intel_mid_dma.c revision 45f0a85c8258741d11bda25c0a5669c06267204a
1/*
2 *  intel_mid_dma.c - Intel Langwell DMA Drivers
3 *
4 *  Copyright (C) 2008-10 Intel Corp
5 *  Author: Vinod Koul <vinod.koul@intel.com>
6 *  The driver design is based on dw_dmac driver
7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 *  This program is free software; you can redistribute it and/or modify
10 *  it under the terms of the GNU General Public License as published by
11 *  the Free Software Foundation; version 2 of the License.
12 *
13 *  This program is distributed in the hope that it will be useful, but
14 *  WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 *  General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License along
19 *  with this program; if not, write to the Free Software Foundation, Inc.,
20 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 *
25 */
26#include <linux/pci.h>
27#include <linux/interrupt.h>
28#include <linux/pm_runtime.h>
29#include <linux/intel_mid_dma.h>
30#include <linux/module.h>
31
32#include "dmaengine.h"
33
34#define MAX_CHAN	4 /*max ch across controllers*/
35#include "intel_mid_dma_regs.h"
36
37#define INTEL_MID_DMAC1_ID		0x0814
38#define INTEL_MID_DMAC2_ID		0x0813
39#define INTEL_MID_GP_DMAC2_ID		0x0827
40#define INTEL_MFLD_DMAC1_ID		0x0830
41#define LNW_PERIPHRAL_MASK_BASE		0xFFAE8008
42#define LNW_PERIPHRAL_MASK_SIZE		0x10
43#define LNW_PERIPHRAL_STATUS		0x0
44#define LNW_PERIPHRAL_MASK		0x8
45
46struct intel_mid_dma_probe_info {
47	u8 max_chan;
48	u8 ch_base;
49	u16 block_size;
50	u32 pimr_mask;
51};
52
53#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54	((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {	\
55		.max_chan = (_max_chan),			\
56		.ch_base = (_ch_base),				\
57		.block_size = (_block_size),			\
58		.pimr_mask = (_pimr_mask),			\
59	})
60
61/*****************************************************************************
62Utility Functions*/
63/**
64 * get_ch_index	-	convert status to channel
65 * @status: status mask
66 * @base: dma ch base value
67 *
68 * Modify the status mask and return the channel index needing
69 * attention (or -1 if neither)
70 */
71static int get_ch_index(int *status, unsigned int base)
72{
73	int i;
74	for (i = 0; i < MAX_CHAN; i++) {
75		if (*status & (1 << (i + base))) {
76			*status = *status & ~(1 << (i + base));
77			pr_debug("MDMA: index %d New status %x\n", i, *status);
78			return i;
79		}
80	}
81	return -1;
82}
83
84/**
85 * get_block_ts	-	calculates dma transaction length
86 * @len: dma transfer length
87 * @tx_width: dma transfer src width
88 * @block_size: dma controller max block size
89 *
90 * Based on src width calculate the DMA trsaction length in data items
91 * return data items or FFFF if exceeds max length for block
92 */
93static int get_block_ts(int len, int tx_width, int block_size)
94{
95	int byte_width = 0, block_ts = 0;
96
97	switch (tx_width) {
98	case DMA_SLAVE_BUSWIDTH_1_BYTE:
99		byte_width = 1;
100		break;
101	case DMA_SLAVE_BUSWIDTH_2_BYTES:
102		byte_width = 2;
103		break;
104	case DMA_SLAVE_BUSWIDTH_4_BYTES:
105	default:
106		byte_width = 4;
107		break;
108	}
109
110	block_ts = len/byte_width;
111	if (block_ts > block_size)
112		block_ts = 0xFFFF;
113	return block_ts;
114}
115
116/*****************************************************************************
117DMAC1 interrupt Functions*/
118
119/**
120 * dmac1_mask_periphral_intr -	mask the periphral interrupt
121 * @mid: dma device for which masking is required
122 *
123 * Masks the DMA periphral interrupt
124 * this is valid for DMAC1 family controllers only
125 * This controller should have periphral mask registers already mapped
126 */
127static void dmac1_mask_periphral_intr(struct middma_device *mid)
128{
129	u32 pimr;
130
131	if (mid->pimr_mask) {
132		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133		pimr |= mid->pimr_mask;
134		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135	}
136	return;
137}
138
139/**
140 * dmac1_unmask_periphral_intr -	unmask the periphral interrupt
141 * @midc: dma channel for which masking is required
142 *
143 * UnMasks the DMA periphral interrupt,
144 * this is valid for DMAC1 family controllers only
145 * This controller should have periphral mask registers already mapped
146 */
147static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148{
149	u32 pimr;
150	struct middma_device *mid = to_middma_device(midc->chan.device);
151
152	if (mid->pimr_mask) {
153		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154		pimr &= ~mid->pimr_mask;
155		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156	}
157	return;
158}
159
160/**
161 * enable_dma_interrupt -	enable the periphral interrupt
162 * @midc: dma channel for which enable interrupt is required
163 *
164 * Enable the DMA periphral interrupt,
165 * this is valid for DMAC1 family controllers only
166 * This controller should have periphral mask registers already mapped
167 */
168static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169{
170	dmac1_unmask_periphral_intr(midc);
171
172	/*en ch interrupts*/
173	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175	return;
176}
177
178/**
179 * disable_dma_interrupt -	disable the periphral interrupt
180 * @midc: dma channel for which disable interrupt is required
181 *
182 * Disable the DMA periphral interrupt,
183 * this is valid for DMAC1 family controllers only
184 * This controller should have periphral mask registers already mapped
185 */
186static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187{
188	/*Check LPE PISR, make sure fwd is disabled*/
189	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192	return;
193}
194
195/*****************************************************************************
196DMA channel helper Functions*/
197/**
198 * mid_desc_get		-	get a descriptor
199 * @midc: dma channel for which descriptor is required
200 *
201 * Obtain a descriptor for the channel. Returns NULL if none are free.
202 * Once the descriptor is returned it is private until put on another
203 * list or freed
204 */
205static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206{
207	struct intel_mid_dma_desc *desc, *_desc;
208	struct intel_mid_dma_desc *ret = NULL;
209
210	spin_lock_bh(&midc->lock);
211	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212		if (async_tx_test_ack(&desc->txd)) {
213			list_del(&desc->desc_node);
214			ret = desc;
215			break;
216		}
217	}
218	spin_unlock_bh(&midc->lock);
219	return ret;
220}
221
222/**
223 * mid_desc_put		-	put a descriptor
224 * @midc: dma channel for which descriptor is required
225 * @desc: descriptor to put
226 *
227 * Return a descriptor from lwn_desc_get back to the free pool
228 */
229static void midc_desc_put(struct intel_mid_dma_chan *midc,
230			struct intel_mid_dma_desc *desc)
231{
232	if (desc) {
233		spin_lock_bh(&midc->lock);
234		list_add_tail(&desc->desc_node, &midc->free_list);
235		spin_unlock_bh(&midc->lock);
236	}
237}
238/**
239 * midc_dostart		-		begin a DMA transaction
240 * @midc: channel for which txn is to be started
241 * @first: first descriptor of series
242 *
243 * Load a transaction into the engine. This must be called with midc->lock
244 * held and bh disabled.
245 */
246static void midc_dostart(struct intel_mid_dma_chan *midc,
247			struct intel_mid_dma_desc *first)
248{
249	struct middma_device *mid = to_middma_device(midc->chan.device);
250
251	/*  channel is idle */
252	if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253		/*error*/
254		pr_err("ERR_MDMA: channel is busy in start\n");
255		/* The tasklet will hopefully advance the queue... */
256		return;
257	}
258	midc->busy = true;
259	/*write registers and en*/
260	iowrite32(first->sar, midc->ch_regs + SAR);
261	iowrite32(first->dar, midc->ch_regs + DAR);
262	iowrite32(first->lli_phys, midc->ch_regs + LLP);
263	iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264	iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265	iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266	iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267	pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268		(int)first->sar, (int)first->dar, first->cfg_hi,
269		first->cfg_lo, first->ctl_hi, first->ctl_lo);
270	first->status = DMA_IN_PROGRESS;
271
272	iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273}
274
275/**
276 * midc_descriptor_complete	-	process completed descriptor
277 * @midc: channel owning the descriptor
278 * @desc: the descriptor itself
279 *
280 * Process a completed descriptor and perform any callbacks upon
281 * the completion. The completion handling drops the lock during the
282 * callbacks but must be called with the lock held.
283 */
284static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285		struct intel_mid_dma_desc *desc)
286		__releases(&midc->lock) __acquires(&midc->lock)
287{
288	struct dma_async_tx_descriptor	*txd = &desc->txd;
289	dma_async_tx_callback callback_txd = NULL;
290	struct intel_mid_dma_lli	*llitem;
291	void *param_txd = NULL;
292
293	dma_cookie_complete(txd);
294	callback_txd = txd->callback;
295	param_txd = txd->callback_param;
296
297	if (desc->lli != NULL) {
298		/*clear the DONE bit of completed LLI in memory*/
299		llitem = desc->lli + desc->current_lli;
300		llitem->ctl_hi &= CLEAR_DONE;
301		if (desc->current_lli < desc->lli_length-1)
302			(desc->current_lli)++;
303		else
304			desc->current_lli = 0;
305	}
306	spin_unlock_bh(&midc->lock);
307	if (callback_txd) {
308		pr_debug("MDMA: TXD callback set ... calling\n");
309		callback_txd(param_txd);
310	}
311	if (midc->raw_tfr) {
312		desc->status = DMA_SUCCESS;
313		if (desc->lli != NULL) {
314			pci_pool_free(desc->lli_pool, desc->lli,
315						desc->lli_phys);
316			pci_pool_destroy(desc->lli_pool);
317			desc->lli = NULL;
318		}
319		list_move(&desc->desc_node, &midc->free_list);
320		midc->busy = false;
321	}
322	spin_lock_bh(&midc->lock);
323
324}
325/**
326 * midc_scan_descriptors -		check the descriptors in channel
327 *					mark completed when tx is completete
328 * @mid: device
329 * @midc: channel to scan
330 *
331 * Walk the descriptor chain for the device and process any entries
332 * that are complete.
333 */
334static void midc_scan_descriptors(struct middma_device *mid,
335				struct intel_mid_dma_chan *midc)
336{
337	struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339	/*tx is complete*/
340	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341		if (desc->status == DMA_IN_PROGRESS)
342			midc_descriptor_complete(midc, desc);
343	}
344	return;
345	}
346/**
347 * midc_lli_fill_sg -		Helper function to convert
348 *				SG list to Linked List Items.
349 *@midc: Channel
350 *@desc: DMA descriptor
351 *@sglist: Pointer to SG list
352 *@sglen: SG list length
353 *@flags: DMA transaction flags
354 *
355 * Walk through the SG list and convert the SG list into Linked
356 * List Items (LLI).
357 */
358static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359				struct intel_mid_dma_desc *desc,
360				struct scatterlist *sglist,
361				unsigned int sglen,
362				unsigned int flags)
363{
364	struct intel_mid_dma_slave *mids;
365	struct scatterlist  *sg;
366	dma_addr_t lli_next, sg_phy_addr;
367	struct intel_mid_dma_lli *lli_bloc_desc;
368	union intel_mid_dma_ctl_lo ctl_lo;
369	union intel_mid_dma_ctl_hi ctl_hi;
370	int i;
371
372	pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373	mids = midc->mid_slave;
374
375	lli_bloc_desc = desc->lli;
376	lli_next = desc->lli_phys;
377
378	ctl_lo.ctl_lo = desc->ctl_lo;
379	ctl_hi.ctl_hi = desc->ctl_hi;
380	for_each_sg(sglist, sg, sglen, i) {
381		/*Populate CTL_LOW and LLI values*/
382		if (i != sglen - 1) {
383			lli_next = lli_next +
384				sizeof(struct intel_mid_dma_lli);
385		} else {
386		/*Check for circular list, otherwise terminate LLI to ZERO*/
387			if (flags & DMA_PREP_CIRCULAR_LIST) {
388				pr_debug("MDMA: LLI is configured in circular mode\n");
389				lli_next = desc->lli_phys;
390			} else {
391				lli_next = 0;
392				ctl_lo.ctlx.llp_dst_en = 0;
393				ctl_lo.ctlx.llp_src_en = 0;
394			}
395		}
396		/*Populate CTL_HI values*/
397		ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398							desc->width,
399							midc->dma->block_size);
400		/*Populate SAR and DAR values*/
401		sg_phy_addr = sg_dma_address(sg);
402		if (desc->dirn ==  DMA_MEM_TO_DEV) {
403			lli_bloc_desc->sar  = sg_phy_addr;
404			lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
405		} else if (desc->dirn ==  DMA_DEV_TO_MEM) {
406			lli_bloc_desc->sar  = mids->dma_slave.src_addr;
407			lli_bloc_desc->dar  = sg_phy_addr;
408		}
409		/*Copy values into block descriptor in system memroy*/
410		lli_bloc_desc->llp = lli_next;
411		lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412		lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414		lli_bloc_desc++;
415	}
416	/*Copy very first LLI values to descriptor*/
417	desc->ctl_lo = desc->lli->ctl_lo;
418	desc->ctl_hi = desc->lli->ctl_hi;
419	desc->sar = desc->lli->sar;
420	desc->dar = desc->lli->dar;
421
422	return 0;
423}
424/*****************************************************************************
425DMA engine callback Functions*/
426/**
427 * intel_mid_dma_tx_submit -	callback to submit DMA transaction
428 * @tx: dma engine descriptor
429 *
430 * Submit the DMA transaction for this descriptor, start if ch idle
431 */
432static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433{
434	struct intel_mid_dma_desc	*desc = to_intel_mid_dma_desc(tx);
435	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(tx->chan);
436	dma_cookie_t		cookie;
437
438	spin_lock_bh(&midc->lock);
439	cookie = dma_cookie_assign(tx);
440
441	if (list_empty(&midc->active_list))
442		list_add_tail(&desc->desc_node, &midc->active_list);
443	else
444		list_add_tail(&desc->desc_node, &midc->queue);
445
446	midc_dostart(midc, desc);
447	spin_unlock_bh(&midc->lock);
448
449	return cookie;
450}
451
452/**
453 * intel_mid_dma_issue_pending -	callback to issue pending txn
454 * @chan: chan where pending trascation needs to be checked and submitted
455 *
456 * Call for scan to issue pending descriptors
457 */
458static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459{
460	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
461
462	spin_lock_bh(&midc->lock);
463	if (!list_empty(&midc->queue))
464		midc_scan_descriptors(to_middma_device(chan->device), midc);
465	spin_unlock_bh(&midc->lock);
466}
467
468/**
469 * intel_mid_dma_tx_status -	Return status of txn
470 * @chan: chan for where status needs to be checked
471 * @cookie: cookie for txn
472 * @txstate: DMA txn state
473 *
474 * Return status of DMA txn
475 */
476static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477						dma_cookie_t cookie,
478						struct dma_tx_state *txstate)
479{
480	struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481	enum dma_status ret;
482
483	ret = dma_cookie_status(chan, cookie, txstate);
484	if (ret != DMA_SUCCESS) {
485		spin_lock_bh(&midc->lock);
486		midc_scan_descriptors(to_middma_device(chan->device), midc);
487		spin_unlock_bh(&midc->lock);
488
489		ret = dma_cookie_status(chan, cookie, txstate);
490	}
491
492	return ret;
493}
494
495static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
496{
497	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
498	struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
499	struct intel_mid_dma_slave *mid_slave;
500
501	BUG_ON(!midc);
502	BUG_ON(!slave);
503	pr_debug("MDMA: slave control called\n");
504
505	mid_slave = to_intel_mid_dma_slave(slave);
506
507	BUG_ON(!mid_slave);
508
509	midc->mid_slave = mid_slave;
510	return 0;
511}
512/**
513 * intel_mid_dma_device_control -	DMA device control
514 * @chan: chan for DMA control
515 * @cmd: control cmd
516 * @arg: cmd arg value
517 *
518 * Perform DMA control command
519 */
520static int intel_mid_dma_device_control(struct dma_chan *chan,
521			enum dma_ctrl_cmd cmd, unsigned long arg)
522{
523	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
524	struct middma_device	*mid = to_middma_device(chan->device);
525	struct intel_mid_dma_desc	*desc, *_desc;
526	union intel_mid_dma_cfg_lo cfg_lo;
527
528	if (cmd == DMA_SLAVE_CONFIG)
529		return dma_slave_control(chan, arg);
530
531	if (cmd != DMA_TERMINATE_ALL)
532		return -ENXIO;
533
534	spin_lock_bh(&midc->lock);
535	if (midc->busy == false) {
536		spin_unlock_bh(&midc->lock);
537		return 0;
538	}
539	/*Suspend and disable the channel*/
540	cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
541	cfg_lo.cfgx.ch_susp = 1;
542	iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
543	iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
544	midc->busy = false;
545	/* Disable interrupts */
546	disable_dma_interrupt(midc);
547	midc->descs_allocated = 0;
548
549	spin_unlock_bh(&midc->lock);
550	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
551		if (desc->lli != NULL) {
552			pci_pool_free(desc->lli_pool, desc->lli,
553						desc->lli_phys);
554			pci_pool_destroy(desc->lli_pool);
555			desc->lli = NULL;
556		}
557		list_move(&desc->desc_node, &midc->free_list);
558	}
559	return 0;
560}
561
562
563/**
564 * intel_mid_dma_prep_memcpy -	Prep memcpy txn
565 * @chan: chan for DMA transfer
566 * @dest: destn address
567 * @src: src address
568 * @len: DMA transfer len
569 * @flags: DMA flags
570 *
571 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
572 * The periphral txn details should be filled in slave structure properly
573 * Returns the descriptor for this txn
574 */
575static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
576			struct dma_chan *chan, dma_addr_t dest,
577			dma_addr_t src, size_t len, unsigned long flags)
578{
579	struct intel_mid_dma_chan *midc;
580	struct intel_mid_dma_desc *desc = NULL;
581	struct intel_mid_dma_slave *mids;
582	union intel_mid_dma_ctl_lo ctl_lo;
583	union intel_mid_dma_ctl_hi ctl_hi;
584	union intel_mid_dma_cfg_lo cfg_lo;
585	union intel_mid_dma_cfg_hi cfg_hi;
586	enum dma_slave_buswidth width;
587
588	pr_debug("MDMA: Prep for memcpy\n");
589	BUG_ON(!chan);
590	if (!len)
591		return NULL;
592
593	midc = to_intel_mid_dma_chan(chan);
594	BUG_ON(!midc);
595
596	mids = midc->mid_slave;
597	BUG_ON(!mids);
598
599	pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
600				midc->dma->pci_id, midc->ch_id, len);
601	pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
602			mids->cfg_mode, mids->dma_slave.direction,
603			mids->hs_mode, mids->dma_slave.src_addr_width);
604
605	/*calculate CFG_LO*/
606	if (mids->hs_mode == LNW_DMA_SW_HS) {
607		cfg_lo.cfg_lo = 0;
608		cfg_lo.cfgx.hs_sel_dst = 1;
609		cfg_lo.cfgx.hs_sel_src = 1;
610	} else if (mids->hs_mode == LNW_DMA_HW_HS)
611		cfg_lo.cfg_lo = 0x00000;
612
613	/*calculate CFG_HI*/
614	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
615		/*SW HS only*/
616		cfg_hi.cfg_hi = 0;
617	} else {
618		cfg_hi.cfg_hi = 0;
619		if (midc->dma->pimr_mask) {
620			cfg_hi.cfgx.protctl = 0x0; /*default value*/
621			cfg_hi.cfgx.fifo_mode = 1;
622			if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
623				cfg_hi.cfgx.src_per = 0;
624				if (mids->device_instance == 0)
625					cfg_hi.cfgx.dst_per = 3;
626				if (mids->device_instance == 1)
627					cfg_hi.cfgx.dst_per = 1;
628			} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
629				if (mids->device_instance == 0)
630					cfg_hi.cfgx.src_per = 2;
631				if (mids->device_instance == 1)
632					cfg_hi.cfgx.src_per = 0;
633				cfg_hi.cfgx.dst_per = 0;
634			}
635		} else {
636			cfg_hi.cfgx.protctl = 0x1; /*default value*/
637			cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
638					midc->ch_id - midc->dma->chan_base;
639		}
640	}
641
642	/*calculate CTL_HI*/
643	ctl_hi.ctlx.reser = 0;
644	ctl_hi.ctlx.done  = 0;
645	width = mids->dma_slave.src_addr_width;
646
647	ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
648	pr_debug("MDMA:calc len %d for block size %d\n",
649				ctl_hi.ctlx.block_ts, midc->dma->block_size);
650	/*calculate CTL_LO*/
651	ctl_lo.ctl_lo = 0;
652	ctl_lo.ctlx.int_en = 1;
653	ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
654	ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
655
656	/*
657	 * Here we need some translation from "enum dma_slave_buswidth"
658	 * to the format for our dma controller
659	 *		standard	intel_mid_dmac's format
660	 *		 1 Byte			0b000
661	 *		 2 Bytes		0b001
662	 *		 4 Bytes		0b010
663	 */
664	ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
665	ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
666
667	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
668		ctl_lo.ctlx.tt_fc = 0;
669		ctl_lo.ctlx.sinc = 0;
670		ctl_lo.ctlx.dinc = 0;
671	} else {
672		if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
673			ctl_lo.ctlx.sinc = 0;
674			ctl_lo.ctlx.dinc = 2;
675			ctl_lo.ctlx.tt_fc = 1;
676		} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
677			ctl_lo.ctlx.sinc = 2;
678			ctl_lo.ctlx.dinc = 0;
679			ctl_lo.ctlx.tt_fc = 2;
680		}
681	}
682
683	pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
684		ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
685
686	enable_dma_interrupt(midc);
687
688	desc = midc_desc_get(midc);
689	if (desc == NULL)
690		goto err_desc_get;
691	desc->sar = src;
692	desc->dar = dest ;
693	desc->len = len;
694	desc->cfg_hi = cfg_hi.cfg_hi;
695	desc->cfg_lo = cfg_lo.cfg_lo;
696	desc->ctl_lo = ctl_lo.ctl_lo;
697	desc->ctl_hi = ctl_hi.ctl_hi;
698	desc->width = width;
699	desc->dirn = mids->dma_slave.direction;
700	desc->lli_phys = 0;
701	desc->lli = NULL;
702	desc->lli_pool = NULL;
703	return &desc->txd;
704
705err_desc_get:
706	pr_err("ERR_MDMA: Failed to get desc\n");
707	midc_desc_put(midc, desc);
708	return NULL;
709}
710/**
711 * intel_mid_dma_prep_slave_sg -	Prep slave sg txn
712 * @chan: chan for DMA transfer
713 * @sgl: scatter gather list
714 * @sg_len: length of sg txn
715 * @direction: DMA transfer dirtn
716 * @flags: DMA flags
717 * @context: transfer context (ignored)
718 *
719 * Prepares LLI based periphral transfer
720 */
721static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
722			struct dma_chan *chan, struct scatterlist *sgl,
723			unsigned int sg_len, enum dma_transfer_direction direction,
724			unsigned long flags, void *context)
725{
726	struct intel_mid_dma_chan *midc = NULL;
727	struct intel_mid_dma_slave *mids = NULL;
728	struct intel_mid_dma_desc *desc = NULL;
729	struct dma_async_tx_descriptor *txd = NULL;
730	union intel_mid_dma_ctl_lo ctl_lo;
731
732	pr_debug("MDMA: Prep for slave SG\n");
733
734	if (!sg_len) {
735		pr_err("MDMA: Invalid SG length\n");
736		return NULL;
737	}
738	midc = to_intel_mid_dma_chan(chan);
739	BUG_ON(!midc);
740
741	mids = midc->mid_slave;
742	BUG_ON(!mids);
743
744	if (!midc->dma->pimr_mask) {
745		/* We can still handle sg list with only one item */
746		if (sg_len == 1) {
747			txd = intel_mid_dma_prep_memcpy(chan,
748						mids->dma_slave.dst_addr,
749						mids->dma_slave.src_addr,
750						sg_dma_len(sgl),
751						flags);
752			return txd;
753		} else {
754			pr_warn("MDMA: SG list is not supported by this controller\n");
755			return  NULL;
756		}
757	}
758
759	pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
760			sg_len, direction, flags);
761
762	txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
763	if (NULL == txd) {
764		pr_err("MDMA: Prep memcpy failed\n");
765		return NULL;
766	}
767
768	desc = to_intel_mid_dma_desc(txd);
769	desc->dirn = direction;
770	ctl_lo.ctl_lo = desc->ctl_lo;
771	ctl_lo.ctlx.llp_dst_en = 1;
772	ctl_lo.ctlx.llp_src_en = 1;
773	desc->ctl_lo = ctl_lo.ctl_lo;
774	desc->lli_length = sg_len;
775	desc->current_lli = 0;
776	/* DMA coherent memory pool for LLI descriptors*/
777	desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
778				midc->dma->pdev,
779				(sizeof(struct intel_mid_dma_lli)*sg_len),
780				32, 0);
781	if (NULL == desc->lli_pool) {
782		pr_err("MID_DMA:LLI pool create failed\n");
783		return NULL;
784	}
785
786	desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
787	if (!desc->lli) {
788		pr_err("MID_DMA: LLI alloc failed\n");
789		pci_pool_destroy(desc->lli_pool);
790		return NULL;
791	}
792
793	midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
794	if (flags & DMA_PREP_INTERRUPT) {
795		iowrite32(UNMASK_INTR_REG(midc->ch_id),
796				midc->dma_base + MASK_BLOCK);
797		pr_debug("MDMA:Enabled Block interrupt\n");
798	}
799	return &desc->txd;
800}
801
802/**
803 * intel_mid_dma_free_chan_resources -	Frees dma resources
804 * @chan: chan requiring attention
805 *
806 * Frees the allocated resources on this DMA chan
807 */
808static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
809{
810	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
811	struct middma_device	*mid = to_middma_device(chan->device);
812	struct intel_mid_dma_desc	*desc, *_desc;
813
814	if (true == midc->busy) {
815		/*trying to free ch in use!!!!!*/
816		pr_err("ERR_MDMA: trying to free ch in use\n");
817	}
818	spin_lock_bh(&midc->lock);
819	midc->descs_allocated = 0;
820	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
821		list_del(&desc->desc_node);
822		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
823	}
824	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
825		list_del(&desc->desc_node);
826		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
827	}
828	list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
829		list_del(&desc->desc_node);
830		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
831	}
832	spin_unlock_bh(&midc->lock);
833	midc->in_use = false;
834	midc->busy = false;
835	/* Disable CH interrupts */
836	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
837	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
838	pm_runtime_put(&mid->pdev->dev);
839}
840
841/**
842 * intel_mid_dma_alloc_chan_resources -	Allocate dma resources
843 * @chan: chan requiring attention
844 *
845 * Allocates DMA resources on this chan
846 * Return the descriptors allocated
847 */
848static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
849{
850	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
851	struct middma_device	*mid = to_middma_device(chan->device);
852	struct intel_mid_dma_desc	*desc;
853	dma_addr_t		phys;
854	int	i = 0;
855
856	pm_runtime_get_sync(&mid->pdev->dev);
857
858	if (mid->state == SUSPENDED) {
859		if (dma_resume(&mid->pdev->dev)) {
860			pr_err("ERR_MDMA: resume failed");
861			return -EFAULT;
862		}
863	}
864
865	/* ASSERT:  channel is idle */
866	if (test_ch_en(mid->dma_base, midc->ch_id)) {
867		/*ch is not idle*/
868		pr_err("ERR_MDMA: ch not idle\n");
869		pm_runtime_put(&mid->pdev->dev);
870		return -EIO;
871	}
872	dma_cookie_init(chan);
873
874	spin_lock_bh(&midc->lock);
875	while (midc->descs_allocated < DESCS_PER_CHANNEL) {
876		spin_unlock_bh(&midc->lock);
877		desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
878		if (!desc) {
879			pr_err("ERR_MDMA: desc failed\n");
880			pm_runtime_put(&mid->pdev->dev);
881			return -ENOMEM;
882			/*check*/
883		}
884		dma_async_tx_descriptor_init(&desc->txd, chan);
885		desc->txd.tx_submit = intel_mid_dma_tx_submit;
886		desc->txd.flags = DMA_CTRL_ACK;
887		desc->txd.phys = phys;
888		spin_lock_bh(&midc->lock);
889		i = ++midc->descs_allocated;
890		list_add_tail(&desc->desc_node, &midc->free_list);
891	}
892	spin_unlock_bh(&midc->lock);
893	midc->in_use = true;
894	midc->busy = false;
895	pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
896	return i;
897}
898
899/**
900 * midc_handle_error -	Handle DMA txn error
901 * @mid: controller where error occurred
902 * @midc: chan where error occurred
903 *
904 * Scan the descriptor for error
905 */
906static void midc_handle_error(struct middma_device *mid,
907		struct intel_mid_dma_chan *midc)
908{
909	midc_scan_descriptors(mid, midc);
910}
911
912/**
913 * dma_tasklet -	DMA interrupt tasklet
914 * @data: tasklet arg (the controller structure)
915 *
916 * Scan the controller for interrupts for completion/error
917 * Clear the interrupt and call for handling completion/error
918 */
919static void dma_tasklet(unsigned long data)
920{
921	struct middma_device *mid = NULL;
922	struct intel_mid_dma_chan *midc = NULL;
923	u32 status, raw_tfr, raw_block;
924	int i;
925
926	mid = (struct middma_device *)data;
927	if (mid == NULL) {
928		pr_err("ERR_MDMA: tasklet Null param\n");
929		return;
930	}
931	pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
932	raw_tfr = ioread32(mid->dma_base + RAW_TFR);
933	raw_block = ioread32(mid->dma_base + RAW_BLOCK);
934	status = raw_tfr | raw_block;
935	status &= mid->intr_mask;
936	while (status) {
937		/*txn interrupt*/
938		i = get_ch_index(&status, mid->chan_base);
939		if (i < 0) {
940			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
941			return;
942		}
943		midc = &mid->ch[i];
944		if (midc == NULL) {
945			pr_err("ERR_MDMA:Null param midc\n");
946			return;
947		}
948		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
949				status, midc->ch_id, i);
950		midc->raw_tfr = raw_tfr;
951		midc->raw_block = raw_block;
952		spin_lock_bh(&midc->lock);
953		/*clearing this interrupts first*/
954		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
955		if (raw_block) {
956			iowrite32((1 << midc->ch_id),
957				mid->dma_base + CLEAR_BLOCK);
958		}
959		midc_scan_descriptors(mid, midc);
960		pr_debug("MDMA:Scan of desc... complete, unmasking\n");
961		iowrite32(UNMASK_INTR_REG(midc->ch_id),
962				mid->dma_base + MASK_TFR);
963		if (raw_block) {
964			iowrite32(UNMASK_INTR_REG(midc->ch_id),
965				mid->dma_base + MASK_BLOCK);
966		}
967		spin_unlock_bh(&midc->lock);
968	}
969
970	status = ioread32(mid->dma_base + RAW_ERR);
971	status &= mid->intr_mask;
972	while (status) {
973		/*err interrupt*/
974		i = get_ch_index(&status, mid->chan_base);
975		if (i < 0) {
976			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
977			return;
978		}
979		midc = &mid->ch[i];
980		if (midc == NULL) {
981			pr_err("ERR_MDMA:Null param midc\n");
982			return;
983		}
984		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
985				status, midc->ch_id, i);
986
987		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
988		spin_lock_bh(&midc->lock);
989		midc_handle_error(mid, midc);
990		iowrite32(UNMASK_INTR_REG(midc->ch_id),
991				mid->dma_base + MASK_ERR);
992		spin_unlock_bh(&midc->lock);
993	}
994	pr_debug("MDMA:Exiting takslet...\n");
995	return;
996}
997
998static void dma_tasklet1(unsigned long data)
999{
1000	pr_debug("MDMA:in takslet1...\n");
1001	return dma_tasklet(data);
1002}
1003
1004static void dma_tasklet2(unsigned long data)
1005{
1006	pr_debug("MDMA:in takslet2...\n");
1007	return dma_tasklet(data);
1008}
1009
1010/**
1011 * intel_mid_dma_interrupt -	DMA ISR
1012 * @irq: IRQ where interrupt occurred
1013 * @data: ISR cllback data (the controller structure)
1014 *
1015 * See if this is our interrupt if so then schedule the tasklet
1016 * otherwise ignore
1017 */
1018static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019{
1020	struct middma_device *mid = data;
1021	u32 tfr_status, err_status;
1022	int call_tasklet = 0;
1023
1024	tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025	err_status = ioread32(mid->dma_base + RAW_ERR);
1026	if (!tfr_status && !err_status)
1027		return IRQ_NONE;
1028
1029	/*DMA Interrupt*/
1030	pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031	pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032	tfr_status &= mid->intr_mask;
1033	if (tfr_status) {
1034		/*need to disable intr*/
1035		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037		pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038		call_tasklet = 1;
1039	}
1040	err_status &= mid->intr_mask;
1041	if (err_status) {
1042		iowrite32((err_status << INT_MASK_WE),
1043			  mid->dma_base + MASK_ERR);
1044		call_tasklet = 1;
1045	}
1046	if (call_tasklet)
1047		tasklet_schedule(&mid->tasklet);
1048
1049	return IRQ_HANDLED;
1050}
1051
1052static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053{
1054	return intel_mid_dma_interrupt(irq, data);
1055}
1056
1057static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058{
1059	return intel_mid_dma_interrupt(irq, data);
1060}
1061
1062/**
1063 * mid_setup_dma -	Setup the DMA controller
1064 * @pdev: Controller PCI device structure
1065 *
1066 * Initialize the DMA controller, channels, registers with DMA engine,
1067 * ISR. Initialize DMA controller channels.
1068 */
1069static int mid_setup_dma(struct pci_dev *pdev)
1070{
1071	struct middma_device *dma = pci_get_drvdata(pdev);
1072	int err, i;
1073
1074	/* DMA coherent memory pool for DMA descriptor allocations */
1075	dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076					sizeof(struct intel_mid_dma_desc),
1077					32, 0);
1078	if (NULL == dma->dma_pool) {
1079		pr_err("ERR_MDMA:pci_pool_create failed\n");
1080		err = -ENOMEM;
1081		goto err_dma_pool;
1082	}
1083
1084	INIT_LIST_HEAD(&dma->common.channels);
1085	dma->pci_id = pdev->device;
1086	if (dma->pimr_mask) {
1087		dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1088					LNW_PERIPHRAL_MASK_SIZE);
1089		if (dma->mask_reg == NULL) {
1090			pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091			err = -ENOMEM;
1092			goto err_ioremap;
1093		}
1094	} else
1095		dma->mask_reg = NULL;
1096
1097	pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098	/*init CH structures*/
1099	dma->intr_mask = 0;
1100	dma->state = RUNNING;
1101	for (i = 0; i < dma->max_chan; i++) {
1102		struct intel_mid_dma_chan *midch = &dma->ch[i];
1103
1104		midch->chan.device = &dma->common;
1105		dma_cookie_init(&midch->chan);
1106		midch->ch_id = dma->chan_base + i;
1107		pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108
1109		midch->dma_base = dma->dma_base;
1110		midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111		midch->dma = dma;
1112		dma->intr_mask |= 1 << (dma->chan_base + i);
1113		spin_lock_init(&midch->lock);
1114
1115		INIT_LIST_HEAD(&midch->active_list);
1116		INIT_LIST_HEAD(&midch->queue);
1117		INIT_LIST_HEAD(&midch->free_list);
1118		/*mask interrupts*/
1119		iowrite32(MASK_INTR_REG(midch->ch_id),
1120			dma->dma_base + MASK_BLOCK);
1121		iowrite32(MASK_INTR_REG(midch->ch_id),
1122			dma->dma_base + MASK_SRC_TRAN);
1123		iowrite32(MASK_INTR_REG(midch->ch_id),
1124			dma->dma_base + MASK_DST_TRAN);
1125		iowrite32(MASK_INTR_REG(midch->ch_id),
1126			dma->dma_base + MASK_ERR);
1127		iowrite32(MASK_INTR_REG(midch->ch_id),
1128			dma->dma_base + MASK_TFR);
1129
1130		disable_dma_interrupt(midch);
1131		list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132	}
1133	pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134
1135	/*init dma structure*/
1136	dma_cap_zero(dma->common.cap_mask);
1137	dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138	dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139	dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140	dma->common.dev = &pdev->dev;
1141
1142	dma->common.device_alloc_chan_resources =
1143					intel_mid_dma_alloc_chan_resources;
1144	dma->common.device_free_chan_resources =
1145					intel_mid_dma_free_chan_resources;
1146
1147	dma->common.device_tx_status = intel_mid_dma_tx_status;
1148	dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149	dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150	dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151	dma->common.device_control = intel_mid_dma_device_control;
1152
1153	/*enable dma cntrl*/
1154	iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1155
1156	/*register irq */
1157	if (dma->pimr_mask) {
1158		pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159		err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160			IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161		if (0 != err)
1162			goto err_irq;
1163	} else {
1164		dma->intr_mask = 0x03;
1165		pr_debug("MDMA:Requesting irq for DMAC2\n");
1166		err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167			IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168		if (0 != err)
1169			goto err_irq;
1170	}
1171	/*register device w/ engine*/
1172	err = dma_async_device_register(&dma->common);
1173	if (0 != err) {
1174		pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175		goto err_engine;
1176	}
1177	if (dma->pimr_mask) {
1178		pr_debug("setting up tasklet1 for DMAC1\n");
1179		tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180	} else {
1181		pr_debug("setting up tasklet2 for DMAC2\n");
1182		tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183	}
1184	return 0;
1185
1186err_engine:
1187	free_irq(pdev->irq, dma);
1188err_irq:
1189	if (dma->mask_reg)
1190		iounmap(dma->mask_reg);
1191err_ioremap:
1192	pci_pool_destroy(dma->dma_pool);
1193err_dma_pool:
1194	pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195	return err;
1196
1197}
1198
1199/**
1200 * middma_shutdown -	Shutdown the DMA controller
1201 * @pdev: Controller PCI device structure
1202 *
1203 * Called by remove
1204 * Unregister DMa controller, clear all structures and free interrupt
1205 */
1206static void middma_shutdown(struct pci_dev *pdev)
1207{
1208	struct middma_device *device = pci_get_drvdata(pdev);
1209
1210	dma_async_device_unregister(&device->common);
1211	pci_pool_destroy(device->dma_pool);
1212	if (device->mask_reg)
1213		iounmap(device->mask_reg);
1214	if (device->dma_base)
1215		iounmap(device->dma_base);
1216	free_irq(pdev->irq, device);
1217	return;
1218}
1219
1220/**
1221 * intel_mid_dma_probe -	PCI Probe
1222 * @pdev: Controller PCI device structure
1223 * @id: pci device id structure
1224 *
1225 * Initialize the PCI device, map BARs, query driver data.
1226 * Call setup_dma to complete contoller and chan initilzation
1227 */
1228static int intel_mid_dma_probe(struct pci_dev *pdev,
1229					const struct pci_device_id *id)
1230{
1231	struct middma_device *device;
1232	u32 base_addr, bar_size;
1233	struct intel_mid_dma_probe_info *info;
1234	int err;
1235
1236	pr_debug("MDMA: probe for %x\n", pdev->device);
1237	info = (void *)id->driver_data;
1238	pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239				info->max_chan, info->ch_base,
1240				info->block_size, info->pimr_mask);
1241
1242	err = pci_enable_device(pdev);
1243	if (err)
1244		goto err_enable_device;
1245
1246	err = pci_request_regions(pdev, "intel_mid_dmac");
1247	if (err)
1248		goto err_request_regions;
1249
1250	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251	if (err)
1252		goto err_set_dma_mask;
1253
1254	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255	if (err)
1256		goto err_set_dma_mask;
1257
1258	device = kzalloc(sizeof(*device), GFP_KERNEL);
1259	if (!device) {
1260		pr_err("ERR_MDMA:kzalloc failed probe\n");
1261		err = -ENOMEM;
1262		goto err_kzalloc;
1263	}
1264	device->pdev = pci_dev_get(pdev);
1265
1266	base_addr = pci_resource_start(pdev, 0);
1267	bar_size  = pci_resource_len(pdev, 0);
1268	device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269	if (!device->dma_base) {
1270		pr_err("ERR_MDMA:ioremap failed\n");
1271		err = -ENOMEM;
1272		goto err_ioremap;
1273	}
1274	pci_set_drvdata(pdev, device);
1275	pci_set_master(pdev);
1276	device->max_chan = info->max_chan;
1277	device->chan_base = info->ch_base;
1278	device->block_size = info->block_size;
1279	device->pimr_mask = info->pimr_mask;
1280
1281	err = mid_setup_dma(pdev);
1282	if (err)
1283		goto err_dma;
1284
1285	pm_runtime_put_noidle(&pdev->dev);
1286	pm_runtime_allow(&pdev->dev);
1287	return 0;
1288
1289err_dma:
1290	iounmap(device->dma_base);
1291err_ioremap:
1292	pci_dev_put(pdev);
1293	kfree(device);
1294err_kzalloc:
1295err_set_dma_mask:
1296	pci_release_regions(pdev);
1297	pci_disable_device(pdev);
1298err_request_regions:
1299err_enable_device:
1300	pr_err("ERR_MDMA:Probe failed %d\n", err);
1301	return err;
1302}
1303
1304/**
1305 * intel_mid_dma_remove -	PCI remove
1306 * @pdev: Controller PCI device structure
1307 *
1308 * Free up all resources and data
1309 * Call shutdown_dma to complete contoller and chan cleanup
1310 */
1311static void intel_mid_dma_remove(struct pci_dev *pdev)
1312{
1313	struct middma_device *device = pci_get_drvdata(pdev);
1314
1315	pm_runtime_get_noresume(&pdev->dev);
1316	pm_runtime_forbid(&pdev->dev);
1317	middma_shutdown(pdev);
1318	pci_dev_put(pdev);
1319	kfree(device);
1320	pci_release_regions(pdev);
1321	pci_disable_device(pdev);
1322}
1323
1324/* Power Management */
1325/*
1326* dma_suspend - PCI suspend function
1327*
1328* @pci: PCI device structure
1329* @state: PM message
1330*
1331* This function is called by OS when a power event occurs
1332*/
1333static int dma_suspend(struct device *dev)
1334{
1335	struct pci_dev *pci = to_pci_dev(dev);
1336	int i;
1337	struct middma_device *device = pci_get_drvdata(pci);
1338	pr_debug("MDMA: dma_suspend called\n");
1339
1340	for (i = 0; i < device->max_chan; i++) {
1341		if (device->ch[i].in_use)
1342			return -EAGAIN;
1343	}
1344	dmac1_mask_periphral_intr(device);
1345	device->state = SUSPENDED;
1346	pci_save_state(pci);
1347	pci_disable_device(pci);
1348	pci_set_power_state(pci, PCI_D3hot);
1349	return 0;
1350}
1351
1352/**
1353* dma_resume - PCI resume function
1354*
1355* @pci:	PCI device structure
1356*
1357* This function is called by OS when a power event occurs
1358*/
1359int dma_resume(struct device *dev)
1360{
1361	struct pci_dev *pci = to_pci_dev(dev);
1362	int ret;
1363	struct middma_device *device = pci_get_drvdata(pci);
1364
1365	pr_debug("MDMA: dma_resume called\n");
1366	pci_set_power_state(pci, PCI_D0);
1367	pci_restore_state(pci);
1368	ret = pci_enable_device(pci);
1369	if (ret) {
1370		pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371		return ret;
1372	}
1373	device->state = RUNNING;
1374	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375	return 0;
1376}
1377
1378static int dma_runtime_suspend(struct device *dev)
1379{
1380	struct pci_dev *pci_dev = to_pci_dev(dev);
1381	struct middma_device *device = pci_get_drvdata(pci_dev);
1382
1383	device->state = SUSPENDED;
1384	return 0;
1385}
1386
1387static int dma_runtime_resume(struct device *dev)
1388{
1389	struct pci_dev *pci_dev = to_pci_dev(dev);
1390	struct middma_device *device = pci_get_drvdata(pci_dev);
1391
1392	device->state = RUNNING;
1393	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394	return 0;
1395}
1396
1397static int dma_runtime_idle(struct device *dev)
1398{
1399	struct pci_dev *pdev = to_pci_dev(dev);
1400	struct middma_device *device = pci_get_drvdata(pdev);
1401	int i;
1402
1403	for (i = 0; i < device->max_chan; i++) {
1404		if (device->ch[i].in_use)
1405			return -EAGAIN;
1406	}
1407
1408	return 0;
1409}
1410
1411/******************************************************************************
1412* PCI stuff
1413*/
1414static struct pci_device_id intel_mid_dma_ids[] = {
1415	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),	INFO(2, 6, 4095, 0x200020)},
1416	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1417	{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1418	{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),	INFO(4, 0, 4095, 0x400040)},
1419	{ 0, }
1420};
1421MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422
1423static const struct dev_pm_ops intel_mid_dma_pm = {
1424	.runtime_suspend = dma_runtime_suspend,
1425	.runtime_resume = dma_runtime_resume,
1426	.runtime_idle = dma_runtime_idle,
1427	.suspend = dma_suspend,
1428	.resume = dma_resume,
1429};
1430
1431static struct pci_driver intel_mid_dma_pci_driver = {
1432	.name		=	"Intel MID DMA",
1433	.id_table	=	intel_mid_dma_ids,
1434	.probe		=	intel_mid_dma_probe,
1435	.remove		=	intel_mid_dma_remove,
1436#ifdef CONFIG_PM
1437	.driver = {
1438		.pm = &intel_mid_dma_pm,
1439	},
1440#endif
1441};
1442
1443static int __init intel_mid_dma_init(void)
1444{
1445	pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446			INTEL_MID_DMA_DRIVER_VERSION);
1447	return pci_register_driver(&intel_mid_dma_pci_driver);
1448}
1449fs_initcall(intel_mid_dma_init);
1450
1451static void __exit intel_mid_dma_exit(void)
1452{
1453	pci_unregister_driver(&intel_mid_dma_pci_driver);
1454}
1455module_exit(intel_mid_dma_exit);
1456
1457MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459MODULE_LICENSE("GPL v2");
1460MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1461