edac_mc.c revision 49c0dab7e6000888b616bedcbbc8cd4710331610
1/*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
28#include <linux/sysdev.h>
29#include <linux/ctype.h>
30#include <linux/kthread.h>
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
34#include "edac_mc.h"
35
36#define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
37
38
39#ifdef CONFIG_EDAC_DEBUG
40/* Values of 0 to 4 will generate output */
41int edac_debug_level = 1;
42EXPORT_SYMBOL_GPL(edac_debug_level);
43#endif
44
45/* EDAC Controls, setable by module parameter, and sysfs */
46static int log_ue = 1;
47static int log_ce = 1;
48static int panic_on_ue;
49static int poll_msec = 1000;
50
51/* lock to memory controller's control array */
52static DECLARE_MUTEX(mem_ctls_mutex);
53static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
54
55static struct task_struct *edac_thread;
56
57#ifdef CONFIG_PCI
58static int check_pci_parity = 0;	/* default YES check PCI parity */
59static int panic_on_pci_parity;		/* default no panic on PCI Parity */
60static atomic_t pci_parity_count = ATOMIC_INIT(0);
61
62static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
63static struct completion edac_pci_kobj_complete;
64#endif	/* CONFIG_PCI */
65
66/*  START sysfs data and methods */
67
68
69static const char *mem_types[] = {
70	[MEM_EMPTY] = "Empty",
71	[MEM_RESERVED] = "Reserved",
72	[MEM_UNKNOWN] = "Unknown",
73	[MEM_FPM] = "FPM",
74	[MEM_EDO] = "EDO",
75	[MEM_BEDO] = "BEDO",
76	[MEM_SDR] = "Unbuffered-SDR",
77	[MEM_RDR] = "Registered-SDR",
78	[MEM_DDR] = "Unbuffered-DDR",
79	[MEM_RDDR] = "Registered-DDR",
80	[MEM_RMBS] = "RMBS"
81};
82
83static const char *dev_types[] = {
84	[DEV_UNKNOWN] = "Unknown",
85	[DEV_X1] = "x1",
86	[DEV_X2] = "x2",
87	[DEV_X4] = "x4",
88	[DEV_X8] = "x8",
89	[DEV_X16] = "x16",
90	[DEV_X32] = "x32",
91	[DEV_X64] = "x64"
92};
93
94static const char *edac_caps[] = {
95	[EDAC_UNKNOWN] = "Unknown",
96	[EDAC_NONE] = "None",
97	[EDAC_RESERVED] = "Reserved",
98	[EDAC_PARITY] = "PARITY",
99	[EDAC_EC] = "EC",
100	[EDAC_SECDED] = "SECDED",
101	[EDAC_S2ECD2ED] = "S2ECD2ED",
102	[EDAC_S4ECD4ED] = "S4ECD4ED",
103	[EDAC_S8ECD8ED] = "S8ECD8ED",
104	[EDAC_S16ECD16ED] = "S16ECD16ED"
105};
106
107/* sysfs object: /sys/devices/system/edac */
108static struct sysdev_class edac_class = {
109	set_kset_name("edac"),
110};
111
112/* sysfs object:
113 *	/sys/devices/system/edac/mc
114 */
115static struct kobject edac_memctrl_kobj;
116
117/* We use these to wait for the reference counts on edac_memctrl_kobj and
118 * edac_pci_kobj to reach 0.
119 */
120static struct completion edac_memctrl_kobj_complete;
121
122/*
123 * /sys/devices/system/edac/mc;
124 *	data structures and methods
125 */
126static ssize_t memctrl_int_show(void *ptr, char *buffer)
127{
128	int *value = (int*) ptr;
129	return sprintf(buffer, "%u\n", *value);
130}
131
132static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
133{
134	int *value = (int*) ptr;
135
136	if (isdigit(*buffer))
137		*value = simple_strtoul(buffer, NULL, 0);
138
139	return count;
140}
141
142struct memctrl_dev_attribute {
143	struct attribute attr;
144	void *value;
145	ssize_t (*show)(void *,char *);
146	ssize_t (*store)(void *, const char *, size_t);
147};
148
149/* Set of show/store abstract level functions for memory control object */
150static ssize_t memctrl_dev_show(struct kobject *kobj,
151		struct attribute *attr, char *buffer)
152{
153	struct memctrl_dev_attribute *memctrl_dev;
154	memctrl_dev = (struct memctrl_dev_attribute*)attr;
155
156	if (memctrl_dev->show)
157		return memctrl_dev->show(memctrl_dev->value, buffer);
158
159	return -EIO;
160}
161
162static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
163		const char *buffer, size_t count)
164{
165	struct memctrl_dev_attribute *memctrl_dev;
166	memctrl_dev = (struct memctrl_dev_attribute*)attr;
167
168	if (memctrl_dev->store)
169		return memctrl_dev->store(memctrl_dev->value, buffer, count);
170
171	return -EIO;
172}
173
174static struct sysfs_ops memctrlfs_ops = {
175	.show   = memctrl_dev_show,
176	.store  = memctrl_dev_store
177};
178
179#define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
180struct memctrl_dev_attribute attr_##_name = {			\
181	.attr = {.name = __stringify(_name), .mode = _mode },	\
182	.value  = &_name,					\
183	.show   = _show,					\
184	.store  = _store,					\
185};
186
187#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
188struct memctrl_dev_attribute attr_##_name = {			\
189	.attr = {.name = __stringify(_name), .mode = _mode },	\
190	.value  = _data,					\
191	.show   = _show,					\
192	.store  = _store,					\
193};
194
195/* csrow<id> control files */
196MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
197MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200
201/* Base Attributes of the memory ECC object */
202static struct memctrl_dev_attribute *memctrl_attr[] = {
203	&attr_panic_on_ue,
204	&attr_log_ue,
205	&attr_log_ce,
206	&attr_poll_msec,
207	NULL,
208};
209
210/* Main MC kobject release() function */
211static void edac_memctrl_master_release(struct kobject *kobj)
212{
213	debugf1("%s()\n", __func__);
214	complete(&edac_memctrl_kobj_complete);
215}
216
217static struct kobj_type ktype_memctrl = {
218	.release = edac_memctrl_master_release,
219	.sysfs_ops = &memctrlfs_ops,
220	.default_attrs = (struct attribute **) memctrl_attr,
221};
222
223/* Initialize the main sysfs entries for edac:
224 *   /sys/devices/system/edac
225 *
226 * and children
227 *
228 * Return:  0 SUCCESS
229 *         !0 FAILURE
230 */
231static int edac_sysfs_memctrl_setup(void)
232{
233	int err=0;
234
235	debugf1("%s()\n", __func__);
236
237	/* create the /sys/devices/system/edac directory */
238	err = sysdev_class_register(&edac_class);
239
240	if (!err) {
241		/* Init the MC's kobject */
242		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
243		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
244		edac_memctrl_kobj.ktype = &ktype_memctrl;
245
246		/* generate sysfs "..../edac/mc"   */
247		err = kobject_set_name(&edac_memctrl_kobj,"mc");
248
249		if (!err) {
250			/* FIXME: maybe new sysdev_create_subdir() */
251			err = kobject_register(&edac_memctrl_kobj);
252
253			if (err)
254				debugf1("Failed to register '.../edac/mc'\n");
255			else
256				debugf1("Registered '.../edac/mc' kobject\n");
257		}
258	} else
259		debugf1("%s() error=%d\n", __func__, err);
260
261	return err;
262}
263
264/*
265 * MC teardown:
266 *	the '..../edac/mc' kobject followed by '..../edac' itself
267 */
268static void edac_sysfs_memctrl_teardown(void)
269{
270	debugf0("MC: " __FILE__ ": %s()\n", __func__);
271
272	/* Unregister the MC's kobject and wait for reference count to reach
273	 * 0.
274	 */
275	init_completion(&edac_memctrl_kobj_complete);
276	kobject_unregister(&edac_memctrl_kobj);
277	wait_for_completion(&edac_memctrl_kobj_complete);
278
279	/* Unregister the 'edac' object */
280	sysdev_class_unregister(&edac_class);
281}
282
283#ifdef CONFIG_PCI
284static ssize_t edac_pci_int_show(void *ptr, char *buffer)
285{
286	int *value = ptr;
287	return sprintf(buffer,"%d\n",*value);
288}
289
290static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
291{
292	int *value = ptr;
293
294	if (isdigit(*buffer))
295		*value = simple_strtoul(buffer,NULL,0);
296
297	return count;
298}
299
300struct edac_pci_dev_attribute {
301	struct attribute attr;
302	void *value;
303	ssize_t (*show)(void *,char *);
304	ssize_t (*store)(void *, const char *,size_t);
305};
306
307/* Set of show/store abstract level functions for PCI Parity object */
308static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
309		char *buffer)
310{
311	struct edac_pci_dev_attribute *edac_pci_dev;
312	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
313
314	if (edac_pci_dev->show)
315		return edac_pci_dev->show(edac_pci_dev->value, buffer);
316	return -EIO;
317}
318
319static ssize_t edac_pci_dev_store(struct kobject *kobj,
320		struct attribute *attr, const char *buffer, size_t count)
321{
322	struct edac_pci_dev_attribute *edac_pci_dev;
323	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
324
325	if (edac_pci_dev->show)
326		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
327	return -EIO;
328}
329
330static struct sysfs_ops edac_pci_sysfs_ops = {
331	.show   = edac_pci_dev_show,
332	.store  = edac_pci_dev_store
333};
334
335#define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
336struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
337	.attr = {.name = __stringify(_name), .mode = _mode },	\
338	.value  = &_name,					\
339	.show   = _show,					\
340	.store  = _store,					\
341};
342
343#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
344struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
345	.attr = {.name = __stringify(_name), .mode = _mode },	\
346	.value  = _data,					\
347	.show   = _show,					\
348	.store  = _store,					\
349};
350
351/* PCI Parity control files */
352EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
353	edac_pci_int_store);
354EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
355	edac_pci_int_store);
356EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
357
358/* Base Attributes of the memory ECC object */
359static struct edac_pci_dev_attribute *edac_pci_attr[] = {
360	&edac_pci_attr_check_pci_parity,
361	&edac_pci_attr_panic_on_pci_parity,
362	&edac_pci_attr_pci_parity_count,
363	NULL,
364};
365
366/* No memory to release */
367static void edac_pci_release(struct kobject *kobj)
368{
369	debugf1("%s()\n", __func__);
370	complete(&edac_pci_kobj_complete);
371}
372
373static struct kobj_type ktype_edac_pci = {
374	.release = edac_pci_release,
375	.sysfs_ops = &edac_pci_sysfs_ops,
376	.default_attrs = (struct attribute **) edac_pci_attr,
377};
378
379/**
380 * edac_sysfs_pci_setup()
381 *
382 */
383static int edac_sysfs_pci_setup(void)
384{
385	int err;
386
387	debugf1("%s()\n", __func__);
388
389	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
390	edac_pci_kobj.parent = &edac_class.kset.kobj;
391	edac_pci_kobj.ktype = &ktype_edac_pci;
392	err = kobject_set_name(&edac_pci_kobj, "pci");
393
394	if (!err) {
395		/* Instanstiate the csrow object */
396		/* FIXME: maybe new sysdev_create_subdir() */
397		err = kobject_register(&edac_pci_kobj);
398
399		if (err)
400			debugf1("Failed to register '.../edac/pci'\n");
401		else
402			debugf1("Registered '.../edac/pci' kobject\n");
403	}
404
405	return err;
406}
407
408static void edac_sysfs_pci_teardown(void)
409{
410	debugf0("%s()\n", __func__);
411	init_completion(&edac_pci_kobj_complete);
412	kobject_unregister(&edac_pci_kobj);
413	wait_for_completion(&edac_pci_kobj_complete);
414}
415
416
417static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
418{
419	int where;
420	u16 status;
421
422	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
423	pci_read_config_word(dev, where, &status);
424
425	/* If we get back 0xFFFF then we must suspect that the card has been
426	 * pulled but the Linux PCI layer has not yet finished cleaning up.
427	 * We don't want to report on such devices
428	 */
429
430	if (status == 0xFFFF) {
431		u32 sanity;
432
433		pci_read_config_dword(dev, 0, &sanity);
434
435		if (sanity == 0xFFFFFFFF)
436			return 0;
437	}
438
439	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
440		PCI_STATUS_PARITY;
441
442	if (status)
443		/* reset only the bits we are interested in */
444		pci_write_config_word(dev, where, status);
445
446	return status;
447}
448
449typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
450
451/* Clear any PCI parity errors logged by this device. */
452static void edac_pci_dev_parity_clear(struct pci_dev *dev)
453{
454	u8 header_type;
455
456	get_pci_parity_status(dev, 0);
457
458	/* read the device TYPE, looking for bridges */
459	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
460
461	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
462		get_pci_parity_status(dev, 1);
463}
464
465/*
466 *  PCI Parity polling
467 *
468 */
469static void edac_pci_dev_parity_test(struct pci_dev *dev)
470{
471	u16 status;
472	u8  header_type;
473
474	/* read the STATUS register on this device
475	 */
476	status = get_pci_parity_status(dev, 0);
477
478	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
479
480	/* check the status reg for errors */
481	if (status) {
482		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
483			edac_printk(KERN_CRIT, EDAC_PCI,
484				"Signaled System Error on %s\n",
485				pci_name(dev));
486
487		if (status & (PCI_STATUS_PARITY)) {
488			edac_printk(KERN_CRIT, EDAC_PCI,
489				"Master Data Parity Error on %s\n",
490				pci_name(dev));
491
492			atomic_inc(&pci_parity_count);
493		}
494
495		if (status & (PCI_STATUS_DETECTED_PARITY)) {
496			edac_printk(KERN_CRIT, EDAC_PCI,
497				"Detected Parity Error on %s\n",
498				pci_name(dev));
499
500			atomic_inc(&pci_parity_count);
501		}
502	}
503
504	/* read the device TYPE, looking for bridges */
505	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
506
507	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
508
509	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
510		/* On bridges, need to examine secondary status register  */
511		status = get_pci_parity_status(dev, 1);
512
513		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
514				status, dev->dev.bus_id );
515
516		/* check the secondary status reg for errors */
517		if (status) {
518			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
519				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
520					"Signaled System Error on %s\n",
521					pci_name(dev));
522
523			if (status & (PCI_STATUS_PARITY)) {
524				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
525					"Master Data Parity Error on "
526					"%s\n", pci_name(dev));
527
528				atomic_inc(&pci_parity_count);
529			}
530
531			if (status & (PCI_STATUS_DETECTED_PARITY)) {
532				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
533					"Detected Parity Error on %s\n",
534					pci_name(dev));
535
536				atomic_inc(&pci_parity_count);
537			}
538		}
539	}
540}
541
542/*
543 * pci_dev parity list iterator
544 *	Scan the PCI device list for one iteration, looking for SERRORs
545 *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
546 */
547static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
548{
549	struct pci_dev *dev = NULL;
550
551	/* request for kernel access to the next PCI device, if any,
552	 * and while we are looking at it have its reference count
553	 * bumped until we are done with it
554	 */
555	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
556		fn(dev);
557	}
558}
559
560static void do_pci_parity_check(void)
561{
562	unsigned long flags;
563	int before_count;
564
565	debugf3("%s()\n", __func__);
566
567	if (!check_pci_parity)
568		return;
569
570	before_count = atomic_read(&pci_parity_count);
571
572	/* scan all PCI devices looking for a Parity Error on devices and
573	 * bridges
574	 */
575	local_irq_save(flags);
576	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
577	local_irq_restore(flags);
578
579	/* Only if operator has selected panic on PCI Error */
580	if (panic_on_pci_parity) {
581		/* If the count is different 'after' from 'before' */
582		if (before_count != atomic_read(&pci_parity_count))
583			panic("EDAC: PCI Parity Error");
584	}
585}
586
587static inline void clear_pci_parity_errors(void)
588{
589	/* Clear any PCI bus parity errors that devices initially have logged
590	 * in their registers.
591	 */
592	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
593}
594
595#else	/* CONFIG_PCI */
596
597/* pre-process these away */
598#define	do_pci_parity_check()
599#define	clear_pci_parity_errors()
600#define	edac_sysfs_pci_teardown()
601#define	edac_sysfs_pci_setup()	(0)
602
603#endif	/* CONFIG_PCI */
604
605/* EDAC sysfs CSROW data structures and methods
606 */
607
608/* Set of more default csrow<id> attribute show/store functions */
609static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
610{
611	return sprintf(data,"%u\n", csrow->ue_count);
612}
613
614static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
615{
616	return sprintf(data,"%u\n", csrow->ce_count);
617}
618
619static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
620{
621	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
622}
623
624static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
625{
626	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
627}
628
629static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
630{
631	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
632}
633
634static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
635{
636	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
637}
638
639/* show/store functions for DIMM Label attributes */
640static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
641		char *data, int channel)
642{
643	return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
644			csrow->channels[channel].label);
645}
646
647static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
648				const char *data,
649				size_t count,
650				int channel)
651{
652	ssize_t max_size = 0;
653
654	max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
655	strncpy(csrow->channels[channel].label, data, max_size);
656	csrow->channels[channel].label[max_size] = '\0';
657
658	return max_size;
659}
660
661/* show function for dynamic chX_ce_count attribute */
662static ssize_t channel_ce_count_show(struct csrow_info *csrow,
663				char *data,
664				int channel)
665{
666	return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
667}
668
669/* csrow specific attribute structure */
670struct csrowdev_attribute {
671	struct attribute attr;
672	ssize_t (*show)(struct csrow_info *,char *,int);
673	ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
674	int    private;
675};
676
677#define to_csrow(k) container_of(k, struct csrow_info, kobj)
678#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
679
680/* Set of show/store higher level functions for default csrow attributes */
681static ssize_t csrowdev_show(struct kobject *kobj,
682			struct attribute *attr,
683			char *buffer)
684{
685	struct csrow_info *csrow = to_csrow(kobj);
686	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
687
688	if (csrowdev_attr->show)
689		return csrowdev_attr->show(csrow,
690					buffer,
691					csrowdev_attr->private);
692	return -EIO;
693}
694
695static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
696		const char *buffer, size_t count)
697{
698	struct csrow_info *csrow = to_csrow(kobj);
699	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
700
701	if (csrowdev_attr->store)
702		return csrowdev_attr->store(csrow,
703					buffer,
704					count,
705					csrowdev_attr->private);
706	return -EIO;
707}
708
709static struct sysfs_ops csrowfs_ops = {
710	.show   = csrowdev_show,
711	.store  = csrowdev_store
712};
713
714#define CSROWDEV_ATTR(_name,_mode,_show,_store,_private)	\
715struct csrowdev_attribute attr_##_name = {			\
716	.attr = {.name = __stringify(_name), .mode = _mode },	\
717	.show   = _show,					\
718	.store  = _store,					\
719	.private = _private,					\
720};
721
722/* default cwrow<id>/attribute files */
723CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
724CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
725CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
726CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
727CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
728CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
729
730/* default attributes of the CSROW<id> object */
731static struct csrowdev_attribute *default_csrow_attr[] = {
732	&attr_dev_type,
733	&attr_mem_type,
734	&attr_edac_mode,
735	&attr_size_mb,
736	&attr_ue_count,
737	&attr_ce_count,
738	NULL,
739};
740
741
742/* possible dynamic channel DIMM Label attribute files */
743CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
744		channel_dimm_label_show,
745		channel_dimm_label_store,
746		0 );
747CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
748		channel_dimm_label_show,
749		channel_dimm_label_store,
750		1 );
751CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
752		channel_dimm_label_show,
753		channel_dimm_label_store,
754		2 );
755CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
756		channel_dimm_label_show,
757		channel_dimm_label_store,
758		3 );
759CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
760		channel_dimm_label_show,
761		channel_dimm_label_store,
762		4 );
763CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
764		channel_dimm_label_show,
765		channel_dimm_label_store,
766		5 );
767
768/* Total possible dynamic DIMM Label attribute file table */
769static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
770		&attr_ch0_dimm_label,
771		&attr_ch1_dimm_label,
772		&attr_ch2_dimm_label,
773		&attr_ch3_dimm_label,
774		&attr_ch4_dimm_label,
775		&attr_ch5_dimm_label
776};
777
778/* possible dynamic channel ce_count attribute files */
779CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
780		channel_ce_count_show,
781		NULL,
782		0 );
783CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
784		channel_ce_count_show,
785		NULL,
786		1 );
787CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
788		channel_ce_count_show,
789		NULL,
790		2 );
791CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
792		channel_ce_count_show,
793		NULL,
794		3 );
795CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
796		channel_ce_count_show,
797		NULL,
798		4 );
799CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
800		channel_ce_count_show,
801		NULL,
802		5 );
803
804/* Total possible dynamic ce_count attribute file table */
805static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
806		&attr_ch0_ce_count,
807		&attr_ch1_ce_count,
808		&attr_ch2_ce_count,
809		&attr_ch3_ce_count,
810		&attr_ch4_ce_count,
811		&attr_ch5_ce_count
812};
813
814
815#define EDAC_NR_CHANNELS	6
816
817/* Create dynamic CHANNEL files, indexed by 'chan',  under specifed CSROW */
818static int edac_create_channel_files(struct kobject *kobj, int chan)
819{
820	int err=-ENODEV;
821
822	if (chan >= EDAC_NR_CHANNELS)
823		return err;
824
825	/* create the DIMM label attribute file */
826	err = sysfs_create_file(kobj,
827			(struct attribute *) dynamic_csrow_dimm_attr[chan]);
828
829	if (!err) {
830		/* create the CE Count attribute file */
831		err = sysfs_create_file(kobj,
832			(struct attribute *) dynamic_csrow_ce_count_attr[chan]);
833	} else {
834		debugf1("%s()  dimm labels and ce_count files created", __func__);
835	}
836
837	return err;
838}
839
840/* No memory to release for this kobj */
841static void edac_csrow_instance_release(struct kobject *kobj)
842{
843	struct csrow_info *cs;
844
845	cs = container_of(kobj, struct csrow_info, kobj);
846	complete(&cs->kobj_complete);
847}
848
849/* the kobj_type instance for a CSROW */
850static struct kobj_type ktype_csrow = {
851	.release = edac_csrow_instance_release,
852	.sysfs_ops = &csrowfs_ops,
853	.default_attrs = (struct attribute **) default_csrow_attr,
854};
855
856/* Create a CSROW object under specifed edac_mc_device */
857static int edac_create_csrow_object(
858		struct kobject *edac_mci_kobj,
859		struct csrow_info *csrow,
860		int index)
861{
862	int err = 0;
863	int chan;
864
865	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
866
867	/* generate ..../edac/mc/mc<id>/csrow<index>   */
868
869	csrow->kobj.parent = edac_mci_kobj;
870	csrow->kobj.ktype = &ktype_csrow;
871
872	/* name this instance of csrow<id> */
873	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
874	if (err)
875		goto error_exit;
876
877	/* Instanstiate the csrow object */
878	err = kobject_register(&csrow->kobj);
879	if (!err) {
880		/* Create the dyanmic attribute files on this csrow,
881		 * namely, the DIMM labels and the channel ce_count
882		 */
883		for (chan = 0; chan < csrow->nr_channels; chan++) {
884			err = edac_create_channel_files(&csrow->kobj,chan);
885			if (err)
886				break;
887		}
888	}
889
890error_exit:
891	return err;
892}
893
894/* default sysfs methods and data structures for the main MCI kobject */
895
896static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
897		const char *data, size_t count)
898{
899	int row, chan;
900
901	mci->ue_noinfo_count = 0;
902	mci->ce_noinfo_count = 0;
903	mci->ue_count = 0;
904	mci->ce_count = 0;
905
906	for (row = 0; row < mci->nr_csrows; row++) {
907		struct csrow_info *ri = &mci->csrows[row];
908
909		ri->ue_count = 0;
910		ri->ce_count = 0;
911
912		for (chan = 0; chan < ri->nr_channels; chan++)
913			ri->channels[chan].ce_count = 0;
914	}
915
916	mci->start_time = jiffies;
917	return count;
918}
919
920/* default attribute files for the MCI object */
921static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
922{
923	return sprintf(data,"%d\n", mci->ue_count);
924}
925
926static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
927{
928	return sprintf(data,"%d\n", mci->ce_count);
929}
930
931static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
932{
933	return sprintf(data,"%d\n", mci->ce_noinfo_count);
934}
935
936static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
937{
938	return sprintf(data,"%d\n", mci->ue_noinfo_count);
939}
940
941static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
942{
943	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
944}
945
946static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
947{
948	return sprintf(data,"%s\n", mci->ctl_name);
949}
950
951static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
952{
953	int total_pages, csrow_idx;
954
955	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
956			csrow_idx++) {
957		struct csrow_info *csrow = &mci->csrows[csrow_idx];
958
959		if (!csrow->nr_pages)
960			continue;
961
962		total_pages += csrow->nr_pages;
963	}
964
965	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
966}
967
968struct mcidev_attribute {
969	struct attribute attr;
970	ssize_t (*show)(struct mem_ctl_info *,char *);
971	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
972};
973
974#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
975#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
976
977/* MCI show/store functions for top most object */
978static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
979		char *buffer)
980{
981	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
982	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
983
984	if (mcidev_attr->show)
985		return mcidev_attr->show(mem_ctl_info, buffer);
986
987	return -EIO;
988}
989
990static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
991		const char *buffer, size_t count)
992{
993	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
994	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
995
996	if (mcidev_attr->store)
997		return mcidev_attr->store(mem_ctl_info, buffer, count);
998
999	return -EIO;
1000}
1001
1002static struct sysfs_ops mci_ops = {
1003	.show = mcidev_show,
1004	.store = mcidev_store
1005};
1006
1007#define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1008struct mcidev_attribute mci_attr_##_name = {			\
1009	.attr = {.name = __stringify(_name), .mode = _mode },	\
1010	.show   = _show,					\
1011	.store  = _store,					\
1012};
1013
1014/* default Control file */
1015MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1016
1017/* default Attribute files */
1018MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1019MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1020MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1021MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1022MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1023MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1024MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1025
1026static struct mcidev_attribute *mci_attr[] = {
1027	&mci_attr_reset_counters,
1028	&mci_attr_mc_name,
1029	&mci_attr_size_mb,
1030	&mci_attr_seconds_since_reset,
1031	&mci_attr_ue_noinfo_count,
1032	&mci_attr_ce_noinfo_count,
1033	&mci_attr_ue_count,
1034	&mci_attr_ce_count,
1035	NULL
1036};
1037
1038/*
1039 * Release of a MC controlling instance
1040 */
1041static void edac_mci_instance_release(struct kobject *kobj)
1042{
1043	struct mem_ctl_info *mci;
1044
1045	mci = to_mci(kobj);
1046	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1047	complete(&mci->kobj_complete);
1048}
1049
1050static struct kobj_type ktype_mci = {
1051	.release = edac_mci_instance_release,
1052	.sysfs_ops = &mci_ops,
1053	.default_attrs = (struct attribute **) mci_attr,
1054};
1055
1056
1057#define EDAC_DEVICE_SYMLINK	"device"
1058
1059/*
1060 * Create a new Memory Controller kobject instance,
1061 *	mc<id> under the 'mc' directory
1062 *
1063 * Return:
1064 *	0	Success
1065 *	!0	Failure
1066 */
1067static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1068{
1069	int i;
1070	int err;
1071	struct csrow_info *csrow;
1072	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1073
1074	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1075	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1076
1077	/* set the name of the mc<id> object */
1078	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1079	if (err)
1080		return err;
1081
1082	/* link to our parent the '..../edac/mc' object */
1083	edac_mci_kobj->parent = &edac_memctrl_kobj;
1084	edac_mci_kobj->ktype = &ktype_mci;
1085
1086	/* register the mc<id> kobject */
1087	err = kobject_register(edac_mci_kobj);
1088	if (err)
1089		return err;
1090
1091	/* create a symlink for the device */
1092	err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1093				EDAC_DEVICE_SYMLINK);
1094	if (err)
1095		goto fail0;
1096
1097	/* Make directories for each CSROW object
1098	 * under the mc<id> kobject
1099	 */
1100	for (i = 0; i < mci->nr_csrows; i++) {
1101		csrow = &mci->csrows[i];
1102
1103		/* Only expose populated CSROWs */
1104		if (csrow->nr_pages > 0) {
1105			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1106			if (err)
1107				goto fail1;
1108		}
1109	}
1110
1111	return 0;
1112
1113	/* CSROW error: backout what has already been registered,  */
1114fail1:
1115	for ( i--; i >= 0; i--) {
1116		if (csrow->nr_pages > 0) {
1117			init_completion(&csrow->kobj_complete);
1118			kobject_unregister(&mci->csrows[i].kobj);
1119			wait_for_completion(&csrow->kobj_complete);
1120		}
1121	}
1122
1123fail0:
1124	init_completion(&mci->kobj_complete);
1125	kobject_unregister(edac_mci_kobj);
1126	wait_for_completion(&mci->kobj_complete);
1127	return err;
1128}
1129
1130/*
1131 * remove a Memory Controller instance
1132 */
1133static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1134{
1135	int i;
1136
1137	debugf0("%s()\n", __func__);
1138
1139	/* remove all csrow kobjects */
1140	for (i = 0; i < mci->nr_csrows; i++) {
1141		if (mci->csrows[i].nr_pages > 0) {
1142			init_completion(&mci->csrows[i].kobj_complete);
1143			kobject_unregister(&mci->csrows[i].kobj);
1144			wait_for_completion(&mci->csrows[i].kobj_complete);
1145		}
1146	}
1147
1148	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1149	init_completion(&mci->kobj_complete);
1150	kobject_unregister(&mci->edac_mci_kobj);
1151	wait_for_completion(&mci->kobj_complete);
1152}
1153
1154/* END OF sysfs data and methods */
1155
1156#ifdef CONFIG_EDAC_DEBUG
1157
1158void edac_mc_dump_channel(struct channel_info *chan)
1159{
1160	debugf4("\tchannel = %p\n", chan);
1161	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1162	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1163	debugf4("\tchannel->label = '%s'\n", chan->label);
1164	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1165}
1166EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1167
1168void edac_mc_dump_csrow(struct csrow_info *csrow)
1169{
1170	debugf4("\tcsrow = %p\n", csrow);
1171	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1172	debugf4("\tcsrow->first_page = 0x%lx\n",
1173		csrow->first_page);
1174	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1175	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1176	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1177	debugf4("\tcsrow->nr_channels = %d\n",
1178		csrow->nr_channels);
1179	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1180	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1181}
1182EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1183
1184void edac_mc_dump_mci(struct mem_ctl_info *mci)
1185{
1186	debugf3("\tmci = %p\n", mci);
1187	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1188	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1189	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1190	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1191	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1192		mci->nr_csrows, mci->csrows);
1193	debugf3("\tdev = %p\n", mci->dev);
1194	debugf3("\tmod_name:ctl_name = %s:%s\n",
1195		mci->mod_name, mci->ctl_name);
1196	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1197}
1198EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1199
1200#endif  /* CONFIG_EDAC_DEBUG */
1201
1202/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1203 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1204 * compiler would provide for X and return the aligned result.
1205 *
1206 * If 'size' is a constant, the compiler will optimize this whole function
1207 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1208 */
1209static inline char * align_ptr(void *ptr, unsigned size)
1210{
1211	unsigned align, r;
1212
1213	/* Here we assume that the alignment of a "long long" is the most
1214	 * stringent alignment that the compiler will ever provide by default.
1215	 * As far as I know, this is a reasonable assumption.
1216	 */
1217	if (size > sizeof(long))
1218		align = sizeof(long long);
1219	else if (size > sizeof(int))
1220		align = sizeof(long);
1221	else if (size > sizeof(short))
1222		align = sizeof(int);
1223	else if (size > sizeof(char))
1224		align = sizeof(short);
1225	else
1226		return (char *) ptr;
1227
1228	r = size % align;
1229
1230	if (r == 0)
1231		return (char *) ptr;
1232
1233	return (char *) (((unsigned long) ptr) + align - r);
1234}
1235
1236/**
1237 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1238 * @size_pvt:	size of private storage needed
1239 * @nr_csrows:	Number of CWROWS needed for this MC
1240 * @nr_chans:	Number of channels for the MC
1241 *
1242 * Everything is kmalloc'ed as one big chunk - more efficient.
1243 * Only can be used if all structures have the same lifetime - otherwise
1244 * you have to allocate and initialize your own structures.
1245 *
1246 * Use edac_mc_free() to free mc structures allocated by this function.
1247 *
1248 * Returns:
1249 *	NULL allocation failed
1250 *	struct mem_ctl_info pointer
1251 */
1252struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1253		unsigned nr_chans)
1254{
1255	struct mem_ctl_info *mci;
1256	struct csrow_info *csi, *csrow;
1257	struct channel_info *chi, *chp, *chan;
1258	void *pvt;
1259	unsigned size;
1260	int row, chn;
1261
1262	/* Figure out the offsets of the various items from the start of an mc
1263	 * structure.  We want the alignment of each item to be at least as
1264	 * stringent as what the compiler would provide if we could simply
1265	 * hardcode everything into a single struct.
1266	 */
1267	mci = (struct mem_ctl_info *) 0;
1268	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1269	chi = (struct channel_info *)
1270			align_ptr(&csi[nr_csrows], sizeof(*chi));
1271	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1272	size = ((unsigned long) pvt) + sz_pvt;
1273
1274	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1275		return NULL;
1276
1277	/* Adjust pointers so they point within the memory we just allocated
1278	 * rather than an imaginary chunk of memory located at address 0.
1279	 */
1280	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1281	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1282	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1283
1284	memset(mci, 0, size);  /* clear all fields */
1285	mci->csrows = csi;
1286	mci->pvt_info = pvt;
1287	mci->nr_csrows = nr_csrows;
1288
1289	for (row = 0; row < nr_csrows; row++) {
1290		csrow = &csi[row];
1291		csrow->csrow_idx = row;
1292		csrow->mci = mci;
1293		csrow->nr_channels = nr_chans;
1294		chp = &chi[row * nr_chans];
1295		csrow->channels = chp;
1296
1297		for (chn = 0; chn < nr_chans; chn++) {
1298			chan = &chp[chn];
1299			chan->chan_idx = chn;
1300			chan->csrow = csrow;
1301		}
1302	}
1303
1304	return mci;
1305}
1306EXPORT_SYMBOL_GPL(edac_mc_alloc);
1307
1308/**
1309 * edac_mc_free:  Free a previously allocated 'mci' structure
1310 * @mci: pointer to a struct mem_ctl_info structure
1311 */
1312void edac_mc_free(struct mem_ctl_info *mci)
1313{
1314	kfree(mci);
1315}
1316EXPORT_SYMBOL_GPL(edac_mc_free);
1317
1318static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1319{
1320	struct mem_ctl_info *mci;
1321	struct list_head *item;
1322
1323	debugf3("%s()\n", __func__);
1324
1325	list_for_each(item, &mc_devices) {
1326		mci = list_entry(item, struct mem_ctl_info, link);
1327
1328		if (mci->dev == dev)
1329			return mci;
1330	}
1331
1332	return NULL;
1333}
1334
1335/* Return 0 on success, 1 on failure.
1336 * Before calling this function, caller must
1337 * assign a unique value to mci->mc_idx.
1338 */
1339static int add_mc_to_global_list (struct mem_ctl_info *mci)
1340{
1341	struct list_head *item, *insert_before;
1342	struct mem_ctl_info *p;
1343
1344	insert_before = &mc_devices;
1345
1346	if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1347		goto fail0;
1348
1349	list_for_each(item, &mc_devices) {
1350		p = list_entry(item, struct mem_ctl_info, link);
1351
1352		if (p->mc_idx >= mci->mc_idx) {
1353			if (unlikely(p->mc_idx == mci->mc_idx))
1354				goto fail1;
1355
1356			insert_before = item;
1357			break;
1358		}
1359	}
1360
1361	list_add_tail_rcu(&mci->link, insert_before);
1362	return 0;
1363
1364fail0:
1365	edac_printk(KERN_WARNING, EDAC_MC,
1366		    "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1367		    dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1368	return 1;
1369
1370fail1:
1371	edac_printk(KERN_WARNING, EDAC_MC,
1372		    "bug in low-level driver: attempt to assign\n"
1373		    "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1374	return 1;
1375}
1376
1377static void complete_mc_list_del(struct rcu_head *head)
1378{
1379	struct mem_ctl_info *mci;
1380
1381	mci = container_of(head, struct mem_ctl_info, rcu);
1382	INIT_LIST_HEAD(&mci->link);
1383	complete(&mci->complete);
1384}
1385
1386static void del_mc_from_global_list(struct mem_ctl_info *mci)
1387{
1388	list_del_rcu(&mci->link);
1389	init_completion(&mci->complete);
1390	call_rcu(&mci->rcu, complete_mc_list_del);
1391	wait_for_completion(&mci->complete);
1392}
1393
1394/**
1395 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1396 *                 create sysfs entries associated with mci structure
1397 * @mci: pointer to the mci structure to be added to the list
1398 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1399 *
1400 * Return:
1401 *	0	Success
1402 *	!0	Failure
1403 */
1404
1405/* FIXME - should a warning be printed if no error detection? correction? */
1406int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1407{
1408	debugf0("%s()\n", __func__);
1409	mci->mc_idx = mc_idx;
1410#ifdef CONFIG_EDAC_DEBUG
1411	if (edac_debug_level >= 3)
1412		edac_mc_dump_mci(mci);
1413
1414	if (edac_debug_level >= 4) {
1415		int i;
1416
1417		for (i = 0; i < mci->nr_csrows; i++) {
1418			int j;
1419
1420			edac_mc_dump_csrow(&mci->csrows[i]);
1421			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1422				edac_mc_dump_channel(
1423					&mci->csrows[i].channels[j]);
1424		}
1425	}
1426#endif
1427	down(&mem_ctls_mutex);
1428
1429	if (add_mc_to_global_list(mci))
1430		goto fail0;
1431
1432	/* set load time so that error rate can be tracked */
1433	mci->start_time = jiffies;
1434
1435        if (edac_create_sysfs_mci_device(mci)) {
1436                edac_mc_printk(mci, KERN_WARNING,
1437			"failed to create sysfs device\n");
1438                goto fail1;
1439        }
1440
1441	/* Report action taken */
1442	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1443		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1444
1445	up(&mem_ctls_mutex);
1446	return 0;
1447
1448fail1:
1449	del_mc_from_global_list(mci);
1450
1451fail0:
1452	up(&mem_ctls_mutex);
1453	return 1;
1454}
1455EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1456
1457/**
1458 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1459 *                 remove mci structure from global list
1460 * @pdev: Pointer to 'struct device' representing mci structure to remove.
1461 *
1462 * Return pointer to removed mci structure, or NULL if device not found.
1463 */
1464struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1465{
1466	struct mem_ctl_info *mci;
1467
1468	debugf0("MC: %s()\n", __func__);
1469	down(&mem_ctls_mutex);
1470
1471	if ((mci = find_mci_by_dev(dev)) == NULL) {
1472		up(&mem_ctls_mutex);
1473		return NULL;
1474	}
1475
1476	edac_remove_sysfs_mci_device(mci);
1477	del_mc_from_global_list(mci);
1478	up(&mem_ctls_mutex);
1479	edac_printk(KERN_INFO, EDAC_MC,
1480		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1481		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1482	return mci;
1483}
1484EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1485
1486void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1487{
1488	struct page *pg;
1489	void *virt_addr;
1490	unsigned long flags = 0;
1491
1492	debugf3("%s()\n", __func__);
1493
1494	/* ECC error page was not in our memory. Ignore it. */
1495	if(!pfn_valid(page))
1496		return;
1497
1498	/* Find the actual page structure then map it and fix */
1499	pg = pfn_to_page(page);
1500
1501	if (PageHighMem(pg))
1502		local_irq_save(flags);
1503
1504	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1505
1506	/* Perform architecture specific atomic scrub operation */
1507	atomic_scrub(virt_addr + offset, size);
1508
1509	/* Unmap and complete */
1510	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1511
1512	if (PageHighMem(pg))
1513		local_irq_restore(flags);
1514}
1515EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1516
1517/* FIXME - should return -1 */
1518int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1519{
1520	struct csrow_info *csrows = mci->csrows;
1521	int row, i;
1522
1523	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1524	row = -1;
1525
1526	for (i = 0; i < mci->nr_csrows; i++) {
1527		struct csrow_info *csrow = &csrows[i];
1528
1529		if (csrow->nr_pages == 0)
1530			continue;
1531
1532		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1533			"mask(0x%lx)\n", mci->mc_idx, __func__,
1534			csrow->first_page, page, csrow->last_page,
1535			csrow->page_mask);
1536
1537		if ((page >= csrow->first_page) &&
1538		    (page <= csrow->last_page) &&
1539		    ((page & csrow->page_mask) ==
1540		     (csrow->first_page & csrow->page_mask))) {
1541			row = i;
1542			break;
1543		}
1544	}
1545
1546	if (row == -1)
1547		edac_mc_printk(mci, KERN_ERR,
1548			"could not look up page error address %lx\n",
1549			(unsigned long) page);
1550
1551	return row;
1552}
1553EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1554
1555/* FIXME - setable log (warning/emerg) levels */
1556/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1557void edac_mc_handle_ce(struct mem_ctl_info *mci,
1558		unsigned long page_frame_number, unsigned long offset_in_page,
1559		unsigned long syndrome, int row, int channel, const char *msg)
1560{
1561	unsigned long remapped_page;
1562
1563	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1564
1565	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1566	if (row >= mci->nr_csrows || row < 0) {
1567		/* something is wrong */
1568		edac_mc_printk(mci, KERN_ERR,
1569			"INTERNAL ERROR: row out of range "
1570			"(%d >= %d)\n", row, mci->nr_csrows);
1571		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1572		return;
1573	}
1574
1575	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1576		/* something is wrong */
1577		edac_mc_printk(mci, KERN_ERR,
1578			"INTERNAL ERROR: channel out of range "
1579			"(%d >= %d)\n", channel,
1580			mci->csrows[row].nr_channels);
1581		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1582		return;
1583	}
1584
1585	if (log_ce)
1586		/* FIXME - put in DIMM location */
1587		edac_mc_printk(mci, KERN_WARNING,
1588			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1589			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1590			page_frame_number, offset_in_page,
1591			mci->csrows[row].grain, syndrome, row, channel,
1592			mci->csrows[row].channels[channel].label, msg);
1593
1594	mci->ce_count++;
1595	mci->csrows[row].ce_count++;
1596	mci->csrows[row].channels[channel].ce_count++;
1597
1598	if (mci->scrub_mode & SCRUB_SW_SRC) {
1599		/*
1600		 * Some MC's can remap memory so that it is still available
1601		 * at a different address when PCI devices map into memory.
1602		 * MC's that can't do this lose the memory where PCI devices
1603		 * are mapped.  This mapping is MC dependant and so we call
1604		 * back into the MC driver for it to map the MC page to
1605		 * a physical (CPU) page which can then be mapped to a virtual
1606		 * page - which can then be scrubbed.
1607		 */
1608		remapped_page = mci->ctl_page_to_phys ?
1609		    mci->ctl_page_to_phys(mci, page_frame_number) :
1610		    page_frame_number;
1611
1612		edac_mc_scrub_block(remapped_page, offset_in_page,
1613					mci->csrows[row].grain);
1614	}
1615}
1616EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1617
1618void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1619{
1620	if (log_ce)
1621		edac_mc_printk(mci, KERN_WARNING,
1622			"CE - no information available: %s\n", msg);
1623
1624	mci->ce_noinfo_count++;
1625	mci->ce_count++;
1626}
1627EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1628
1629void edac_mc_handle_ue(struct mem_ctl_info *mci,
1630		unsigned long page_frame_number, unsigned long offset_in_page,
1631		int row, const char *msg)
1632{
1633	int len = EDAC_MC_LABEL_LEN * 4;
1634	char labels[len + 1];
1635	char *pos = labels;
1636	int chan;
1637	int chars;
1638
1639	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1640
1641	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1642	if (row >= mci->nr_csrows || row < 0) {
1643		/* something is wrong */
1644		edac_mc_printk(mci, KERN_ERR,
1645			"INTERNAL ERROR: row out of range "
1646			"(%d >= %d)\n", row, mci->nr_csrows);
1647		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1648		return;
1649	}
1650
1651	chars = snprintf(pos, len + 1, "%s",
1652			mci->csrows[row].channels[0].label);
1653	len -= chars;
1654	pos += chars;
1655
1656	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1657	     chan++) {
1658		chars = snprintf(pos, len + 1, ":%s",
1659				mci->csrows[row].channels[chan].label);
1660		len -= chars;
1661		pos += chars;
1662	}
1663
1664	if (log_ue)
1665		edac_mc_printk(mci, KERN_EMERG,
1666			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1667			"labels \"%s\": %s\n", page_frame_number,
1668			offset_in_page, mci->csrows[row].grain, row, labels,
1669			msg);
1670
1671	if (panic_on_ue)
1672		panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1673			"row %d, labels \"%s\": %s\n", mci->mc_idx,
1674			page_frame_number, offset_in_page,
1675			mci->csrows[row].grain, row, labels, msg);
1676
1677	mci->ue_count++;
1678	mci->csrows[row].ue_count++;
1679}
1680EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1681
1682void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1683{
1684	if (panic_on_ue)
1685		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1686
1687	if (log_ue)
1688		edac_mc_printk(mci, KERN_WARNING,
1689			"UE - no information available: %s\n", msg);
1690	mci->ue_noinfo_count++;
1691	mci->ue_count++;
1692}
1693EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1694
1695
1696/*
1697 * Iterate over all MC instances and check for ECC, et al, errors
1698 */
1699static inline void check_mc_devices(void)
1700{
1701	struct list_head *item;
1702	struct mem_ctl_info *mci;
1703
1704	debugf3("%s()\n", __func__);
1705	down(&mem_ctls_mutex);
1706
1707	list_for_each(item, &mc_devices) {
1708		mci = list_entry(item, struct mem_ctl_info, link);
1709
1710		if (mci->edac_check != NULL)
1711			mci->edac_check(mci);
1712	}
1713
1714	up(&mem_ctls_mutex);
1715}
1716
1717/*
1718 * Check MC status every poll_msec.
1719 * Check PCI status every poll_msec as well.
1720 *
1721 * This where the work gets done for edac.
1722 *
1723 * SMP safe, doesn't use NMI, and auto-rate-limits.
1724 */
1725static void do_edac_check(void)
1726{
1727	debugf3("%s()\n", __func__);
1728	check_mc_devices();
1729	do_pci_parity_check();
1730}
1731
1732static int edac_kernel_thread(void *arg)
1733{
1734	while (!kthread_should_stop()) {
1735		do_edac_check();
1736
1737		/* goto sleep for the interval */
1738		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1739		try_to_freeze();
1740	}
1741
1742	return 0;
1743}
1744
1745/*
1746 * edac_mc_init
1747 *      module initialization entry point
1748 */
1749static int __init edac_mc_init(void)
1750{
1751	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1752
1753	/*
1754	 * Harvest and clear any boot/initialization PCI parity errors
1755	 *
1756	 * FIXME: This only clears errors logged by devices present at time of
1757	 * 	module initialization.  We should also do an initial clear
1758	 *	of each newly hotplugged device.
1759	 */
1760	clear_pci_parity_errors();
1761
1762	/* Create the MC sysfs entries */
1763	if (edac_sysfs_memctrl_setup()) {
1764		edac_printk(KERN_ERR, EDAC_MC,
1765			"Error initializing sysfs code\n");
1766		return -ENODEV;
1767	}
1768
1769	/* Create the PCI parity sysfs entries */
1770	if (edac_sysfs_pci_setup()) {
1771		edac_sysfs_memctrl_teardown();
1772		edac_printk(KERN_ERR, EDAC_MC,
1773			"EDAC PCI: Error initializing sysfs code\n");
1774		return -ENODEV;
1775	}
1776
1777	/* create our kernel thread */
1778	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1779
1780	if (IS_ERR(edac_thread)) {
1781		/* remove the sysfs entries */
1782		edac_sysfs_memctrl_teardown();
1783		edac_sysfs_pci_teardown();
1784		return PTR_ERR(edac_thread);
1785	}
1786
1787	return 0;
1788}
1789
1790/*
1791 * edac_mc_exit()
1792 *      module exit/termination functioni
1793 */
1794static void __exit edac_mc_exit(void)
1795{
1796	debugf0("%s()\n", __func__);
1797	kthread_stop(edac_thread);
1798
1799        /* tear down the sysfs device */
1800	edac_sysfs_memctrl_teardown();
1801	edac_sysfs_pci_teardown();
1802}
1803
1804module_init(edac_mc_init);
1805module_exit(edac_mc_exit);
1806
1807MODULE_LICENSE("GPL");
1808MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1809	"Based on work by Dan Hollis et al");
1810MODULE_DESCRIPTION("Core library routines for MC reporting");
1811
1812module_param(panic_on_ue, int, 0644);
1813MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1814#ifdef CONFIG_PCI
1815module_param(check_pci_parity, int, 0644);
1816MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1817module_param(panic_on_pci_parity, int, 0644);
1818MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1819#endif
1820module_param(log_ue, int, 0644);
1821MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1822module_param(log_ce, int, 0644);
1823MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1824module_param(poll_msec, int, 0644);
1825MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
1826#ifdef CONFIG_EDAC_DEBUG
1827module_param(edac_debug_level, int, 0644);
1828MODULE_PARM_DESC(edac_debug_level, "Debug level");
1829#endif
1830