1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "drmP.h"
26#include "i915_drm.h"
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30#include <linux/mmu_context.h>
31#include <linux/mmu_notifier.h>
32#include <linux/mempolicy.h>
33#include <linux/swap.h>
34
35struct i915_mm_struct {
36	struct mm_struct *mm;
37	struct drm_device *dev;
38	struct i915_mmu_notifier *mn;
39	struct hlist_node node;
40	struct kref kref;
41	struct work_struct work;
42};
43
44#if defined(CONFIG_MMU_NOTIFIER)
45#include <linux/interval_tree.h>
46
47struct i915_mmu_notifier {
48	spinlock_t lock;
49	struct hlist_node node;
50	struct mmu_notifier mn;
51	struct rb_root objects;
52	struct list_head linear;
53	unsigned long serial;
54	bool has_linear;
55};
56
57struct i915_mmu_object {
58	struct i915_mmu_notifier *mn;
59	struct interval_tree_node it;
60	struct list_head link;
61	struct drm_i915_gem_object *obj;
62	bool is_linear;
63};
64
65static unsigned long cancel_userptr(struct drm_i915_gem_object *obj)
66{
67	struct drm_device *dev = obj->base.dev;
68	unsigned long end;
69
70	mutex_lock(&dev->struct_mutex);
71	/* Cancel any active worker and force us to re-evaluate gup */
72	obj->userptr.work = NULL;
73
74	if (obj->pages != NULL) {
75		struct drm_i915_private *dev_priv = to_i915(dev);
76		struct i915_vma *vma, *tmp;
77		bool was_interruptible;
78
79		was_interruptible = dev_priv->mm.interruptible;
80		dev_priv->mm.interruptible = false;
81
82		list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
83			int ret = i915_vma_unbind(vma);
84			WARN_ON(ret && ret != -EIO);
85		}
86		WARN_ON(i915_gem_object_put_pages(obj));
87
88		dev_priv->mm.interruptible = was_interruptible;
89	}
90
91	end = obj->userptr.ptr + obj->base.size;
92
93	drm_gem_object_unreference(&obj->base);
94	mutex_unlock(&dev->struct_mutex);
95
96	return end;
97}
98
99static void *invalidate_range__linear(struct i915_mmu_notifier *mn,
100				      struct mm_struct *mm,
101				      unsigned long start,
102				      unsigned long end)
103{
104	struct i915_mmu_object *mo;
105	unsigned long serial;
106
107restart:
108	serial = mn->serial;
109	list_for_each_entry(mo, &mn->linear, link) {
110		struct drm_i915_gem_object *obj;
111
112		if (mo->it.last < start || mo->it.start > end)
113			continue;
114
115		obj = mo->obj;
116		drm_gem_object_reference(&obj->base);
117		spin_unlock(&mn->lock);
118
119		cancel_userptr(obj);
120
121		spin_lock(&mn->lock);
122		if (serial != mn->serial)
123			goto restart;
124	}
125
126	return NULL;
127}
128
129static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
130						       struct mm_struct *mm,
131						       unsigned long start,
132						       unsigned long end)
133{
134	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
135	struct interval_tree_node *it = NULL;
136	unsigned long next = start;
137	unsigned long serial = 0;
138
139	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
140	while (next < end) {
141		struct drm_i915_gem_object *obj = NULL;
142
143		spin_lock(&mn->lock);
144		if (mn->has_linear)
145			it = invalidate_range__linear(mn, mm, start, end);
146		else if (serial == mn->serial)
147			it = interval_tree_iter_next(it, next, end);
148		else
149			it = interval_tree_iter_first(&mn->objects, start, end);
150		if (it != NULL) {
151			obj = container_of(it, struct i915_mmu_object, it)->obj;
152			drm_gem_object_reference(&obj->base);
153			serial = mn->serial;
154		}
155		spin_unlock(&mn->lock);
156		if (obj == NULL)
157			return;
158
159		next = cancel_userptr(obj);
160	}
161}
162
163static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
164	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
165};
166
167static struct i915_mmu_notifier *
168i915_mmu_notifier_create(struct mm_struct *mm)
169{
170	struct i915_mmu_notifier *mn;
171	int ret;
172
173	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
174	if (mn == NULL)
175		return ERR_PTR(-ENOMEM);
176
177	spin_lock_init(&mn->lock);
178	mn->mn.ops = &i915_gem_userptr_notifier;
179	mn->objects = RB_ROOT;
180	mn->serial = 1;
181	INIT_LIST_HEAD(&mn->linear);
182	mn->has_linear = false;
183
184	 /* Protected by mmap_sem (write-lock) */
185	ret = __mmu_notifier_register(&mn->mn, mm);
186	if (ret) {
187		kfree(mn);
188		return ERR_PTR(ret);
189	}
190
191	return mn;
192}
193
194static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mn)
195{
196	if (++mn->serial == 0)
197		mn->serial = 1;
198}
199
200static int
201i915_mmu_notifier_add(struct drm_device *dev,
202		      struct i915_mmu_notifier *mn,
203		      struct i915_mmu_object *mo)
204{
205	struct interval_tree_node *it;
206	int ret;
207
208	ret = i915_mutex_lock_interruptible(dev);
209	if (ret)
210		return ret;
211
212	/* Make sure we drop the final active reference (and thereby
213	 * remove the objects from the interval tree) before we do
214	 * the check for overlapping objects.
215	 */
216	i915_gem_retire_requests(dev);
217
218	spin_lock(&mn->lock);
219	it = interval_tree_iter_first(&mn->objects,
220				      mo->it.start, mo->it.last);
221	if (it) {
222		struct drm_i915_gem_object *obj;
223
224		/* We only need to check the first object in the range as it
225		 * either has cancelled gup work queued and we need to
226		 * return back to the user to give time for the gup-workers
227		 * to flush their object references upon which the object will
228		 * be removed from the interval-tree, or the the range is
229		 * still in use by another client and the overlap is invalid.
230		 *
231		 * If we do have an overlap, we cannot use the interval tree
232		 * for fast range invalidation.
233		 */
234
235		obj = container_of(it, struct i915_mmu_object, it)->obj;
236		if (!obj->userptr.workers)
237			mn->has_linear = mo->is_linear = true;
238		else
239			ret = -EAGAIN;
240	} else
241		interval_tree_insert(&mo->it, &mn->objects);
242
243	if (ret == 0) {
244		list_add(&mo->link, &mn->linear);
245		__i915_mmu_notifier_update_serial(mn);
246	}
247	spin_unlock(&mn->lock);
248	mutex_unlock(&dev->struct_mutex);
249
250	return ret;
251}
252
253static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
254{
255	struct i915_mmu_object *mo;
256
257	list_for_each_entry(mo, &mn->linear, link)
258		if (mo->is_linear)
259			return true;
260
261	return false;
262}
263
264static void
265i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
266		      struct i915_mmu_object *mo)
267{
268	spin_lock(&mn->lock);
269	list_del(&mo->link);
270	if (mo->is_linear)
271		mn->has_linear = i915_mmu_notifier_has_linear(mn);
272	else
273		interval_tree_remove(&mo->it, &mn->objects);
274	__i915_mmu_notifier_update_serial(mn);
275	spin_unlock(&mn->lock);
276}
277
278static void
279i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
280{
281	struct i915_mmu_object *mo;
282
283	mo = obj->userptr.mmu_object;
284	if (mo == NULL)
285		return;
286
287	i915_mmu_notifier_del(mo->mn, mo);
288	kfree(mo);
289
290	obj->userptr.mmu_object = NULL;
291}
292
293static struct i915_mmu_notifier *
294i915_mmu_notifier_find(struct i915_mm_struct *mm)
295{
296	struct i915_mmu_notifier *mn = mm->mn;
297
298	mn = mm->mn;
299	if (mn)
300		return mn;
301
302	down_write(&mm->mm->mmap_sem);
303	mutex_lock(&to_i915(mm->dev)->mm_lock);
304	if ((mn = mm->mn) == NULL) {
305		mn = i915_mmu_notifier_create(mm->mm);
306		if (!IS_ERR(mn))
307			mm->mn = mn;
308	}
309	mutex_unlock(&to_i915(mm->dev)->mm_lock);
310	up_write(&mm->mm->mmap_sem);
311
312	return mn;
313}
314
315static int
316i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
317				    unsigned flags)
318{
319	struct i915_mmu_notifier *mn;
320	struct i915_mmu_object *mo;
321	int ret;
322
323	if (flags & I915_USERPTR_UNSYNCHRONIZED)
324		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
325
326	if (WARN_ON(obj->userptr.mm == NULL))
327		return -EINVAL;
328
329	mn = i915_mmu_notifier_find(obj->userptr.mm);
330	if (IS_ERR(mn))
331		return PTR_ERR(mn);
332
333	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
334	if (mo == NULL)
335		return -ENOMEM;
336
337	mo->mn = mn;
338	mo->it.start = obj->userptr.ptr;
339	mo->it.last = mo->it.start + obj->base.size - 1;
340	mo->obj = obj;
341
342	ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
343	if (ret) {
344		kfree(mo);
345		return ret;
346	}
347
348	obj->userptr.mmu_object = mo;
349	return 0;
350}
351
352static void
353i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
354		       struct mm_struct *mm)
355{
356	if (mn == NULL)
357		return;
358
359	mmu_notifier_unregister(&mn->mn, mm);
360	kfree(mn);
361}
362
363#else
364
365static void
366i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
367{
368}
369
370static int
371i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
372				    unsigned flags)
373{
374	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
375		return -ENODEV;
376
377	if (!capable(CAP_SYS_ADMIN))
378		return -EPERM;
379
380	return 0;
381}
382
383static void
384i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
385		       struct mm_struct *mm)
386{
387}
388
389#endif
390
391static struct i915_mm_struct *
392__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
393{
394	struct i915_mm_struct *mm;
395
396	/* Protected by dev_priv->mm_lock */
397	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
398		if (mm->mm == real)
399			return mm;
400
401	return NULL;
402}
403
404static int
405i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
406{
407	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
408	struct i915_mm_struct *mm;
409	int ret = 0;
410
411	/* During release of the GEM object we hold the struct_mutex. This
412	 * precludes us from calling mmput() at that time as that may be
413	 * the last reference and so call exit_mmap(). exit_mmap() will
414	 * attempt to reap the vma, and if we were holding a GTT mmap
415	 * would then call drm_gem_vm_close() and attempt to reacquire
416	 * the struct mutex. So in order to avoid that recursion, we have
417	 * to defer releasing the mm reference until after we drop the
418	 * struct_mutex, i.e. we need to schedule a worker to do the clean
419	 * up.
420	 */
421	mutex_lock(&dev_priv->mm_lock);
422	mm = __i915_mm_struct_find(dev_priv, current->mm);
423	if (mm == NULL) {
424		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
425		if (mm == NULL) {
426			ret = -ENOMEM;
427			goto out;
428		}
429
430		kref_init(&mm->kref);
431		mm->dev = obj->base.dev;
432
433		mm->mm = current->mm;
434		atomic_inc(&current->mm->mm_count);
435
436		mm->mn = NULL;
437
438		/* Protected by dev_priv->mm_lock */
439		hash_add(dev_priv->mm_structs,
440			 &mm->node, (unsigned long)mm->mm);
441	} else
442		kref_get(&mm->kref);
443
444	obj->userptr.mm = mm;
445out:
446	mutex_unlock(&dev_priv->mm_lock);
447	return ret;
448}
449
450static void
451__i915_mm_struct_free__worker(struct work_struct *work)
452{
453	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
454	i915_mmu_notifier_free(mm->mn, mm->mm);
455	mmdrop(mm->mm);
456	kfree(mm);
457}
458
459static void
460__i915_mm_struct_free(struct kref *kref)
461{
462	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
463
464	/* Protected by dev_priv->mm_lock */
465	hash_del(&mm->node);
466	mutex_unlock(&to_i915(mm->dev)->mm_lock);
467
468	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
469	schedule_work(&mm->work);
470}
471
472static void
473i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
474{
475	if (obj->userptr.mm == NULL)
476		return;
477
478	kref_put_mutex(&obj->userptr.mm->kref,
479		       __i915_mm_struct_free,
480		       &to_i915(obj->base.dev)->mm_lock);
481	obj->userptr.mm = NULL;
482}
483
484struct get_pages_work {
485	struct work_struct work;
486	struct drm_i915_gem_object *obj;
487	struct task_struct *task;
488};
489
490#if IS_ENABLED(CONFIG_SWIOTLB)
491#define swiotlb_active() swiotlb_nr_tbl()
492#else
493#define swiotlb_active() 0
494#endif
495
496static int
497st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
498{
499	struct scatterlist *sg;
500	int ret, n;
501
502	*st = kmalloc(sizeof(**st), GFP_KERNEL);
503	if (*st == NULL)
504		return -ENOMEM;
505
506	if (swiotlb_active()) {
507		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
508		if (ret)
509			goto err;
510
511		for_each_sg((*st)->sgl, sg, num_pages, n)
512			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
513	} else {
514		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
515						0, num_pages << PAGE_SHIFT,
516						GFP_KERNEL);
517		if (ret)
518			goto err;
519	}
520
521	return 0;
522
523err:
524	kfree(*st);
525	*st = NULL;
526	return ret;
527}
528
529static void
530__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
531{
532	struct get_pages_work *work = container_of(_work, typeof(*work), work);
533	struct drm_i915_gem_object *obj = work->obj;
534	struct drm_device *dev = obj->base.dev;
535	const int num_pages = obj->base.size >> PAGE_SHIFT;
536	struct page **pvec;
537	int pinned, ret;
538
539	ret = -ENOMEM;
540	pinned = 0;
541
542	pvec = kmalloc(num_pages*sizeof(struct page *),
543		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
544	if (pvec == NULL)
545		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
546	if (pvec != NULL) {
547		struct mm_struct *mm = obj->userptr.mm->mm;
548
549		down_read(&mm->mmap_sem);
550		while (pinned < num_pages) {
551			ret = get_user_pages(work->task, mm,
552					     obj->userptr.ptr + pinned * PAGE_SIZE,
553					     num_pages - pinned,
554					     !obj->userptr.read_only, 0,
555					     pvec + pinned, NULL);
556			if (ret < 0)
557				break;
558
559			pinned += ret;
560		}
561		up_read(&mm->mmap_sem);
562	}
563
564	mutex_lock(&dev->struct_mutex);
565	if (obj->userptr.work != &work->work) {
566		ret = 0;
567	} else if (pinned == num_pages) {
568		ret = st_set_pages(&obj->pages, pvec, num_pages);
569		if (ret == 0) {
570			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
571			pinned = 0;
572		}
573	}
574
575	obj->userptr.work = ERR_PTR(ret);
576	obj->userptr.workers--;
577	drm_gem_object_unreference(&obj->base);
578	mutex_unlock(&dev->struct_mutex);
579
580	release_pages(pvec, pinned, 0);
581	drm_free_large(pvec);
582
583	put_task_struct(work->task);
584	kfree(work);
585}
586
587static int
588i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
589{
590	const int num_pages = obj->base.size >> PAGE_SHIFT;
591	struct page **pvec;
592	int pinned, ret;
593
594	/* If userspace should engineer that these pages are replaced in
595	 * the vma between us binding this page into the GTT and completion
596	 * of rendering... Their loss. If they change the mapping of their
597	 * pages they need to create a new bo to point to the new vma.
598	 *
599	 * However, that still leaves open the possibility of the vma
600	 * being copied upon fork. Which falls under the same userspace
601	 * synchronisation issue as a regular bo, except that this time
602	 * the process may not be expecting that a particular piece of
603	 * memory is tied to the GPU.
604	 *
605	 * Fortunately, we can hook into the mmu_notifier in order to
606	 * discard the page references prior to anything nasty happening
607	 * to the vma (discard or cloning) which should prevent the more
608	 * egregious cases from causing harm.
609	 */
610
611	pvec = NULL;
612	pinned = 0;
613	if (obj->userptr.mm->mm == current->mm) {
614		pvec = kmalloc(num_pages*sizeof(struct page *),
615			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
616		if (pvec == NULL) {
617			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
618			if (pvec == NULL)
619				return -ENOMEM;
620		}
621
622		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
623					       !obj->userptr.read_only, pvec);
624	}
625	if (pinned < num_pages) {
626		if (pinned < 0) {
627			ret = pinned;
628			pinned = 0;
629		} else {
630			/* Spawn a worker so that we can acquire the
631			 * user pages without holding our mutex. Access
632			 * to the user pages requires mmap_sem, and we have
633			 * a strict lock ordering of mmap_sem, struct_mutex -
634			 * we already hold struct_mutex here and so cannot
635			 * call gup without encountering a lock inversion.
636			 *
637			 * Userspace will keep on repeating the operation
638			 * (thanks to EAGAIN) until either we hit the fast
639			 * path or the worker completes. If the worker is
640			 * cancelled or superseded, the task is still run
641			 * but the results ignored. (This leads to
642			 * complications that we may have a stray object
643			 * refcount that we need to be wary of when
644			 * checking for existing objects during creation.)
645			 * If the worker encounters an error, it reports
646			 * that error back to this function through
647			 * obj->userptr.work = ERR_PTR.
648			 */
649			ret = -EAGAIN;
650			if (obj->userptr.work == NULL &&
651			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
652				struct get_pages_work *work;
653
654				work = kmalloc(sizeof(*work), GFP_KERNEL);
655				if (work != NULL) {
656					obj->userptr.work = &work->work;
657					obj->userptr.workers++;
658
659					work->obj = obj;
660					drm_gem_object_reference(&obj->base);
661
662					work->task = current;
663					get_task_struct(work->task);
664
665					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
666					schedule_work(&work->work);
667				} else
668					ret = -ENOMEM;
669			} else {
670				if (IS_ERR(obj->userptr.work)) {
671					ret = PTR_ERR(obj->userptr.work);
672					obj->userptr.work = NULL;
673				}
674			}
675		}
676	} else {
677		ret = st_set_pages(&obj->pages, pvec, num_pages);
678		if (ret == 0) {
679			obj->userptr.work = NULL;
680			pinned = 0;
681		}
682	}
683
684	release_pages(pvec, pinned, 0);
685	drm_free_large(pvec);
686	return ret;
687}
688
689static void
690i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
691{
692	struct sg_page_iter sg_iter;
693
694	BUG_ON(obj->userptr.work != NULL);
695
696	if (obj->madv != I915_MADV_WILLNEED)
697		obj->dirty = 0;
698
699	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
700		struct page *page = sg_page_iter_page(&sg_iter);
701
702		if (obj->dirty)
703			set_page_dirty(page);
704
705		mark_page_accessed(page);
706		page_cache_release(page);
707	}
708	obj->dirty = 0;
709
710	sg_free_table(obj->pages);
711	kfree(obj->pages);
712}
713
714static void
715i915_gem_userptr_release(struct drm_i915_gem_object *obj)
716{
717	i915_gem_userptr_release__mmu_notifier(obj);
718	i915_gem_userptr_release__mm_struct(obj);
719}
720
721static int
722i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
723{
724	if (obj->userptr.mmu_object)
725		return 0;
726
727	return i915_gem_userptr_init__mmu_notifier(obj, 0);
728}
729
730static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
731	.dmabuf_export = i915_gem_userptr_dmabuf_export,
732	.get_pages = i915_gem_userptr_get_pages,
733	.put_pages = i915_gem_userptr_put_pages,
734	.release = i915_gem_userptr_release,
735};
736
737/**
738 * Creates a new mm object that wraps some normal memory from the process
739 * context - user memory.
740 *
741 * We impose several restrictions upon the memory being mapped
742 * into the GPU.
743 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
744 * 2. It must be normal system memory, not a pointer into another map of IO
745 *    space (e.g. it must not be a GTT mmapping of another object).
746 * 3. We only allow a bo as large as we could in theory map into the GTT,
747 *    that is we limit the size to the total size of the GTT.
748 * 4. The bo is marked as being snoopable. The backing pages are left
749 *    accessible directly by the CPU, but reads and writes by the GPU may
750 *    incur the cost of a snoop (unless you have an LLC architecture).
751 *
752 * Synchronisation between multiple users and the GPU is left to userspace
753 * through the normal set-domain-ioctl. The kernel will enforce that the
754 * GPU relinquishes the VMA before it is returned back to the system
755 * i.e. upon free(), munmap() or process termination. However, the userspace
756 * malloc() library may not immediately relinquish the VMA after free() and
757 * instead reuse it whilst the GPU is still reading and writing to the VMA.
758 * Caveat emptor.
759 *
760 * Also note, that the object created here is not currently a "first class"
761 * object, in that several ioctls are banned. These are the CPU access
762 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
763 * direct access via your pointer rather than use those ioctls.
764 *
765 * If you think this is a good interface to use to pass GPU memory between
766 * drivers, please use dma-buf instead. In fact, wherever possible use
767 * dma-buf instead.
768 */
769int
770i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
771{
772	struct drm_i915_private *dev_priv = dev->dev_private;
773	struct drm_i915_gem_userptr *args = data;
774	struct drm_i915_gem_object *obj;
775	int ret;
776	u32 handle;
777
778	if (args->flags & ~(I915_USERPTR_READ_ONLY |
779			    I915_USERPTR_UNSYNCHRONIZED))
780		return -EINVAL;
781
782	if (offset_in_page(args->user_ptr | args->user_size))
783		return -EINVAL;
784
785	if (args->user_size > dev_priv->gtt.base.total)
786		return -E2BIG;
787
788	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
789		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
790		return -EFAULT;
791
792	if (args->flags & I915_USERPTR_READ_ONLY) {
793		/* On almost all of the current hw, we cannot tell the GPU that a
794		 * page is readonly, so this is just a placeholder in the uAPI.
795		 */
796		return -ENODEV;
797	}
798
799	obj = i915_gem_object_alloc(dev);
800	if (obj == NULL)
801		return -ENOMEM;
802
803	drm_gem_private_object_init(dev, &obj->base, args->user_size);
804	i915_gem_object_init(obj, &i915_gem_userptr_ops);
805	obj->cache_level = I915_CACHE_LLC;
806	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
807	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
808
809	obj->userptr.ptr = args->user_ptr;
810	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
811
812	/* And keep a pointer to the current->mm for resolving the user pages
813	 * at binding. This means that we need to hook into the mmu_notifier
814	 * in order to detect if the mmu is destroyed.
815	 */
816	ret = i915_gem_userptr_init__mm_struct(obj);
817	if (ret == 0)
818		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
819	if (ret == 0)
820		ret = drm_gem_handle_create(file, &obj->base, &handle);
821
822	/* drop reference from allocate - handle holds it now */
823	drm_gem_object_unreference_unlocked(&obj->base);
824	if (ret)
825		return ret;
826
827	args->handle = handle;
828	return 0;
829}
830
831int
832i915_gem_init_userptr(struct drm_device *dev)
833{
834	struct drm_i915_private *dev_priv = to_i915(dev);
835	mutex_init(&dev_priv->mm_lock);
836	hash_init(dev_priv->mm_structs);
837	return 0;
838}
839