lo.cfgx.hs_sel_src = 1;
628	} else if (mids->hs_mode == LNW_DMA_HW_HS)
629		cfg_lo.cfg_lo = 0x00000;
630
631	/*calculate CFG_HI*/
632	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
633		/*SW HS only*/
634		cfg_hi.cfg_hi = 0;
635	} else {
636		cfg_hi.cfg_hi = 0;
637		if (midc->dma->pimr_mask) {
638			cfg_hi.cfgx.protctl = 0x0; /*default value*/
639			cfg_hi.cfgx.fifo_mode = 1;
640			if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
641				cfg_hi.cfgx.src_per = 0;
642				if (mids->device_instance == 0)
643					cfg_hi.cfgx.dst_per = 3;
644				if (mids->device_instance == 1)
645					cfg_hi.cfgx.dst_per = 1;
646			} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
647				if (mids->device_instance == 0)
648					cfg_hi.cfgx.src_per = 2;
649				if (mids->device_instance == 1)
650					cfg_hi.cfgx.src_per = 0;
651				cfg_hi.cfgx.dst_per = 0;
652			}
653		} else {
654			cfg_hi.cfgx.protctl = 0x1; /*default value*/
655			cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
656					midc->ch_id - midc->dma->chan_base;
657		}
658	}
659
660	/*calculate CTL_HI*/
661	ctl_hi.ctlx.reser = 0;
662	ctl_hi.ctlx.done  = 0;
663	width = mids->dma_slave.src_addr_width;
664
665	ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
666	pr_debug("MDMA:calc len %d for block size %d\n",
667				ctl_hi.ctlx.block_ts, midc->dma->block_size);
668	/*calculate CTL_LO*/
669	ctl_lo.ctl_lo = 0;
670	ctl_lo.ctlx.int_en = 1;
671	ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
672	ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
673
674	/*
675	 * Here we need some translation from "enum dma_slave_buswidth"
676	 * to the format for our dma controller
677	 *		standard	intel_mid_dmac's format
678	 *		 1 Byte			0b000
679	 *		 2 Bytes		0b001
680	 *		 4 Bytes		0b010
681	 */
682	ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
683	ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
684
685	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
686		ctl_lo.ctlx.tt_fc = 0;
687		ctl_lo.ctlx.sinc = 0;
688		ctl_lo.ctlx.dinc = 0;
689	} else {
690		if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
691			ctl_lo.ctlx.sinc = 0;
692			ctl_lo.ctlx.dinc = 2;
693			ctl_lo.ctlx.tt_fc = 1;
694		} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
695			ctl_lo.ctlx.sinc = 2;
696			ctl_lo.ctlx.dinc = 0;
697			ctl_lo.ctlx.tt_fc = 2;
698		}
699	}
700
701	pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
702		ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
703
704	enable_dma_interrupt(midc);
705
706	desc = midc_desc_get(midc);
707	if (desc == NULL)
708		goto err_desc_get;
709	desc->sar = src;
710	desc->dar = dest ;
711	desc->len = len;
712	desc->cfg_hi = cfg_hi.cfg_hi;
713	desc->cfg_lo = cfg_lo.cfg_lo;
714	desc->ctl_lo = ctl_lo.ctl_lo;
715	desc->ctl_hi = ctl_hi.ctl_hi;
716	desc->width = width;
717	desc->dirn = mids->dma_slave.direction;
718	desc->lli_phys = 0;
719	desc->lli = NULL;
720	desc->lli_pool = NULL;
721	return &desc->txd;
722
723err_desc_get:
724	pr_err("ERR_MDMA: Failed to get desc\n");
725	midc_desc_put(midc, desc);
726	return NULL;
727}
728/**
729 * intel_mid_dma_prep_slave_sg -	Prep slave sg txn
730 * @chan: chan for DMA transfer
731 * @sgl: scatter gather list
732 * @sg_len: length of sg txn
733 * @direction: DMA transfer dirtn
734 * @flags: DMA flags
735 *
736 * Prepares LLI based periphral transfer
737 */
738static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
739			struct dma_chan *chan, struct scatterlist *sgl,
740			unsigned int sg_len, enum dma_transfer_direction direction,
741			unsigned long flags)
742{
743	struct intel_mid_dma_chan *midc = NULL;
744	struct intel_mid_dma_slave *mids = NULL;
745	struct intel_mid_dma_desc *desc = NULL;
746	struct dma_async_tx_descriptor *txd = NULL;
747	union intel_mid_dma_ctl_lo ctl_lo;
748
749	pr_debug("MDMA: Prep for slave SG\n");
750
751	if (!sg_len) {
752		pr_err("MDMA: Invalid SG length\n");
753		return NULL;
754	}
755	midc = to_intel_mid_dma_chan(chan);
756	BUG_ON(!midc);
757
758	mids = midc->mid_slave;
759	BUG_ON(!mids);
760
761	if (!midc->dma->pimr_mask) {
762		/* We can still handle sg list with only one item */
763		if (sg_len == 1) {
764			txd = intel_mid_dma_prep_memcpy(chan,
765						mids->dma_slave.dst_addr,
766						mids->dma_slave.src_addr,
767						sgl->length,
768						flags);
769			return txd;
770		} else {
771			pr_warn("MDMA: SG list is not supported by this controller\n");
772			return  NULL;
773		}
774	}
775
776	pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
777			sg_len, direction, flags);
778
779	txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
780	if (NULL == txd) {
781		pr_err("MDMA: Prep memcpy failed\n");
782		return NULL;
783	}
784
785	desc = to_intel_mid_dma_desc(txd);
786	desc->dirn = direction;
787	ctl_lo.ctl_lo = desc->ctl_lo;
788	ctl_lo.ctlx.llp_dst_en = 1;
789	ctl_lo.ctlx.llp_src_en = 1;
790	desc->ctl_lo = ctl_lo.ctl_lo;
791	desc->lli_length = sg_len;
792	desc->current_lli = 0;
793	/* DMA coherent memory pool for LLI descriptors*/
794	desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
795				midc->dma->pdev,
796				(sizeof(struct intel_mid_dma_lli)*sg_len),
797				32, 0);
798	if (NULL == desc->lli_pool) {
799		pr_err("MID_DMA:LLI pool create failed\n");
800		return NULL;
801	}
802
803	desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
804	if (!desc->lli) {
805		pr_err("MID_DMA: LLI alloc failed\n");
806		pci_pool_destroy(desc->lli_pool);
807		return NULL;
808	}
809
810	midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
811	if (flags & DMA_PREP_INTERRUPT) {
812		iowrite32(UNMASK_INTR_REG(midc->ch_id),
813				midc->dma_base + MASK_BLOCK);
814		pr_debug("MDMA:Enabled Block interrupt\n");
815	}
816	return &desc->txd;
817}
818
819/**
820 * intel_mid_dma_free_chan_resources -	Frees dma resources
821 * @chan: chan requiring attention
822 *
823 * Frees the allocated resources on this DMA chan
824 */
825static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
826{
827	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
828	struct middma_device	*mid = to_middma_device(chan->device);
829	struct intel_mid_dma_desc	*desc, *_desc;
830
831	if (true == midc->busy) {
832		/*trying to free ch in use!!!!!*/
833		pr_err("ERR_MDMA: trying to free ch in use\n");
834	}
835	pm_runtime_put(&mid->pdev->dev);
836	spin_lock_bh(&midc->lock);
837	midc->descs_allocated = 0;
838	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
839		list_del(&desc->desc_node);
840		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
841	}
842	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
843		list_del(&desc->desc_node);
844		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
845	}
846	list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
847		list_del(&desc->desc_node);
848		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
849	}
850	spin_unlock_bh(&midc->lock);
851	midc->in_use = false;
852	midc->busy = false;
853	/* Disable CH interrupts */
854	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
855	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
856}
857
858/**
859 * intel_mid_dma_alloc_chan_resources -	Allocate dma resources
860 * @chan: chan requiring attention
861 *
862 * Allocates DMA resources on this chan
863 * Return the descriptors allocated
864 */
865static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
866{
867	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
868	struct middma_device	*mid = to_middma_device(chan->device);
869	struct intel_mid_dma_desc	*desc;
870	dma_addr_t		phys;
871	int	i = 0;
872
873	pm_runtime_get_sync(&mid->pdev->dev);
874
875	if (mid->state == SUSPENDED) {
876		if (dma_resume(mid->pdev)) {
877			pr_err("ERR_MDMA: resume failed");
878			return -EFAULT;
879		}
880	}
881
882	/* ASSERT:  channel is idle */
883	if (test_ch_en(mid->dma_base, midc->ch_id)) {
884		/*ch is not idle*/
885		pr_err("ERR_MDMA: ch not idle\n");
886		pm_runtime_put(&mid->pdev->dev);
887		return -EIO;
888	}
889	midc->completed = chan->cookie = 1;
890
891	spin_lock_bh(&midc->lock);
892	while (midc->descs_allocated < DESCS_PER_CHANNEL) {
893		spin_unlock_bh(&midc->lock);
894		desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
895		if (!desc) {
896			pr_err("ERR_MDMA: desc failed\n");
897			pm_runtime_put(&mid->pdev->dev);
898			return -ENOMEM;
899			/*check*/
900		}
901		dma_async_tx_descriptor_init(&desc->txd, chan);
902		desc->txd.tx_submit = intel_mid_dma_tx_submit;
903		desc->txd.flags = DMA_CTRL_ACK;
904		desc->txd.phys = phys;
905		spin_lock_bh(&midc->lock);
906		i = ++midc->descs_allocated;
907		list_add_tail(&desc->desc_node, &midc->free_list);
908	}
909	spin_unlock_bh(&midc->lock);
910	midc->in_use = true;
911	midc->busy = false;
912	pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
913	return i;
914}
915
916/**
917 * midc_handle_error -	Handle DMA txn error
918 * @mid: controller where error occurred
919 * @midc: chan where error occurred
920 *
921 * Scan the descriptor for error
922 */
923static void midc_handle_error(struct middma_device *mid,
924		struct intel_mid_dma_chan *midc)
925{
926	midc_scan_descriptors(mid, midc);
927}
928
929/**
930 * dma_tasklet -	DMA interrupt tasklet
931 * @data: tasklet arg (the controller structure)
932 *
933 * Scan the controller for interrupts for completion/error
934 * Clear the interrupt and call for handling completion/error
935 */
936static void dma_tasklet(unsigned long data)
937{
938	struct middma_device *mid = NULL;
939	struct intel_mid_dma_chan *midc = NULL;
940	u32 status, raw_tfr, raw_block;
941	int i;
942
943	mid = (struct middma_device *)data;
944	if (mid == NULL) {
945		pr_err("ERR_MDMA: tasklet Null param\n");
946		return;
947	}
948	pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
949	raw_tfr = ioread32(mid->dma_base + RAW_TFR);
950	raw_block = ioread32(mid->dma_base + RAW_BLOCK);
951	status = raw_tfr | raw_block;
952	status &= mid->intr_mask;
953	while (status) {
954		/*txn interrupt*/
955		i = get_ch_index(&status, mid->chan_base);
956		if (i < 0) {
957			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
958			return;
959		}
960		midc = &mid->ch[i];
961		if (midc == NULL) {
962			pr_err("ERR_MDMA:Null param midc\n");
963			return;
964		}
965		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
966				status, midc->ch_id, i);
967		midc->raw_tfr = raw_tfr;
968		midc->raw_block = raw_block;
969		spin_lock_bh(&midc->lock);
970		/*clearing this interrupts first*/
971		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
972		if (raw_block) {
973			iowrite32((1 << midc->ch_id),
974				mid->dma_base + CLEAR_BLOCK);
975		}
976		midc_scan_descriptors(mid, midc);
977		pr_debug("MDMA:Scan of desc... complete, unmasking\n");
978		iowrite32(UNMASK_INTR_REG(midc->ch_id),
979				mid->dma_base + MASK_TFR);
980		if (raw_block) {
981			iowrite32(UNMASK_INTR_REG(midc->ch_id),
982				mid->dma_base + MASK_BLOCK);
983		}
984		spin_unlock_bh(&midc->lock);
985	}
986
987	status = ioread32(mid->dma_base + RAW_ERR);
988	status &= mid->intr_mask;
989	while (status) {
990		/*err interrupt*/
991		i = get_ch_index(&status, mid->chan_base);
992		if (i < 0) {
993			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
994			return;
995		}
996		midc = &mid->ch[i];
997		if (midc == NULL) {
998			pr_err("ERR_MDMA:Null param midc\n");
999			return;
1000		}
1001		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
1002				status, midc->ch_id, i);
1003
1004		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1005		spin_lock_bh(&midc->lock);
1006		midc_handle_error(mid, midc);
1007		iowrite32(UNMASK_INTR_REG(midc->ch_id),
1008				mid->dma_base + MASK_ERR);
1009		spin_unlock_bh(&midc->lock);
1010	}
1011	pr_debug("MDMA:Exiting takslet...\n");
1012	return;
1013}
1014
1015static void dma_tasklet1(unsigned long data)
1016{
1017	pr_debug("MDMA:in takslet1...\n");
1018	return dma_tasklet(data);
1019}
1020
1021static void dma_tasklet2(unsigned long data)
1022{
1023	pr_debug("MDMA:in takslet2...\n");
1024	return dma_tasklet(data);
1025}
1026
1027/**
1028 * intel_mid_dma_interrupt -	DMA ISR
1029 * @irq: IRQ where interrupt occurred
1030 * @data: ISR cllback data (the controller structure)
1031 *
1032 * See if this is our interrupt if so then schedule the tasklet
1033 * otherwise ignore
1034 */
1035static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1036{
1037	struct middma_device *mid = data;
1038	u32 tfr_status, err_status;
1039	int call_tasklet = 0;
1040
1041	tfr_status = ioread32(mid->dma_base + RAW_TFR);
1042	err_status = ioread32(mid->dma_base + RAW_ERR);
1043	if (!tfr_status && !err_status)
1044		return IRQ_NONE;
1045
1046	/*DMA Interrupt*/
1047	pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1048	pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1049	tfr_status &= mid->intr_mask;
1050	if (tfr_status) {
1051		/*need to disable intr*/
1052		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1053		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1054		pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1055		call_tasklet = 1;
1056	}
1057	err_status &= mid->intr_mask;
1058	if (err_status) {
1059		iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
1060		call_tasklet = 1;
1061	}
1062	if (call_tasklet)
1063		tasklet_schedule(&mid->tasklet);
1064
1065	return IRQ_HANDLED;
1066}
1067
1068static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1069{
1070	return intel_mid_dma_interrupt(irq, data);
1071}
1072
1073static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1074{
1075	return intel_mid_dma_interrupt(irq, data);
1076}
1077
1078/**
1079 * mid_setup_dma -	Setup the DMA controller
1080 * @pdev: Controller PCI device structure
1081 *
1082 * Initialize the DMA controller, channels, registers with DMA engine,
1083 * ISR. Initialize DMA controller channels.
1084 */
1085static int mid_setup_dma(struct pci_dev *pdev)
1086{
1087	struct middma_device *dma = pci_get_drvdata(pdev);
1088	int err, i;
1089
1090	/* DMA coherent memory pool for DMA descriptor allocations */
1091	dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1092					sizeof(struct intel_mid_dma_desc),
1093					32, 0);
1094	if (NULL == dma->dma_pool) {
1095		pr_err("ERR_MDMA:pci_pool_create failed\n");
1096		err = -ENOMEM;
1097		goto err_dma_pool;
1098	}
1099
1100	INIT_LIST_HEAD(&dma->common.channels);
1101	dma->pci_id = pdev->device;
1102	if (dma->pimr_mask) {
1103		dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1104					LNW_PERIPHRAL_MASK_SIZE);
1105		if (dma->mask_reg == NULL) {
1106			pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1107			return -ENOMEM;
1108		}
1109	} else
1110		dma->mask_reg = NULL;
1111
1112	pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1113	/*init CH structures*/
1114	dma->intr_mask = 0;
1115	dma->state = RUNNING;
1116	for (i = 0; i < dma->max_chan; i++) {
1117		struct intel_mid_dma_chan *midch = &dma->ch[i];
1118
1119		midch->chan.device = &dma->common;
1120		midch->chan.cookie =  1;
1121		midch->ch_id = dma->chan_base + i;
1122		pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1123
1124		midch->dma_base = dma->dma_base;
1125		midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1126		midch->dma = dma;
1127		dma->intr_mask |= 1 << (dma->chan_base + i);
1128		spin_lock_init(&midch->lock);
1129
1130		INIT_LIST_HEAD(&midch->active_list);
1131		INIT_LIST_HEAD(&midch->queue);
1132		INIT_LIST_HEAD(&midch->free_list);
1133		/*mask interrupts*/
1134		iowrite32(MASK_INTR_REG(midch->ch_id),
1135			dma->dma_base + MASK_BLOCK);
1136		iowrite32(MASK_INTR_REG(midch->ch_id),
1137			dma->dma_base + MASK_SRC_TRAN);
1138		iowrite32(MASK_INTR_REG(midch->ch_id),
1139			dma->dma_base + MASK_DST_TRAN);
1140		iowrite32(MASK_INTR_REG(midch->ch_id),
1141			dma->dma_base + MASK_ERR);
1142		iowrite32(MASK_INTR_REG(midch->ch_id),
1143			dma->dma_base + MASK_TFR);
1144
1145		disable_dma_interrupt(midch);
1146		list_add_tail(&midch->chan.device_node, &dma->common.channels);
1147	}
1148	pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1149
1150	/*init dma structure*/
1151	dma_cap_zero(dma->common.cap_mask);
1152	dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1153	dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1154	dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1155	dma->common.dev = &pdev->dev;
1156
1157	dma->common.device_alloc_chan_resources =
1158					intel_mid_dma_alloc_chan_resources;
1159	dma->common.device_free_chan_resources =
1160					intel_mid_dma_free_chan_resources;
1161
1162	dma->common.device_tx_status = intel_mid_dma_tx_status;
1163	dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1164	dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1165	dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1166	dma->common.device_control = intel_mid_dma_device_control;
1167
1168	/*enable dma cntrl*/
1169	iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1170
1171	/*register irq */
1172	if (dma->pimr_mask) {
1173		pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1174		err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1175			IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1176		if (0 != err)
1177			goto err_irq;
1178	} else {
1179		dma->intr_mask = 0x03;
1180		pr_debug("MDMA:Requesting irq for DMAC2\n");
1181		err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1182			IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1183		if (0 != err)
1184			goto err_irq;
1185	}
1186	/*register device w/ engine*/
1187	err = dma_async_device_register(&dma->common);
1188	if (0 != err) {
1189		pr_err("ERR_MDMA:device_register failed: %d\n", err);
1190		goto err_engine;
1191	}
1192	if (dma->pimr_mask) {
1193		pr_debug("setting up tasklet1 for DMAC1\n");
1194		tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1195	} else {
1196		pr_debug("setting up tasklet2 for DMAC2\n");
1197		tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1198	}
1199	return 0;
1200
1201err_engine:
1202	free_irq(pdev->irq, dma);
1203err_irq:
1204	pci_pool_destroy(dma->dma_pool);
1205err_dma_pool:
1206	pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1207	return err;
1208
1209}
1210
1211/**
1212 * middma_shutdown -	Shutdown the DMA controller
1213 * @pdev: Controller PCI device structure
1214 *
1215 * Called by remove
1216 * Unregister DMa controller, clear all structures and free interrupt
1217 */
1218static void middma_shutdown(struct pci_dev *pdev)
1219{
1220	struct middma_device *device = pci_get_drvdata(pdev);
1221
1222	dma_async_device_unregister(&device->common);
1223	pci_pool_destroy(device->dma_pool);
1224	if (device->mask_reg)
1225		iounmap(device->mask_reg);
1226	if (device->dma_base)
1227		iounmap(device->dma_base);
1228	free_irq(pdev->irq, device);
1229	return;
1230}
1231
1232/**
1233 * intel_mid_dma_probe -	PCI Probe
1234 * @pdev: Controller PCI device structure
1235 * @id: pci device id structure
1236 *
1237 * Initialize the PCI device, map BARs, query driver data.
1238 * Call setup_dma to complete contoller and chan initilzation
1239 */
1240static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1241					const struct pci_device_id *id)
1242{
1243	struct middma_device *device;
1244	u32 base_addr, bar_size;
1245	struct intel_mid_dma_probe_info *info;
1246	int err;
1247
1248	pr_debug("MDMA: probe for %x\n", pdev->device);
1249	info = (void *)id->driver_data;
1250	pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1251				info->max_chan, info->ch_base,
1252				info->block_size, info->pimr_mask);
1253
1254	err = pci_enable_device(pdev);
1255	if (err)
1256		goto err_enable_device;
1257
1258	err = pci_request_regions(pdev, "intel_mid_dmac");
1259	if (err)
1260		goto err_request_regions;
1261
1262	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1263	if (err)
1264		goto err_set_dma_mask;
1265
1266	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1267	if (err)
1268		goto err_set_dma_mask;
1269
1270	device = kzalloc(sizeof(*device), GFP_KERNEL);
1271	if (!device) {
1272		pr_err("ERR_MDMA:kzalloc failed probe\n");
1273		err = -ENOMEM;
1274		goto err_kzalloc;
1275	}
1276	device->pdev = pci_dev_get(pdev);
1277
1278	base_addr = pci_resource_start(pdev, 0);
1279	bar_size  = pci_resource_len(pdev, 0);
1280	device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1281	if (!device->dma_base) {
1282		pr_err("ERR_MDMA:ioremap failed\n");
1283		err = -ENOMEM;
1284		goto err_ioremap;
1285	}
1286	pci_set_drvdata(pdev, device);
1287	pci_set_master(pdev);
1288	device->max_chan = info->max_chan;
1289	device->chan_base = info->ch_base;
1290	device->block_size = info->block_size;
1291	device->pimr_mask = info->pimr_mask;
1292
1293	err = mid_setup_dma(pdev);
1294	if (err)
1295		goto err_dma;
1296
1297	pm_runtime_put_noidle(&pdev->dev);
1298	pm_runtime_allow(&pdev->dev);
1299	return 0;
1300
1301err_dma:
1302	iounmap(device->dma_base);
1303err_ioremap:
1304	pci_dev_put(pdev);
1305	kfree(device);
1306err_kzalloc:
1307err_set_dma_mask:
1308	pci_release_regions(pdev);
1309	pci_disable_device(pdev);
1310err_request_regions:
1311err_enable_device:
1312	pr_err("ERR_MDMA:Probe failed %d\n", err);
1313	return err;
1314}
1315
1316/**
1317 * intel_mid_dma_remove -	PCI remove
1318 * @pdev: Controller PCI device structure
1319 *
1320 * Free up all resources and data
1321 * Call shutdown_dma to complete contoller and chan cleanup
1322 */
1323static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1324{
1325	struct middma_device *device = pci_get_drvdata(pdev);
1326
1327	pm_runtime_get_noresume(&pdev->dev);
1328	pm_runtime_forbid(&pdev->dev);
1329	middma_shutdown(pdev);
1330	pci_dev_put(pdev);
1331	kfree(device);
1332	pci_release_regions(pdev);
1333	pci_disable_device(pdev);
1334}
1335
1336/* Power Management */
1337/*
1338* dma_suspend - PCI suspend function
1339*
1340* @pci: PCI device structure
1341* @state: PM message
1342*
1343* This function is called by OS when a power event occurs
1344*/
1345int dma_suspend(struct pci_dev *pci, pm_message_t state)
1346{
1347	int i;
1348	struct middma_device *device = pci_get_drvdata(pci);
1349	pr_debug("MDMA: dma_suspend called\n");
1350
1351	for (i = 0; i < device->max_chan; i++) {
1352		if (device->ch[i].in_use)
1353			return -EAGAIN;
1354	}
1355	dmac1_mask_periphral_intr(device);
1356	device->state = SUSPENDED;
1357	pci_save_state(pci);
1358	pci_disable_device(pci);
1359	pci_set_power_state(pci, PCI_D3hot);
1360	return 0;
1361}
1362
1363/**
1364* dma_resume - PCI resume function
1365*
1366* @pci:	PCI device structure
1367*
1368* This function is called by OS when a power event occurs
1369*/
1370int dma_resume(struct pci_dev *pci)
1371{
1372	int ret;
1373	struct middma_device *device = pci_get_drvdata(pci);
1374
1375	pr_debug("MDMA: dma_resume called\n");
1376	pci_set_power_state(pci, PCI_D0);
1377	pci_restore_state(pci);
1378	ret = pci_enable_device(pci);
1379	if (ret) {
1380		pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1381		return ret;
1382	}
1383	device->state = RUNNING;
1384	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1385	return 0;
1386}
1387
1388static int dma_runtime_suspend(struct device *dev)
1389{
1390	struct pci_dev *pci_dev = to_pci_dev(dev);
1391	struct middma_device *device = pci_get_drvdata(pci_dev);
1392
1393	device->state = SUSPENDED;
1394	return 0;
1395}
1396
1397static int dma_runtime_resume(struct device *dev)
1398{
1399	struct pci_dev *pci_dev = to_pci_dev(dev);
1400	struct middma_device *device = pci_get_drvdata(pci_dev);
1401
1402	device->state = RUNNING;
1403	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1404	return 0;
1405}
1406
1407static int dma_runtime_idle(struct device *dev)
1408{
1409	struct pci_dev *pdev = to_pci_dev(dev);
1410	struct middma_device *device = pci_get_drvdata(pdev);
1411	int i;
1412
1413	for (i = 0; i < device->max_chan; i++) {
1414		if (device->ch[i].in_use)
1415			return -EAGAIN;
1416	}
1417
1418	return pm_schedule_suspend(dev, 0);
1419}
1420
1421/******************************************************************************
1422* PCI stuff
1423*/
1424static struct pci_device_id intel_mid_dma_ids[] = {
1425	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),	INFO(2, 6, 4095, 0x200020)},
1426	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1427	{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1428	{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),	INFO(4, 0, 4095, 0x400040)},
1429	{ 0, }
1430};
1431MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1432
1433static const struct dev_pm_ops intel_mid_dma_pm = {
1434	.runtime_suspend = dma_runtime_suspend,
1435	.runtime_resume = dma_runtime_resume,
1436	.runtime_idle = dma_runtime_idle,
1437};
1438
1439static struct pci_driver intel_mid_dma_pci_driver = {
1440	.name		=	"Intel MID DMA",
1441	.id_table	=	intel_mid_dma_ids,
1442	.probe		=	intel_mid_dma_probe,
1443	.remove		=	__devexit_p(intel_mid_dma_remove),
1444#ifdef CONFIG_PM
1445	.suspend = dma_suspend,
1446	.resume = dma_resume,
1447	.driver = {
1448		.pm = &intel_mid_dma_pm,
1449	},
1450#endif
1451};
1452
1453static int __init intel_mid_dma_init(void)
1454{
1455	pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1456			INTEL_MID_DMA_DRIVER_VERSION);
1457	return pci_register_driver(&intel_mid_dma_pci_driver);
1458}
1459fs_initcall(intel_mid_dma_init);
1460
1461static void __exit intel_mid_dma_exit(void)
1462{
1463	pci_unregister_driver(&intel_mid_dma_pci_driver);
1464}
1465module_exit(intel_mid_dma_exit);
1466
1467MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1468MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1469MODULE_LICENSE("GPL v2");
1470MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1471