edac_mc.c revision e7ecd8910293564d357dbaf18eb179e06fa35fd0
1/*
2 * edac_mc kernel module
3 * (C) 2005 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/config.h>
16#include <linux/module.h>
17#include <linux/proc_fs.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/smp.h>
21#include <linux/init.h>
22#include <linux/sysctl.h>
23#include <linux/highmem.h>
24#include <linux/timer.h>
25#include <linux/slab.h>
26#include <linux/jiffies.h>
27#include <linux/spinlock.h>
28#include <linux/list.h>
29#include <linux/sysdev.h>
30#include <linux/ctype.h>
31#include <linux/kthread.h>
32#include <asm/uaccess.h>
33#include <asm/page.h>
34#include <asm/edac.h>
35#include "edac_mc.h"
36
37#define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
38
39/* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
40 * presents to user space needs more thought, and is likely to change
41 * substantially.
42 */
43#define DISABLE_EDAC_SYSFS
44
45#ifdef CONFIG_EDAC_DEBUG
46/* Values of 0 to 4 will generate output */
47int edac_debug_level = 1;
48EXPORT_SYMBOL(edac_debug_level);
49#endif
50
51/* EDAC Controls, setable by module parameter, and sysfs */
52static int log_ue = 1;
53static int log_ce = 1;
54static int panic_on_ue;
55static int poll_msec = 1000;
56
57static int check_pci_parity = 0;	/* default YES check PCI parity */
58static int panic_on_pci_parity;		/* default no panic on PCI Parity */
59static atomic_t pci_parity_count = ATOMIC_INIT(0);
60
61/* lock to memory controller's control array */
62static DECLARE_MUTEX(mem_ctls_mutex);
63static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
64
65static struct task_struct *edac_thread;
66
67/* Structure of the whitelist and blacklist arrays */
68struct edac_pci_device_list {
69	unsigned int  vendor;		/* Vendor ID */
70	unsigned int  device;		/* Deviice ID */
71};
72
73#define MAX_LISTED_PCI_DEVICES		32
74
75/* List of PCI devices (vendor-id:device-id) that should be skipped */
76static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
77static int pci_blacklist_count;
78
79/* List of PCI devices (vendor-id:device-id) that should be scanned */
80static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
81static int pci_whitelist_count ;
82
83/*  START sysfs data and methods */
84
85#ifndef DISABLE_EDAC_SYSFS
86
87static const char *mem_types[] = {
88	[MEM_EMPTY] = "Empty",
89	[MEM_RESERVED] = "Reserved",
90	[MEM_UNKNOWN] = "Unknown",
91	[MEM_FPM] = "FPM",
92	[MEM_EDO] = "EDO",
93	[MEM_BEDO] = "BEDO",
94	[MEM_SDR] = "Unbuffered-SDR",
95	[MEM_RDR] = "Registered-SDR",
96	[MEM_DDR] = "Unbuffered-DDR",
97	[MEM_RDDR] = "Registered-DDR",
98	[MEM_RMBS] = "RMBS"
99};
100
101static const char *dev_types[] = {
102	[DEV_UNKNOWN] = "Unknown",
103	[DEV_X1] = "x1",
104	[DEV_X2] = "x2",
105	[DEV_X4] = "x4",
106	[DEV_X8] = "x8",
107	[DEV_X16] = "x16",
108	[DEV_X32] = "x32",
109	[DEV_X64] = "x64"
110};
111
112static const char *edac_caps[] = {
113	[EDAC_UNKNOWN] = "Unknown",
114	[EDAC_NONE] = "None",
115	[EDAC_RESERVED] = "Reserved",
116	[EDAC_PARITY] = "PARITY",
117	[EDAC_EC] = "EC",
118	[EDAC_SECDED] = "SECDED",
119	[EDAC_S2ECD2ED] = "S2ECD2ED",
120	[EDAC_S4ECD4ED] = "S4ECD4ED",
121	[EDAC_S8ECD8ED] = "S8ECD8ED",
122	[EDAC_S16ECD16ED] = "S16ECD16ED"
123};
124
125/* sysfs object: /sys/devices/system/edac */
126static struct sysdev_class edac_class = {
127	set_kset_name("edac"),
128};
129
130/* sysfs objects:
131 *	/sys/devices/system/edac/mc
132 *	/sys/devices/system/edac/pci
133 */
134static struct kobject edac_memctrl_kobj;
135static struct kobject edac_pci_kobj;
136
137/* We use these to wait for the reference counts on edac_memctrl_kobj and
138 * edac_pci_kobj to reach 0.
139 */
140static struct completion edac_memctrl_kobj_complete;
141static struct completion edac_pci_kobj_complete;
142
143/*
144 * /sys/devices/system/edac/mc;
145 *	data structures and methods
146 */
147#if 0
148static ssize_t memctrl_string_show(void *ptr, char *buffer)
149{
150	char *value = (char*) ptr;
151	return sprintf(buffer, "%s\n", value);
152}
153#endif
154
155static ssize_t memctrl_int_show(void *ptr, char *buffer)
156{
157	int *value = (int*) ptr;
158	return sprintf(buffer, "%d\n", *value);
159}
160
161static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
162{
163	int *value = (int*) ptr;
164
165	if (isdigit(*buffer))
166		*value = simple_strtoul(buffer, NULL, 0);
167
168	return count;
169}
170
171struct memctrl_dev_attribute {
172	struct attribute attr;
173	void *value;
174	ssize_t (*show)(void *,char *);
175	ssize_t (*store)(void *, const char *, size_t);
176};
177
178/* Set of show/store abstract level functions for memory control object */
179static ssize_t memctrl_dev_show(struct kobject *kobj,
180		struct attribute *attr, char *buffer)
181{
182	struct memctrl_dev_attribute *memctrl_dev;
183	memctrl_dev = (struct memctrl_dev_attribute*)attr;
184
185	if (memctrl_dev->show)
186		return memctrl_dev->show(memctrl_dev->value, buffer);
187
188	return -EIO;
189}
190
191static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
192		const char *buffer, size_t count)
193{
194	struct memctrl_dev_attribute *memctrl_dev;
195	memctrl_dev = (struct memctrl_dev_attribute*)attr;
196
197	if (memctrl_dev->store)
198		return memctrl_dev->store(memctrl_dev->value, buffer, count);
199
200	return -EIO;
201}
202
203static struct sysfs_ops memctrlfs_ops = {
204	.show   = memctrl_dev_show,
205	.store  = memctrl_dev_store
206};
207
208#define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
209struct memctrl_dev_attribute attr_##_name = {			\
210	.attr = {.name = __stringify(_name), .mode = _mode },	\
211	.value  = &_name,					\
212	.show   = _show,					\
213	.store  = _store,					\
214};
215
216#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
217struct memctrl_dev_attribute attr_##_name = {			\
218	.attr = {.name = __stringify(_name), .mode = _mode },	\
219	.value  = _data,					\
220	.show   = _show,					\
221	.store  = _store,					\
222};
223
224/* cwrow<id> attribute f*/
225#if 0
226MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
227#endif
228
229/* csrow<id> control files */
230MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
231MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
232MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
233MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
234
235/* Base Attributes of the memory ECC object */
236static struct memctrl_dev_attribute *memctrl_attr[] = {
237	&attr_panic_on_ue,
238	&attr_log_ue,
239	&attr_log_ce,
240	&attr_poll_msec,
241	NULL,
242};
243
244/* Main MC kobject release() function */
245static void edac_memctrl_master_release(struct kobject *kobj)
246{
247	debugf1("%s()\n", __func__);
248	complete(&edac_memctrl_kobj_complete);
249}
250
251static struct kobj_type ktype_memctrl = {
252	.release = edac_memctrl_master_release,
253	.sysfs_ops = &memctrlfs_ops,
254	.default_attrs = (struct attribute **) memctrl_attr,
255};
256
257#endif  /* DISABLE_EDAC_SYSFS */
258
259/* Initialize the main sysfs entries for edac:
260 *   /sys/devices/system/edac
261 *
262 * and children
263 *
264 * Return:  0 SUCCESS
265 *         !0 FAILURE
266 */
267static int edac_sysfs_memctrl_setup(void)
268#ifdef DISABLE_EDAC_SYSFS
269{
270	return 0;
271}
272#else
273{
274	int err=0;
275
276	debugf1("%s()\n", __func__);
277
278	/* create the /sys/devices/system/edac directory */
279	err = sysdev_class_register(&edac_class);
280
281	if (!err) {
282		/* Init the MC's kobject */
283		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
284		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
285		edac_memctrl_kobj.ktype = &ktype_memctrl;
286
287		/* generate sysfs "..../edac/mc"   */
288		err = kobject_set_name(&edac_memctrl_kobj,"mc");
289
290		if (!err) {
291			/* FIXME: maybe new sysdev_create_subdir() */
292			err = kobject_register(&edac_memctrl_kobj);
293
294			if (err)
295				debugf1("Failed to register '.../edac/mc'\n");
296			else
297				debugf1("Registered '.../edac/mc' kobject\n");
298		}
299	} else
300		debugf1("%s() error=%d\n", __func__, err);
301
302	return err;
303}
304#endif  /* DISABLE_EDAC_SYSFS */
305
306/*
307 * MC teardown:
308 *	the '..../edac/mc' kobject followed by '..../edac' itself
309 */
310static void edac_sysfs_memctrl_teardown(void)
311{
312#ifndef DISABLE_EDAC_SYSFS
313	debugf0("MC: " __FILE__ ": %s()\n", __func__);
314
315	/* Unregister the MC's kobject and wait for reference count to reach
316	 * 0.
317	 */
318	init_completion(&edac_memctrl_kobj_complete);
319	kobject_unregister(&edac_memctrl_kobj);
320	wait_for_completion(&edac_memctrl_kobj_complete);
321
322	/* Unregister the 'edac' object */
323	sysdev_class_unregister(&edac_class);
324#endif  /* DISABLE_EDAC_SYSFS */
325}
326
327#ifndef DISABLE_EDAC_SYSFS
328
329/*
330 * /sys/devices/system/edac/pci;
331 * 	data structures and methods
332 */
333
334struct list_control {
335	struct edac_pci_device_list *list;
336	int *count;
337};
338
339#if 0
340/* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
341static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
342{
343	struct list_control *listctl;
344	struct edac_pci_device_list *list;
345	char *p = buffer;
346	int len=0;
347	int i;
348
349	listctl = ptr;
350	list = listctl->list;
351
352	for (i = 0; i < *(listctl->count); i++, list++ ) {
353		if (len > 0)
354			len += snprintf(p + len, (PAGE_SIZE-len), ",");
355
356		len += snprintf(p + len,
357				(PAGE_SIZE-len),
358				"%x:%x",
359				list->vendor,list->device);
360	}
361
362	len += snprintf(p + len,(PAGE_SIZE-len), "\n");
363	return (ssize_t) len;
364}
365
366/**
367 *
368 * Scan string from **s to **e looking for one 'vendor:device' tuple
369 * where each field is a hex value
370 *
371 * return 0 if an entry is NOT found
372 * return 1 if an entry is found
373 *	fill in *vendor_id and *device_id with values found
374 *
375 * In both cases, make sure *s has been moved forward toward *e
376 */
377static int parse_one_device(const char **s,const char **e,
378	unsigned int *vendor_id, unsigned int *device_id)
379{
380	const char *runner, *p;
381
382	/* if null byte, we are done */
383	if (!**s) {
384		(*s)++;  /* keep *s moving */
385		return 0;
386	}
387
388	/* skip over newlines & whitespace */
389	if ((**s == '\n') || isspace(**s)) {
390		(*s)++;
391		return 0;
392	}
393
394	if (!isxdigit(**s)) {
395		(*s)++;
396		return 0;
397	}
398
399	/* parse vendor_id */
400	runner = *s;
401
402	while (runner < *e) {
403		/* scan for vendor:device delimiter */
404		if (*runner == ':') {
405			*vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
406			runner = p + 1;
407			break;
408		}
409
410		runner++;
411	}
412
413	if (!isxdigit(*runner)) {
414		*s = ++runner;
415		return 0;
416	}
417
418	/* parse device_id */
419	if (runner < *e) {
420		*device_id = simple_strtol((char*)runner, (char**)&p, 16);
421		runner = p;
422	}
423
424	*s = runner;
425	return 1;
426}
427
428static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
429		size_t count)
430{
431	struct list_control *listctl;
432	struct edac_pci_device_list *list;
433	unsigned int vendor_id, device_id;
434	const char *s, *e;
435	int *index;
436
437	s = (char*)buffer;
438	e = s + count;
439	listctl = ptr;
440	list = listctl->list;
441	index = listctl->count;
442	*index = 0;
443
444	while (*index < MAX_LISTED_PCI_DEVICES) {
445		if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
446			list[ *index ].vendor = vendor_id;
447			list[ *index ].device = device_id;
448			(*index)++;
449		}
450
451		/* check for all data consume */
452		if (s >= e)
453			break;
454	}
455
456	return count;
457}
458
459#endif
460static ssize_t edac_pci_int_show(void *ptr, char *buffer)
461{
462	int *value = ptr;
463	return sprintf(buffer,"%d\n",*value);
464}
465
466static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
467{
468	int *value = ptr;
469
470	if (isdigit(*buffer))
471		*value = simple_strtoul(buffer,NULL,0);
472
473	return count;
474}
475
476struct edac_pci_dev_attribute {
477	struct attribute attr;
478	void *value;
479	ssize_t (*show)(void *,char *);
480	ssize_t (*store)(void *, const char *,size_t);
481};
482
483/* Set of show/store abstract level functions for PCI Parity object */
484static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
485		char *buffer)
486{
487	struct edac_pci_dev_attribute *edac_pci_dev;
488	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
489
490	if (edac_pci_dev->show)
491		return edac_pci_dev->show(edac_pci_dev->value, buffer);
492	return -EIO;
493}
494
495static ssize_t edac_pci_dev_store(struct kobject *kobj,
496		struct attribute *attr, const char *buffer, size_t count)
497{
498	struct edac_pci_dev_attribute *edac_pci_dev;
499	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
500
501	if (edac_pci_dev->show)
502		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
503	return -EIO;
504}
505
506static struct sysfs_ops edac_pci_sysfs_ops = {
507	.show   = edac_pci_dev_show,
508	.store  = edac_pci_dev_store
509};
510
511#define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
512struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
513	.attr = {.name = __stringify(_name), .mode = _mode },	\
514	.value  = &_name,					\
515	.show   = _show,					\
516	.store  = _store,					\
517};
518
519#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
520struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
521	.attr = {.name = __stringify(_name), .mode = _mode },	\
522	.value  = _data,					\
523	.show   = _show,					\
524	.store  = _store,					\
525};
526
527#if 0
528static struct list_control pci_whitelist_control = {
529	.list = pci_whitelist,
530	.count = &pci_whitelist_count
531};
532
533static struct list_control pci_blacklist_control = {
534	.list = pci_blacklist,
535	.count = &pci_blacklist_count
536};
537
538/* whitelist attribute */
539EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
540	&pci_whitelist_control,
541	S_IRUGO|S_IWUSR,
542	edac_pci_list_string_show,
543	edac_pci_list_string_store);
544
545EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
546	&pci_blacklist_control,
547	S_IRUGO|S_IWUSR,
548	edac_pci_list_string_show,
549	edac_pci_list_string_store);
550#endif
551
552/* PCI Parity control files */
553EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
554	edac_pci_int_store);
555EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
556	edac_pci_int_store);
557EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
558
559/* Base Attributes of the memory ECC object */
560static struct edac_pci_dev_attribute *edac_pci_attr[] = {
561	&edac_pci_attr_check_pci_parity,
562	&edac_pci_attr_panic_on_pci_parity,
563	&edac_pci_attr_pci_parity_count,
564	NULL,
565};
566
567/* No memory to release */
568static void edac_pci_release(struct kobject *kobj)
569{
570	debugf1("%s()\n", __func__);
571	complete(&edac_pci_kobj_complete);
572}
573
574static struct kobj_type ktype_edac_pci = {
575	.release = edac_pci_release,
576	.sysfs_ops = &edac_pci_sysfs_ops,
577	.default_attrs = (struct attribute **) edac_pci_attr,
578};
579
580#endif  /* DISABLE_EDAC_SYSFS */
581
582/**
583 * edac_sysfs_pci_setup()
584 *
585 */
586static int edac_sysfs_pci_setup(void)
587#ifdef DISABLE_EDAC_SYSFS
588{
589	return 0;
590}
591#else
592{
593	int err;
594
595	debugf1("%s()\n", __func__);
596
597	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
598	edac_pci_kobj.parent = &edac_class.kset.kobj;
599	edac_pci_kobj.ktype = &ktype_edac_pci;
600	err = kobject_set_name(&edac_pci_kobj, "pci");
601
602	if (!err) {
603		/* Instanstiate the csrow object */
604		/* FIXME: maybe new sysdev_create_subdir() */
605		err = kobject_register(&edac_pci_kobj);
606
607		if (err)
608			debugf1("Failed to register '.../edac/pci'\n");
609		else
610			debugf1("Registered '.../edac/pci' kobject\n");
611	}
612
613	return err;
614}
615#endif  /* DISABLE_EDAC_SYSFS */
616
617static void edac_sysfs_pci_teardown(void)
618{
619#ifndef DISABLE_EDAC_SYSFS
620	debugf0("%s()\n", __func__);
621	init_completion(&edac_pci_kobj_complete);
622	kobject_unregister(&edac_pci_kobj);
623	wait_for_completion(&edac_pci_kobj_complete);
624#endif
625}
626
627#ifndef DISABLE_EDAC_SYSFS
628
629/* EDAC sysfs CSROW data structures and methods */
630
631/* Set of more detailed csrow<id> attribute show/store functions */
632static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
633{
634	ssize_t size = 0;
635
636	if (csrow->nr_channels > 0) {
637		size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
638			csrow->channels[0].label);
639	}
640
641	return size;
642}
643
644static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
645{
646	ssize_t size = 0;
647
648	if (csrow->nr_channels > 0) {
649		size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
650			csrow->channels[1].label);
651	}
652
653	return size;
654}
655
656static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
657		const char *data, size_t size)
658{
659	ssize_t max_size = 0;
660
661	if (csrow->nr_channels > 0) {
662		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
663		strncpy(csrow->channels[0].label, data, max_size);
664		csrow->channels[0].label[max_size] = '\0';
665	}
666
667	return size;
668}
669
670static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
671		const char *data, size_t size)
672{
673	ssize_t max_size = 0;
674
675	if (csrow->nr_channels > 1) {
676		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
677		strncpy(csrow->channels[1].label, data, max_size);
678		csrow->channels[1].label[max_size] = '\0';
679	}
680
681	return max_size;
682}
683
684static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685{
686	return sprintf(data,"%u\n", csrow->ue_count);
687}
688
689static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690{
691	return sprintf(data,"%u\n", csrow->ce_count);
692}
693
694static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695{
696	ssize_t size = 0;
697
698	if (csrow->nr_channels > 0) {
699		size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700	}
701
702	return size;
703}
704
705static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
706{
707	ssize_t size = 0;
708
709	if (csrow->nr_channels > 1) {
710		size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
711	}
712
713	return size;
714}
715
716static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
717{
718	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
719}
720
721static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
722{
723	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
724}
725
726static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
727{
728	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
729}
730
731static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
732{
733	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
734}
735
736struct csrowdev_attribute {
737	struct attribute attr;
738	ssize_t (*show)(struct csrow_info *,char *);
739	ssize_t (*store)(struct csrow_info *, const char *,size_t);
740};
741
742#define to_csrow(k) container_of(k, struct csrow_info, kobj)
743#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
744
745/* Set of show/store higher level functions for csrow objects */
746static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
747		char *buffer)
748{
749	struct csrow_info *csrow = to_csrow(kobj);
750	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
751
752	if (csrowdev_attr->show)
753		return csrowdev_attr->show(csrow, buffer);
754
755	return -EIO;
756}
757
758static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
759		const char *buffer, size_t count)
760{
761	struct csrow_info *csrow = to_csrow(kobj);
762	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
763
764	if (csrowdev_attr->store)
765		return csrowdev_attr->store(csrow, buffer, count);
766
767	return -EIO;
768}
769
770static struct sysfs_ops csrowfs_ops = {
771	.show   = csrowdev_show,
772	.store  = csrowdev_store
773};
774
775#define CSROWDEV_ATTR(_name,_mode,_show,_store)			\
776struct csrowdev_attribute attr_##_name = {			\
777	.attr = {.name = __stringify(_name), .mode = _mode },	\
778	.show   = _show,					\
779	.store  = _store,					\
780};
781
782/* cwrow<id>/attribute files */
783CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
784CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
785CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
786CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
787CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
788CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
789CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
790CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
791
792/* control/attribute files */
793CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
794		csrow_ch0_dimm_label_show,
795		csrow_ch0_dimm_label_store);
796CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
797		csrow_ch1_dimm_label_show,
798		csrow_ch1_dimm_label_store);
799
800/* Attributes of the CSROW<id> object */
801static struct csrowdev_attribute *csrow_attr[] = {
802	&attr_dev_type,
803	&attr_mem_type,
804	&attr_edac_mode,
805	&attr_size_mb,
806	&attr_ue_count,
807	&attr_ce_count,
808	&attr_ch0_ce_count,
809	&attr_ch1_ce_count,
810	&attr_ch0_dimm_label,
811	&attr_ch1_dimm_label,
812	NULL,
813};
814
815/* No memory to release */
816static void edac_csrow_instance_release(struct kobject *kobj)
817{
818	struct csrow_info *cs;
819
820	debugf1("%s()\n", __func__);
821	cs = container_of(kobj, struct csrow_info, kobj);
822	complete(&cs->kobj_complete);
823}
824
825static struct kobj_type ktype_csrow = {
826	.release = edac_csrow_instance_release,
827	.sysfs_ops = &csrowfs_ops,
828	.default_attrs = (struct attribute **) csrow_attr,
829};
830
831/* Create a CSROW object under specifed edac_mc_device */
832static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
833		struct csrow_info *csrow, int index)
834{
835	int err = 0;
836
837	debugf0("%s()\n", __func__);
838	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
839
840	/* generate ..../edac/mc/mc<id>/csrow<index>   */
841
842	csrow->kobj.parent = edac_mci_kobj;
843	csrow->kobj.ktype = &ktype_csrow;
844
845	/* name this instance of csrow<id> */
846	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
847
848	if (!err) {
849		/* Instanstiate the csrow object */
850		err = kobject_register(&csrow->kobj);
851
852		if (err)
853			debugf0("Failed to register CSROW%d\n",index);
854		else
855			debugf0("Registered CSROW%d\n",index);
856	}
857
858	return err;
859}
860
861/* sysfs data structures and methods for the MCI kobjects */
862
863static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
864		const char *data, size_t count)
865{
866	int row, chan;
867
868	mci->ue_noinfo_count = 0;
869	mci->ce_noinfo_count = 0;
870	mci->ue_count = 0;
871	mci->ce_count = 0;
872
873	for (row = 0; row < mci->nr_csrows; row++) {
874		struct csrow_info *ri = &mci->csrows[row];
875
876		ri->ue_count = 0;
877		ri->ce_count = 0;
878
879		for (chan = 0; chan < ri->nr_channels; chan++)
880			ri->channels[chan].ce_count = 0;
881	}
882
883	mci->start_time = jiffies;
884	return count;
885}
886
887static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
888{
889	return sprintf(data,"%d\n", mci->ue_count);
890}
891
892static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
893{
894	return sprintf(data,"%d\n", mci->ce_count);
895}
896
897static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
898{
899	return sprintf(data,"%d\n", mci->ce_noinfo_count);
900}
901
902static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
903{
904	return sprintf(data,"%d\n", mci->ue_noinfo_count);
905}
906
907static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
908{
909	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
910}
911
912static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
913{
914	return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
915}
916
917static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
918{
919	return sprintf(data,"%s\n", mci->ctl_name);
920}
921
922static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
923{
924	char *p = buf;
925	int bit_idx;
926
927	for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
928		if ((edac_cap >> bit_idx) & 0x1)
929			p += sprintf(p, "%s ", edac_caps[bit_idx]);
930	}
931
932	return p - buf;
933}
934
935static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
936{
937	char *p = data;
938
939	p += mci_output_edac_cap(p,mci->edac_ctl_cap);
940	p += sprintf(p, "\n");
941	return p - data;
942}
943
944static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
945		char *data)
946{
947	char *p = data;
948
949	p += mci_output_edac_cap(p,mci->edac_cap);
950	p += sprintf(p, "\n");
951	return p - data;
952}
953
954static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
955{
956	char *p = buf;
957	int bit_idx;
958
959	for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
960		if ((mtype_cap >> bit_idx) & 0x1)
961			p += sprintf(p, "%s ", mem_types[bit_idx]);
962	}
963
964	return p - buf;
965}
966
967static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci,
968		char *data)
969{
970	char *p = data;
971
972	p += mci_output_mtype_cap(p,mci->mtype_cap);
973	p += sprintf(p, "\n");
974	return p - data;
975}
976
977static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
978{
979	int total_pages, csrow_idx;
980
981	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
982			csrow_idx++) {
983		struct csrow_info *csrow = &mci->csrows[csrow_idx];
984
985		if (!csrow->nr_pages)
986			continue;
987
988		total_pages += csrow->nr_pages;
989	}
990
991	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
992}
993
994struct mcidev_attribute {
995	struct attribute attr;
996	ssize_t (*show)(struct mem_ctl_info *,char *);
997	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
998};
999
1000#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1001#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1002
1003static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1004		char *buffer)
1005{
1006	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1007	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1008
1009	if (mcidev_attr->show)
1010		return mcidev_attr->show(mem_ctl_info, buffer);
1011
1012	return -EIO;
1013}
1014
1015static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1016		const char *buffer, size_t count)
1017{
1018	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1019	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1020
1021	if (mcidev_attr->store)
1022		return mcidev_attr->store(mem_ctl_info, buffer, count);
1023
1024	return -EIO;
1025}
1026
1027static struct sysfs_ops mci_ops = {
1028	.show = mcidev_show,
1029	.store = mcidev_store
1030};
1031
1032#define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1033struct mcidev_attribute mci_attr_##_name = {			\
1034	.attr = {.name = __stringify(_name), .mode = _mode },	\
1035	.show   = _show,					\
1036	.store  = _store,					\
1037};
1038
1039/* Control file */
1040MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1041
1042/* Attribute files */
1043MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1044MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1045MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1046MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1047MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1048MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1049MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1050MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1051MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1052MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1053	mci_edac_current_capability_show,NULL);
1054MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1055	mci_supported_mem_type_show,NULL);
1056
1057static struct mcidev_attribute *mci_attr[] = {
1058	&mci_attr_reset_counters,
1059	&mci_attr_module_name,
1060	&mci_attr_mc_name,
1061	&mci_attr_edac_capability,
1062	&mci_attr_edac_current_capability,
1063	&mci_attr_supported_mem_type,
1064	&mci_attr_size_mb,
1065	&mci_attr_seconds_since_reset,
1066	&mci_attr_ue_noinfo_count,
1067	&mci_attr_ce_noinfo_count,
1068	&mci_attr_ue_count,
1069	&mci_attr_ce_count,
1070	NULL
1071};
1072
1073/*
1074 * Release of a MC controlling instance
1075 */
1076static void edac_mci_instance_release(struct kobject *kobj)
1077{
1078	struct mem_ctl_info *mci;
1079
1080	mci = to_mci(kobj);
1081	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1082	complete(&mci->kobj_complete);
1083}
1084
1085static struct kobj_type ktype_mci = {
1086	.release = edac_mci_instance_release,
1087	.sysfs_ops = &mci_ops,
1088	.default_attrs = (struct attribute **) mci_attr,
1089};
1090
1091#endif  /* DISABLE_EDAC_SYSFS */
1092
1093#define EDAC_DEVICE_SYMLINK	"device"
1094
1095/*
1096 * Create a new Memory Controller kobject instance,
1097 *	mc<id> under the 'mc' directory
1098 *
1099 * Return:
1100 *	0	Success
1101 *	!0	Failure
1102 */
1103static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1104#ifdef DISABLE_EDAC_SYSFS
1105{
1106	return 0;
1107}
1108#else
1109{
1110	int i;
1111	int err;
1112	struct csrow_info *csrow;
1113	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1114
1115	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1116	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1117
1118	/* set the name of the mc<id> object */
1119	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1120
1121	if (err)
1122		return err;
1123
1124	/* link to our parent the '..../edac/mc' object */
1125	edac_mci_kobj->parent = &edac_memctrl_kobj;
1126	edac_mci_kobj->ktype = &ktype_mci;
1127
1128	/* register the mc<id> kobject */
1129	err = kobject_register(edac_mci_kobj);
1130
1131	if (err)
1132		return err;
1133
1134	/* create a symlink for the device */
1135	err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1136				EDAC_DEVICE_SYMLINK);
1137
1138	if (err)
1139		goto fail0;
1140
1141	/* Make directories for each CSROW object
1142	 * under the mc<id> kobject
1143	 */
1144	for (i = 0; i < mci->nr_csrows; i++) {
1145		csrow = &mci->csrows[i];
1146
1147		/* Only expose populated CSROWs */
1148		if (csrow->nr_pages > 0) {
1149			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1150
1151			if (err)
1152				goto fail1;
1153		}
1154	}
1155
1156	return 0;
1157
1158	/* CSROW error: backout what has already been registered,  */
1159fail1:
1160	for ( i--; i >= 0; i--) {
1161		if (csrow->nr_pages > 0) {
1162			init_completion(&csrow->kobj_complete);
1163			kobject_unregister(&mci->csrows[i].kobj);
1164			wait_for_completion(&csrow->kobj_complete);
1165		}
1166	}
1167
1168fail0:
1169	init_completion(&mci->kobj_complete);
1170	kobject_unregister(edac_mci_kobj);
1171	wait_for_completion(&mci->kobj_complete);
1172	return err;
1173}
1174#endif  /* DISABLE_EDAC_SYSFS */
1175
1176/*
1177 * remove a Memory Controller instance
1178 */
1179static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1180{
1181#ifndef DISABLE_EDAC_SYSFS
1182	int i;
1183
1184	debugf0("%s()\n", __func__);
1185
1186	/* remove all csrow kobjects */
1187	for (i = 0; i < mci->nr_csrows; i++) {
1188		if (mci->csrows[i].nr_pages > 0) {
1189			init_completion(&mci->csrows[i].kobj_complete);
1190			kobject_unregister(&mci->csrows[i].kobj);
1191			wait_for_completion(&mci->csrows[i].kobj_complete);
1192		}
1193	}
1194
1195	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1196	init_completion(&mci->kobj_complete);
1197	kobject_unregister(&mci->edac_mci_kobj);
1198	wait_for_completion(&mci->kobj_complete);
1199#endif  /* DISABLE_EDAC_SYSFS */
1200}
1201
1202/* END OF sysfs data and methods */
1203
1204#ifdef CONFIG_EDAC_DEBUG
1205
1206void edac_mc_dump_channel(struct channel_info *chan)
1207{
1208	debugf4("\tchannel = %p\n", chan);
1209	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1210	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1211	debugf4("\tchannel->label = '%s'\n", chan->label);
1212	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1213}
1214EXPORT_SYMBOL(edac_mc_dump_channel);
1215
1216void edac_mc_dump_csrow(struct csrow_info *csrow)
1217{
1218	debugf4("\tcsrow = %p\n", csrow);
1219	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1220	debugf4("\tcsrow->first_page = 0x%lx\n",
1221		csrow->first_page);
1222	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1223	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1224	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1225	debugf4("\tcsrow->nr_channels = %d\n",
1226		csrow->nr_channels);
1227	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1228	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1229}
1230EXPORT_SYMBOL(edac_mc_dump_csrow);
1231
1232void edac_mc_dump_mci(struct mem_ctl_info *mci)
1233{
1234	debugf3("\tmci = %p\n", mci);
1235	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1236	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1237	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1238	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1239	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1240		mci->nr_csrows, mci->csrows);
1241	debugf3("\tpdev = %p\n", mci->pdev);
1242	debugf3("\tmod_name:ctl_name = %s:%s\n",
1243		mci->mod_name, mci->ctl_name);
1244	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1245}
1246EXPORT_SYMBOL(edac_mc_dump_mci);
1247
1248#endif  /* CONFIG_EDAC_DEBUG */
1249
1250/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1251 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1252 * compiler would provide for X and return the aligned result.
1253 *
1254 * If 'size' is a constant, the compiler will optimize this whole function
1255 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1256 */
1257static inline char * align_ptr(void *ptr, unsigned size)
1258{
1259	unsigned align, r;
1260
1261	/* Here we assume that the alignment of a "long long" is the most
1262	 * stringent alignment that the compiler will ever provide by default.
1263	 * As far as I know, this is a reasonable assumption.
1264	 */
1265	if (size > sizeof(long))
1266		align = sizeof(long long);
1267	else if (size > sizeof(int))
1268		align = sizeof(long);
1269	else if (size > sizeof(short))
1270		align = sizeof(int);
1271	else if (size > sizeof(char))
1272		align = sizeof(short);
1273	else
1274		return (char *) ptr;
1275
1276	r = size % align;
1277
1278	if (r == 0)
1279		return (char *) ptr;
1280
1281	return (char *) (((unsigned long) ptr) + align - r);
1282}
1283
1284/**
1285 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1286 * @size_pvt:	size of private storage needed
1287 * @nr_csrows:	Number of CWROWS needed for this MC
1288 * @nr_chans:	Number of channels for the MC
1289 *
1290 * Everything is kmalloc'ed as one big chunk - more efficient.
1291 * Only can be used if all structures have the same lifetime - otherwise
1292 * you have to allocate and initialize your own structures.
1293 *
1294 * Use edac_mc_free() to free mc structures allocated by this function.
1295 *
1296 * Returns:
1297 *	NULL allocation failed
1298 *	struct mem_ctl_info pointer
1299 */
1300struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1301		unsigned nr_chans)
1302{
1303	struct mem_ctl_info *mci;
1304	struct csrow_info *csi, *csrow;
1305	struct channel_info *chi, *chp, *chan;
1306	void *pvt;
1307	unsigned size;
1308	int row, chn;
1309
1310	/* Figure out the offsets of the various items from the start of an mc
1311	 * structure.  We want the alignment of each item to be at least as
1312	 * stringent as what the compiler would provide if we could simply
1313	 * hardcode everything into a single struct.
1314	 */
1315	mci = (struct mem_ctl_info *) 0;
1316	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1317	chi = (struct channel_info *)
1318			align_ptr(&csi[nr_csrows], sizeof(*chi));
1319	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1320	size = ((unsigned long) pvt) + sz_pvt;
1321
1322	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1323		return NULL;
1324
1325	/* Adjust pointers so they point within the memory we just allocated
1326	 * rather than an imaginary chunk of memory located at address 0.
1327	 */
1328	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1329	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1330	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1331
1332	memset(mci, 0, size);  /* clear all fields */
1333	mci->csrows = csi;
1334	mci->pvt_info = pvt;
1335	mci->nr_csrows = nr_csrows;
1336
1337	for (row = 0; row < nr_csrows; row++) {
1338		csrow = &csi[row];
1339		csrow->csrow_idx = row;
1340		csrow->mci = mci;
1341		csrow->nr_channels = nr_chans;
1342		chp = &chi[row * nr_chans];
1343		csrow->channels = chp;
1344
1345		for (chn = 0; chn < nr_chans; chn++) {
1346			chan = &chp[chn];
1347			chan->chan_idx = chn;
1348			chan->csrow = csrow;
1349		}
1350	}
1351
1352	return mci;
1353}
1354EXPORT_SYMBOL(edac_mc_alloc);
1355
1356/**
1357 * edac_mc_free:  Free a previously allocated 'mci' structure
1358 * @mci: pointer to a struct mem_ctl_info structure
1359 */
1360void edac_mc_free(struct mem_ctl_info *mci)
1361{
1362	kfree(mci);
1363}
1364EXPORT_SYMBOL(edac_mc_free);
1365
1366static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
1367{
1368	struct mem_ctl_info *mci;
1369	struct list_head *item;
1370
1371	debugf3("%s()\n", __func__);
1372
1373	list_for_each(item, &mc_devices) {
1374		mci = list_entry(item, struct mem_ctl_info, link);
1375
1376		if (mci->pdev == pdev)
1377			return mci;
1378	}
1379
1380	return NULL;
1381}
1382
1383static int add_mc_to_global_list(struct mem_ctl_info *mci)
1384{
1385	struct list_head *item, *insert_before;
1386	struct mem_ctl_info *p;
1387	int i;
1388
1389	if (list_empty(&mc_devices)) {
1390		mci->mc_idx = 0;
1391		insert_before = &mc_devices;
1392	} else {
1393		if (find_mci_by_pdev(mci->pdev)) {
1394			edac_printk(KERN_WARNING, EDAC_MC,
1395				"%s (%s) %s %s already assigned %d\n",
1396				mci->pdev->dev.bus_id,
1397				pci_name(mci->pdev), mci->mod_name,
1398				mci->ctl_name, mci->mc_idx);
1399			return 1;
1400		}
1401
1402		insert_before = NULL;
1403		i = 0;
1404
1405		list_for_each(item, &mc_devices) {
1406			p = list_entry(item, struct mem_ctl_info, link);
1407
1408			if (p->mc_idx != i) {
1409				insert_before = item;
1410				break;
1411			}
1412
1413			i++;
1414		}
1415
1416		mci->mc_idx = i;
1417
1418		if (insert_before == NULL)
1419			insert_before = &mc_devices;
1420	}
1421
1422	list_add_tail_rcu(&mci->link, insert_before);
1423	return 0;
1424}
1425
1426static void complete_mc_list_del(struct rcu_head *head)
1427{
1428	struct mem_ctl_info *mci;
1429
1430	mci = container_of(head, struct mem_ctl_info, rcu);
1431	INIT_LIST_HEAD(&mci->link);
1432	complete(&mci->complete);
1433}
1434
1435static void del_mc_from_global_list(struct mem_ctl_info *mci)
1436{
1437	list_del_rcu(&mci->link);
1438	init_completion(&mci->complete);
1439	call_rcu(&mci->rcu, complete_mc_list_del);
1440	wait_for_completion(&mci->complete);
1441}
1442
1443/**
1444 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1445 *                 create sysfs entries associated with mci structure
1446 * @mci: pointer to the mci structure to be added to the list
1447 *
1448 * Return:
1449 *	0	Success
1450 *	!0	Failure
1451 */
1452
1453/* FIXME - should a warning be printed if no error detection? correction? */
1454int edac_mc_add_mc(struct mem_ctl_info *mci)
1455{
1456	debugf0("%s()\n", __func__);
1457#ifdef CONFIG_EDAC_DEBUG
1458	if (edac_debug_level >= 3)
1459		edac_mc_dump_mci(mci);
1460
1461	if (edac_debug_level >= 4) {
1462		int i;
1463
1464		for (i = 0; i < mci->nr_csrows; i++) {
1465			int j;
1466
1467			edac_mc_dump_csrow(&mci->csrows[i]);
1468			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1469				edac_mc_dump_channel(
1470					&mci->csrows[i].channels[j]);
1471		}
1472	}
1473#endif
1474	down(&mem_ctls_mutex);
1475
1476	if (add_mc_to_global_list(mci))
1477		goto fail0;
1478
1479	/* set load time so that error rate can be tracked */
1480	mci->start_time = jiffies;
1481
1482        if (edac_create_sysfs_mci_device(mci)) {
1483                edac_mc_printk(mci, KERN_WARNING,
1484			"failed to create sysfs device\n");
1485                goto fail1;
1486        }
1487
1488	/* Report action taken */
1489	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1490		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1491
1492	up(&mem_ctls_mutex);
1493	return 0;
1494
1495fail1:
1496	del_mc_from_global_list(mci);
1497
1498fail0:
1499	up(&mem_ctls_mutex);
1500	return 1;
1501}
1502EXPORT_SYMBOL(edac_mc_add_mc);
1503
1504/**
1505 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1506 *                 remove mci structure from global list
1507 * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
1508 *
1509 * Return pointer to removed mci structure, or NULL if device not found.
1510 */
1511struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
1512{
1513	struct mem_ctl_info *mci;
1514
1515	debugf0("MC: %s()\n", __func__);
1516	down(&mem_ctls_mutex);
1517
1518	if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1519		up(&mem_ctls_mutex);
1520		return NULL;
1521	}
1522
1523	edac_remove_sysfs_mci_device(mci);
1524	del_mc_from_global_list(mci);
1525	up(&mem_ctls_mutex);
1526	edac_printk(KERN_INFO, EDAC_MC,
1527		"Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1528		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1529	return mci;
1530}
1531EXPORT_SYMBOL(edac_mc_del_mc);
1532
1533void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1534{
1535	struct page *pg;
1536	void *virt_addr;
1537	unsigned long flags = 0;
1538
1539	debugf3("%s()\n", __func__);
1540
1541	/* ECC error page was not in our memory. Ignore it. */
1542	if(!pfn_valid(page))
1543		return;
1544
1545	/* Find the actual page structure then map it and fix */
1546	pg = pfn_to_page(page);
1547
1548	if (PageHighMem(pg))
1549		local_irq_save(flags);
1550
1551	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1552
1553	/* Perform architecture specific atomic scrub operation */
1554	atomic_scrub(virt_addr + offset, size);
1555
1556	/* Unmap and complete */
1557	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1558
1559	if (PageHighMem(pg))
1560		local_irq_restore(flags);
1561}
1562EXPORT_SYMBOL(edac_mc_scrub_block);
1563
1564/* FIXME - should return -1 */
1565int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1566{
1567	struct csrow_info *csrows = mci->csrows;
1568	int row, i;
1569
1570	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1571	row = -1;
1572
1573	for (i = 0; i < mci->nr_csrows; i++) {
1574		struct csrow_info *csrow = &csrows[i];
1575
1576		if (csrow->nr_pages == 0)
1577			continue;
1578
1579		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1580			"mask(0x%lx)\n", mci->mc_idx, __func__,
1581			csrow->first_page, page, csrow->last_page,
1582			csrow->page_mask);
1583
1584		if ((page >= csrow->first_page) &&
1585		    (page <= csrow->last_page) &&
1586		    ((page & csrow->page_mask) ==
1587		     (csrow->first_page & csrow->page_mask))) {
1588			row = i;
1589			break;
1590		}
1591	}
1592
1593	if (row == -1)
1594		edac_mc_printk(mci, KERN_ERR,
1595			"could not look up page error address %lx\n",
1596			(unsigned long) page);
1597
1598	return row;
1599}
1600EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1601
1602/* FIXME - setable log (warning/emerg) levels */
1603/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1604void edac_mc_handle_ce(struct mem_ctl_info *mci,
1605		unsigned long page_frame_number, unsigned long offset_in_page,
1606		unsigned long syndrome, int row, int channel, const char *msg)
1607{
1608	unsigned long remapped_page;
1609
1610	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1611
1612	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1613	if (row >= mci->nr_csrows || row < 0) {
1614		/* something is wrong */
1615		edac_mc_printk(mci, KERN_ERR,
1616			"INTERNAL ERROR: row out of range "
1617			"(%d >= %d)\n", row, mci->nr_csrows);
1618		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1619		return;
1620	}
1621
1622	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1623		/* something is wrong */
1624		edac_mc_printk(mci, KERN_ERR,
1625			"INTERNAL ERROR: channel out of range "
1626			"(%d >= %d)\n", channel,
1627			mci->csrows[row].nr_channels);
1628		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1629		return;
1630	}
1631
1632	if (log_ce)
1633		/* FIXME - put in DIMM location */
1634		edac_mc_printk(mci, KERN_WARNING,
1635			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1636			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1637			page_frame_number, offset_in_page,
1638			mci->csrows[row].grain, syndrome, row, channel,
1639			mci->csrows[row].channels[channel].label, msg);
1640
1641	mci->ce_count++;
1642	mci->csrows[row].ce_count++;
1643	mci->csrows[row].channels[channel].ce_count++;
1644
1645	if (mci->scrub_mode & SCRUB_SW_SRC) {
1646		/*
1647		 * Some MC's can remap memory so that it is still available
1648		 * at a different address when PCI devices map into memory.
1649		 * MC's that can't do this lose the memory where PCI devices
1650		 * are mapped.  This mapping is MC dependant and so we call
1651		 * back into the MC driver for it to map the MC page to
1652		 * a physical (CPU) page which can then be mapped to a virtual
1653		 * page - which can then be scrubbed.
1654		 */
1655		remapped_page = mci->ctl_page_to_phys ?
1656		    mci->ctl_page_to_phys(mci, page_frame_number) :
1657		    page_frame_number;
1658
1659		edac_mc_scrub_block(remapped_page, offset_in_page,
1660					mci->csrows[row].grain);
1661	}
1662}
1663EXPORT_SYMBOL(edac_mc_handle_ce);
1664
1665void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1666{
1667	if (log_ce)
1668		edac_mc_printk(mci, KERN_WARNING,
1669			"CE - no information available: %s\n", msg);
1670
1671	mci->ce_noinfo_count++;
1672	mci->ce_count++;
1673}
1674EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1675
1676void edac_mc_handle_ue(struct mem_ctl_info *mci,
1677		unsigned long page_frame_number, unsigned long offset_in_page,
1678		int row, const char *msg)
1679{
1680	int len = EDAC_MC_LABEL_LEN * 4;
1681	char labels[len + 1];
1682	char *pos = labels;
1683	int chan;
1684	int chars;
1685
1686	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1687
1688	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1689	if (row >= mci->nr_csrows || row < 0) {
1690		/* something is wrong */
1691		edac_mc_printk(mci, KERN_ERR,
1692			"INTERNAL ERROR: row out of range "
1693			"(%d >= %d)\n", row, mci->nr_csrows);
1694		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1695		return;
1696	}
1697
1698	chars = snprintf(pos, len + 1, "%s",
1699			mci->csrows[row].channels[0].label);
1700	len -= chars;
1701	pos += chars;
1702
1703	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1704	     chan++) {
1705		chars = snprintf(pos, len + 1, ":%s",
1706				mci->csrows[row].channels[chan].label);
1707		len -= chars;
1708		pos += chars;
1709	}
1710
1711	if (log_ue)
1712		edac_mc_printk(mci, KERN_EMERG,
1713			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1714			"labels \"%s\": %s\n", page_frame_number,
1715			offset_in_page, mci->csrows[row].grain, row, labels,
1716			msg);
1717
1718	if (panic_on_ue)
1719		panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1720			"row %d, labels \"%s\": %s\n", mci->mc_idx,
1721			page_frame_number, offset_in_page,
1722			mci->csrows[row].grain, row, labels, msg);
1723
1724	mci->ue_count++;
1725	mci->csrows[row].ue_count++;
1726}
1727EXPORT_SYMBOL(edac_mc_handle_ue);
1728
1729void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1730{
1731	if (panic_on_ue)
1732		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1733
1734	if (log_ue)
1735		edac_mc_printk(mci, KERN_WARNING,
1736			"UE - no information available: %s\n", msg);
1737	mci->ue_noinfo_count++;
1738	mci->ue_count++;
1739}
1740EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1741
1742#ifdef CONFIG_PCI
1743
1744static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1745{
1746	int where;
1747	u16 status;
1748
1749	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1750	pci_read_config_word(dev, where, &status);
1751
1752	/* If we get back 0xFFFF then we must suspect that the card has been
1753	 * pulled but the Linux PCI layer has not yet finished cleaning up.
1754	 * We don't want to report on such devices
1755	 */
1756
1757	if (status == 0xFFFF) {
1758		u32 sanity;
1759
1760		pci_read_config_dword(dev, 0, &sanity);
1761
1762		if (sanity == 0xFFFFFFFF)
1763			return 0;
1764	}
1765
1766	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1767		PCI_STATUS_PARITY;
1768
1769	if (status)
1770		/* reset only the bits we are interested in */
1771		pci_write_config_word(dev, where, status);
1772
1773	return status;
1774}
1775
1776typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1777
1778/* Clear any PCI parity errors logged by this device. */
1779static void edac_pci_dev_parity_clear(struct pci_dev *dev)
1780{
1781	u8 header_type;
1782
1783	get_pci_parity_status(dev, 0);
1784
1785	/* read the device TYPE, looking for bridges */
1786	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1787
1788	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1789		get_pci_parity_status(dev, 1);
1790}
1791
1792/*
1793 *  PCI Parity polling
1794 *
1795 */
1796static void edac_pci_dev_parity_test(struct pci_dev *dev)
1797{
1798	u16 status;
1799	u8  header_type;
1800
1801	/* read the STATUS register on this device
1802	 */
1803	status = get_pci_parity_status(dev, 0);
1804
1805	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1806
1807	/* check the status reg for errors */
1808	if (status) {
1809		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1810			edac_printk(KERN_CRIT, EDAC_PCI,
1811				"Signaled System Error on %s\n",
1812				pci_name(dev));
1813
1814		if (status & (PCI_STATUS_PARITY)) {
1815			edac_printk(KERN_CRIT, EDAC_PCI,
1816				"Master Data Parity Error on %s\n",
1817				pci_name(dev));
1818
1819			atomic_inc(&pci_parity_count);
1820		}
1821
1822		if (status & (PCI_STATUS_DETECTED_PARITY)) {
1823			edac_printk(KERN_CRIT, EDAC_PCI,
1824				"Detected Parity Error on %s\n",
1825				pci_name(dev));
1826
1827			atomic_inc(&pci_parity_count);
1828		}
1829	}
1830
1831	/* read the device TYPE, looking for bridges */
1832	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1833
1834	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1835
1836	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1837		/* On bridges, need to examine secondary status register  */
1838		status = get_pci_parity_status(dev, 1);
1839
1840		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1841				status, dev->dev.bus_id );
1842
1843		/* check the secondary status reg for errors */
1844		if (status) {
1845			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1846				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1847					"Signaled System Error on %s\n",
1848					pci_name(dev));
1849
1850			if (status & (PCI_STATUS_PARITY)) {
1851				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1852					"Master Data Parity Error on "
1853					"%s\n", pci_name(dev));
1854
1855				atomic_inc(&pci_parity_count);
1856			}
1857
1858			if (status & (PCI_STATUS_DETECTED_PARITY)) {
1859				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1860					"Detected Parity Error on %s\n",
1861					pci_name(dev));
1862
1863				atomic_inc(&pci_parity_count);
1864			}
1865		}
1866	}
1867}
1868
1869/*
1870 * check_dev_on_list: Scan for a PCI device on a white/black list
1871 * @list:	an EDAC  &edac_pci_device_list  white/black list pointer
1872 * @free_index:	index of next free entry on the list
1873 * @pci_dev:	PCI Device pointer
1874 *
1875 * see if list contains the device.
1876 *
1877 * Returns:  	0 not found
1878 *		1 found on list
1879 */
1880static int check_dev_on_list(struct edac_pci_device_list *list,
1881		int free_index, struct pci_dev *dev)
1882{
1883	int i;
1884	int rc = 0;     /* Assume not found */
1885	unsigned short vendor=dev->vendor;
1886	unsigned short device=dev->device;
1887
1888	/* Scan the list, looking for a vendor/device match */
1889	for (i = 0; i < free_index; i++, list++ ) {
1890		if ((list->vendor == vendor ) && (list->device == device )) {
1891			rc = 1;
1892			break;
1893		}
1894	}
1895
1896	return rc;
1897}
1898
1899/*
1900 * pci_dev parity list iterator
1901 *	Scan the PCI device list for one iteration, looking for SERRORs
1902 *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1903 */
1904static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1905{
1906	struct pci_dev *dev = NULL;
1907
1908	/* request for kernel access to the next PCI device, if any,
1909	 * and while we are looking at it have its reference count
1910	 * bumped until we are done with it
1911	 */
1912	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1913		/* if whitelist exists then it has priority, so only scan
1914		 * those devices on the whitelist
1915		 */
1916		if (pci_whitelist_count > 0 ) {
1917			if (check_dev_on_list(pci_whitelist,
1918					pci_whitelist_count, dev))
1919				fn(dev);
1920		} else {
1921			/*
1922			 * if no whitelist, then check if this devices is
1923			 * blacklisted
1924			 */
1925			if (!check_dev_on_list(pci_blacklist,
1926					pci_blacklist_count, dev))
1927				fn(dev);
1928		}
1929	}
1930}
1931
1932static void do_pci_parity_check(void)
1933{
1934	unsigned long flags;
1935	int before_count;
1936
1937	debugf3("%s()\n", __func__);
1938
1939	if (!check_pci_parity)
1940		return;
1941
1942	before_count = atomic_read(&pci_parity_count);
1943
1944	/* scan all PCI devices looking for a Parity Error on devices and
1945	 * bridges
1946	 */
1947	local_irq_save(flags);
1948	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1949	local_irq_restore(flags);
1950
1951	/* Only if operator has selected panic on PCI Error */
1952	if (panic_on_pci_parity) {
1953		/* If the count is different 'after' from 'before' */
1954		if (before_count != atomic_read(&pci_parity_count))
1955			panic("EDAC: PCI Parity Error");
1956	}
1957}
1958
1959static inline void clear_pci_parity_errors(void)
1960{
1961	/* Clear any PCI bus parity errors that devices initially have logged
1962	 * in their registers.
1963	 */
1964	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1965}
1966
1967#else  /* CONFIG_PCI */
1968
1969static inline void do_pci_parity_check(void)
1970{
1971	/* no-op */
1972}
1973
1974static inline void clear_pci_parity_errors(void)
1975{
1976	/* no-op */
1977}
1978
1979#endif  /* CONFIG_PCI */
1980
1981/*
1982 * Iterate over all MC instances and check for ECC, et al, errors
1983 */
1984static inline void check_mc_devices(void)
1985{
1986	struct list_head *item;
1987	struct mem_ctl_info *mci;
1988
1989	debugf3("%s()\n", __func__);
1990	down(&mem_ctls_mutex);
1991
1992	list_for_each(item, &mc_devices) {
1993		mci = list_entry(item, struct mem_ctl_info, link);
1994
1995		if (mci->edac_check != NULL)
1996			mci->edac_check(mci);
1997	}
1998
1999	up(&mem_ctls_mutex);
2000}
2001
2002/*
2003 * Check MC status every poll_msec.
2004 * Check PCI status every poll_msec as well.
2005 *
2006 * This where the work gets done for edac.
2007 *
2008 * SMP safe, doesn't use NMI, and auto-rate-limits.
2009 */
2010static void do_edac_check(void)
2011{
2012	debugf3("%s()\n", __func__);
2013	check_mc_devices();
2014	do_pci_parity_check();
2015}
2016
2017static int edac_kernel_thread(void *arg)
2018{
2019	while (!kthread_should_stop()) {
2020		do_edac_check();
2021
2022		/* goto sleep for the interval */
2023		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2024		try_to_freeze();
2025	}
2026
2027	return 0;
2028}
2029
2030/*
2031 * edac_mc_init
2032 *      module initialization entry point
2033 */
2034static int __init edac_mc_init(void)
2035{
2036	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2037
2038	/*
2039	 * Harvest and clear any boot/initialization PCI parity errors
2040	 *
2041	 * FIXME: This only clears errors logged by devices present at time of
2042	 * 	module initialization.  We should also do an initial clear
2043	 *	of each newly hotplugged device.
2044	 */
2045	clear_pci_parity_errors();
2046
2047	/* Create the MC sysfs entires */
2048	if (edac_sysfs_memctrl_setup()) {
2049		edac_printk(KERN_ERR, EDAC_MC,
2050			"Error initializing sysfs code\n");
2051		return -ENODEV;
2052	}
2053
2054	/* Create the PCI parity sysfs entries */
2055	if (edac_sysfs_pci_setup()) {
2056		edac_sysfs_memctrl_teardown();
2057		edac_printk(KERN_ERR, EDAC_MC,
2058			"EDAC PCI: Error initializing sysfs code\n");
2059		return -ENODEV;
2060	}
2061
2062	/* create our kernel thread */
2063	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2064
2065	if (IS_ERR(edac_thread)) {
2066		/* remove the sysfs entries */
2067		edac_sysfs_memctrl_teardown();
2068		edac_sysfs_pci_teardown();
2069		return PTR_ERR(edac_thread);
2070	}
2071
2072	return 0;
2073}
2074
2075/*
2076 * edac_mc_exit()
2077 *      module exit/termination functioni
2078 */
2079static void __exit edac_mc_exit(void)
2080{
2081	debugf0("%s()\n", __func__);
2082	kthread_stop(edac_thread);
2083
2084        /* tear down the sysfs device */
2085	edac_sysfs_memctrl_teardown();
2086	edac_sysfs_pci_teardown();
2087}
2088
2089module_init(edac_mc_init);
2090module_exit(edac_mc_exit);
2091
2092MODULE_LICENSE("GPL");
2093MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2094	"Based on work by Dan Hollis et al");
2095MODULE_DESCRIPTION("Core library routines for MC reporting");
2096
2097module_param(panic_on_ue, int, 0644);
2098MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2099module_param(check_pci_parity, int, 0644);
2100MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2101module_param(panic_on_pci_parity, int, 0644);
2102MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2103module_param(log_ue, int, 0644);
2104MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2105module_param(log_ce, int, 0644);
2106MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2107module_param(poll_msec, int, 0644);
2108MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2109#ifdef CONFIG_EDAC_DEBUG
2110module_param(edac_debug_level, int, 0644);
2111MODULE_PARM_DESC(edac_debug_level, "Debug level");
2112#endif
2113