edac_mc.c revision 18dbc337af5d6efd30cb9291e74722c8ad134fd3
1/*
2 * edac_mc kernel module
3 * (C) 2005 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15
16#include <linux/config.h>
17#include <linux/module.h>
18#include <linux/proc_fs.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/smp.h>
22#include <linux/init.h>
23#include <linux/sysctl.h>
24#include <linux/highmem.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/spinlock.h>
29#include <linux/list.h>
30#include <linux/sysdev.h>
31#include <linux/ctype.h>
32#include <linux/kthread.h>
33
34#include <asm/uaccess.h>
35#include <asm/page.h>
36#include <asm/edac.h>
37
38#include "edac_mc.h"
39
40#define	EDAC_MC_VERSION	"Ver: 2.0.0 " __DATE__
41
42/* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
43 * presents to user space needs more thought, and is likely to change
44 * substantially.
45 */
46#define DISABLE_EDAC_SYSFS
47
48#ifdef CONFIG_EDAC_DEBUG
49/* Values of 0 to 4 will generate output */
50int edac_debug_level = 1;
51EXPORT_SYMBOL(edac_debug_level);
52#endif
53
54/* EDAC Controls, setable by module parameter, and sysfs */
55static int log_ue = 1;
56static int log_ce = 1;
57static int panic_on_ue;
58static int poll_msec = 1000;
59
60static int check_pci_parity = 0;	/* default YES check PCI parity */
61static int panic_on_pci_parity;		/* default no panic on PCI Parity */
62static atomic_t pci_parity_count = ATOMIC_INIT(0);
63
64/* lock to memory controller's control array */
65static DECLARE_MUTEX(mem_ctls_mutex);
66static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
67
68static struct task_struct *edac_thread;
69
70/* Structure of the whitelist and blacklist arrays */
71struct edac_pci_device_list {
72	unsigned int  vendor;		/* Vendor ID */
73	unsigned int  device;		/* Deviice ID */
74};
75
76
77#define MAX_LISTED_PCI_DEVICES		32
78
79/* List of PCI devices (vendor-id:device-id) that should be skipped */
80static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
81static int pci_blacklist_count;
82
83/* List of PCI devices (vendor-id:device-id) that should be scanned */
84static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
85static int pci_whitelist_count ;
86
87/*  START sysfs data and methods */
88
89#ifndef DISABLE_EDAC_SYSFS
90
91static const char *mem_types[] = {
92	[MEM_EMPTY] = "Empty",
93	[MEM_RESERVED] = "Reserved",
94	[MEM_UNKNOWN] = "Unknown",
95	[MEM_FPM] = "FPM",
96	[MEM_EDO] = "EDO",
97	[MEM_BEDO] = "BEDO",
98	[MEM_SDR] = "Unbuffered-SDR",
99	[MEM_RDR] = "Registered-SDR",
100	[MEM_DDR] = "Unbuffered-DDR",
101	[MEM_RDDR] = "Registered-DDR",
102	[MEM_RMBS] = "RMBS"
103};
104
105static const char *dev_types[] = {
106	[DEV_UNKNOWN] = "Unknown",
107	[DEV_X1] = "x1",
108	[DEV_X2] = "x2",
109	[DEV_X4] = "x4",
110	[DEV_X8] = "x8",
111	[DEV_X16] = "x16",
112	[DEV_X32] = "x32",
113	[DEV_X64] = "x64"
114};
115
116static const char *edac_caps[] = {
117	[EDAC_UNKNOWN] = "Unknown",
118	[EDAC_NONE] = "None",
119	[EDAC_RESERVED] = "Reserved",
120	[EDAC_PARITY] = "PARITY",
121	[EDAC_EC] = "EC",
122	[EDAC_SECDED] = "SECDED",
123	[EDAC_S2ECD2ED] = "S2ECD2ED",
124	[EDAC_S4ECD4ED] = "S4ECD4ED",
125	[EDAC_S8ECD8ED] = "S8ECD8ED",
126	[EDAC_S16ECD16ED] = "S16ECD16ED"
127};
128
129
130/* sysfs object: /sys/devices/system/edac */
131static struct sysdev_class edac_class = {
132	set_kset_name("edac"),
133};
134
135/* sysfs objects:
136 *	/sys/devices/system/edac/mc
137 *	/sys/devices/system/edac/pci
138 */
139static struct kobject edac_memctrl_kobj;
140static struct kobject edac_pci_kobj;
141
142/* We use these to wait for the reference counts on edac_memctrl_kobj and
143 * edac_pci_kobj to reach 0.
144 */
145static struct completion edac_memctrl_kobj_complete;
146static struct completion edac_pci_kobj_complete;
147
148/*
149 * /sys/devices/system/edac/mc;
150 * 	data structures and methods
151 */
152#if 0
153static ssize_t memctrl_string_show(void *ptr, char *buffer)
154{
155	char *value = (char*) ptr;
156	return sprintf(buffer, "%s\n", value);
157}
158#endif
159
160static ssize_t memctrl_int_show(void *ptr, char *buffer)
161{
162	int *value = (int*) ptr;
163	return sprintf(buffer, "%d\n", *value);
164}
165
166static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
167{
168	int *value = (int*) ptr;
169
170	if (isdigit(*buffer))
171		*value = simple_strtoul(buffer, NULL, 0);
172
173	return count;
174}
175
176struct memctrl_dev_attribute {
177	struct attribute	attr;
178	void	*value;
179	ssize_t (*show)(void *,char *);
180	ssize_t (*store)(void *, const char *, size_t);
181};
182
183/* Set of show/store abstract level functions for memory control object */
184static ssize_t
185memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer)
186{
187	struct memctrl_dev_attribute *memctrl_dev;
188	memctrl_dev = (struct memctrl_dev_attribute*)attr;
189
190	if (memctrl_dev->show)
191		return memctrl_dev->show(memctrl_dev->value, buffer);
192	return -EIO;
193}
194
195static ssize_t
196memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
197			const char *buffer, size_t count)
198{
199	struct memctrl_dev_attribute *memctrl_dev;
200	memctrl_dev = (struct memctrl_dev_attribute*)attr;
201
202	if (memctrl_dev->store)
203		return memctrl_dev->store(memctrl_dev->value, buffer, count);
204	return -EIO;
205}
206
207static struct sysfs_ops memctrlfs_ops = {
208	.show   = memctrl_dev_show,
209	.store  = memctrl_dev_store
210};
211
212#define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
213struct memctrl_dev_attribute attr_##_name = {			\
214	.attr = {.name = __stringify(_name), .mode = _mode },	\
215	.value  = &_name,					\
216	.show   = _show,					\
217	.store  = _store,					\
218};
219
220#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
221struct memctrl_dev_attribute attr_##_name = {			\
222	.attr = {.name = __stringify(_name), .mode = _mode },	\
223	.value  = _data,					\
224	.show   = _show,					\
225	.store  = _store,					\
226};
227
228/* cwrow<id> attribute f*/
229#if 0
230MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
231#endif
232
233/* csrow<id> control files */
234MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239
240/* Base Attributes of the memory ECC object */
241static struct memctrl_dev_attribute *memctrl_attr[] = {
242	&attr_panic_on_ue,
243	&attr_log_ue,
244	&attr_log_ce,
245	&attr_poll_msec,
246	NULL,
247};
248
249/* Main MC kobject release() function */
250static void edac_memctrl_master_release(struct kobject *kobj)
251{
252	debugf1("%s()\n", __func__);
253	complete(&edac_memctrl_kobj_complete);
254}
255
256static struct kobj_type ktype_memctrl = {
257	.release	= edac_memctrl_master_release,
258	.sysfs_ops	= &memctrlfs_ops,
259	.default_attrs	= (struct attribute **) memctrl_attr,
260};
261
262#endif  /* DISABLE_EDAC_SYSFS */
263
264/* Initialize the main sysfs entries for edac:
265 *   /sys/devices/system/edac
266 *
267 * and children
268 *
269 * Return:  0 SUCCESS
270 *         !0 FAILURE
271 */
272static int edac_sysfs_memctrl_setup(void)
273#ifdef DISABLE_EDAC_SYSFS
274{
275	return 0;
276}
277#else
278{
279	int err=0;
280
281	debugf1("%s()\n", __func__);
282
283	/* create the /sys/devices/system/edac directory */
284	err = sysdev_class_register(&edac_class);
285	if (!err) {
286		/* Init the MC's kobject */
287		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
288		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289		edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291		/* generate sysfs "..../edac/mc"   */
292		err = kobject_set_name(&edac_memctrl_kobj,"mc");
293		if (!err) {
294			/* FIXME: maybe new sysdev_create_subdir() */
295			err = kobject_register(&edac_memctrl_kobj);
296			if (err) {
297				debugf1("Failed to register '.../edac/mc'\n");
298			} else {
299				debugf1("Registered '.../edac/mc' kobject\n");
300			}
301		}
302	} else {
303		debugf1("%s() error=%d\n", __func__, err);
304	}
305
306	return err;
307}
308#endif  /* DISABLE_EDAC_SYSFS */
309
310/*
311 * MC teardown:
312 *	the '..../edac/mc' kobject followed by '..../edac' itself
313 */
314static void edac_sysfs_memctrl_teardown(void)
315{
316#ifndef DISABLE_EDAC_SYSFS
317	debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
319	/* Unregister the MC's kobject and wait for reference count to reach
320	 * 0.
321	 */
322	init_completion(&edac_memctrl_kobj_complete);
323	kobject_unregister(&edac_memctrl_kobj);
324	wait_for_completion(&edac_memctrl_kobj_complete);
325
326	/* Unregister the 'edac' object */
327	sysdev_class_unregister(&edac_class);
328#endif  /* DISABLE_EDAC_SYSFS */
329}
330
331#ifndef DISABLE_EDAC_SYSFS
332
333/*
334 * /sys/devices/system/edac/pci;
335 * 	data structures and methods
336 */
337
338struct list_control {
339	struct edac_pci_device_list *list;
340	int *count;
341};
342
343
344#if 0
345/* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
346static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
347{
348	struct list_control *listctl;
349	struct edac_pci_device_list *list;
350	char *p = buffer;
351	int len=0;
352	int i;
353
354	listctl = ptr;
355	list = listctl->list;
356
357	for (i = 0; i < *(listctl->count); i++, list++ ) {
358		if (len > 0)
359			len += snprintf(p + len, (PAGE_SIZE-len), ",");
360
361		len += snprintf(p + len,
362				(PAGE_SIZE-len),
363				"%x:%x",
364				list->vendor,list->device);
365	}
366
367	len += snprintf(p + len,(PAGE_SIZE-len), "\n");
368
369	return (ssize_t) len;
370}
371
372/**
373 *
374 * Scan string from **s to **e looking for one 'vendor:device' tuple
375 * where each field is a hex value
376 *
377 * return 0 if an entry is NOT found
378 * return 1 if an entry is found
379 *	fill in *vendor_id and *device_id with values found
380 *
381 * In both cases, make sure *s has been moved forward toward *e
382 */
383static int parse_one_device(const char **s,const char **e,
384	unsigned int *vendor_id, unsigned int *device_id)
385{
386	const char *runner, *p;
387
388	/* if null byte, we are done */
389	if (!**s) {
390		(*s)++;	/* keep *s moving */
391		return 0;
392	}
393
394	/* skip over newlines & whitespace */
395	if ((**s == '\n') || isspace(**s)) {
396		(*s)++;
397		return 0;
398	}
399
400	if (!isxdigit(**s)) {
401		(*s)++;
402		return 0;
403	}
404
405	/* parse vendor_id */
406	runner = *s;
407	while (runner < *e) {
408		/* scan for vendor:device delimiter */
409		if (*runner == ':') {
410			*vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
411			runner = p + 1;
412			break;
413		}
414		runner++;
415	}
416
417	if (!isxdigit(*runner)) {
418		*s = ++runner;
419		return 0;
420	}
421
422	/* parse device_id */
423	if (runner < *e) {
424		*device_id = simple_strtol((char*)runner, (char**)&p, 16);
425		runner = p;
426	}
427
428	*s = runner;
429
430	return 1;
431}
432
433static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
434					size_t count)
435{
436	struct list_control *listctl;
437	struct edac_pci_device_list *list;
438	unsigned int vendor_id, device_id;
439	const char *s, *e;
440	int *index;
441
442	s = (char*)buffer;
443	e = s + count;
444
445	listctl = ptr;
446	list = listctl->list;
447	index = listctl->count;
448
449	*index = 0;
450	while (*index < MAX_LISTED_PCI_DEVICES) {
451
452		if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
453			list[ *index ].vendor = vendor_id;
454			list[ *index ].device = device_id;
455			(*index)++;
456		}
457
458		/* check for all data consume */
459		if (s >= e)
460			break;
461	}
462
463	return count;
464}
465
466#endif
467static ssize_t edac_pci_int_show(void *ptr, char *buffer)
468{
469	int *value = ptr;
470	return sprintf(buffer,"%d\n",*value);
471}
472
473static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
474{
475	int *value = ptr;
476
477	if (isdigit(*buffer))
478		*value = simple_strtoul(buffer,NULL,0);
479
480	return count;
481}
482
483struct edac_pci_dev_attribute {
484	struct attribute	attr;
485	void	*value;
486	ssize_t (*show)(void *,char *);
487	ssize_t (*store)(void *, const char *,size_t);
488};
489
490/* Set of show/store abstract level functions for PCI Parity object */
491static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
492				char *buffer)
493{
494	struct edac_pci_dev_attribute *edac_pci_dev;
495	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
496
497	if (edac_pci_dev->show)
498		return edac_pci_dev->show(edac_pci_dev->value, buffer);
499	return -EIO;
500}
501
502static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr,
503				const char *buffer, size_t count)
504{
505	struct edac_pci_dev_attribute *edac_pci_dev;
506	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
507
508	if (edac_pci_dev->show)
509		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
510	return -EIO;
511}
512
513static struct sysfs_ops edac_pci_sysfs_ops = {
514	.show   = edac_pci_dev_show,
515	.store  = edac_pci_dev_store
516};
517
518
519#define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
520struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
521	.attr = {.name = __stringify(_name), .mode = _mode },	\
522	.value  = &_name,					\
523	.show   = _show,					\
524	.store  = _store,					\
525};
526
527#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
528struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
529	.attr = {.name = __stringify(_name), .mode = _mode },	\
530	.value  = _data,					\
531	.show   = _show,					\
532	.store  = _store,					\
533};
534
535#if 0
536static struct list_control pci_whitelist_control = {
537	.list = pci_whitelist,
538	.count = &pci_whitelist_count
539};
540
541static struct list_control pci_blacklist_control = {
542	.list = pci_blacklist,
543	.count = &pci_blacklist_count
544};
545
546/* whitelist attribute */
547EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
548	&pci_whitelist_control,
549	S_IRUGO|S_IWUSR,
550	edac_pci_list_string_show,
551	edac_pci_list_string_store);
552
553EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
554	&pci_blacklist_control,
555	S_IRUGO|S_IWUSR,
556	edac_pci_list_string_show,
557	edac_pci_list_string_store);
558#endif
559
560/* PCI Parity control files */
561EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
562EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
563EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL);
564
565/* Base Attributes of the memory ECC object */
566static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567	&edac_pci_attr_check_pci_parity,
568	&edac_pci_attr_panic_on_pci_parity,
569	&edac_pci_attr_pci_parity_count,
570	NULL,
571};
572
573/* No memory to release */
574static void edac_pci_release(struct kobject *kobj)
575{
576	debugf1("%s()\n", __func__);
577	complete(&edac_pci_kobj_complete);
578}
579
580static struct kobj_type ktype_edac_pci = {
581	.release	= edac_pci_release,
582	.sysfs_ops	= &edac_pci_sysfs_ops,
583	.default_attrs	= (struct attribute **) edac_pci_attr,
584};
585
586#endif  /* DISABLE_EDAC_SYSFS */
587
588/**
589 * edac_sysfs_pci_setup()
590 *
591 */
592static int edac_sysfs_pci_setup(void)
593#ifdef DISABLE_EDAC_SYSFS
594{
595	return 0;
596}
597#else
598{
599	int err;
600
601	debugf1("%s()\n", __func__);
602
603	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
604	edac_pci_kobj.parent = &edac_class.kset.kobj;
605	edac_pci_kobj.ktype = &ktype_edac_pci;
606
607	err = kobject_set_name(&edac_pci_kobj, "pci");
608	if (!err) {
609		/* Instanstiate the csrow object */
610		/* FIXME: maybe new sysdev_create_subdir() */
611		err = kobject_register(&edac_pci_kobj);
612		if (err)
613			debugf1("Failed to register '.../edac/pci'\n");
614		else
615			debugf1("Registered '.../edac/pci' kobject\n");
616	}
617	return err;
618}
619#endif  /* DISABLE_EDAC_SYSFS */
620
621static void edac_sysfs_pci_teardown(void)
622{
623#ifndef DISABLE_EDAC_SYSFS
624	debugf0("%s()\n", __func__);
625	init_completion(&edac_pci_kobj_complete);
626	kobject_unregister(&edac_pci_kobj);
627	wait_for_completion(&edac_pci_kobj_complete);
628#endif
629}
630
631#ifndef DISABLE_EDAC_SYSFS
632
633/* EDAC sysfs CSROW data structures and methods */
634
635/* Set of more detailed csrow<id> attribute show/store functions */
636static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
637{
638	ssize_t size = 0;
639
640	if (csrow->nr_channels > 0) {
641		size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
642			csrow->channels[0].label);
643	}
644	return size;
645}
646
647static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
648{
649	ssize_t size = 0;
650
651	if (csrow->nr_channels > 0) {
652		size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
653			csrow->channels[1].label);
654	}
655	return size;
656}
657
658static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
659			const char *data, size_t size)
660{
661	ssize_t max_size = 0;
662
663	if (csrow->nr_channels > 0) {
664		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
665		strncpy(csrow->channels[0].label, data, max_size);
666		csrow->channels[0].label[max_size] = '\0';
667	}
668	return size;
669}
670
671static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
672			const char *data, size_t size)
673{
674	ssize_t max_size = 0;
675
676	if (csrow->nr_channels > 1) {
677		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
678		strncpy(csrow->channels[1].label, data, max_size);
679		csrow->channels[1].label[max_size] = '\0';
680	}
681	return max_size;
682}
683
684static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685{
686	return sprintf(data,"%u\n", csrow->ue_count);
687}
688
689static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690{
691	return sprintf(data,"%u\n", csrow->ce_count);
692}
693
694static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695{
696	ssize_t size = 0;
697
698	if (csrow->nr_channels > 0) {
699		size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700	}
701	return size;
702}
703
704static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
705{
706	ssize_t size = 0;
707
708	if (csrow->nr_channels > 1) {
709		size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
710	}
711	return size;
712}
713
714static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
715{
716	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
717}
718
719static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
720{
721	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
722}
723
724static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
725{
726	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
727}
728
729static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
730{
731	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
732}
733
734struct csrowdev_attribute {
735	struct attribute	attr;
736	ssize_t (*show)(struct csrow_info *,char *);
737	ssize_t (*store)(struct csrow_info *, const char *,size_t);
738};
739
740#define to_csrow(k) container_of(k, struct csrow_info, kobj)
741#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
742
743/* Set of show/store higher level functions for csrow objects */
744static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
745				char *buffer)
746{
747	struct csrow_info *csrow = to_csrow(kobj);
748	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
749
750	if (csrowdev_attr->show)
751		return csrowdev_attr->show(csrow, buffer);
752	return -EIO;
753}
754
755static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
756				const char *buffer, size_t count)
757{
758	struct csrow_info *csrow = to_csrow(kobj);
759	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
760
761	if (csrowdev_attr->store)
762		return csrowdev_attr->store(csrow, buffer, count);
763	return -EIO;
764}
765
766static struct sysfs_ops csrowfs_ops = {
767	.show   = csrowdev_show,
768	.store  = csrowdev_store
769};
770
771#define CSROWDEV_ATTR(_name,_mode,_show,_store)			\
772struct csrowdev_attribute attr_##_name = {			\
773	.attr = {.name = __stringify(_name), .mode = _mode },	\
774	.show   = _show,					\
775	.store  = _store,					\
776};
777
778/* cwrow<id>/attribute files */
779CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
780CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
781CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
782CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
783CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
784CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
785CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
786CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
787
788/* control/attribute files */
789CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
790		csrow_ch0_dimm_label_show,
791		csrow_ch0_dimm_label_store);
792CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
793		csrow_ch1_dimm_label_show,
794		csrow_ch1_dimm_label_store);
795
796
797/* Attributes of the CSROW<id> object */
798static struct csrowdev_attribute *csrow_attr[] = {
799	&attr_dev_type,
800	&attr_mem_type,
801	&attr_edac_mode,
802	&attr_size_mb,
803	&attr_ue_count,
804	&attr_ce_count,
805	&attr_ch0_ce_count,
806	&attr_ch1_ce_count,
807	&attr_ch0_dimm_label,
808	&attr_ch1_dimm_label,
809	NULL,
810};
811
812
813/* No memory to release */
814static void edac_csrow_instance_release(struct kobject *kobj)
815{
816	struct csrow_info *cs;
817
818	debugf1("%s()\n", __func__);
819	cs = container_of(kobj, struct csrow_info, kobj);
820	complete(&cs->kobj_complete);
821}
822
823static struct kobj_type ktype_csrow = {
824	.release	= edac_csrow_instance_release,
825	.sysfs_ops	= &csrowfs_ops,
826	.default_attrs	= (struct attribute **) csrow_attr,
827};
828
829/* Create a CSROW object under specifed edac_mc_device */
830static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
831				struct csrow_info *csrow, int index )
832{
833	int err = 0;
834
835	debugf0("%s()\n", __func__);
836
837	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
838
839	/* generate ..../edac/mc/mc<id>/csrow<index>   */
840
841	csrow->kobj.parent = edac_mci_kobj;
842	csrow->kobj.ktype = &ktype_csrow;
843
844	/* name this instance of csrow<id> */
845	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
846	if (!err) {
847		/* Instanstiate the csrow object */
848		err = kobject_register(&csrow->kobj);
849		if (err)
850			debugf0("Failed to register CSROW%d\n",index);
851		else
852			debugf0("Registered CSROW%d\n",index);
853	}
854
855	return err;
856}
857
858/* sysfs data structures and methods for the MCI kobjects */
859
860static ssize_t mci_reset_counters_store(struct mem_ctl_info  *mci,
861					const char *data, size_t count )
862{
863	int row, chan;
864
865	mci->ue_noinfo_count = 0;
866	mci->ce_noinfo_count = 0;
867	mci->ue_count = 0;
868	mci->ce_count = 0;
869	for (row = 0; row < mci->nr_csrows; row++) {
870		struct csrow_info *ri = &mci->csrows[row];
871
872		ri->ue_count = 0;
873		ri->ce_count = 0;
874		for (chan = 0; chan < ri->nr_channels; chan++)
875			ri->channels[chan].ce_count = 0;
876	}
877	mci->start_time = jiffies;
878
879	return count;
880}
881
882static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
883{
884	return sprintf(data,"%d\n", mci->ue_count);
885}
886
887static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
888{
889	return sprintf(data,"%d\n", mci->ce_count);
890}
891
892static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
893{
894	return sprintf(data,"%d\n", mci->ce_noinfo_count);
895}
896
897static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
898{
899	return sprintf(data,"%d\n", mci->ue_noinfo_count);
900}
901
902static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
903{
904	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
905}
906
907static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
908{
909	return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
910}
911
912static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
913{
914	return sprintf(data,"%s\n", mci->ctl_name);
915}
916
917static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
918{
919	char *p = buf;
920	int bit_idx;
921
922	for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
923		if ((edac_cap >> bit_idx) & 0x1)
924			p += sprintf(p, "%s ", edac_caps[bit_idx]);
925	}
926
927	return p - buf;
928}
929
930static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
931{
932	char *p = data;
933
934	p += mci_output_edac_cap(p,mci->edac_ctl_cap);
935	p += sprintf(p, "\n");
936
937	return p - data;
938}
939
940static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
941						char *data)
942{
943	char *p = data;
944
945	p += mci_output_edac_cap(p,mci->edac_cap);
946	p += sprintf(p, "\n");
947
948	return p - data;
949}
950
951static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
952{
953	char *p = buf;
954	int bit_idx;
955
956	for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
957		if ((mtype_cap >> bit_idx) & 0x1)
958			p += sprintf(p, "%s ", mem_types[bit_idx]);
959	}
960
961	return p - buf;
962}
963
964static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data)
965{
966	char *p = data;
967
968	p += mci_output_mtype_cap(p,mci->mtype_cap);
969	p += sprintf(p, "\n");
970
971	return p - data;
972}
973
974static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
975{
976	int total_pages, csrow_idx;
977
978	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
979			csrow_idx++) {
980		struct csrow_info *csrow = &mci->csrows[csrow_idx];
981
982		if (!csrow->nr_pages)
983			continue;
984		total_pages += csrow->nr_pages;
985	}
986
987	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
988}
989
990struct mcidev_attribute {
991	struct attribute	attr;
992	ssize_t (*show)(struct mem_ctl_info *,char *);
993	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
994};
995
996#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
997#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
998
999static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1000			char *buffer)
1001{
1002	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1003	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1004
1005	if (mcidev_attr->show)
1006		return mcidev_attr->show(mem_ctl_info, buffer);
1007	return -EIO;
1008}
1009
1010static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1011				const char *buffer, size_t count)
1012{
1013	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1014	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1015
1016	if (mcidev_attr->store)
1017		return mcidev_attr->store(mem_ctl_info, buffer, count);
1018	return -EIO;
1019}
1020
1021static struct sysfs_ops mci_ops = {
1022	.show   = mcidev_show,
1023	.store  = mcidev_store
1024};
1025
1026#define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1027struct mcidev_attribute mci_attr_##_name = {			\
1028	.attr = {.name = __stringify(_name), .mode = _mode },	\
1029	.show   = _show,					\
1030	.store  = _store,					\
1031};
1032
1033/* Control file */
1034MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1035
1036/* Attribute files */
1037MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1038MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1039MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1040MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1041MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1042MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1043MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1044MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1045MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1046MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1047	mci_edac_current_capability_show,NULL);
1048MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1049	mci_supported_mem_type_show,NULL);
1050
1051
1052static struct mcidev_attribute *mci_attr[] = {
1053	&mci_attr_reset_counters,
1054	&mci_attr_module_name,
1055	&mci_attr_mc_name,
1056	&mci_attr_edac_capability,
1057	&mci_attr_edac_current_capability,
1058	&mci_attr_supported_mem_type,
1059	&mci_attr_size_mb,
1060	&mci_attr_seconds_since_reset,
1061	&mci_attr_ue_noinfo_count,
1062	&mci_attr_ce_noinfo_count,
1063	&mci_attr_ue_count,
1064	&mci_attr_ce_count,
1065	NULL
1066};
1067
1068
1069/*
1070 * Release of a MC controlling instance
1071 */
1072static void edac_mci_instance_release(struct kobject *kobj)
1073{
1074	struct mem_ctl_info *mci;
1075
1076	mci = to_mci(kobj);
1077	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1078	complete(&mci->kobj_complete);
1079}
1080
1081static struct kobj_type ktype_mci = {
1082	.release	= edac_mci_instance_release,
1083	.sysfs_ops	= &mci_ops,
1084	.default_attrs	= (struct attribute **) mci_attr,
1085};
1086
1087#endif  /* DISABLE_EDAC_SYSFS */
1088
1089#define EDAC_DEVICE_SYMLINK	"device"
1090
1091/*
1092 * Create a new Memory Controller kobject instance,
1093 *	mc<id> under the 'mc' directory
1094 *
1095 * Return:
1096 *	0	Success
1097 *	!0	Failure
1098 */
1099static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1100#ifdef DISABLE_EDAC_SYSFS
1101{
1102	return 0;
1103}
1104#else
1105{
1106	int i;
1107	int err;
1108	struct csrow_info *csrow;
1109	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1110
1111	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112
1113	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1114
1115	/* set the name of the mc<id> object */
1116	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1117	if (err)
1118		return err;
1119
1120	/* link to our parent the '..../edac/mc' object */
1121	edac_mci_kobj->parent = &edac_memctrl_kobj;
1122	edac_mci_kobj->ktype = &ktype_mci;
1123
1124	/* register the mc<id> kobject */
1125	err = kobject_register(edac_mci_kobj);
1126	if (err)
1127		return err;
1128
1129	/* create a symlink for the device */
1130	err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1131				EDAC_DEVICE_SYMLINK);
1132	if (err)
1133		goto fail0;
1134
1135	/* Make directories for each CSROW object
1136	 * under the mc<id> kobject
1137	 */
1138	for (i = 0; i < mci->nr_csrows; i++) {
1139
1140		csrow = &mci->csrows[i];
1141
1142		/* Only expose populated CSROWs */
1143		if (csrow->nr_pages > 0) {
1144			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1145			if (err)
1146				goto fail1;
1147		}
1148	}
1149
1150	return 0;
1151
1152
1153	/* CSROW error: backout what has already been registered,  */
1154fail1:
1155	for ( i--; i >= 0; i--) {
1156		if (csrow->nr_pages > 0) {
1157			init_completion(&csrow->kobj_complete);
1158			kobject_unregister(&mci->csrows[i].kobj);
1159			wait_for_completion(&csrow->kobj_complete);
1160		}
1161	}
1162
1163fail0:
1164	init_completion(&mci->kobj_complete);
1165	kobject_unregister(edac_mci_kobj);
1166	wait_for_completion(&mci->kobj_complete);
1167
1168	return err;
1169}
1170#endif  /* DISABLE_EDAC_SYSFS */
1171
1172/*
1173 * remove a Memory Controller instance
1174 */
1175static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1176{
1177#ifndef DISABLE_EDAC_SYSFS
1178	int i;
1179
1180	debugf0("%s()\n", __func__);
1181
1182	/* remove all csrow kobjects */
1183	for (i = 0; i < mci->nr_csrows; i++) {
1184		if (mci->csrows[i].nr_pages > 0) {
1185			init_completion(&mci->csrows[i].kobj_complete);
1186			kobject_unregister(&mci->csrows[i].kobj);
1187			wait_for_completion(&mci->csrows[i].kobj_complete);
1188		}
1189	}
1190
1191	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1192	init_completion(&mci->kobj_complete);
1193	kobject_unregister(&mci->edac_mci_kobj);
1194	wait_for_completion(&mci->kobj_complete);
1195#endif  /* DISABLE_EDAC_SYSFS */
1196}
1197
1198/* END OF sysfs data and methods */
1199
1200#ifdef CONFIG_EDAC_DEBUG
1201
1202EXPORT_SYMBOL(edac_mc_dump_channel);
1203
1204void edac_mc_dump_channel(struct channel_info *chan)
1205{
1206	debugf4("\tchannel = %p\n", chan);
1207	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1208	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1209	debugf4("\tchannel->label = '%s'\n", chan->label);
1210	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1211}
1212
1213
1214EXPORT_SYMBOL(edac_mc_dump_csrow);
1215
1216void edac_mc_dump_csrow(struct csrow_info *csrow)
1217{
1218	debugf4("\tcsrow = %p\n", csrow);
1219	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1220	debugf4("\tcsrow->first_page = 0x%lx\n",
1221		csrow->first_page);
1222	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1223	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1224	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1225	debugf4("\tcsrow->nr_channels = %d\n",
1226		csrow->nr_channels);
1227	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1228	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1229}
1230
1231
1232EXPORT_SYMBOL(edac_mc_dump_mci);
1233
1234void edac_mc_dump_mci(struct mem_ctl_info *mci)
1235{
1236	debugf3("\tmci = %p\n", mci);
1237	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1238	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1239	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1240	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1241	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1242		mci->nr_csrows, mci->csrows);
1243	debugf3("\tpdev = %p\n", mci->pdev);
1244	debugf3("\tmod_name:ctl_name = %s:%s\n",
1245		mci->mod_name, mci->ctl_name);
1246	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1247}
1248
1249
1250#endif				/* CONFIG_EDAC_DEBUG */
1251
1252/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1253 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1254 * compiler would provide for X and return the aligned result.
1255 *
1256 * If 'size' is a constant, the compiler will optimize this whole function
1257 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1258 */
1259static inline char * align_ptr (void *ptr, unsigned size)
1260{
1261	unsigned align, r;
1262
1263	/* Here we assume that the alignment of a "long long" is the most
1264	 * stringent alignment that the compiler will ever provide by default.
1265	 * As far as I know, this is a reasonable assumption.
1266	 */
1267	if (size > sizeof(long))
1268		align = sizeof(long long);
1269	else if (size > sizeof(int))
1270		align = sizeof(long);
1271	else if (size > sizeof(short))
1272		align = sizeof(int);
1273	else if (size > sizeof(char))
1274		align = sizeof(short);
1275	else
1276		return (char *) ptr;
1277
1278	r = size % align;
1279
1280	if (r == 0)
1281		return (char *) ptr;
1282
1283	return (char *) (((unsigned long) ptr) + align - r);
1284}
1285
1286
1287EXPORT_SYMBOL(edac_mc_alloc);
1288
1289/**
1290 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1291 * @size_pvt:	size of private storage needed
1292 * @nr_csrows:	Number of CWROWS needed for this MC
1293 * @nr_chans:	Number of channels for the MC
1294 *
1295 * Everything is kmalloc'ed as one big chunk - more efficient.
1296 * Only can be used if all structures have the same lifetime - otherwise
1297 * you have to allocate and initialize your own structures.
1298 *
1299 * Use edac_mc_free() to free mc structures allocated by this function.
1300 *
1301 * Returns:
1302 *	NULL allocation failed
1303 *	struct mem_ctl_info pointer
1304 */
1305struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1306					unsigned nr_chans)
1307{
1308	struct mem_ctl_info *mci;
1309	struct csrow_info *csi, *csrow;
1310	struct channel_info *chi, *chp, *chan;
1311	void *pvt;
1312	unsigned size;
1313	int row, chn;
1314
1315	/* Figure out the offsets of the various items from the start of an mc
1316	 * structure.  We want the alignment of each item to be at least as
1317	 * stringent as what the compiler would provide if we could simply
1318	 * hardcode everything into a single struct.
1319	 */
1320	mci = (struct mem_ctl_info *) 0;
1321	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1322	chi = (struct channel_info *)
1323			align_ptr(&csi[nr_csrows], sizeof(*chi));
1324	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1325	size = ((unsigned long) pvt) + sz_pvt;
1326
1327	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1328		return NULL;
1329
1330	/* Adjust pointers so they point within the memory we just allocated
1331	 * rather than an imaginary chunk of memory located at address 0.
1332	 */
1333	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1334	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1335	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1336
1337	memset(mci, 0, size);	/* clear all fields */
1338
1339	mci->csrows = csi;
1340	mci->pvt_info = pvt;
1341	mci->nr_csrows = nr_csrows;
1342
1343	for (row = 0; row < nr_csrows; row++) {
1344		csrow = &csi[row];
1345		csrow->csrow_idx = row;
1346		csrow->mci = mci;
1347		csrow->nr_channels = nr_chans;
1348		chp = &chi[row * nr_chans];
1349		csrow->channels = chp;
1350
1351		for (chn = 0; chn < nr_chans; chn++) {
1352			chan = &chp[chn];
1353			chan->chan_idx = chn;
1354			chan->csrow = csrow;
1355		}
1356	}
1357
1358	return mci;
1359}
1360
1361
1362EXPORT_SYMBOL(edac_mc_free);
1363
1364/**
1365 * edac_mc_free:  Free a previously allocated 'mci' structure
1366 * @mci: pointer to a struct mem_ctl_info structure
1367 */
1368void edac_mc_free(struct mem_ctl_info *mci)
1369{
1370	kfree(mci);
1371}
1372
1373static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
1374{
1375	struct mem_ctl_info *mci;
1376	struct list_head *item;
1377
1378	debugf3("%s()\n", __func__);
1379
1380	list_for_each(item, &mc_devices) {
1381		mci = list_entry(item, struct mem_ctl_info, link);
1382
1383		if (mci->pdev == pdev)
1384			return mci;
1385	}
1386
1387	return NULL;
1388}
1389
1390static int add_mc_to_global_list (struct mem_ctl_info *mci)
1391{
1392	struct list_head *item, *insert_before;
1393	struct mem_ctl_info *p;
1394	int i;
1395
1396	if (list_empty(&mc_devices)) {
1397		mci->mc_idx = 0;
1398		insert_before = &mc_devices;
1399	} else {
1400		if (find_mci_by_pdev(mci->pdev)) {
1401			edac_printk(KERN_WARNING, EDAC_MC,
1402				"%s (%s) %s %s already assigned %d\n",
1403				mci->pdev->dev.bus_id,
1404				pci_name(mci->pdev), mci->mod_name,
1405				mci->ctl_name, mci->mc_idx);
1406			return 1;
1407		}
1408
1409		insert_before = NULL;
1410		i = 0;
1411
1412		list_for_each(item, &mc_devices) {
1413			p = list_entry(item, struct mem_ctl_info, link);
1414
1415			if (p->mc_idx != i) {
1416				insert_before = item;
1417				break;
1418			}
1419
1420			i++;
1421		}
1422
1423		mci->mc_idx = i;
1424
1425		if (insert_before == NULL)
1426			insert_before = &mc_devices;
1427	}
1428
1429	list_add_tail_rcu(&mci->link, insert_before);
1430	return 0;
1431}
1432
1433
1434static void complete_mc_list_del (struct rcu_head *head)
1435{
1436	struct mem_ctl_info *mci;
1437
1438	mci = container_of(head, struct mem_ctl_info, rcu);
1439	INIT_LIST_HEAD(&mci->link);
1440	complete(&mci->complete);
1441}
1442
1443
1444static void del_mc_from_global_list (struct mem_ctl_info *mci)
1445{
1446	list_del_rcu(&mci->link);
1447	init_completion(&mci->complete);
1448	call_rcu(&mci->rcu, complete_mc_list_del);
1449	wait_for_completion(&mci->complete);
1450}
1451
1452
1453EXPORT_SYMBOL(edac_mc_add_mc);
1454
1455/**
1456 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1457 *                 create sysfs entries associated with mci structure
1458 * @mci: pointer to the mci structure to be added to the list
1459 *
1460 * Return:
1461 *	0	Success
1462 *	!0	Failure
1463 */
1464
1465/* FIXME - should a warning be printed if no error detection? correction? */
1466int edac_mc_add_mc(struct mem_ctl_info *mci)
1467{
1468	debugf0("%s()\n", __func__);
1469#ifdef CONFIG_EDAC_DEBUG
1470	if (edac_debug_level >= 3)
1471		edac_mc_dump_mci(mci);
1472	if (edac_debug_level >= 4) {
1473		int i;
1474
1475		for (i = 0; i < mci->nr_csrows; i++) {
1476			int j;
1477			edac_mc_dump_csrow(&mci->csrows[i]);
1478			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1479				edac_mc_dump_channel(&mci->csrows[i].
1480							  channels[j]);
1481		}
1482	}
1483#endif
1484	down(&mem_ctls_mutex);
1485
1486	if (add_mc_to_global_list(mci))
1487		goto fail0;
1488
1489	/* set load time so that error rate can be tracked */
1490	mci->start_time = jiffies;
1491
1492        if (edac_create_sysfs_mci_device(mci)) {
1493                edac_mc_printk(mci, KERN_WARNING,
1494			"failed to create sysfs device\n");
1495                goto fail1;
1496        }
1497
1498	/* Report action taken */
1499	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1500		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1501
1502	up(&mem_ctls_mutex);
1503	return 0;
1504
1505fail1:
1506	del_mc_from_global_list(mci);
1507
1508fail0:
1509	up(&mem_ctls_mutex);
1510	return 1;
1511}
1512
1513
1514EXPORT_SYMBOL(edac_mc_del_mc);
1515
1516/**
1517 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1518 *                 remove mci structure from global list
1519 * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
1520 *
1521 * Return pointer to removed mci structure, or NULL if device not found.
1522 */
1523struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
1524{
1525	struct mem_ctl_info *mci;
1526
1527	debugf0("MC: %s()\n", __func__);
1528	down(&mem_ctls_mutex);
1529
1530	if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1531		up(&mem_ctls_mutex);
1532		return NULL;
1533	}
1534
1535	edac_remove_sysfs_mci_device(mci);
1536	del_mc_from_global_list(mci);
1537	up(&mem_ctls_mutex);
1538	edac_printk(KERN_INFO, EDAC_MC,
1539		"Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1540		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1541	return mci;
1542}
1543
1544
1545EXPORT_SYMBOL(edac_mc_scrub_block);
1546
1547void edac_mc_scrub_block(unsigned long page, unsigned long offset,
1548			      u32 size)
1549{
1550	struct page *pg;
1551	void *virt_addr;
1552	unsigned long flags = 0;
1553
1554	debugf3("%s()\n", __func__);
1555
1556	/* ECC error page was not in our memory. Ignore it. */
1557	if(!pfn_valid(page))
1558		return;
1559
1560	/* Find the actual page structure then map it and fix */
1561	pg = pfn_to_page(page);
1562
1563	if (PageHighMem(pg))
1564		local_irq_save(flags);
1565
1566	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1567
1568	/* Perform architecture specific atomic scrub operation */
1569	atomic_scrub(virt_addr + offset, size);
1570
1571	/* Unmap and complete */
1572	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1573
1574	if (PageHighMem(pg))
1575		local_irq_restore(flags);
1576}
1577
1578
1579/* FIXME - should return -1 */
1580EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1581
1582int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
1583				    unsigned long page)
1584{
1585	struct csrow_info *csrows = mci->csrows;
1586	int row, i;
1587
1588	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1589	row = -1;
1590
1591	for (i = 0; i < mci->nr_csrows; i++) {
1592		struct csrow_info *csrow = &csrows[i];
1593
1594		if (csrow->nr_pages == 0)
1595			continue;
1596
1597		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1598			"mask(0x%lx)\n", mci->mc_idx, __func__,
1599			csrow->first_page, page, csrow->last_page,
1600			csrow->page_mask);
1601
1602		if ((page >= csrow->first_page) &&
1603		    (page <= csrow->last_page) &&
1604		    ((page & csrow->page_mask) ==
1605		     (csrow->first_page & csrow->page_mask))) {
1606			row = i;
1607			break;
1608		}
1609	}
1610
1611	if (row == -1)
1612		edac_mc_printk(mci, KERN_ERR,
1613			"could not look up page error address %lx\n",
1614			(unsigned long) page);
1615
1616	return row;
1617}
1618
1619
1620EXPORT_SYMBOL(edac_mc_handle_ce);
1621
1622/* FIXME - setable log (warning/emerg) levels */
1623/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1624void edac_mc_handle_ce(struct mem_ctl_info *mci,
1625			    unsigned long page_frame_number,
1626			    unsigned long offset_in_page,
1627			    unsigned long syndrome, int row, int channel,
1628			    const char *msg)
1629{
1630	unsigned long remapped_page;
1631
1632	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1633
1634	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1635	if (row >= mci->nr_csrows || row < 0) {
1636		/* something is wrong */
1637		edac_mc_printk(mci, KERN_ERR,
1638			"INTERNAL ERROR: row out of range "
1639			"(%d >= %d)\n", row, mci->nr_csrows);
1640		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1641		return;
1642	}
1643	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1644		/* something is wrong */
1645		edac_mc_printk(mci, KERN_ERR,
1646			"INTERNAL ERROR: channel out of range "
1647			"(%d >= %d)\n", channel,
1648			mci->csrows[row].nr_channels);
1649		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1650		return;
1651	}
1652
1653	if (log_ce)
1654		/* FIXME - put in DIMM location */
1655		edac_mc_printk(mci, KERN_WARNING,
1656			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1657			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1658			page_frame_number, offset_in_page,
1659			mci->csrows[row].grain, syndrome, row, channel,
1660			mci->csrows[row].channels[channel].label, msg);
1661
1662	mci->ce_count++;
1663	mci->csrows[row].ce_count++;
1664	mci->csrows[row].channels[channel].ce_count++;
1665
1666	if (mci->scrub_mode & SCRUB_SW_SRC) {
1667		/*
1668		 * Some MC's can remap memory so that it is still available
1669		 * at a different address when PCI devices map into memory.
1670		 * MC's that can't do this lose the memory where PCI devices
1671		 * are mapped.  This mapping is MC dependant and so we call
1672		 * back into the MC driver for it to map the MC page to
1673		 * a physical (CPU) page which can then be mapped to a virtual
1674		 * page - which can then be scrubbed.
1675		 */
1676		remapped_page = mci->ctl_page_to_phys ?
1677		    mci->ctl_page_to_phys(mci, page_frame_number) :
1678		    page_frame_number;
1679
1680		edac_mc_scrub_block(remapped_page, offset_in_page,
1681					 mci->csrows[row].grain);
1682	}
1683}
1684
1685
1686EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1687
1688void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
1689				    const char *msg)
1690{
1691	if (log_ce)
1692		edac_mc_printk(mci, KERN_WARNING,
1693			"CE - no information available: %s\n", msg);
1694	mci->ce_noinfo_count++;
1695	mci->ce_count++;
1696}
1697
1698
1699EXPORT_SYMBOL(edac_mc_handle_ue);
1700
1701void edac_mc_handle_ue(struct mem_ctl_info *mci,
1702			    unsigned long page_frame_number,
1703			    unsigned long offset_in_page, int row,
1704			    const char *msg)
1705{
1706	int len = EDAC_MC_LABEL_LEN * 4;
1707	char labels[len + 1];
1708	char *pos = labels;
1709	int chan;
1710	int chars;
1711
1712	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1713
1714	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1715	if (row >= mci->nr_csrows || row < 0) {
1716		/* something is wrong */
1717		edac_mc_printk(mci, KERN_ERR,
1718			"INTERNAL ERROR: row out of range "
1719			"(%d >= %d)\n", row, mci->nr_csrows);
1720		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1721		return;
1722	}
1723
1724	chars = snprintf(pos, len + 1, "%s",
1725			 mci->csrows[row].channels[0].label);
1726	len -= chars;
1727	pos += chars;
1728	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1729	     chan++) {
1730		chars = snprintf(pos, len + 1, ":%s",
1731				 mci->csrows[row].channels[chan].label);
1732		len -= chars;
1733		pos += chars;
1734	}
1735
1736	if (log_ue)
1737		edac_mc_printk(mci, KERN_EMERG,
1738			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1739			"labels \"%s\": %s\n", page_frame_number,
1740			offset_in_page, mci->csrows[row].grain, row, labels,
1741			msg);
1742
1743	if (panic_on_ue)
1744		panic
1745		    ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d,"
1746		     " labels \"%s\": %s\n", mci->mc_idx,
1747		     page_frame_number, offset_in_page,
1748		     mci->csrows[row].grain, row, labels, msg);
1749
1750	mci->ue_count++;
1751	mci->csrows[row].ue_count++;
1752}
1753
1754
1755EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1756
1757void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
1758				    const char *msg)
1759{
1760	if (panic_on_ue)
1761		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1762
1763	if (log_ue)
1764		edac_mc_printk(mci, KERN_WARNING,
1765			"UE - no information available: %s\n", msg);
1766	mci->ue_noinfo_count++;
1767	mci->ue_count++;
1768}
1769
1770
1771#ifdef CONFIG_PCI
1772
1773static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1774{
1775	int where;
1776	u16 status;
1777
1778	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1779	pci_read_config_word(dev, where, &status);
1780
1781	/* If we get back 0xFFFF then we must suspect that the card has been pulled but
1782	   the Linux PCI layer has not yet finished cleaning up. We don't want to report
1783	   on such devices */
1784
1785	if (status == 0xFFFF) {
1786		u32 sanity;
1787		pci_read_config_dword(dev, 0, &sanity);
1788		if (sanity == 0xFFFFFFFF)
1789			return 0;
1790	}
1791	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1792		  PCI_STATUS_PARITY;
1793
1794	if (status)
1795		/* reset only the bits we are interested in */
1796		pci_write_config_word(dev, where, status);
1797
1798	return status;
1799}
1800
1801typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1802
1803/* Clear any PCI parity errors logged by this device. */
1804static void edac_pci_dev_parity_clear( struct pci_dev *dev )
1805{
1806	u8 header_type;
1807
1808	get_pci_parity_status(dev, 0);
1809
1810	/* read the device TYPE, looking for bridges */
1811	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1812
1813	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1814		get_pci_parity_status(dev, 1);
1815}
1816
1817/*
1818 *  PCI Parity polling
1819 *
1820 */
1821static void edac_pci_dev_parity_test(struct pci_dev *dev)
1822{
1823	u16 status;
1824	u8  header_type;
1825
1826	/* read the STATUS register on this device
1827	 */
1828	status = get_pci_parity_status(dev, 0);
1829
1830	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1831
1832	/* check the status reg for errors */
1833	if (status) {
1834		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1835			edac_printk(KERN_CRIT, EDAC_PCI,
1836				"Signaled System Error on %s\n",
1837				pci_name(dev));
1838
1839		if (status & (PCI_STATUS_PARITY)) {
1840			edac_printk(KERN_CRIT, EDAC_PCI,
1841				"Master Data Parity Error on %s\n",
1842				pci_name(dev));
1843
1844			atomic_inc(&pci_parity_count);
1845		}
1846
1847		if (status & (PCI_STATUS_DETECTED_PARITY)) {
1848			edac_printk(KERN_CRIT, EDAC_PCI,
1849				"Detected Parity Error on %s\n",
1850				pci_name(dev));
1851
1852			atomic_inc(&pci_parity_count);
1853		}
1854	}
1855
1856	/* read the device TYPE, looking for bridges */
1857	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1858
1859	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1860
1861	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1862		/* On bridges, need to examine secondary status register  */
1863		status = get_pci_parity_status(dev, 1);
1864
1865		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1866				status, dev->dev.bus_id );
1867
1868		/* check the secondary status reg for errors */
1869		if (status) {
1870			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1871				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1872					"Signaled System Error on %s\n",
1873					pci_name(dev));
1874
1875			if (status & (PCI_STATUS_PARITY)) {
1876				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1877					"Master Data Parity Error on "
1878					"%s\n", pci_name(dev));
1879
1880				atomic_inc(&pci_parity_count);
1881			}
1882
1883			if (status & (PCI_STATUS_DETECTED_PARITY)) {
1884				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1885					"Detected Parity Error on %s\n",
1886					pci_name(dev));
1887
1888				atomic_inc(&pci_parity_count);
1889			}
1890		}
1891	}
1892}
1893
1894/*
1895 * check_dev_on_list: Scan for a PCI device on a white/black list
1896 * @list:	an EDAC  &edac_pci_device_list  white/black list pointer
1897 * @free_index:	index of next free entry on the list
1898 * @pci_dev:	PCI Device pointer
1899 *
1900 * see if list contains the device.
1901 *
1902 * Returns:  	0 not found
1903 *		1 found on list
1904 */
1905static int check_dev_on_list(struct edac_pci_device_list *list, int free_index,
1906				struct pci_dev *dev)
1907{
1908        int i;
1909        int rc = 0;     /* Assume not found */
1910        unsigned short vendor=dev->vendor;
1911        unsigned short device=dev->device;
1912
1913        /* Scan the list, looking for a vendor/device match
1914         */
1915        for (i = 0; i < free_index; i++, list++ ) {
1916                if (    (list->vendor == vendor ) &&
1917                        (list->device == device )) {
1918                        rc = 1;
1919                        break;
1920                }
1921        }
1922
1923        return rc;
1924}
1925
1926/*
1927 * pci_dev parity list iterator
1928 * 	Scan the PCI device list for one iteration, looking for SERRORs
1929 *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1930 */
1931static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1932{
1933	struct pci_dev *dev=NULL;
1934
1935	/* request for kernel access to the next PCI device, if any,
1936	 * and while we are looking at it have its reference count
1937	 * bumped until we are done with it
1938	 */
1939	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1940
1941                /* if whitelist exists then it has priority, so only scan those
1942                 * devices on the whitelist
1943                 */
1944                if (pci_whitelist_count > 0 ) {
1945                        if (check_dev_on_list(pci_whitelist,
1946					pci_whitelist_count, dev))
1947				fn(dev);
1948                } else {
1949			/*
1950			 * if no whitelist, then check if this devices is
1951			 * blacklisted
1952			 */
1953                        if (!check_dev_on_list(pci_blacklist,
1954					pci_blacklist_count, dev))
1955				fn(dev);
1956                }
1957	}
1958}
1959
1960static void do_pci_parity_check(void)
1961{
1962	unsigned long flags;
1963	int before_count;
1964
1965	debugf3("%s()\n", __func__);
1966
1967	if (!check_pci_parity)
1968		return;
1969
1970	before_count = atomic_read(&pci_parity_count);
1971
1972	/* scan all PCI devices looking for a Parity Error on devices and
1973	 * bridges
1974	 */
1975	local_irq_save(flags);
1976	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1977	local_irq_restore(flags);
1978
1979	/* Only if operator has selected panic on PCI Error */
1980	if (panic_on_pci_parity) {
1981		/* If the count is different 'after' from 'before' */
1982		if (before_count != atomic_read(&pci_parity_count))
1983			panic("EDAC: PCI Parity Error");
1984	}
1985}
1986
1987
1988static inline void clear_pci_parity_errors(void)
1989{
1990	/* Clear any PCI bus parity errors that devices initially have logged
1991	 * in their registers.
1992	 */
1993	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1994}
1995
1996
1997#else  /* CONFIG_PCI */
1998
1999
2000static inline void do_pci_parity_check(void)
2001{
2002	/* no-op */
2003}
2004
2005
2006static inline void clear_pci_parity_errors(void)
2007{
2008	/* no-op */
2009}
2010
2011
2012#endif  /* CONFIG_PCI */
2013
2014/*
2015 * Iterate over all MC instances and check for ECC, et al, errors
2016 */
2017static inline void check_mc_devices (void)
2018{
2019	struct list_head *item;
2020	struct mem_ctl_info *mci;
2021
2022	debugf3("%s()\n", __func__);
2023
2024	down(&mem_ctls_mutex);
2025
2026	list_for_each(item, &mc_devices) {
2027		mci = list_entry(item, struct mem_ctl_info, link);
2028
2029		if (mci->edac_check != NULL)
2030			mci->edac_check(mci);
2031	}
2032
2033	up(&mem_ctls_mutex);
2034}
2035
2036
2037/*
2038 * Check MC status every poll_msec.
2039 * Check PCI status every poll_msec as well.
2040 *
2041 * This where the work gets done for edac.
2042 *
2043 * SMP safe, doesn't use NMI, and auto-rate-limits.
2044 */
2045static void do_edac_check(void)
2046{
2047	debugf3("%s()\n", __func__);
2048	check_mc_devices();
2049	do_pci_parity_check();
2050}
2051
2052static int edac_kernel_thread(void *arg)
2053{
2054	while (!kthread_should_stop()) {
2055		do_edac_check();
2056
2057		/* goto sleep for the interval */
2058		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2059		try_to_freeze();
2060	}
2061
2062	return 0;
2063}
2064
2065/*
2066 * edac_mc_init
2067 *      module initialization entry point
2068 */
2069static int __init edac_mc_init(void)
2070{
2071	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2072
2073	/*
2074	 * Harvest and clear any boot/initialization PCI parity errors
2075	 *
2076	 * FIXME: This only clears errors logged by devices present at time of
2077	 * 	module initialization.  We should also do an initial clear
2078	 *	of each newly hotplugged device.
2079	 */
2080	clear_pci_parity_errors();
2081
2082	/* Create the MC sysfs entires */
2083	if (edac_sysfs_memctrl_setup()) {
2084		edac_printk(KERN_ERR, EDAC_MC,
2085			"Error initializing sysfs code\n");
2086		return -ENODEV;
2087	}
2088
2089	/* Create the PCI parity sysfs entries */
2090	if (edac_sysfs_pci_setup()) {
2091		edac_sysfs_memctrl_teardown();
2092		edac_printk(KERN_ERR, EDAC_MC,
2093			"EDAC PCI: Error initializing sysfs code\n");
2094		return -ENODEV;
2095	}
2096
2097	/* create our kernel thread */
2098	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2099	if (IS_ERR(edac_thread)) {
2100		/* remove the sysfs entries */
2101		edac_sysfs_memctrl_teardown();
2102		edac_sysfs_pci_teardown();
2103		return PTR_ERR(edac_thread);
2104	}
2105
2106	return 0;
2107}
2108
2109
2110/*
2111 * edac_mc_exit()
2112 *      module exit/termination functioni
2113 */
2114static void __exit edac_mc_exit(void)
2115{
2116	debugf0("%s()\n", __func__);
2117
2118	kthread_stop(edac_thread);
2119
2120        /* tear down the sysfs device */
2121	edac_sysfs_memctrl_teardown();
2122	edac_sysfs_pci_teardown();
2123}
2124
2125
2126
2127
2128module_init(edac_mc_init);
2129module_exit(edac_mc_exit);
2130
2131MODULE_LICENSE("GPL");
2132MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2133	      "Based on.work by Dan Hollis et al");
2134MODULE_DESCRIPTION("Core library routines for MC reporting");
2135
2136module_param(panic_on_ue, int, 0644);
2137MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2138module_param(check_pci_parity, int, 0644);
2139MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2140module_param(panic_on_pci_parity, int, 0644);
2141MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2142module_param(log_ue, int, 0644);
2143MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2144module_param(log_ce, int, 0644);
2145MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2146module_param(poll_msec, int, 0644);
2147MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2148#ifdef CONFIG_EDAC_DEBUG
2149module_param(edac_debug_level, int, 0644);
2150MODULE_PARM_DESC(edac_debug_level, "Debug level");
2151#endif
2152