edac_mc.c revision 54933dddc3e8ccd9db48966d8ada11951cb8a558
1/*
2 * edac_mc kernel module
3 * (C) 2005 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15
16#include <linux/config.h>
17#include <linux/module.h>
18#include <linux/proc_fs.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/smp.h>
22#include <linux/init.h>
23#include <linux/sysctl.h>
24#include <linux/highmem.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/spinlock.h>
29#include <linux/list.h>
30#include <linux/sysdev.h>
31#include <linux/ctype.h>
32#include <linux/kthread.h>
33
34#include <asm/uaccess.h>
35#include <asm/page.h>
36#include <asm/edac.h>
37
38#include "edac_mc.h"
39
40#define	EDAC_MC_VERSION	"Ver: 2.0.0 " __DATE__
41
42/* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
43 * presents to user space needs more thought, and is likely to change
44 * substantially.
45 */
46#define DISABLE_EDAC_SYSFS
47
48#ifdef CONFIG_EDAC_DEBUG
49/* Values of 0 to 4 will generate output */
50int edac_debug_level = 1;
51EXPORT_SYMBOL(edac_debug_level);
52#endif
53
54/* EDAC Controls, setable by module parameter, and sysfs */
55static int log_ue = 1;
56static int log_ce = 1;
57static int panic_on_ue;
58static int poll_msec = 1000;
59
60static int check_pci_parity = 0;	/* default YES check PCI parity */
61static int panic_on_pci_parity;		/* default no panic on PCI Parity */
62static atomic_t pci_parity_count = ATOMIC_INIT(0);
63
64/* lock to memory controller's control array */
65static DECLARE_MUTEX(mem_ctls_mutex);
66static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
67
68static struct task_struct *edac_thread;
69
70/* Structure of the whitelist and blacklist arrays */
71struct edac_pci_device_list {
72	unsigned int  vendor;		/* Vendor ID */
73	unsigned int  device;		/* Deviice ID */
74};
75
76
77#define MAX_LISTED_PCI_DEVICES		32
78
79/* List of PCI devices (vendor-id:device-id) that should be skipped */
80static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
81static int pci_blacklist_count;
82
83/* List of PCI devices (vendor-id:device-id) that should be scanned */
84static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
85static int pci_whitelist_count ;
86
87/*  START sysfs data and methods */
88
89#ifndef DISABLE_EDAC_SYSFS
90
91static const char *mem_types[] = {
92	[MEM_EMPTY] = "Empty",
93	[MEM_RESERVED] = "Reserved",
94	[MEM_UNKNOWN] = "Unknown",
95	[MEM_FPM] = "FPM",
96	[MEM_EDO] = "EDO",
97	[MEM_BEDO] = "BEDO",
98	[MEM_SDR] = "Unbuffered-SDR",
99	[MEM_RDR] = "Registered-SDR",
100	[MEM_DDR] = "Unbuffered-DDR",
101	[MEM_RDDR] = "Registered-DDR",
102	[MEM_RMBS] = "RMBS"
103};
104
105static const char *dev_types[] = {
106	[DEV_UNKNOWN] = "Unknown",
107	[DEV_X1] = "x1",
108	[DEV_X2] = "x2",
109	[DEV_X4] = "x4",
110	[DEV_X8] = "x8",
111	[DEV_X16] = "x16",
112	[DEV_X32] = "x32",
113	[DEV_X64] = "x64"
114};
115
116static const char *edac_caps[] = {
117	[EDAC_UNKNOWN] = "Unknown",
118	[EDAC_NONE] = "None",
119	[EDAC_RESERVED] = "Reserved",
120	[EDAC_PARITY] = "PARITY",
121	[EDAC_EC] = "EC",
122	[EDAC_SECDED] = "SECDED",
123	[EDAC_S2ECD2ED] = "S2ECD2ED",
124	[EDAC_S4ECD4ED] = "S4ECD4ED",
125	[EDAC_S8ECD8ED] = "S8ECD8ED",
126	[EDAC_S16ECD16ED] = "S16ECD16ED"
127};
128
129
130/* sysfs object: /sys/devices/system/edac */
131static struct sysdev_class edac_class = {
132	set_kset_name("edac"),
133};
134
135/* sysfs objects:
136 *	/sys/devices/system/edac/mc
137 *	/sys/devices/system/edac/pci
138 */
139static struct kobject edac_memctrl_kobj;
140static struct kobject edac_pci_kobj;
141
142/* We use these to wait for the reference counts on edac_memctrl_kobj and
143 * edac_pci_kobj to reach 0.
144 */
145static struct completion edac_memctrl_kobj_complete;
146static struct completion edac_pci_kobj_complete;
147
148/*
149 * /sys/devices/system/edac/mc;
150 * 	data structures and methods
151 */
152#if 0
153static ssize_t memctrl_string_show(void *ptr, char *buffer)
154{
155	char *value = (char*) ptr;
156	return sprintf(buffer, "%s\n", value);
157}
158#endif
159
160static ssize_t memctrl_int_show(void *ptr, char *buffer)
161{
162	int *value = (int*) ptr;
163	return sprintf(buffer, "%d\n", *value);
164}
165
166static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
167{
168	int *value = (int*) ptr;
169
170	if (isdigit(*buffer))
171		*value = simple_strtoul(buffer, NULL, 0);
172
173	return count;
174}
175
176struct memctrl_dev_attribute {
177	struct attribute	attr;
178	void	*value;
179	ssize_t (*show)(void *,char *);
180	ssize_t (*store)(void *, const char *, size_t);
181};
182
183/* Set of show/store abstract level functions for memory control object */
184static ssize_t
185memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer)
186{
187	struct memctrl_dev_attribute *memctrl_dev;
188	memctrl_dev = (struct memctrl_dev_attribute*)attr;
189
190	if (memctrl_dev->show)
191		return memctrl_dev->show(memctrl_dev->value, buffer);
192	return -EIO;
193}
194
195static ssize_t
196memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
197			const char *buffer, size_t count)
198{
199	struct memctrl_dev_attribute *memctrl_dev;
200	memctrl_dev = (struct memctrl_dev_attribute*)attr;
201
202	if (memctrl_dev->store)
203		return memctrl_dev->store(memctrl_dev->value, buffer, count);
204	return -EIO;
205}
206
207static struct sysfs_ops memctrlfs_ops = {
208	.show   = memctrl_dev_show,
209	.store  = memctrl_dev_store
210};
211
212#define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
213struct memctrl_dev_attribute attr_##_name = {			\
214	.attr = {.name = __stringify(_name), .mode = _mode },	\
215	.value  = &_name,					\
216	.show   = _show,					\
217	.store  = _store,					\
218};
219
220#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
221struct memctrl_dev_attribute attr_##_name = {			\
222	.attr = {.name = __stringify(_name), .mode = _mode },	\
223	.value  = _data,					\
224	.show   = _show,					\
225	.store  = _store,					\
226};
227
228/* cwrow<id> attribute f*/
229#if 0
230MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
231#endif
232
233/* csrow<id> control files */
234MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239
240/* Base Attributes of the memory ECC object */
241static struct memctrl_dev_attribute *memctrl_attr[] = {
242	&attr_panic_on_ue,
243	&attr_log_ue,
244	&attr_log_ce,
245	&attr_poll_msec,
246	NULL,
247};
248
249/* Main MC kobject release() function */
250static void edac_memctrl_master_release(struct kobject *kobj)
251{
252	debugf1("%s()\n", __func__);
253	complete(&edac_memctrl_kobj_complete);
254}
255
256static struct kobj_type ktype_memctrl = {
257	.release	= edac_memctrl_master_release,
258	.sysfs_ops	= &memctrlfs_ops,
259	.default_attrs	= (struct attribute **) memctrl_attr,
260};
261
262#endif  /* DISABLE_EDAC_SYSFS */
263
264/* Initialize the main sysfs entries for edac:
265 *   /sys/devices/system/edac
266 *
267 * and children
268 *
269 * Return:  0 SUCCESS
270 *         !0 FAILURE
271 */
272static int edac_sysfs_memctrl_setup(void)
273#ifdef DISABLE_EDAC_SYSFS
274{
275	return 0;
276}
277#else
278{
279	int err=0;
280
281	debugf1("%s()\n", __func__);
282
283	/* create the /sys/devices/system/edac directory */
284	err = sysdev_class_register(&edac_class);
285	if (!err) {
286		/* Init the MC's kobject */
287		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
288		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289		edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291		/* generate sysfs "..../edac/mc"   */
292		err = kobject_set_name(&edac_memctrl_kobj,"mc");
293		if (!err) {
294			/* FIXME: maybe new sysdev_create_subdir() */
295			err = kobject_register(&edac_memctrl_kobj);
296			if (err) {
297				debugf1("Failed to register '.../edac/mc'\n");
298			} else {
299				debugf1("Registered '.../edac/mc' kobject\n");
300			}
301		}
302	} else {
303		debugf1("%s() error=%d\n", __func__, err);
304	}
305
306	return err;
307}
308#endif  /* DISABLE_EDAC_SYSFS */
309
310/*
311 * MC teardown:
312 *	the '..../edac/mc' kobject followed by '..../edac' itself
313 */
314static void edac_sysfs_memctrl_teardown(void)
315{
316#ifndef DISABLE_EDAC_SYSFS
317	debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
319	/* Unregister the MC's kobject and wait for reference count to reach
320	 * 0.
321	 */
322	init_completion(&edac_memctrl_kobj_complete);
323	kobject_unregister(&edac_memctrl_kobj);
324	wait_for_completion(&edac_memctrl_kobj_complete);
325
326	/* Unregister the 'edac' object */
327	sysdev_class_unregister(&edac_class);
328#endif  /* DISABLE_EDAC_SYSFS */
329}
330
331#ifndef DISABLE_EDAC_SYSFS
332
333/*
334 * /sys/devices/system/edac/pci;
335 * 	data structures and methods
336 */
337
338struct list_control {
339	struct edac_pci_device_list *list;
340	int *count;
341};
342
343
344#if 0
345/* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
346static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
347{
348	struct list_control *listctl;
349	struct edac_pci_device_list *list;
350	char *p = buffer;
351	int len=0;
352	int i;
353
354	listctl = ptr;
355	list = listctl->list;
356
357	for (i = 0; i < *(listctl->count); i++, list++ ) {
358		if (len > 0)
359			len += snprintf(p + len, (PAGE_SIZE-len), ",");
360
361		len += snprintf(p + len,
362				(PAGE_SIZE-len),
363				"%x:%x",
364				list->vendor,list->device);
365	}
366
367	len += snprintf(p + len,(PAGE_SIZE-len), "\n");
368
369	return (ssize_t) len;
370}
371
372/**
373 *
374 * Scan string from **s to **e looking for one 'vendor:device' tuple
375 * where each field is a hex value
376 *
377 * return 0 if an entry is NOT found
378 * return 1 if an entry is found
379 *	fill in *vendor_id and *device_id with values found
380 *
381 * In both cases, make sure *s has been moved forward toward *e
382 */
383static int parse_one_device(const char **s,const char **e,
384	unsigned int *vendor_id, unsigned int *device_id)
385{
386	const char *runner, *p;
387
388	/* if null byte, we are done */
389	if (!**s) {
390		(*s)++;	/* keep *s moving */
391		return 0;
392	}
393
394	/* skip over newlines & whitespace */
395	if ((**s == '\n') || isspace(**s)) {
396		(*s)++;
397		return 0;
398	}
399
400	if (!isxdigit(**s)) {
401		(*s)++;
402		return 0;
403	}
404
405	/* parse vendor_id */
406	runner = *s;
407	while (runner < *e) {
408		/* scan for vendor:device delimiter */
409		if (*runner == ':') {
410			*vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
411			runner = p + 1;
412			break;
413		}
414		runner++;
415	}
416
417	if (!isxdigit(*runner)) {
418		*s = ++runner;
419		return 0;
420	}
421
422	/* parse device_id */
423	if (runner < *e) {
424		*device_id = simple_strtol((char*)runner, (char**)&p, 16);
425		runner = p;
426	}
427
428	*s = runner;
429
430	return 1;
431}
432
433static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
434					size_t count)
435{
436	struct list_control *listctl;
437	struct edac_pci_device_list *list;
438	unsigned int vendor_id, device_id;
439	const char *s, *e;
440	int *index;
441
442	s = (char*)buffer;
443	e = s + count;
444
445	listctl = ptr;
446	list = listctl->list;
447	index = listctl->count;
448
449	*index = 0;
450	while (*index < MAX_LISTED_PCI_DEVICES) {
451
452		if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
453			list[ *index ].vendor = vendor_id;
454			list[ *index ].device = device_id;
455			(*index)++;
456		}
457
458		/* check for all data consume */
459		if (s >= e)
460			break;
461	}
462
463	return count;
464}
465
466#endif
467static ssize_t edac_pci_int_show(void *ptr, char *buffer)
468{
469	int *value = ptr;
470	return sprintf(buffer,"%d\n",*value);
471}
472
473static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
474{
475	int *value = ptr;
476
477	if (isdigit(*buffer))
478		*value = simple_strtoul(buffer,NULL,0);
479
480	return count;
481}
482
483struct edac_pci_dev_attribute {
484	struct attribute	attr;
485	void	*value;
486	ssize_t (*show)(void *,char *);
487	ssize_t (*store)(void *, const char *,size_t);
488};
489
490/* Set of show/store abstract level functions for PCI Parity object */
491static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
492				char *buffer)
493{
494	struct edac_pci_dev_attribute *edac_pci_dev;
495	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
496
497	if (edac_pci_dev->show)
498		return edac_pci_dev->show(edac_pci_dev->value, buffer);
499	return -EIO;
500}
501
502static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr,
503				const char *buffer, size_t count)
504{
505	struct edac_pci_dev_attribute *edac_pci_dev;
506	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
507
508	if (edac_pci_dev->show)
509		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
510	return -EIO;
511}
512
513static struct sysfs_ops edac_pci_sysfs_ops = {
514	.show   = edac_pci_dev_show,
515	.store  = edac_pci_dev_store
516};
517
518
519#define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
520struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
521	.attr = {.name = __stringify(_name), .mode = _mode },	\
522	.value  = &_name,					\
523	.show   = _show,					\
524	.store  = _store,					\
525};
526
527#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
528struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
529	.attr = {.name = __stringify(_name), .mode = _mode },	\
530	.value  = _data,					\
531	.show   = _show,					\
532	.store  = _store,					\
533};
534
535#if 0
536static struct list_control pci_whitelist_control = {
537	.list = pci_whitelist,
538	.count = &pci_whitelist_count
539};
540
541static struct list_control pci_blacklist_control = {
542	.list = pci_blacklist,
543	.count = &pci_blacklist_count
544};
545
546/* whitelist attribute */
547EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
548	&pci_whitelist_control,
549	S_IRUGO|S_IWUSR,
550	edac_pci_list_string_show,
551	edac_pci_list_string_store);
552
553EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
554	&pci_blacklist_control,
555	S_IRUGO|S_IWUSR,
556	edac_pci_list_string_show,
557	edac_pci_list_string_store);
558#endif
559
560/* PCI Parity control files */
561EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
562EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
563EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL);
564
565/* Base Attributes of the memory ECC object */
566static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567	&edac_pci_attr_check_pci_parity,
568	&edac_pci_attr_panic_on_pci_parity,
569	&edac_pci_attr_pci_parity_count,
570	NULL,
571};
572
573/* No memory to release */
574static void edac_pci_release(struct kobject *kobj)
575{
576	debugf1("%s()\n", __func__);
577	complete(&edac_pci_kobj_complete);
578}
579
580static struct kobj_type ktype_edac_pci = {
581	.release	= edac_pci_release,
582	.sysfs_ops	= &edac_pci_sysfs_ops,
583	.default_attrs	= (struct attribute **) edac_pci_attr,
584};
585
586#endif  /* DISABLE_EDAC_SYSFS */
587
588/**
589 * edac_sysfs_pci_setup()
590 *
591 */
592static int edac_sysfs_pci_setup(void)
593#ifdef DISABLE_EDAC_SYSFS
594{
595	return 0;
596}
597#else
598{
599	int err;
600
601	debugf1("%s()\n", __func__);
602
603	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
604	edac_pci_kobj.parent = &edac_class.kset.kobj;
605	edac_pci_kobj.ktype = &ktype_edac_pci;
606
607	err = kobject_set_name(&edac_pci_kobj, "pci");
608	if (!err) {
609		/* Instanstiate the csrow object */
610		/* FIXME: maybe new sysdev_create_subdir() */
611		err = kobject_register(&edac_pci_kobj);
612		if (err)
613			debugf1("Failed to register '.../edac/pci'\n");
614		else
615			debugf1("Registered '.../edac/pci' kobject\n");
616	}
617	return err;
618}
619#endif  /* DISABLE_EDAC_SYSFS */
620
621static void edac_sysfs_pci_teardown(void)
622{
623#ifndef DISABLE_EDAC_SYSFS
624	debugf0("%s()\n", __func__);
625	init_completion(&edac_pci_kobj_complete);
626	kobject_unregister(&edac_pci_kobj);
627	wait_for_completion(&edac_pci_kobj_complete);
628#endif
629}
630
631#ifndef DISABLE_EDAC_SYSFS
632
633/* EDAC sysfs CSROW data structures and methods */
634
635/* Set of more detailed csrow<id> attribute show/store functions */
636static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
637{
638	ssize_t size = 0;
639
640	if (csrow->nr_channels > 0) {
641		size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
642			csrow->channels[0].label);
643	}
644	return size;
645}
646
647static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
648{
649	ssize_t size = 0;
650
651	if (csrow->nr_channels > 0) {
652		size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
653			csrow->channels[1].label);
654	}
655	return size;
656}
657
658static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
659			const char *data, size_t size)
660{
661	ssize_t max_size = 0;
662
663	if (csrow->nr_channels > 0) {
664		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
665		strncpy(csrow->channels[0].label, data, max_size);
666		csrow->channels[0].label[max_size] = '\0';
667	}
668	return size;
669}
670
671static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
672			const char *data, size_t size)
673{
674	ssize_t max_size = 0;
675
676	if (csrow->nr_channels > 1) {
677		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
678		strncpy(csrow->channels[1].label, data, max_size);
679		csrow->channels[1].label[max_size] = '\0';
680	}
681	return max_size;
682}
683
684static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685{
686	return sprintf(data,"%u\n", csrow->ue_count);
687}
688
689static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690{
691	return sprintf(data,"%u\n", csrow->ce_count);
692}
693
694static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695{
696	ssize_t size = 0;
697
698	if (csrow->nr_channels > 0) {
699		size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700	}
701	return size;
702}
703
704static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
705{
706	ssize_t size = 0;
707
708	if (csrow->nr_channels > 1) {
709		size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
710	}
711	return size;
712}
713
714static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
715{
716	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
717}
718
719static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
720{
721	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
722}
723
724static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
725{
726	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
727}
728
729static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
730{
731	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
732}
733
734struct csrowdev_attribute {
735	struct attribute	attr;
736	ssize_t (*show)(struct csrow_info *,char *);
737	ssize_t (*store)(struct csrow_info *, const char *,size_t);
738};
739
740#define to_csrow(k) container_of(k, struct csrow_info, kobj)
741#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
742
743/* Set of show/store higher level functions for csrow objects */
744static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
745				char *buffer)
746{
747	struct csrow_info *csrow = to_csrow(kobj);
748	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
749
750	if (csrowdev_attr->show)
751		return csrowdev_attr->show(csrow, buffer);
752	return -EIO;
753}
754
755static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
756				const char *buffer, size_t count)
757{
758	struct csrow_info *csrow = to_csrow(kobj);
759	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
760
761	if (csrowdev_attr->store)
762		return csrowdev_attr->store(csrow, buffer, count);
763	return -EIO;
764}
765
766static struct sysfs_ops csrowfs_ops = {
767	.show   = csrowdev_show,
768	.store  = csrowdev_store
769};
770
771#define CSROWDEV_ATTR(_name,_mode,_show,_store)			\
772struct csrowdev_attribute attr_##_name = {			\
773	.attr = {.name = __stringify(_name), .mode = _mode },	\
774	.show   = _show,					\
775	.store  = _store,					\
776};
777
778/* cwrow<id>/attribute files */
779CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
780CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
781CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
782CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
783CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
784CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
785CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
786CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
787
788/* control/attribute files */
789CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
790		csrow_ch0_dimm_label_show,
791		csrow_ch0_dimm_label_store);
792CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
793		csrow_ch1_dimm_label_show,
794		csrow_ch1_dimm_label_store);
795
796
797/* Attributes of the CSROW<id> object */
798static struct csrowdev_attribute *csrow_attr[] = {
799	&attr_dev_type,
800	&attr_mem_type,
801	&attr_edac_mode,
802	&attr_size_mb,
803	&attr_ue_count,
804	&attr_ce_count,
805	&attr_ch0_ce_count,
806	&attr_ch1_ce_count,
807	&attr_ch0_dimm_label,
808	&attr_ch1_dimm_label,
809	NULL,
810};
811
812
813/* No memory to release */
814static void edac_csrow_instance_release(struct kobject *kobj)
815{
816	struct csrow_info *cs;
817
818	debugf1("%s()\n", __func__);
819	cs = container_of(kobj, struct csrow_info, kobj);
820	complete(&cs->kobj_complete);
821}
822
823static struct kobj_type ktype_csrow = {
824	.release	= edac_csrow_instance_release,
825	.sysfs_ops	= &csrowfs_ops,
826	.default_attrs	= (struct attribute **) csrow_attr,
827};
828
829/* Create a CSROW object under specifed edac_mc_device */
830static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
831				struct csrow_info *csrow, int index )
832{
833	int err = 0;
834
835	debugf0("%s()\n", __func__);
836
837	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
838
839	/* generate ..../edac/mc/mc<id>/csrow<index>   */
840
841	csrow->kobj.parent = edac_mci_kobj;
842	csrow->kobj.ktype = &ktype_csrow;
843
844	/* name this instance of csrow<id> */
845	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
846	if (!err) {
847		/* Instanstiate the csrow object */
848		err = kobject_register(&csrow->kobj);
849		if (err)
850			debugf0("Failed to register CSROW%d\n",index);
851		else
852			debugf0("Registered CSROW%d\n",index);
853	}
854
855	return err;
856}
857
858/* sysfs data structures and methods for the MCI kobjects */
859
860static ssize_t mci_reset_counters_store(struct mem_ctl_info  *mci,
861					const char *data, size_t count )
862{
863	int row, chan;
864
865	mci->ue_noinfo_count = 0;
866	mci->ce_noinfo_count = 0;
867	mci->ue_count = 0;
868	mci->ce_count = 0;
869	for (row = 0; row < mci->nr_csrows; row++) {
870		struct csrow_info *ri = &mci->csrows[row];
871
872		ri->ue_count = 0;
873		ri->ce_count = 0;
874		for (chan = 0; chan < ri->nr_channels; chan++)
875			ri->channels[chan].ce_count = 0;
876	}
877	mci->start_time = jiffies;
878
879	return count;
880}
881
882static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
883{
884	return sprintf(data,"%d\n", mci->ue_count);
885}
886
887static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
888{
889	return sprintf(data,"%d\n", mci->ce_count);
890}
891
892static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
893{
894	return sprintf(data,"%d\n", mci->ce_noinfo_count);
895}
896
897static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
898{
899	return sprintf(data,"%d\n", mci->ue_noinfo_count);
900}
901
902static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
903{
904	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
905}
906
907static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
908{
909	return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
910}
911
912static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
913{
914	return sprintf(data,"%s\n", mci->ctl_name);
915}
916
917static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
918{
919	char *p = buf;
920	int bit_idx;
921
922	for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
923		if ((edac_cap >> bit_idx) & 0x1)
924			p += sprintf(p, "%s ", edac_caps[bit_idx]);
925	}
926
927	return p - buf;
928}
929
930static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
931{
932	char *p = data;
933
934	p += mci_output_edac_cap(p,mci->edac_ctl_cap);
935	p += sprintf(p, "\n");
936
937	return p - data;
938}
939
940static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
941						char *data)
942{
943	char *p = data;
944
945	p += mci_output_edac_cap(p,mci->edac_cap);
946	p += sprintf(p, "\n");
947
948	return p - data;
949}
950
951static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
952{
953	char *p = buf;
954	int bit_idx;
955
956	for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
957		if ((mtype_cap >> bit_idx) & 0x1)
958			p += sprintf(p, "%s ", mem_types[bit_idx]);
959	}
960
961	return p - buf;
962}
963
964static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data)
965{
966	char *p = data;
967
968	p += mci_output_mtype_cap(p,mci->mtype_cap);
969	p += sprintf(p, "\n");
970
971	return p - data;
972}
973
974static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
975{
976	int total_pages, csrow_idx;
977
978	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
979			csrow_idx++) {
980		struct csrow_info *csrow = &mci->csrows[csrow_idx];
981
982		if (!csrow->nr_pages)
983			continue;
984		total_pages += csrow->nr_pages;
985	}
986
987	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
988}
989
990struct mcidev_attribute {
991	struct attribute	attr;
992	ssize_t (*show)(struct mem_ctl_info *,char *);
993	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
994};
995
996#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
997#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
998
999static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1000			char *buffer)
1001{
1002	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1003	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1004
1005	if (mcidev_attr->show)
1006		return mcidev_attr->show(mem_ctl_info, buffer);
1007	return -EIO;
1008}
1009
1010static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1011				const char *buffer, size_t count)
1012{
1013	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1014	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1015
1016	if (mcidev_attr->store)
1017		return mcidev_attr->store(mem_ctl_info, buffer, count);
1018	return -EIO;
1019}
1020
1021static struct sysfs_ops mci_ops = {
1022	.show   = mcidev_show,
1023	.store  = mcidev_store
1024};
1025
1026#define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1027struct mcidev_attribute mci_attr_##_name = {			\
1028	.attr = {.name = __stringify(_name), .mode = _mode },	\
1029	.show   = _show,					\
1030	.store  = _store,					\
1031};
1032
1033/* Control file */
1034MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1035
1036/* Attribute files */
1037MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1038MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1039MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1040MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1041MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1042MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1043MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1044MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1045MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1046MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1047	mci_edac_current_capability_show,NULL);
1048MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1049	mci_supported_mem_type_show,NULL);
1050
1051
1052static struct mcidev_attribute *mci_attr[] = {
1053	&mci_attr_reset_counters,
1054	&mci_attr_module_name,
1055	&mci_attr_mc_name,
1056	&mci_attr_edac_capability,
1057	&mci_attr_edac_current_capability,
1058	&mci_attr_supported_mem_type,
1059	&mci_attr_size_mb,
1060	&mci_attr_seconds_since_reset,
1061	&mci_attr_ue_noinfo_count,
1062	&mci_attr_ce_noinfo_count,
1063	&mci_attr_ue_count,
1064	&mci_attr_ce_count,
1065	NULL
1066};
1067
1068
1069/*
1070 * Release of a MC controlling instance
1071 */
1072static void edac_mci_instance_release(struct kobject *kobj)
1073{
1074	struct mem_ctl_info *mci;
1075
1076	mci = to_mci(kobj);
1077	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1078	complete(&mci->kobj_complete);
1079}
1080
1081static struct kobj_type ktype_mci = {
1082	.release	= edac_mci_instance_release,
1083	.sysfs_ops	= &mci_ops,
1084	.default_attrs	= (struct attribute **) mci_attr,
1085};
1086
1087#endif  /* DISABLE_EDAC_SYSFS */
1088
1089#define EDAC_DEVICE_SYMLINK	"device"
1090
1091/*
1092 * Create a new Memory Controller kobject instance,
1093 *	mc<id> under the 'mc' directory
1094 *
1095 * Return:
1096 *	0	Success
1097 *	!0	Failure
1098 */
1099static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1100#ifdef DISABLE_EDAC_SYSFS
1101{
1102	return 0;
1103}
1104#else
1105{
1106	int i;
1107	int err;
1108	struct csrow_info *csrow;
1109	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1110
1111	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112
1113	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1114
1115	/* set the name of the mc<id> object */
1116	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1117	if (err)
1118		return err;
1119
1120	/* link to our parent the '..../edac/mc' object */
1121	edac_mci_kobj->parent = &edac_memctrl_kobj;
1122	edac_mci_kobj->ktype = &ktype_mci;
1123
1124	/* register the mc<id> kobject */
1125	err = kobject_register(edac_mci_kobj);
1126	if (err)
1127		return err;
1128
1129	/* create a symlink for the device */
1130	err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1131				EDAC_DEVICE_SYMLINK);
1132	if (err)
1133		goto fail0;
1134
1135	/* Make directories for each CSROW object
1136	 * under the mc<id> kobject
1137	 */
1138	for (i = 0; i < mci->nr_csrows; i++) {
1139
1140		csrow = &mci->csrows[i];
1141
1142		/* Only expose populated CSROWs */
1143		if (csrow->nr_pages > 0) {
1144			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1145			if (err)
1146				goto fail1;
1147		}
1148	}
1149
1150	return 0;
1151
1152
1153	/* CSROW error: backout what has already been registered,  */
1154fail1:
1155	for ( i--; i >= 0; i--) {
1156		if (csrow->nr_pages > 0) {
1157			init_completion(&csrow->kobj_complete);
1158			kobject_unregister(&mci->csrows[i].kobj);
1159			wait_for_completion(&csrow->kobj_complete);
1160		}
1161	}
1162
1163fail0:
1164	init_completion(&mci->kobj_complete);
1165	kobject_unregister(edac_mci_kobj);
1166	wait_for_completion(&mci->kobj_complete);
1167
1168	return err;
1169}
1170#endif  /* DISABLE_EDAC_SYSFS */
1171
1172/*
1173 * remove a Memory Controller instance
1174 */
1175static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1176{
1177#ifndef DISABLE_EDAC_SYSFS
1178	int i;
1179
1180	debugf0("%s()\n", __func__);
1181
1182	/* remove all csrow kobjects */
1183	for (i = 0; i < mci->nr_csrows; i++) {
1184		if (mci->csrows[i].nr_pages > 0) {
1185			init_completion(&mci->csrows[i].kobj_complete);
1186			kobject_unregister(&mci->csrows[i].kobj);
1187			wait_for_completion(&mci->csrows[i].kobj_complete);
1188		}
1189	}
1190
1191	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1192	init_completion(&mci->kobj_complete);
1193	kobject_unregister(&mci->edac_mci_kobj);
1194	wait_for_completion(&mci->kobj_complete);
1195#endif  /* DISABLE_EDAC_SYSFS */
1196}
1197
1198/* END OF sysfs data and methods */
1199
1200#ifdef CONFIG_EDAC_DEBUG
1201
1202
1203void edac_mc_dump_channel(struct channel_info *chan)
1204{
1205	debugf4("\tchannel = %p\n", chan);
1206	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1207	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1208	debugf4("\tchannel->label = '%s'\n", chan->label);
1209	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1210}
1211EXPORT_SYMBOL(edac_mc_dump_channel);
1212
1213
1214void edac_mc_dump_csrow(struct csrow_info *csrow)
1215{
1216	debugf4("\tcsrow = %p\n", csrow);
1217	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1218	debugf4("\tcsrow->first_page = 0x%lx\n",
1219		csrow->first_page);
1220	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1221	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1222	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1223	debugf4("\tcsrow->nr_channels = %d\n",
1224		csrow->nr_channels);
1225	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1226	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1227}
1228EXPORT_SYMBOL(edac_mc_dump_csrow);
1229
1230
1231void edac_mc_dump_mci(struct mem_ctl_info *mci)
1232{
1233	debugf3("\tmci = %p\n", mci);
1234	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1235	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1236	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1237	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1238	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1239		mci->nr_csrows, mci->csrows);
1240	debugf3("\tpdev = %p\n", mci->pdev);
1241	debugf3("\tmod_name:ctl_name = %s:%s\n",
1242		mci->mod_name, mci->ctl_name);
1243	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1244}
1245EXPORT_SYMBOL(edac_mc_dump_mci);
1246
1247
1248#endif				/* CONFIG_EDAC_DEBUG */
1249
1250/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1251 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1252 * compiler would provide for X and return the aligned result.
1253 *
1254 * If 'size' is a constant, the compiler will optimize this whole function
1255 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1256 */
1257static inline char * align_ptr (void *ptr, unsigned size)
1258{
1259	unsigned align, r;
1260
1261	/* Here we assume that the alignment of a "long long" is the most
1262	 * stringent alignment that the compiler will ever provide by default.
1263	 * As far as I know, this is a reasonable assumption.
1264	 */
1265	if (size > sizeof(long))
1266		align = sizeof(long long);
1267	else if (size > sizeof(int))
1268		align = sizeof(long);
1269	else if (size > sizeof(short))
1270		align = sizeof(int);
1271	else if (size > sizeof(char))
1272		align = sizeof(short);
1273	else
1274		return (char *) ptr;
1275
1276	r = size % align;
1277
1278	if (r == 0)
1279		return (char *) ptr;
1280
1281	return (char *) (((unsigned long) ptr) + align - r);
1282}
1283
1284
1285/**
1286 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1287 * @size_pvt:	size of private storage needed
1288 * @nr_csrows:	Number of CWROWS needed for this MC
1289 * @nr_chans:	Number of channels for the MC
1290 *
1291 * Everything is kmalloc'ed as one big chunk - more efficient.
1292 * Only can be used if all structures have the same lifetime - otherwise
1293 * you have to allocate and initialize your own structures.
1294 *
1295 * Use edac_mc_free() to free mc structures allocated by this function.
1296 *
1297 * Returns:
1298 *	NULL allocation failed
1299 *	struct mem_ctl_info pointer
1300 */
1301struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1302					unsigned nr_chans)
1303{
1304	struct mem_ctl_info *mci;
1305	struct csrow_info *csi, *csrow;
1306	struct channel_info *chi, *chp, *chan;
1307	void *pvt;
1308	unsigned size;
1309	int row, chn;
1310
1311	/* Figure out the offsets of the various items from the start of an mc
1312	 * structure.  We want the alignment of each item to be at least as
1313	 * stringent as what the compiler would provide if we could simply
1314	 * hardcode everything into a single struct.
1315	 */
1316	mci = (struct mem_ctl_info *) 0;
1317	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1318	chi = (struct channel_info *)
1319			align_ptr(&csi[nr_csrows], sizeof(*chi));
1320	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1321	size = ((unsigned long) pvt) + sz_pvt;
1322
1323	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1324		return NULL;
1325
1326	/* Adjust pointers so they point within the memory we just allocated
1327	 * rather than an imaginary chunk of memory located at address 0.
1328	 */
1329	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1330	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1331	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1332
1333	memset(mci, 0, size);	/* clear all fields */
1334
1335	mci->csrows = csi;
1336	mci->pvt_info = pvt;
1337	mci->nr_csrows = nr_csrows;
1338
1339	for (row = 0; row < nr_csrows; row++) {
1340		csrow = &csi[row];
1341		csrow->csrow_idx = row;
1342		csrow->mci = mci;
1343		csrow->nr_channels = nr_chans;
1344		chp = &chi[row * nr_chans];
1345		csrow->channels = chp;
1346
1347		for (chn = 0; chn < nr_chans; chn++) {
1348			chan = &chp[chn];
1349			chan->chan_idx = chn;
1350			chan->csrow = csrow;
1351		}
1352	}
1353
1354	return mci;
1355}
1356EXPORT_SYMBOL(edac_mc_alloc);
1357
1358
1359/**
1360 * edac_mc_free:  Free a previously allocated 'mci' structure
1361 * @mci: pointer to a struct mem_ctl_info structure
1362 */
1363void edac_mc_free(struct mem_ctl_info *mci)
1364{
1365	kfree(mci);
1366}
1367EXPORT_SYMBOL(edac_mc_free);
1368
1369static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
1370{
1371	struct mem_ctl_info *mci;
1372	struct list_head *item;
1373
1374	debugf3("%s()\n", __func__);
1375
1376	list_for_each(item, &mc_devices) {
1377		mci = list_entry(item, struct mem_ctl_info, link);
1378
1379		if (mci->pdev == pdev)
1380			return mci;
1381	}
1382
1383	return NULL;
1384}
1385
1386static int add_mc_to_global_list (struct mem_ctl_info *mci)
1387{
1388	struct list_head *item, *insert_before;
1389	struct mem_ctl_info *p;
1390	int i;
1391
1392	if (list_empty(&mc_devices)) {
1393		mci->mc_idx = 0;
1394		insert_before = &mc_devices;
1395	} else {
1396		if (find_mci_by_pdev(mci->pdev)) {
1397			edac_printk(KERN_WARNING, EDAC_MC,
1398				"%s (%s) %s %s already assigned %d\n",
1399				mci->pdev->dev.bus_id,
1400				pci_name(mci->pdev), mci->mod_name,
1401				mci->ctl_name, mci->mc_idx);
1402			return 1;
1403		}
1404
1405		insert_before = NULL;
1406		i = 0;
1407
1408		list_for_each(item, &mc_devices) {
1409			p = list_entry(item, struct mem_ctl_info, link);
1410
1411			if (p->mc_idx != i) {
1412				insert_before = item;
1413				break;
1414			}
1415
1416			i++;
1417		}
1418
1419		mci->mc_idx = i;
1420
1421		if (insert_before == NULL)
1422			insert_before = &mc_devices;
1423	}
1424
1425	list_add_tail_rcu(&mci->link, insert_before);
1426	return 0;
1427}
1428
1429
1430static void complete_mc_list_del (struct rcu_head *head)
1431{
1432	struct mem_ctl_info *mci;
1433
1434	mci = container_of(head, struct mem_ctl_info, rcu);
1435	INIT_LIST_HEAD(&mci->link);
1436	complete(&mci->complete);
1437}
1438
1439
1440static void del_mc_from_global_list (struct mem_ctl_info *mci)
1441{
1442	list_del_rcu(&mci->link);
1443	init_completion(&mci->complete);
1444	call_rcu(&mci->rcu, complete_mc_list_del);
1445	wait_for_completion(&mci->complete);
1446}
1447
1448
1449/**
1450 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1451 *                 create sysfs entries associated with mci structure
1452 * @mci: pointer to the mci structure to be added to the list
1453 *
1454 * Return:
1455 *	0	Success
1456 *	!0	Failure
1457 */
1458
1459/* FIXME - should a warning be printed if no error detection? correction? */
1460int edac_mc_add_mc(struct mem_ctl_info *mci)
1461{
1462	debugf0("%s()\n", __func__);
1463#ifdef CONFIG_EDAC_DEBUG
1464	if (edac_debug_level >= 3)
1465		edac_mc_dump_mci(mci);
1466	if (edac_debug_level >= 4) {
1467		int i;
1468
1469		for (i = 0; i < mci->nr_csrows; i++) {
1470			int j;
1471			edac_mc_dump_csrow(&mci->csrows[i]);
1472			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1473				edac_mc_dump_channel(&mci->csrows[i].
1474							  channels[j]);
1475		}
1476	}
1477#endif
1478	down(&mem_ctls_mutex);
1479
1480	if (add_mc_to_global_list(mci))
1481		goto fail0;
1482
1483	/* set load time so that error rate can be tracked */
1484	mci->start_time = jiffies;
1485
1486        if (edac_create_sysfs_mci_device(mci)) {
1487                edac_mc_printk(mci, KERN_WARNING,
1488			"failed to create sysfs device\n");
1489                goto fail1;
1490        }
1491
1492	/* Report action taken */
1493	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1494		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1495
1496	up(&mem_ctls_mutex);
1497	return 0;
1498
1499fail1:
1500	del_mc_from_global_list(mci);
1501
1502fail0:
1503	up(&mem_ctls_mutex);
1504	return 1;
1505}
1506EXPORT_SYMBOL(edac_mc_add_mc);
1507
1508
1509/**
1510 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1511 *                 remove mci structure from global list
1512 * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
1513 *
1514 * Return pointer to removed mci structure, or NULL if device not found.
1515 */
1516struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
1517{
1518	struct mem_ctl_info *mci;
1519
1520	debugf0("MC: %s()\n", __func__);
1521	down(&mem_ctls_mutex);
1522
1523	if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1524		up(&mem_ctls_mutex);
1525		return NULL;
1526	}
1527
1528	edac_remove_sysfs_mci_device(mci);
1529	del_mc_from_global_list(mci);
1530	up(&mem_ctls_mutex);
1531	edac_printk(KERN_INFO, EDAC_MC,
1532		"Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1533		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1534	return mci;
1535}
1536EXPORT_SYMBOL(edac_mc_del_mc);
1537
1538
1539void edac_mc_scrub_block(unsigned long page, unsigned long offset,
1540			      u32 size)
1541{
1542	struct page *pg;
1543	void *virt_addr;
1544	unsigned long flags = 0;
1545
1546	debugf3("%s()\n", __func__);
1547
1548	/* ECC error page was not in our memory. Ignore it. */
1549	if(!pfn_valid(page))
1550		return;
1551
1552	/* Find the actual page structure then map it and fix */
1553	pg = pfn_to_page(page);
1554
1555	if (PageHighMem(pg))
1556		local_irq_save(flags);
1557
1558	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1559
1560	/* Perform architecture specific atomic scrub operation */
1561	atomic_scrub(virt_addr + offset, size);
1562
1563	/* Unmap and complete */
1564	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1565
1566	if (PageHighMem(pg))
1567		local_irq_restore(flags);
1568}
1569EXPORT_SYMBOL(edac_mc_scrub_block);
1570
1571
1572/* FIXME - should return -1 */
1573int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
1574				    unsigned long page)
1575{
1576	struct csrow_info *csrows = mci->csrows;
1577	int row, i;
1578
1579	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1580	row = -1;
1581
1582	for (i = 0; i < mci->nr_csrows; i++) {
1583		struct csrow_info *csrow = &csrows[i];
1584
1585		if (csrow->nr_pages == 0)
1586			continue;
1587
1588		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1589			"mask(0x%lx)\n", mci->mc_idx, __func__,
1590			csrow->first_page, page, csrow->last_page,
1591			csrow->page_mask);
1592
1593		if ((page >= csrow->first_page) &&
1594		    (page <= csrow->last_page) &&
1595		    ((page & csrow->page_mask) ==
1596		     (csrow->first_page & csrow->page_mask))) {
1597			row = i;
1598			break;
1599		}
1600	}
1601
1602	if (row == -1)
1603		edac_mc_printk(mci, KERN_ERR,
1604			"could not look up page error address %lx\n",
1605			(unsigned long) page);
1606
1607	return row;
1608}
1609EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1610
1611
1612/* FIXME - setable log (warning/emerg) levels */
1613/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1614void edac_mc_handle_ce(struct mem_ctl_info *mci,
1615			    unsigned long page_frame_number,
1616			    unsigned long offset_in_page,
1617			    unsigned long syndrome, int row, int channel,
1618			    const char *msg)
1619{
1620	unsigned long remapped_page;
1621
1622	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1623
1624	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1625	if (row >= mci->nr_csrows || row < 0) {
1626		/* something is wrong */
1627		edac_mc_printk(mci, KERN_ERR,
1628			"INTERNAL ERROR: row out of range "
1629			"(%d >= %d)\n", row, mci->nr_csrows);
1630		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1631		return;
1632	}
1633	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1634		/* something is wrong */
1635		edac_mc_printk(mci, KERN_ERR,
1636			"INTERNAL ERROR: channel out of range "
1637			"(%d >= %d)\n", channel,
1638			mci->csrows[row].nr_channels);
1639		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1640		return;
1641	}
1642
1643	if (log_ce)
1644		/* FIXME - put in DIMM location */
1645		edac_mc_printk(mci, KERN_WARNING,
1646			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1647			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1648			page_frame_number, offset_in_page,
1649			mci->csrows[row].grain, syndrome, row, channel,
1650			mci->csrows[row].channels[channel].label, msg);
1651
1652	mci->ce_count++;
1653	mci->csrows[row].ce_count++;
1654	mci->csrows[row].channels[channel].ce_count++;
1655
1656	if (mci->scrub_mode & SCRUB_SW_SRC) {
1657		/*
1658		 * Some MC's can remap memory so that it is still available
1659		 * at a different address when PCI devices map into memory.
1660		 * MC's that can't do this lose the memory where PCI devices
1661		 * are mapped.  This mapping is MC dependant and so we call
1662		 * back into the MC driver for it to map the MC page to
1663		 * a physical (CPU) page which can then be mapped to a virtual
1664		 * page - which can then be scrubbed.
1665		 */
1666		remapped_page = mci->ctl_page_to_phys ?
1667		    mci->ctl_page_to_phys(mci, page_frame_number) :
1668		    page_frame_number;
1669
1670		edac_mc_scrub_block(remapped_page, offset_in_page,
1671					 mci->csrows[row].grain);
1672	}
1673}
1674EXPORT_SYMBOL(edac_mc_handle_ce);
1675
1676
1677void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
1678				    const char *msg)
1679{
1680	if (log_ce)
1681		edac_mc_printk(mci, KERN_WARNING,
1682			"CE - no information available: %s\n", msg);
1683	mci->ce_noinfo_count++;
1684	mci->ce_count++;
1685}
1686EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1687
1688
1689void edac_mc_handle_ue(struct mem_ctl_info *mci,
1690			    unsigned long page_frame_number,
1691			    unsigned long offset_in_page, int row,
1692			    const char *msg)
1693{
1694	int len = EDAC_MC_LABEL_LEN * 4;
1695	char labels[len + 1];
1696	char *pos = labels;
1697	int chan;
1698	int chars;
1699
1700	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1701
1702	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1703	if (row >= mci->nr_csrows || row < 0) {
1704		/* something is wrong */
1705		edac_mc_printk(mci, KERN_ERR,
1706			"INTERNAL ERROR: row out of range "
1707			"(%d >= %d)\n", row, mci->nr_csrows);
1708		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1709		return;
1710	}
1711
1712	chars = snprintf(pos, len + 1, "%s",
1713			 mci->csrows[row].channels[0].label);
1714	len -= chars;
1715	pos += chars;
1716	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1717	     chan++) {
1718		chars = snprintf(pos, len + 1, ":%s",
1719				 mci->csrows[row].channels[chan].label);
1720		len -= chars;
1721		pos += chars;
1722	}
1723
1724	if (log_ue)
1725		edac_mc_printk(mci, KERN_EMERG,
1726			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1727			"labels \"%s\": %s\n", page_frame_number,
1728			offset_in_page, mci->csrows[row].grain, row, labels,
1729			msg);
1730
1731	if (panic_on_ue)
1732		panic
1733		    ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d,"
1734		     " labels \"%s\": %s\n", mci->mc_idx,
1735		     page_frame_number, offset_in_page,
1736		     mci->csrows[row].grain, row, labels, msg);
1737
1738	mci->ue_count++;
1739	mci->csrows[row].ue_count++;
1740}
1741EXPORT_SYMBOL(edac_mc_handle_ue);
1742
1743
1744void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
1745				    const char *msg)
1746{
1747	if (panic_on_ue)
1748		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1749
1750	if (log_ue)
1751		edac_mc_printk(mci, KERN_WARNING,
1752			"UE - no information available: %s\n", msg);
1753	mci->ue_noinfo_count++;
1754	mci->ue_count++;
1755}
1756EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1757
1758
1759#ifdef CONFIG_PCI
1760
1761static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1762{
1763	int where;
1764	u16 status;
1765
1766	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1767	pci_read_config_word(dev, where, &status);
1768
1769	/* If we get back 0xFFFF then we must suspect that the card has been pulled but
1770	   the Linux PCI layer has not yet finished cleaning up. We don't want to report
1771	   on such devices */
1772
1773	if (status == 0xFFFF) {
1774		u32 sanity;
1775		pci_read_config_dword(dev, 0, &sanity);
1776		if (sanity == 0xFFFFFFFF)
1777			return 0;
1778	}
1779	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1780		  PCI_STATUS_PARITY;
1781
1782	if (status)
1783		/* reset only the bits we are interested in */
1784		pci_write_config_word(dev, where, status);
1785
1786	return status;
1787}
1788
1789typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1790
1791/* Clear any PCI parity errors logged by this device. */
1792static void edac_pci_dev_parity_clear( struct pci_dev *dev )
1793{
1794	u8 header_type;
1795
1796	get_pci_parity_status(dev, 0);
1797
1798	/* read the device TYPE, looking for bridges */
1799	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1800
1801	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1802		get_pci_parity_status(dev, 1);
1803}
1804
1805/*
1806 *  PCI Parity polling
1807 *
1808 */
1809static void edac_pci_dev_parity_test(struct pci_dev *dev)
1810{
1811	u16 status;
1812	u8  header_type;
1813
1814	/* read the STATUS register on this device
1815	 */
1816	status = get_pci_parity_status(dev, 0);
1817
1818	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1819
1820	/* check the status reg for errors */
1821	if (status) {
1822		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1823			edac_printk(KERN_CRIT, EDAC_PCI,
1824				"Signaled System Error on %s\n",
1825				pci_name(dev));
1826
1827		if (status & (PCI_STATUS_PARITY)) {
1828			edac_printk(KERN_CRIT, EDAC_PCI,
1829				"Master Data Parity Error on %s\n",
1830				pci_name(dev));
1831
1832			atomic_inc(&pci_parity_count);
1833		}
1834
1835		if (status & (PCI_STATUS_DETECTED_PARITY)) {
1836			edac_printk(KERN_CRIT, EDAC_PCI,
1837				"Detected Parity Error on %s\n",
1838				pci_name(dev));
1839
1840			atomic_inc(&pci_parity_count);
1841		}
1842	}
1843
1844	/* read the device TYPE, looking for bridges */
1845	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1846
1847	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1848
1849	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1850		/* On bridges, need to examine secondary status register  */
1851		status = get_pci_parity_status(dev, 1);
1852
1853		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1854				status, dev->dev.bus_id );
1855
1856		/* check the secondary status reg for errors */
1857		if (status) {
1858			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1859				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1860					"Signaled System Error on %s\n",
1861					pci_name(dev));
1862
1863			if (status & (PCI_STATUS_PARITY)) {
1864				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1865					"Master Data Parity Error on "
1866					"%s\n", pci_name(dev));
1867
1868				atomic_inc(&pci_parity_count);
1869			}
1870
1871			if (status & (PCI_STATUS_DETECTED_PARITY)) {
1872				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1873					"Detected Parity Error on %s\n",
1874					pci_name(dev));
1875
1876				atomic_inc(&pci_parity_count);
1877			}
1878		}
1879	}
1880}
1881
1882/*
1883 * check_dev_on_list: Scan for a PCI device on a white/black list
1884 * @list:	an EDAC  &edac_pci_device_list  white/black list pointer
1885 * @free_index:	index of next free entry on the list
1886 * @pci_dev:	PCI Device pointer
1887 *
1888 * see if list contains the device.
1889 *
1890 * Returns:  	0 not found
1891 *		1 found on list
1892 */
1893static int check_dev_on_list(struct edac_pci_device_list *list, int free_index,
1894				struct pci_dev *dev)
1895{
1896        int i;
1897        int rc = 0;     /* Assume not found */
1898        unsigned short vendor=dev->vendor;
1899        unsigned short device=dev->device;
1900
1901        /* Scan the list, looking for a vendor/device match
1902         */
1903        for (i = 0; i < free_index; i++, list++ ) {
1904                if (    (list->vendor == vendor ) &&
1905                        (list->device == device )) {
1906                        rc = 1;
1907                        break;
1908                }
1909        }
1910
1911        return rc;
1912}
1913
1914/*
1915 * pci_dev parity list iterator
1916 * 	Scan the PCI device list for one iteration, looking for SERRORs
1917 *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1918 */
1919static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1920{
1921	struct pci_dev *dev=NULL;
1922
1923	/* request for kernel access to the next PCI device, if any,
1924	 * and while we are looking at it have its reference count
1925	 * bumped until we are done with it
1926	 */
1927	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1928
1929                /* if whitelist exists then it has priority, so only scan those
1930                 * devices on the whitelist
1931                 */
1932                if (pci_whitelist_count > 0 ) {
1933                        if (check_dev_on_list(pci_whitelist,
1934					pci_whitelist_count, dev))
1935				fn(dev);
1936                } else {
1937			/*
1938			 * if no whitelist, then check if this devices is
1939			 * blacklisted
1940			 */
1941                        if (!check_dev_on_list(pci_blacklist,
1942					pci_blacklist_count, dev))
1943				fn(dev);
1944                }
1945	}
1946}
1947
1948static void do_pci_parity_check(void)
1949{
1950	unsigned long flags;
1951	int before_count;
1952
1953	debugf3("%s()\n", __func__);
1954
1955	if (!check_pci_parity)
1956		return;
1957
1958	before_count = atomic_read(&pci_parity_count);
1959
1960	/* scan all PCI devices looking for a Parity Error on devices and
1961	 * bridges
1962	 */
1963	local_irq_save(flags);
1964	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1965	local_irq_restore(flags);
1966
1967	/* Only if operator has selected panic on PCI Error */
1968	if (panic_on_pci_parity) {
1969		/* If the count is different 'after' from 'before' */
1970		if (before_count != atomic_read(&pci_parity_count))
1971			panic("EDAC: PCI Parity Error");
1972	}
1973}
1974
1975
1976static inline void clear_pci_parity_errors(void)
1977{
1978	/* Clear any PCI bus parity errors that devices initially have logged
1979	 * in their registers.
1980	 */
1981	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1982}
1983
1984
1985#else  /* CONFIG_PCI */
1986
1987
1988static inline void do_pci_parity_check(void)
1989{
1990	/* no-op */
1991}
1992
1993
1994static inline void clear_pci_parity_errors(void)
1995{
1996	/* no-op */
1997}
1998
1999
2000#endif  /* CONFIG_PCI */
2001
2002/*
2003 * Iterate over all MC instances and check for ECC, et al, errors
2004 */
2005static inline void check_mc_devices (void)
2006{
2007	struct list_head *item;
2008	struct mem_ctl_info *mci;
2009
2010	debugf3("%s()\n", __func__);
2011
2012	down(&mem_ctls_mutex);
2013
2014	list_for_each(item, &mc_devices) {
2015		mci = list_entry(item, struct mem_ctl_info, link);
2016
2017		if (mci->edac_check != NULL)
2018			mci->edac_check(mci);
2019	}
2020
2021	up(&mem_ctls_mutex);
2022}
2023
2024
2025/*
2026 * Check MC status every poll_msec.
2027 * Check PCI status every poll_msec as well.
2028 *
2029 * This where the work gets done for edac.
2030 *
2031 * SMP safe, doesn't use NMI, and auto-rate-limits.
2032 */
2033static void do_edac_check(void)
2034{
2035	debugf3("%s()\n", __func__);
2036	check_mc_devices();
2037	do_pci_parity_check();
2038}
2039
2040static int edac_kernel_thread(void *arg)
2041{
2042	while (!kthread_should_stop()) {
2043		do_edac_check();
2044
2045		/* goto sleep for the interval */
2046		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2047		try_to_freeze();
2048	}
2049
2050	return 0;
2051}
2052
2053/*
2054 * edac_mc_init
2055 *      module initialization entry point
2056 */
2057static int __init edac_mc_init(void)
2058{
2059	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2060
2061	/*
2062	 * Harvest and clear any boot/initialization PCI parity errors
2063	 *
2064	 * FIXME: This only clears errors logged by devices present at time of
2065	 * 	module initialization.  We should also do an initial clear
2066	 *	of each newly hotplugged device.
2067	 */
2068	clear_pci_parity_errors();
2069
2070	/* Create the MC sysfs entires */
2071	if (edac_sysfs_memctrl_setup()) {
2072		edac_printk(KERN_ERR, EDAC_MC,
2073			"Error initializing sysfs code\n");
2074		return -ENODEV;
2075	}
2076
2077	/* Create the PCI parity sysfs entries */
2078	if (edac_sysfs_pci_setup()) {
2079		edac_sysfs_memctrl_teardown();
2080		edac_printk(KERN_ERR, EDAC_MC,
2081			"EDAC PCI: Error initializing sysfs code\n");
2082		return -ENODEV;
2083	}
2084
2085	/* create our kernel thread */
2086	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2087	if (IS_ERR(edac_thread)) {
2088		/* remove the sysfs entries */
2089		edac_sysfs_memctrl_teardown();
2090		edac_sysfs_pci_teardown();
2091		return PTR_ERR(edac_thread);
2092	}
2093
2094	return 0;
2095}
2096
2097
2098/*
2099 * edac_mc_exit()
2100 *      module exit/termination functioni
2101 */
2102static void __exit edac_mc_exit(void)
2103{
2104	debugf0("%s()\n", __func__);
2105
2106	kthread_stop(edac_thread);
2107
2108        /* tear down the sysfs device */
2109	edac_sysfs_memctrl_teardown();
2110	edac_sysfs_pci_teardown();
2111}
2112
2113
2114
2115
2116module_init(edac_mc_init);
2117module_exit(edac_mc_exit);
2118
2119MODULE_LICENSE("GPL");
2120MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2121	      "Based on.work by Dan Hollis et al");
2122MODULE_DESCRIPTION("Core library routines for MC reporting");
2123
2124module_param(panic_on_ue, int, 0644);
2125MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2126module_param(check_pci_parity, int, 0644);
2127MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2128module_param(panic_on_pci_parity, int, 0644);
2129MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2130module_param(log_ue, int, 0644);
2131MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2132module_param(log_ce, int, 0644);
2133MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2134module_param(poll_msec, int, 0644);
2135MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2136#ifdef CONFIG_EDAC_DEBUG
2137module_param(edac_debug_level, int, 0644);
2138MODULE_PARM_DESC(edac_debug_level, "Debug level");
2139#endif
2140