intel_mid_dma.c revision d2ebfb335b0426deb1a4fb14e4e926d81ecd8235
1/*
2 *  intel_mid_dma.c - Intel Langwell DMA Drivers
3 *
4 *  Copyright (C) 2008-10 Intel Corp
5 *  Author: Vinod Koul <vinod.koul@intel.com>
6 *  The driver design is based on dw_dmac driver
7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 *  This program is free software; you can redistribute it and/or modify
10 *  it under the terms of the GNU General Public License as published by
11 *  the Free Software Foundation; version 2 of the License.
12 *
13 *  This program is distributed in the hope that it will be useful, but
14 *  WITHOUT ANY WARRANTY; without even the implied warranty of
15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 *  General Public License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License along
19 *  with this program; if not, write to the Free Software Foundation, Inc.,
20 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 *
25 */
26#include <linux/pci.h>
27#include <linux/interrupt.h>
28#include <linux/pm_runtime.h>
29#include <linux/intel_mid_dma.h>
30#include <linux/module.h>
31
32#include "dmaengine.h"
33
34#define MAX_CHAN	4 /*max ch across controllers*/
35#include "intel_mid_dma_regs.h"
36
37#define INTEL_MID_DMAC1_ID		0x0814
38#define INTEL_MID_DMAC2_ID		0x0813
39#define INTEL_MID_GP_DMAC2_ID		0x0827
40#define INTEL_MFLD_DMAC1_ID		0x0830
41#define LNW_PERIPHRAL_MASK_BASE		0xFFAE8008
42#define LNW_PERIPHRAL_MASK_SIZE		0x10
43#define LNW_PERIPHRAL_STATUS		0x0
44#define LNW_PERIPHRAL_MASK		0x8
45
46struct intel_mid_dma_probe_info {
47	u8 max_chan;
48	u8 ch_base;
49	u16 block_size;
50	u32 pimr_mask;
51};
52
53#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54	((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {	\
55		.max_chan = (_max_chan),			\
56		.ch_base = (_ch_base),				\
57		.block_size = (_block_size),			\
58		.pimr_mask = (_pimr_mask),			\
59	})
60
61/*****************************************************************************
62Utility Functions*/
63/**
64 * get_ch_index	-	convert status to channel
65 * @status: status mask
66 * @base: dma ch base value
67 *
68 * Modify the status mask and return the channel index needing
69 * attention (or -1 if neither)
70 */
71static int get_ch_index(int *status, unsigned int base)
72{
73	int i;
74	for (i = 0; i < MAX_CHAN; i++) {
75		if (*status & (1 << (i + base))) {
76			*status = *status & ~(1 << (i + base));
77			pr_debug("MDMA: index %d New status %x\n", i, *status);
78			return i;
79		}
80	}
81	return -1;
82}
83
84/**
85 * get_block_ts	-	calculates dma transaction length
86 * @len: dma transfer length
87 * @tx_width: dma transfer src width
88 * @block_size: dma controller max block size
89 *
90 * Based on src width calculate the DMA trsaction length in data items
91 * return data items or FFFF if exceeds max length for block
92 */
93static int get_block_ts(int len, int tx_width, int block_size)
94{
95	int byte_width = 0, block_ts = 0;
96
97	switch (tx_width) {
98	case DMA_SLAVE_BUSWIDTH_1_BYTE:
99		byte_width = 1;
100		break;
101	case DMA_SLAVE_BUSWIDTH_2_BYTES:
102		byte_width = 2;
103		break;
104	case DMA_SLAVE_BUSWIDTH_4_BYTES:
105	default:
106		byte_width = 4;
107		break;
108	}
109
110	block_ts = len/byte_width;
111	if (block_ts > block_size)
112		block_ts = 0xFFFF;
113	return block_ts;
114}
115
116/*****************************************************************************
117DMAC1 interrupt Functions*/
118
119/**
120 * dmac1_mask_periphral_intr -	mask the periphral interrupt
121 * @mid: dma device for which masking is required
122 *
123 * Masks the DMA periphral interrupt
124 * this is valid for DMAC1 family controllers only
125 * This controller should have periphral mask registers already mapped
126 */
127static void dmac1_mask_periphral_intr(struct middma_device *mid)
128{
129	u32 pimr;
130
131	if (mid->pimr_mask) {
132		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133		pimr |= mid->pimr_mask;
134		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135	}
136	return;
137}
138
139/**
140 * dmac1_unmask_periphral_intr -	unmask the periphral interrupt
141 * @midc: dma channel for which masking is required
142 *
143 * UnMasks the DMA periphral interrupt,
144 * this is valid for DMAC1 family controllers only
145 * This controller should have periphral mask registers already mapped
146 */
147static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148{
149	u32 pimr;
150	struct middma_device *mid = to_middma_device(midc->chan.device);
151
152	if (mid->pimr_mask) {
153		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154		pimr &= ~mid->pimr_mask;
155		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156	}
157	return;
158}
159
160/**
161 * enable_dma_interrupt -	enable the periphral interrupt
162 * @midc: dma channel for which enable interrupt is required
163 *
164 * Enable the DMA periphral interrupt,
165 * this is valid for DMAC1 family controllers only
166 * This controller should have periphral mask registers already mapped
167 */
168static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169{
170	dmac1_unmask_periphral_intr(midc);
171
172	/*en ch interrupts*/
173	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175	return;
176}
177
178/**
179 * disable_dma_interrupt -	disable the periphral interrupt
180 * @midc: dma channel for which disable interrupt is required
181 *
182 * Disable the DMA periphral interrupt,
183 * this is valid for DMAC1 family controllers only
184 * This controller should have periphral mask registers already mapped
185 */
186static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187{
188	/*Check LPE PISR, make sure fwd is disabled*/
189	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192	return;
193}
194
195/*****************************************************************************
196DMA channel helper Functions*/
197/**
198 * mid_desc_get		-	get a descriptor
199 * @midc: dma channel for which descriptor is required
200 *
201 * Obtain a descriptor for the channel. Returns NULL if none are free.
202 * Once the descriptor is returned it is private until put on another
203 * list or freed
204 */
205static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206{
207	struct intel_mid_dma_desc *desc, *_desc;
208	struct intel_mid_dma_desc *ret = NULL;
209
210	spin_lock_bh(&midc->lock);
211	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212		if (async_tx_test_ack(&desc->txd)) {
213			list_del(&desc->desc_node);
214			ret = desc;
215			break;
216		}
217	}
218	spin_unlock_bh(&midc->lock);
219	return ret;
220}
221
222/**
223 * mid_desc_put		-	put a descriptor
224 * @midc: dma channel for which descriptor is required
225 * @desc: descriptor to put
226 *
227 * Return a descriptor from lwn_desc_get back to the free pool
228 */
229static void midc_desc_put(struct intel_mid_dma_chan *midc,
230			struct intel_mid_dma_desc *desc)
231{
232	if (desc) {
233		spin_lock_bh(&midc->lock);
234		list_add_tail(&desc->desc_node, &midc->free_list);
235		spin_unlock_bh(&midc->lock);
236	}
237}
238/**
239 * midc_dostart		-		begin a DMA transaction
240 * @midc: channel for which txn is to be started
241 * @first: first descriptor of series
242 *
243 * Load a transaction into the engine. This must be called with midc->lock
244 * held and bh disabled.
245 */
246static void midc_dostart(struct intel_mid_dma_chan *midc,
247			struct intel_mid_dma_desc *first)
248{
249	struct middma_device *mid = to_middma_device(midc->chan.device);
250
251	/*  channel is idle */
252	if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253		/*error*/
254		pr_err("ERR_MDMA: channel is busy in start\n");
255		/* The tasklet will hopefully advance the queue... */
256		return;
257	}
258	midc->busy = true;
259	/*write registers and en*/
260	iowrite32(first->sar, midc->ch_regs + SAR);
261	iowrite32(first->dar, midc->ch_regs + DAR);
262	iowrite32(first->lli_phys, midc->ch_regs + LLP);
263	iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264	iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265	iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266	iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267	pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268		(int)first->sar, (int)first->dar, first->cfg_hi,
269		first->cfg_lo, first->ctl_hi, first->ctl_lo);
270	first->status = DMA_IN_PROGRESS;
271
272	iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273}
274
275/**
276 * midc_descriptor_complete	-	process completed descriptor
277 * @midc: channel owning the descriptor
278 * @desc: the descriptor itself
279 *
280 * Process a completed descriptor and perform any callbacks upon
281 * the completion. The completion handling drops the lock during the
282 * callbacks but must be called with the lock held.
283 */
284static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285		struct intel_mid_dma_desc *desc)
286		__releases(&midc->lock) __acquires(&midc->lock)
287{
288	struct dma_async_tx_descriptor	*txd = &desc->txd;
289	dma_async_tx_callback callback_txd = NULL;
290	struct intel_mid_dma_lli	*llitem;
291	void *param_txd = NULL;
292
293	midc->chan.completed_cookie = txd->cookie;
294	callback_txd = txd->callback;
295	param_txd = txd->callback_param;
296
297	if (desc->lli != NULL) {
298		/*clear the DONE bit of completed LLI in memory*/
299		llitem = desc->lli + desc->current_lli;
300		llitem->ctl_hi &= CLEAR_DONE;
301		if (desc->current_lli < desc->lli_length-1)
302			(desc->current_lli)++;
303		else
304			desc->current_lli = 0;
305	}
306	spin_unlock_bh(&midc->lock);
307	if (callback_txd) {
308		pr_debug("MDMA: TXD callback set ... calling\n");
309		callback_txd(param_txd);
310	}
311	if (midc->raw_tfr) {
312		desc->status = DMA_SUCCESS;
313		if (desc->lli != NULL) {
314			pci_pool_free(desc->lli_pool, desc->lli,
315						desc->lli_phys);
316			pci_pool_destroy(desc->lli_pool);
317			desc->lli = NULL;
318		}
319		list_move(&desc->desc_node, &midc->free_list);
320		midc->busy = false;
321	}
322	spin_lock_bh(&midc->lock);
323
324}
325/**
326 * midc_scan_descriptors -		check the descriptors in channel
327 *					mark completed when tx is completete
328 * @mid: device
329 * @midc: channel to scan
330 *
331 * Walk the descriptor chain for the device and process any entries
332 * that are complete.
333 */
334static void midc_scan_descriptors(struct middma_device *mid,
335				struct intel_mid_dma_chan *midc)
336{
337	struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339	/*tx is complete*/
340	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341		if (desc->status == DMA_IN_PROGRESS)
342			midc_descriptor_complete(midc, desc);
343	}
344	return;
345	}
346/**
347 * midc_lli_fill_sg -		Helper function to convert
348 *				SG list to Linked List Items.
349 *@midc: Channel
350 *@desc: DMA descriptor
351 *@sglist: Pointer to SG list
352 *@sglen: SG list length
353 *@flags: DMA transaction flags
354 *
355 * Walk through the SG list and convert the SG list into Linked
356 * List Items (LLI).
357 */
358static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359				struct intel_mid_dma_desc *desc,
360				struct scatterlist *sglist,
361				unsigned int sglen,
362				unsigned int flags)
363{
364	struct intel_mid_dma_slave *mids;
365	struct scatterlist  *sg;
366	dma_addr_t lli_next, sg_phy_addr;
367	struct intel_mid_dma_lli *lli_bloc_desc;
368	union intel_mid_dma_ctl_lo ctl_lo;
369	union intel_mid_dma_ctl_hi ctl_hi;
370	int i;
371
372	pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373	mids = midc->mid_slave;
374
375	lli_bloc_desc = desc->lli;
376	lli_next = desc->lli_phys;
377
378	ctl_lo.ctl_lo = desc->ctl_lo;
379	ctl_hi.ctl_hi = desc->ctl_hi;
380	for_each_sg(sglist, sg, sglen, i) {
381		/*Populate CTL_LOW and LLI values*/
382		if (i != sglen - 1) {
383			lli_next = lli_next +
384				sizeof(struct intel_mid_dma_lli);
385		} else {
386		/*Check for circular list, otherwise terminate LLI to ZERO*/
387			if (flags & DMA_PREP_CIRCULAR_LIST) {
388				pr_debug("MDMA: LLI is configured in circular mode\n");
389				lli_next = desc->lli_phys;
390			} else {
391				lli_next = 0;
392				ctl_lo.ctlx.llp_dst_en = 0;
393				ctl_lo.ctlx.llp_src_en = 0;
394			}
395		}
396		/*Populate CTL_HI values*/
397		ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
398							desc->width,
399							midc->dma->block_size);
400		/*Populate SAR and DAR values*/
401		sg_phy_addr = sg_phys(sg);
402		if (desc->dirn ==  DMA_MEM_TO_DEV) {
403			lli_bloc_desc->sar  = sg_phy_addr;
404			lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
405		} else if (desc->dirn ==  DMA_DEV_TO_MEM) {
406			lli_bloc_desc->sar  = mids->dma_slave.src_addr;
407			lli_bloc_desc->dar  = sg_phy_addr;
408		}
409		/*Copy values into block descriptor in system memroy*/
410		lli_bloc_desc->llp = lli_next;
411		lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412		lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414		lli_bloc_desc++;
415	}
416	/*Copy very first LLI values to descriptor*/
417	desc->ctl_lo = desc->lli->ctl_lo;
418	desc->ctl_hi = desc->lli->ctl_hi;
419	desc->sar = desc->lli->sar;
420	desc->dar = desc->lli->dar;
421
422	return 0;
423}
424/*****************************************************************************
425DMA engine callback Functions*/
426/**
427 * intel_mid_dma_tx_submit -	callback to submit DMA transaction
428 * @tx: dma engine descriptor
429 *
430 * Submit the DMA trasaction for this descriptor, start if ch idle
431 */
432static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433{
434	struct intel_mid_dma_desc	*desc = to_intel_mid_dma_desc(tx);
435	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(tx->chan);
436	dma_cookie_t		cookie;
437
438	spin_lock_bh(&midc->lock);
439	cookie = midc->chan.cookie;
440
441	if (++cookie < 0)
442		cookie = 1;
443
444	midc->chan.cookie = cookie;
445	desc->txd.cookie = cookie;
446
447
448	if (list_empty(&midc->active_list))
449		list_add_tail(&desc->desc_node, &midc->active_list);
450	else
451		list_add_tail(&desc->desc_node, &midc->queue);
452
453	midc_dostart(midc, desc);
454	spin_unlock_bh(&midc->lock);
455
456	return cookie;
457}
458
459/**
460 * intel_mid_dma_issue_pending -	callback to issue pending txn
461 * @chan: chan where pending trascation needs to be checked and submitted
462 *
463 * Call for scan to issue pending descriptors
464 */
465static void intel_mid_dma_issue_pending(struct dma_chan *chan)
466{
467	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
468
469	spin_lock_bh(&midc->lock);
470	if (!list_empty(&midc->queue))
471		midc_scan_descriptors(to_middma_device(chan->device), midc);
472	spin_unlock_bh(&midc->lock);
473}
474
475/**
476 * intel_mid_dma_tx_status -	Return status of txn
477 * @chan: chan for where status needs to be checked
478 * @cookie: cookie for txn
479 * @txstate: DMA txn state
480 *
481 * Return status of DMA txn
482 */
483static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
484						dma_cookie_t cookie,
485						struct dma_tx_state *txstate)
486{
487	dma_cookie_t		last_used;
488	dma_cookie_t		last_complete;
489	int				ret;
490
491	last_complete = chan->completed_cookie;
492	last_used = chan->cookie;
493
494	ret = dma_async_is_complete(cookie, last_complete, last_used);
495	if (ret != DMA_SUCCESS) {
496		spin_lock_bh(&midc->lock);
497		midc_scan_descriptors(to_middma_device(chan->device), midc);
498		spin_unlock_bh(&midc->lock);
499
500		last_complete = chan->completed_cookie;
501		last_used = chan->cookie;
502
503		ret = dma_async_is_complete(cookie, last_complete, last_used);
504	}
505
506	if (txstate) {
507		txstate->last = last_complete;
508		txstate->used = last_used;
509		txstate->residue = 0;
510	}
511	return ret;
512}
513
514static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
515{
516	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
517	struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
518	struct intel_mid_dma_slave *mid_slave;
519
520	BUG_ON(!midc);
521	BUG_ON(!slave);
522	pr_debug("MDMA: slave control called\n");
523
524	mid_slave = to_intel_mid_dma_slave(slave);
525
526	BUG_ON(!mid_slave);
527
528	midc->mid_slave = mid_slave;
529	return 0;
530}
531/**
532 * intel_mid_dma_device_control -	DMA device control
533 * @chan: chan for DMA control
534 * @cmd: control cmd
535 * @arg: cmd arg value
536 *
537 * Perform DMA control command
538 */
539static int intel_mid_dma_device_control(struct dma_chan *chan,
540			enum dma_ctrl_cmd cmd, unsigned long arg)
541{
542	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
543	struct middma_device	*mid = to_middma_device(chan->device);
544	struct intel_mid_dma_desc	*desc, *_desc;
545	union intel_mid_dma_cfg_lo cfg_lo;
546
547	if (cmd == DMA_SLAVE_CONFIG)
548		return dma_slave_control(chan, arg);
549
550	if (cmd != DMA_TERMINATE_ALL)
551		return -ENXIO;
552
553	spin_lock_bh(&midc->lock);
554	if (midc->busy == false) {
555		spin_unlock_bh(&midc->lock);
556		return 0;
557	}
558	/*Suspend and disable the channel*/
559	cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
560	cfg_lo.cfgx.ch_susp = 1;
561	iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
562	iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
563	midc->busy = false;
564	/* Disable interrupts */
565	disable_dma_interrupt(midc);
566	midc->descs_allocated = 0;
567
568	spin_unlock_bh(&midc->lock);
569	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
570		if (desc->lli != NULL) {
571			pci_pool_free(desc->lli_pool, desc->lli,
572						desc->lli_phys);
573			pci_pool_destroy(desc->lli_pool);
574			desc->lli = NULL;
575		}
576		list_move(&desc->desc_node, &midc->free_list);
577	}
578	return 0;
579}
580
581
582/**
583 * intel_mid_dma_prep_memcpy -	Prep memcpy txn
584 * @chan: chan for DMA transfer
585 * @dest: destn address
586 * @src: src address
587 * @len: DMA transfer len
588 * @flags: DMA flags
589 *
590 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
591 * The periphral txn details should be filled in slave structure properly
592 * Returns the descriptor for this txn
593 */
594static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
595			struct dma_chan *chan, dma_addr_t dest,
596			dma_addr_t src, size_t len, unsigned long flags)
597{
598	struct intel_mid_dma_chan *midc;
599	struct intel_mid_dma_desc *desc = NULL;
600	struct intel_mid_dma_slave *mids;
601	union intel_mid_dma_ctl_lo ctl_lo;
602	union intel_mid_dma_ctl_hi ctl_hi;
603	union intel_mid_dma_cfg_lo cfg_lo;
604	union intel_mid_dma_cfg_hi cfg_hi;
605	enum dma_slave_buswidth width;
606
607	pr_debug("MDMA: Prep for memcpy\n");
608	BUG_ON(!chan);
609	if (!len)
610		return NULL;
611
612	midc = to_intel_mid_dma_chan(chan);
613	BUG_ON(!midc);
614
615	mids = midc->mid_slave;
616	BUG_ON(!mids);
617
618	pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
619				midc->dma->pci_id, midc->ch_id, len);
620	pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
621			mids->cfg_mode, mids->dma_slave.direction,
622			mids->hs_mode, mids->dma_slave.src_addr_width);
623
624	/*calculate CFG_LO*/
625	if (mids->hs_mode == LNW_DMA_SW_HS) {
626		cfg_lo.cfg_lo = 0;
627		cfg_lo.cfgx.hs_sel_dst = 1;
628		cfg_lo.cfgx.hs_sel_src = 1;
629	} else if (mids->hs_mode == LNW_DMA_HW_HS)
630		cfg_lo.cfg_lo = 0x00000;
631
632	/*calculate CFG_HI*/
633	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
634		/*SW HS only*/
635		cfg_hi.cfg_hi = 0;
636	} else {
637		cfg_hi.cfg_hi = 0;
638		if (midc->dma->pimr_mask) {
639			cfg_hi.cfgx.protctl = 0x0; /*default value*/
640			cfg_hi.cfgx.fifo_mode = 1;
641			if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
642				cfg_hi.cfgx.src_per = 0;
643				if (mids->device_instance == 0)
644					cfg_hi.cfgx.dst_per = 3;
645				if (mids->device_instance == 1)
646					cfg_hi.cfgx.dst_per = 1;
647			} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
648				if (mids->device_instance == 0)
649					cfg_hi.cfgx.src_per = 2;
650				if (mids->device_instance == 1)
651					cfg_hi.cfgx.src_per = 0;
652				cfg_hi.cfgx.dst_per = 0;
653			}
654		} else {
655			cfg_hi.cfgx.protctl = 0x1; /*default value*/
656			cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
657					midc->ch_id - midc->dma->chan_base;
658		}
659	}
660
661	/*calculate CTL_HI*/
662	ctl_hi.ctlx.reser = 0;
663	ctl_hi.ctlx.done  = 0;
664	width = mids->dma_slave.src_addr_width;
665
666	ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
667	pr_debug("MDMA:calc len %d for block size %d\n",
668				ctl_hi.ctlx.block_ts, midc->dma->block_size);
669	/*calculate CTL_LO*/
670	ctl_lo.ctl_lo = 0;
671	ctl_lo.ctlx.int_en = 1;
672	ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
673	ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
674
675	/*
676	 * Here we need some translation from "enum dma_slave_buswidth"
677	 * to the format for our dma controller
678	 *		standard	intel_mid_dmac's format
679	 *		 1 Byte			0b000
680	 *		 2 Bytes		0b001
681	 *		 4 Bytes		0b010
682	 */
683	ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
684	ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
685
686	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
687		ctl_lo.ctlx.tt_fc = 0;
688		ctl_lo.ctlx.sinc = 0;
689		ctl_lo.ctlx.dinc = 0;
690	} else {
691		if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
692			ctl_lo.ctlx.sinc = 0;
693			ctl_lo.ctlx.dinc = 2;
694			ctl_lo.ctlx.tt_fc = 1;
695		} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
696			ctl_lo.ctlx.sinc = 2;
697			ctl_lo.ctlx.dinc = 0;
698			ctl_lo.ctlx.tt_fc = 2;
699		}
700	}
701
702	pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
703		ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
704
705	enable_dma_interrupt(midc);
706
707	desc = midc_desc_get(midc);
708	if (desc == NULL)
709		goto err_desc_get;
710	desc->sar = src;
711	desc->dar = dest ;
712	desc->len = len;
713	desc->cfg_hi = cfg_hi.cfg_hi;
714	desc->cfg_lo = cfg_lo.cfg_lo;
715	desc->ctl_lo = ctl_lo.ctl_lo;
716	desc->ctl_hi = ctl_hi.ctl_hi;
717	desc->width = width;
718	desc->dirn = mids->dma_slave.direction;
719	desc->lli_phys = 0;
720	desc->lli = NULL;
721	desc->lli_pool = NULL;
722	return &desc->txd;
723
724err_desc_get:
725	pr_err("ERR_MDMA: Failed to get desc\n");
726	midc_desc_put(midc, desc);
727	return NULL;
728}
729/**
730 * intel_mid_dma_prep_slave_sg -	Prep slave sg txn
731 * @chan: chan for DMA transfer
732 * @sgl: scatter gather list
733 * @sg_len: length of sg txn
734 * @direction: DMA transfer dirtn
735 * @flags: DMA flags
736 *
737 * Prepares LLI based periphral transfer
738 */
739static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
740			struct dma_chan *chan, struct scatterlist *sgl,
741			unsigned int sg_len, enum dma_transfer_direction direction,
742			unsigned long flags)
743{
744	struct intel_mid_dma_chan *midc = NULL;
745	struct intel_mid_dma_slave *mids = NULL;
746	struct intel_mid_dma_desc *desc = NULL;
747	struct dma_async_tx_descriptor *txd = NULL;
748	union intel_mid_dma_ctl_lo ctl_lo;
749
750	pr_debug("MDMA: Prep for slave SG\n");
751
752	if (!sg_len) {
753		pr_err("MDMA: Invalid SG length\n");
754		return NULL;
755	}
756	midc = to_intel_mid_dma_chan(chan);
757	BUG_ON(!midc);
758
759	mids = midc->mid_slave;
760	BUG_ON(!mids);
761
762	if (!midc->dma->pimr_mask) {
763		/* We can still handle sg list with only one item */
764		if (sg_len == 1) {
765			txd = intel_mid_dma_prep_memcpy(chan,
766						mids->dma_slave.dst_addr,
767						mids->dma_slave.src_addr,
768						sgl->length,
769						flags);
770			return txd;
771		} else {
772			pr_warn("MDMA: SG list is not supported by this controller\n");
773			return  NULL;
774		}
775	}
776
777	pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
778			sg_len, direction, flags);
779
780	txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
781	if (NULL == txd) {
782		pr_err("MDMA: Prep memcpy failed\n");
783		return NULL;
784	}
785
786	desc = to_intel_mid_dma_desc(txd);
787	desc->dirn = direction;
788	ctl_lo.ctl_lo = desc->ctl_lo;
789	ctl_lo.ctlx.llp_dst_en = 1;
790	ctl_lo.ctlx.llp_src_en = 1;
791	desc->ctl_lo = ctl_lo.ctl_lo;
792	desc->lli_length = sg_len;
793	desc->current_lli = 0;
794	/* DMA coherent memory pool for LLI descriptors*/
795	desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
796				midc->dma->pdev,
797				(sizeof(struct intel_mid_dma_lli)*sg_len),
798				32, 0);
799	if (NULL == desc->lli_pool) {
800		pr_err("MID_DMA:LLI pool create failed\n");
801		return NULL;
802	}
803
804	desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
805	if (!desc->lli) {
806		pr_err("MID_DMA: LLI alloc failed\n");
807		pci_pool_destroy(desc->lli_pool);
808		return NULL;
809	}
810
811	midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
812	if (flags & DMA_PREP_INTERRUPT) {
813		iowrite32(UNMASK_INTR_REG(midc->ch_id),
814				midc->dma_base + MASK_BLOCK);
815		pr_debug("MDMA:Enabled Block interrupt\n");
816	}
817	return &desc->txd;
818}
819
820/**
821 * intel_mid_dma_free_chan_resources -	Frees dma resources
822 * @chan: chan requiring attention
823 *
824 * Frees the allocated resources on this DMA chan
825 */
826static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
827{
828	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
829	struct middma_device	*mid = to_middma_device(chan->device);
830	struct intel_mid_dma_desc	*desc, *_desc;
831
832	if (true == midc->busy) {
833		/*trying to free ch in use!!!!!*/
834		pr_err("ERR_MDMA: trying to free ch in use\n");
835	}
836	spin_lock_bh(&midc->lock);
837	midc->descs_allocated = 0;
838	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
839		list_del(&desc->desc_node);
840		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
841	}
842	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
843		list_del(&desc->desc_node);
844		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
845	}
846	list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
847		list_del(&desc->desc_node);
848		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
849	}
850	spin_unlock_bh(&midc->lock);
851	midc->in_use = false;
852	midc->busy = false;
853	/* Disable CH interrupts */
854	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
855	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
856	pm_runtime_put(&mid->pdev->dev);
857}
858
859/**
860 * intel_mid_dma_alloc_chan_resources -	Allocate dma resources
861 * @chan: chan requiring attention
862 *
863 * Allocates DMA resources on this chan
864 * Return the descriptors allocated
865 */
866static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
867{
868	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
869	struct middma_device	*mid = to_middma_device(chan->device);
870	struct intel_mid_dma_desc	*desc;
871	dma_addr_t		phys;
872	int	i = 0;
873
874	pm_runtime_get_sync(&mid->pdev->dev);
875
876	if (mid->state == SUSPENDED) {
877		if (dma_resume(&mid->pdev->dev)) {
878			pr_err("ERR_MDMA: resume failed");
879			return -EFAULT;
880		}
881	}
882
883	/* ASSERT:  channel is idle */
884	if (test_ch_en(mid->dma_base, midc->ch_id)) {
885		/*ch is not idle*/
886		pr_err("ERR_MDMA: ch not idle\n");
887		pm_runtime_put(&mid->pdev->dev);
888		return -EIO;
889	}
890	chan->completed_cookie = chan->cookie = 1;
891
892	spin_lock_bh(&midc->lock);
893	while (midc->descs_allocated < DESCS_PER_CHANNEL) {
894		spin_unlock_bh(&midc->lock);
895		desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
896		if (!desc) {
897			pr_err("ERR_MDMA: desc failed\n");
898			pm_runtime_put(&mid->pdev->dev);
899			return -ENOMEM;
900			/*check*/
901		}
902		dma_async_tx_descriptor_init(&desc->txd, chan);
903		desc->txd.tx_submit = intel_mid_dma_tx_submit;
904		desc->txd.flags = DMA_CTRL_ACK;
905		desc->txd.phys = phys;
906		spin_lock_bh(&midc->lock);
907		i = ++midc->descs_allocated;
908		list_add_tail(&desc->desc_node, &midc->free_list);
909	}
910	spin_unlock_bh(&midc->lock);
911	midc->in_use = true;
912	midc->busy = false;
913	pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
914	return i;
915}
916
917/**
918 * midc_handle_error -	Handle DMA txn error
919 * @mid: controller where error occurred
920 * @midc: chan where error occurred
921 *
922 * Scan the descriptor for error
923 */
924static void midc_handle_error(struct middma_device *mid,
925		struct intel_mid_dma_chan *midc)
926{
927	midc_scan_descriptors(mid, midc);
928}
929
930/**
931 * dma_tasklet -	DMA interrupt tasklet
932 * @data: tasklet arg (the controller structure)
933 *
934 * Scan the controller for interrupts for completion/error
935 * Clear the interrupt and call for handling completion/error
936 */
937static void dma_tasklet(unsigned long data)
938{
939	struct middma_device *mid = NULL;
940	struct intel_mid_dma_chan *midc = NULL;
941	u32 status, raw_tfr, raw_block;
942	int i;
943
944	mid = (struct middma_device *)data;
945	if (mid == NULL) {
946		pr_err("ERR_MDMA: tasklet Null param\n");
947		return;
948	}
949	pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
950	raw_tfr = ioread32(mid->dma_base + RAW_TFR);
951	raw_block = ioread32(mid->dma_base + RAW_BLOCK);
952	status = raw_tfr | raw_block;
953	status &= mid->intr_mask;
954	while (status) {
955		/*txn interrupt*/
956		i = get_ch_index(&status, mid->chan_base);
957		if (i < 0) {
958			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
959			return;
960		}
961		midc = &mid->ch[i];
962		if (midc == NULL) {
963			pr_err("ERR_MDMA:Null param midc\n");
964			return;
965		}
966		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
967				status, midc->ch_id, i);
968		midc->raw_tfr = raw_tfr;
969		midc->raw_block = raw_block;
970		spin_lock_bh(&midc->lock);
971		/*clearing this interrupts first*/
972		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
973		if (raw_block) {
974			iowrite32((1 << midc->ch_id),
975				mid->dma_base + CLEAR_BLOCK);
976		}
977		midc_scan_descriptors(mid, midc);
978		pr_debug("MDMA:Scan of desc... complete, unmasking\n");
979		iowrite32(UNMASK_INTR_REG(midc->ch_id),
980				mid->dma_base + MASK_TFR);
981		if (raw_block) {
982			iowrite32(UNMASK_INTR_REG(midc->ch_id),
983				mid->dma_base + MASK_BLOCK);
984		}
985		spin_unlock_bh(&midc->lock);
986	}
987
988	status = ioread32(mid->dma_base + RAW_ERR);
989	status &= mid->intr_mask;
990	while (status) {
991		/*err interrupt*/
992		i = get_ch_index(&status, mid->chan_base);
993		if (i < 0) {
994			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
995			return;
996		}
997		midc = &mid->ch[i];
998		if (midc == NULL) {
999			pr_err("ERR_MDMA:Null param midc\n");
1000			return;
1001		}
1002		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
1003				status, midc->ch_id, i);
1004
1005		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1006		spin_lock_bh(&midc->lock);
1007		midc_handle_error(mid, midc);
1008		iowrite32(UNMASK_INTR_REG(midc->ch_id),
1009				mid->dma_base + MASK_ERR);
1010		spin_unlock_bh(&midc->lock);
1011	}
1012	pr_debug("MDMA:Exiting takslet...\n");
1013	return;
1014}
1015
1016static void dma_tasklet1(unsigned long data)
1017{
1018	pr_debug("MDMA:in takslet1...\n");
1019	return dma_tasklet(data);
1020}
1021
1022static void dma_tasklet2(unsigned long data)
1023{
1024	pr_debug("MDMA:in takslet2...\n");
1025	return dma_tasklet(data);
1026}
1027
1028/**
1029 * intel_mid_dma_interrupt -	DMA ISR
1030 * @irq: IRQ where interrupt occurred
1031 * @data: ISR cllback data (the controller structure)
1032 *
1033 * See if this is our interrupt if so then schedule the tasklet
1034 * otherwise ignore
1035 */
1036static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1037{
1038	struct middma_device *mid = data;
1039	u32 tfr_status, err_status;
1040	int call_tasklet = 0;
1041
1042	tfr_status = ioread32(mid->dma_base + RAW_TFR);
1043	err_status = ioread32(mid->dma_base + RAW_ERR);
1044	if (!tfr_status && !err_status)
1045		return IRQ_NONE;
1046
1047	/*DMA Interrupt*/
1048	pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1049	pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1050	tfr_status &= mid->intr_mask;
1051	if (tfr_status) {
1052		/*need to disable intr*/
1053		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1054		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1055		pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1056		call_tasklet = 1;
1057	}
1058	err_status &= mid->intr_mask;
1059	if (err_status) {
1060		iowrite32((err_status << INT_MASK_WE),
1061			  mid->dma_base + MASK_ERR);
1062		call_tasklet = 1;
1063	}
1064	if (call_tasklet)
1065		tasklet_schedule(&mid->tasklet);
1066
1067	return IRQ_HANDLED;
1068}
1069
1070static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1071{
1072	return intel_mid_dma_interrupt(irq, data);
1073}
1074
1075static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1076{
1077	return intel_mid_dma_interrupt(irq, data);
1078}
1079
1080/**
1081 * mid_setup_dma -	Setup the DMA controller
1082 * @pdev: Controller PCI device structure
1083 *
1084 * Initialize the DMA controller, channels, registers with DMA engine,
1085 * ISR. Initialize DMA controller channels.
1086 */
1087static int mid_setup_dma(struct pci_dev *pdev)
1088{
1089	struct middma_device *dma = pci_get_drvdata(pdev);
1090	int err, i;
1091
1092	/* DMA coherent memory pool for DMA descriptor allocations */
1093	dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1094					sizeof(struct intel_mid_dma_desc),
1095					32, 0);
1096	if (NULL == dma->dma_pool) {
1097		pr_err("ERR_MDMA:pci_pool_create failed\n");
1098		err = -ENOMEM;
1099		goto err_dma_pool;
1100	}
1101
1102	INIT_LIST_HEAD(&dma->common.channels);
1103	dma->pci_id = pdev->device;
1104	if (dma->pimr_mask) {
1105		dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1106					LNW_PERIPHRAL_MASK_SIZE);
1107		if (dma->mask_reg == NULL) {
1108			pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1109			err = -ENOMEM;
1110			goto err_ioremap;
1111		}
1112	} else
1113		dma->mask_reg = NULL;
1114
1115	pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1116	/*init CH structures*/
1117	dma->intr_mask = 0;
1118	dma->state = RUNNING;
1119	for (i = 0; i < dma->max_chan; i++) {
1120		struct intel_mid_dma_chan *midch = &dma->ch[i];
1121
1122		midch->chan.device = &dma->common;
1123		midch->chan.cookie =  1;
1124		midch->ch_id = dma->chan_base + i;
1125		pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1126
1127		midch->dma_base = dma->dma_base;
1128		midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1129		midch->dma = dma;
1130		dma->intr_mask |= 1 << (dma->chan_base + i);
1131		spin_lock_init(&midch->lock);
1132
1133		INIT_LIST_HEAD(&midch->active_list);
1134		INIT_LIST_HEAD(&midch->queue);
1135		INIT_LIST_HEAD(&midch->free_list);
1136		/*mask interrupts*/
1137		iowrite32(MASK_INTR_REG(midch->ch_id),
1138			dma->dma_base + MASK_BLOCK);
1139		iowrite32(MASK_INTR_REG(midch->ch_id),
1140			dma->dma_base + MASK_SRC_TRAN);
1141		iowrite32(MASK_INTR_REG(midch->ch_id),
1142			dma->dma_base + MASK_DST_TRAN);
1143		iowrite32(MASK_INTR_REG(midch->ch_id),
1144			dma->dma_base + MASK_ERR);
1145		iowrite32(MASK_INTR_REG(midch->ch_id),
1146			dma->dma_base + MASK_TFR);
1147
1148		disable_dma_interrupt(midch);
1149		list_add_tail(&midch->chan.device_node, &dma->common.channels);
1150	}
1151	pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1152
1153	/*init dma structure*/
1154	dma_cap_zero(dma->common.cap_mask);
1155	dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1156	dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1157	dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1158	dma->common.dev = &pdev->dev;
1159
1160	dma->common.device_alloc_chan_resources =
1161					intel_mid_dma_alloc_chan_resources;
1162	dma->common.device_free_chan_resources =
1163					intel_mid_dma_free_chan_resources;
1164
1165	dma->common.device_tx_status = intel_mid_dma_tx_status;
1166	dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1167	dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1168	dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1169	dma->common.device_control = intel_mid_dma_device_control;
1170
1171	/*enable dma cntrl*/
1172	iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1173
1174	/*register irq */
1175	if (dma->pimr_mask) {
1176		pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1177		err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1178			IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1179		if (0 != err)
1180			goto err_irq;
1181	} else {
1182		dma->intr_mask = 0x03;
1183		pr_debug("MDMA:Requesting irq for DMAC2\n");
1184		err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1185			IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1186		if (0 != err)
1187			goto err_irq;
1188	}
1189	/*register device w/ engine*/
1190	err = dma_async_device_register(&dma->common);
1191	if (0 != err) {
1192		pr_err("ERR_MDMA:device_register failed: %d\n", err);
1193		goto err_engine;
1194	}
1195	if (dma->pimr_mask) {
1196		pr_debug("setting up tasklet1 for DMAC1\n");
1197		tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1198	} else {
1199		pr_debug("setting up tasklet2 for DMAC2\n");
1200		tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1201	}
1202	return 0;
1203
1204err_engine:
1205	free_irq(pdev->irq, dma);
1206err_irq:
1207	if (dma->mask_reg)
1208		iounmap(dma->mask_reg);
1209err_ioremap:
1210	pci_pool_destroy(dma->dma_pool);
1211err_dma_pool:
1212	pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1213	return err;
1214
1215}
1216
1217/**
1218 * middma_shutdown -	Shutdown the DMA controller
1219 * @pdev: Controller PCI device structure
1220 *
1221 * Called by remove
1222 * Unregister DMa controller, clear all structures and free interrupt
1223 */
1224static void middma_shutdown(struct pci_dev *pdev)
1225{
1226	struct middma_device *device = pci_get_drvdata(pdev);
1227
1228	dma_async_device_unregister(&device->common);
1229	pci_pool_destroy(device->dma_pool);
1230	if (device->mask_reg)
1231		iounmap(device->mask_reg);
1232	if (device->dma_base)
1233		iounmap(device->dma_base);
1234	free_irq(pdev->irq, device);
1235	return;
1236}
1237
1238/**
1239 * intel_mid_dma_probe -	PCI Probe
1240 * @pdev: Controller PCI device structure
1241 * @id: pci device id structure
1242 *
1243 * Initialize the PCI device, map BARs, query driver data.
1244 * Call setup_dma to complete contoller and chan initilzation
1245 */
1246static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1247					const struct pci_device_id *id)
1248{
1249	struct middma_device *device;
1250	u32 base_addr, bar_size;
1251	struct intel_mid_dma_probe_info *info;
1252	int err;
1253
1254	pr_debug("MDMA: probe for %x\n", pdev->device);
1255	info = (void *)id->driver_data;
1256	pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1257				info->max_chan, info->ch_base,
1258				info->block_size, info->pimr_mask);
1259
1260	err = pci_enable_device(pdev);
1261	if (err)
1262		goto err_enable_device;
1263
1264	err = pci_request_regions(pdev, "intel_mid_dmac");
1265	if (err)
1266		goto err_request_regions;
1267
1268	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1269	if (err)
1270		goto err_set_dma_mask;
1271
1272	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1273	if (err)
1274		goto err_set_dma_mask;
1275
1276	device = kzalloc(sizeof(*device), GFP_KERNEL);
1277	if (!device) {
1278		pr_err("ERR_MDMA:kzalloc failed probe\n");
1279		err = -ENOMEM;
1280		goto err_kzalloc;
1281	}
1282	device->pdev = pci_dev_get(pdev);
1283
1284	base_addr = pci_resource_start(pdev, 0);
1285	bar_size  = pci_resource_len(pdev, 0);
1286	device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1287	if (!device->dma_base) {
1288		pr_err("ERR_MDMA:ioremap failed\n");
1289		err = -ENOMEM;
1290		goto err_ioremap;
1291	}
1292	pci_set_drvdata(pdev, device);
1293	pci_set_master(pdev);
1294	device->max_chan = info->max_chan;
1295	device->chan_base = info->ch_base;
1296	device->block_size = info->block_size;
1297	device->pimr_mask = info->pimr_mask;
1298
1299	err = mid_setup_dma(pdev);
1300	if (err)
1301		goto err_dma;
1302
1303	pm_runtime_put_noidle(&pdev->dev);
1304	pm_runtime_allow(&pdev->dev);
1305	return 0;
1306
1307err_dma:
1308	iounmap(device->dma_base);
1309err_ioremap:
1310	pci_dev_put(pdev);
1311	kfree(device);
1312err_kzalloc:
1313err_set_dma_mask:
1314	pci_release_regions(pdev);
1315	pci_disable_device(pdev);
1316err_request_regions:
1317err_enable_device:
1318	pr_err("ERR_MDMA:Probe failed %d\n", err);
1319	return err;
1320}
1321
1322/**
1323 * intel_mid_dma_remove -	PCI remove
1324 * @pdev: Controller PCI device structure
1325 *
1326 * Free up all resources and data
1327 * Call shutdown_dma to complete contoller and chan cleanup
1328 */
1329static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1330{
1331	struct middma_device *device = pci_get_drvdata(pdev);
1332
1333	pm_runtime_get_noresume(&pdev->dev);
1334	pm_runtime_forbid(&pdev->dev);
1335	middma_shutdown(pdev);
1336	pci_dev_put(pdev);
1337	kfree(device);
1338	pci_release_regions(pdev);
1339	pci_disable_device(pdev);
1340}
1341
1342/* Power Management */
1343/*
1344* dma_suspend - PCI suspend function
1345*
1346* @pci: PCI device structure
1347* @state: PM message
1348*
1349* This function is called by OS when a power event occurs
1350*/
1351static int dma_suspend(struct device *dev)
1352{
1353	struct pci_dev *pci = to_pci_dev(dev);
1354	int i;
1355	struct middma_device *device = pci_get_drvdata(pci);
1356	pr_debug("MDMA: dma_suspend called\n");
1357
1358	for (i = 0; i < device->max_chan; i++) {
1359		if (device->ch[i].in_use)
1360			return -EAGAIN;
1361	}
1362	dmac1_mask_periphral_intr(device);
1363	device->state = SUSPENDED;
1364	pci_save_state(pci);
1365	pci_disable_device(pci);
1366	pci_set_power_state(pci, PCI_D3hot);
1367	return 0;
1368}
1369
1370/**
1371* dma_resume - PCI resume function
1372*
1373* @pci:	PCI device structure
1374*
1375* This function is called by OS when a power event occurs
1376*/
1377int dma_resume(struct device *dev)
1378{
1379	struct pci_dev *pci = to_pci_dev(dev);
1380	int ret;
1381	struct middma_device *device = pci_get_drvdata(pci);
1382
1383	pr_debug("MDMA: dma_resume called\n");
1384	pci_set_power_state(pci, PCI_D0);
1385	pci_restore_state(pci);
1386	ret = pci_enable_device(pci);
1387	if (ret) {
1388		pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1389		return ret;
1390	}
1391	device->state = RUNNING;
1392	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1393	return 0;
1394}
1395
1396static int dma_runtime_suspend(struct device *dev)
1397{
1398	struct pci_dev *pci_dev = to_pci_dev(dev);
1399	struct middma_device *device = pci_get_drvdata(pci_dev);
1400
1401	device->state = SUSPENDED;
1402	return 0;
1403}
1404
1405static int dma_runtime_resume(struct device *dev)
1406{
1407	struct pci_dev *pci_dev = to_pci_dev(dev);
1408	struct middma_device *device = pci_get_drvdata(pci_dev);
1409
1410	device->state = RUNNING;
1411	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1412	return 0;
1413}
1414
1415static int dma_runtime_idle(struct device *dev)
1416{
1417	struct pci_dev *pdev = to_pci_dev(dev);
1418	struct middma_device *device = pci_get_drvdata(pdev);
1419	int i;
1420
1421	for (i = 0; i < device->max_chan; i++) {
1422		if (device->ch[i].in_use)
1423			return -EAGAIN;
1424	}
1425
1426	return pm_schedule_suspend(dev, 0);
1427}
1428
1429/******************************************************************************
1430* PCI stuff
1431*/
1432static struct pci_device_id intel_mid_dma_ids[] = {
1433	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),	INFO(2, 6, 4095, 0x200020)},
1434	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1435	{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1436	{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),	INFO(4, 0, 4095, 0x400040)},
1437	{ 0, }
1438};
1439MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1440
1441static const struct dev_pm_ops intel_mid_dma_pm = {
1442	.runtime_suspend = dma_runtime_suspend,
1443	.runtime_resume = dma_runtime_resume,
1444	.runtime_idle = dma_runtime_idle,
1445	.suspend = dma_suspend,
1446	.resume = dma_resume,
1447};
1448
1449static struct pci_driver intel_mid_dma_pci_driver = {
1450	.name		=	"Intel MID DMA",
1451	.id_table	=	intel_mid_dma_ids,
1452	.probe		=	intel_mid_dma_probe,
1453	.remove		=	__devexit_p(intel_mid_dma_remove),
1454#ifdef CONFIG_PM
1455	.driver = {
1456		.pm = &intel_mid_dma_pm,
1457	},
1458#endif
1459};
1460
1461static int __init intel_mid_dma_init(void)
1462{
1463	pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1464			INTEL_MID_DMA_DRIVER_VERSION);
1465	return pci_register_driver(&intel_mid_dma_pci_driver);
1466}
1467fs_initcall(intel_mid_dma_init);
1468
1469static void __exit intel_mid_dma_exit(void)
1470{
1471	pci_unregister_driver(&intel_mid_dma_pci_driver);
1472}
1473module_exit(intel_mid_dma_exit);
1474
1475MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1476MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1477MODULE_LICENSE("GPL v2");
1478MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1479