intel_dp.c revision 0206e353a0416ad63ce07f53c807c2c725633b87
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE	9
44
45struct intel_dp {
46	struct intel_encoder base;
47	uint32_t output_reg;
48	uint32_t DP;
49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50	bool has_audio;
51	int force_audio;
52	uint32_t color_range;
53	int dpms_mode;
54	uint8_t link_bw;
55	uint8_t lane_count;
56	uint8_t dpcd[8];
57	struct i2c_adapter adapter;
58	struct i2c_algo_dp_aux_data algo;
59	bool is_pch_edp;
60	uint8_t	train_set[4];
61	uint8_t link_status[DP_LINK_STATUS_SIZE];
62};
63
64/**
65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66 * @intel_dp: DP struct
67 *
68 * If a CPU or PCH DP output is attached to an eDP panel, this function
69 * will return true, and false otherwise.
70 */
71static bool is_edp(struct intel_dp *intel_dp)
72{
73	return intel_dp->base.type == INTEL_OUTPUT_EDP;
74}
75
76/**
77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78 * @intel_dp: DP struct
79 *
80 * Returns true if the given DP struct corresponds to a PCH DP port attached
81 * to an eDP panel, false otherwise.  Helpful for determining whether we
82 * may need FDI resources for a given DP output or not.
83 */
84static bool is_pch_edp(struct intel_dp *intel_dp)
85{
86	return intel_dp->is_pch_edp;
87}
88
89static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
90{
91	return container_of(encoder, struct intel_dp, base.base);
92}
93
94static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
95{
96	return container_of(intel_attached_encoder(connector),
97			    struct intel_dp, base);
98}
99
100/**
101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102 * @encoder: DRM encoder
103 *
104 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
105 * by intel_display.c.
106 */
107bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
108{
109	struct intel_dp *intel_dp;
110
111	if (!encoder)
112		return false;
113
114	intel_dp = enc_to_intel_dp(encoder);
115
116	return is_pch_edp(intel_dp);
117}
118
119static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121static void intel_dp_link_down(struct intel_dp *intel_dp);
122
123void
124intel_edp_link_config(struct intel_encoder *intel_encoder,
125		       int *lane_num, int *link_bw)
126{
127	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
128
129	*lane_num = intel_dp->lane_count;
130	if (intel_dp->link_bw == DP_LINK_BW_1_62)
131		*link_bw = 162000;
132	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133		*link_bw = 270000;
134}
135
136static int
137intel_dp_max_lane_count(struct intel_dp *intel_dp)
138{
139	int max_lane_count = 4;
140
141	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
142		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143		switch (max_lane_count) {
144		case 1: case 2: case 4:
145			break;
146		default:
147			max_lane_count = 4;
148		}
149	}
150	return max_lane_count;
151}
152
153static int
154intel_dp_max_link_bw(struct intel_dp *intel_dp)
155{
156	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
157
158	switch (max_link_bw) {
159	case DP_LINK_BW_1_62:
160	case DP_LINK_BW_2_7:
161		break;
162	default:
163		max_link_bw = DP_LINK_BW_1_62;
164		break;
165	}
166	return max_link_bw;
167}
168
169static int
170intel_dp_link_clock(uint8_t link_bw)
171{
172	if (link_bw == DP_LINK_BW_2_7)
173		return 270000;
174	else
175		return 162000;
176}
177
178/* I think this is a fiction */
179static int
180intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
181{
182	struct drm_crtc *crtc = intel_dp->base.base.crtc;
183	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
184	int bpp = 24;
185
186	if (intel_crtc)
187		bpp = intel_crtc->bpp;
188
189	return (pixel_clock * bpp + 7) / 8;
190}
191
192static int
193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194{
195	return (max_link_clock * max_lanes * 8) / 10;
196}
197
198static int
199intel_dp_mode_valid(struct drm_connector *connector,
200		    struct drm_display_mode *mode)
201{
202	struct intel_dp *intel_dp = intel_attached_dp(connector);
203	struct drm_device *dev = connector->dev;
204	struct drm_i915_private *dev_priv = dev->dev_private;
205	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206	int max_lanes = intel_dp_max_lane_count(intel_dp);
207
208	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210			return MODE_PANEL;
211
212		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213			return MODE_PANEL;
214	}
215
216	/* only refuse the mode on non eDP since we have seen some weird eDP panels
217	   which are outside spec tolerances but somehow work by magic */
218	if (!is_edp(intel_dp) &&
219	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221		return MODE_CLOCK_HIGH;
222
223	if (mode->clock < 10000)
224		return MODE_CLOCK_LOW;
225
226	return MODE_OK;
227}
228
229static uint32_t
230pack_aux(uint8_t *src, int src_bytes)
231{
232	int	i;
233	uint32_t v = 0;
234
235	if (src_bytes > 4)
236		src_bytes = 4;
237	for (i = 0; i < src_bytes; i++)
238		v |= ((uint32_t) src[i]) << ((3-i) * 8);
239	return v;
240}
241
242static void
243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244{
245	int i;
246	if (dst_bytes > 4)
247		dst_bytes = 4;
248	for (i = 0; i < dst_bytes; i++)
249		dst[i] = src >> ((3-i) * 8);
250}
251
252/* hrawclock is 1/4 the FSB frequency */
253static int
254intel_hrawclk(struct drm_device *dev)
255{
256	struct drm_i915_private *dev_priv = dev->dev_private;
257	uint32_t clkcfg;
258
259	clkcfg = I915_READ(CLKCFG);
260	switch (clkcfg & CLKCFG_FSB_MASK) {
261	case CLKCFG_FSB_400:
262		return 100;
263	case CLKCFG_FSB_533:
264		return 133;
265	case CLKCFG_FSB_667:
266		return 166;
267	case CLKCFG_FSB_800:
268		return 200;
269	case CLKCFG_FSB_1067:
270		return 266;
271	case CLKCFG_FSB_1333:
272		return 333;
273	/* these two are just a guess; one of them might be right */
274	case CLKCFG_FSB_1600:
275	case CLKCFG_FSB_1600_ALT:
276		return 400;
277	default:
278		return 133;
279	}
280}
281
282static int
283intel_dp_aux_ch(struct intel_dp *intel_dp,
284		uint8_t *send, int send_bytes,
285		uint8_t *recv, int recv_size)
286{
287	uint32_t output_reg = intel_dp->output_reg;
288	struct drm_device *dev = intel_dp->base.base.dev;
289	struct drm_i915_private *dev_priv = dev->dev_private;
290	uint32_t ch_ctl = output_reg + 0x10;
291	uint32_t ch_data = ch_ctl + 4;
292	int i;
293	int recv_bytes;
294	uint32_t status;
295	uint32_t aux_clock_divider;
296	int try, precharge;
297
298	/* The clock divider is based off the hrawclk,
299	 * and would like to run at 2MHz. So, take the
300	 * hrawclk value and divide by 2 and use that
301	 *
302	 * Note that PCH attached eDP panels should use a 125MHz input
303	 * clock divider.
304	 */
305	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306		if (IS_GEN6(dev))
307			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308		else
309			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310	} else if (HAS_PCH_SPLIT(dev))
311		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312	else
313		aux_clock_divider = intel_hrawclk(dev) / 2;
314
315	if (IS_GEN6(dev))
316		precharge = 3;
317	else
318		precharge = 5;
319
320	/* Try to wait for any previous AUX channel activity */
321	for (try = 0; try < 3; try++) {
322		status = I915_READ(ch_ctl);
323		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
324			break;
325		msleep(1);
326	}
327
328	if (try == 3) {
329		WARN(1, "dp_aux_ch not started status 0x%08x\n",
330		     I915_READ(ch_ctl));
331		return -EBUSY;
332	}
333
334	/* Must try at least 3 times according to DP spec */
335	for (try = 0; try < 5; try++) {
336		/* Load the send data into the aux channel data registers */
337		for (i = 0; i < send_bytes; i += 4)
338			I915_WRITE(ch_data + i,
339				   pack_aux(send + i, send_bytes - i));
340
341		/* Send the command and wait for it to complete */
342		I915_WRITE(ch_ctl,
343			   DP_AUX_CH_CTL_SEND_BUSY |
344			   DP_AUX_CH_CTL_TIME_OUT_400us |
345			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
346			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
347			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
348			   DP_AUX_CH_CTL_DONE |
349			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
350			   DP_AUX_CH_CTL_RECEIVE_ERROR);
351		for (;;) {
352			status = I915_READ(ch_ctl);
353			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
354				break;
355			udelay(100);
356		}
357
358		/* Clear done status and any errors */
359		I915_WRITE(ch_ctl,
360			   status |
361			   DP_AUX_CH_CTL_DONE |
362			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
363			   DP_AUX_CH_CTL_RECEIVE_ERROR);
364		if (status & DP_AUX_CH_CTL_DONE)
365			break;
366	}
367
368	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
369		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
370		return -EBUSY;
371	}
372
373	/* Check for timeout or receive error.
374	 * Timeouts occur when the sink is not connected
375	 */
376	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
377		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
378		return -EIO;
379	}
380
381	/* Timeouts occur when the device isn't connected, so they're
382	 * "normal" -- don't fill the kernel log with these */
383	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
384		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
385		return -ETIMEDOUT;
386	}
387
388	/* Unload any bytes sent back from the other side */
389	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
390		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
391	if (recv_bytes > recv_size)
392		recv_bytes = recv_size;
393
394	for (i = 0; i < recv_bytes; i += 4)
395		unpack_aux(I915_READ(ch_data + i),
396			   recv + i, recv_bytes - i);
397
398	return recv_bytes;
399}
400
401/* Write data to the aux channel in native mode */
402static int
403intel_dp_aux_native_write(struct intel_dp *intel_dp,
404			  uint16_t address, uint8_t *send, int send_bytes)
405{
406	int ret;
407	uint8_t	msg[20];
408	int msg_bytes;
409	uint8_t	ack;
410
411	if (send_bytes > 16)
412		return -1;
413	msg[0] = AUX_NATIVE_WRITE << 4;
414	msg[1] = address >> 8;
415	msg[2] = address & 0xff;
416	msg[3] = send_bytes - 1;
417	memcpy(&msg[4], send, send_bytes);
418	msg_bytes = send_bytes + 4;
419	for (;;) {
420		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
421		if (ret < 0)
422			return ret;
423		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
424			break;
425		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
426			udelay(100);
427		else
428			return -EIO;
429	}
430	return send_bytes;
431}
432
433/* Write a single byte to the aux channel in native mode */
434static int
435intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
436			    uint16_t address, uint8_t byte)
437{
438	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
439}
440
441/* read bytes from a native aux channel */
442static int
443intel_dp_aux_native_read(struct intel_dp *intel_dp,
444			 uint16_t address, uint8_t *recv, int recv_bytes)
445{
446	uint8_t msg[4];
447	int msg_bytes;
448	uint8_t reply[20];
449	int reply_bytes;
450	uint8_t ack;
451	int ret;
452
453	msg[0] = AUX_NATIVE_READ << 4;
454	msg[1] = address >> 8;
455	msg[2] = address & 0xff;
456	msg[3] = recv_bytes - 1;
457
458	msg_bytes = 4;
459	reply_bytes = recv_bytes + 1;
460
461	for (;;) {
462		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
463				      reply, reply_bytes);
464		if (ret == 0)
465			return -EPROTO;
466		if (ret < 0)
467			return ret;
468		ack = reply[0];
469		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
470			memcpy(recv, reply + 1, ret - 1);
471			return ret - 1;
472		}
473		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
474			udelay(100);
475		else
476			return -EIO;
477	}
478}
479
480static int
481intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
482		    uint8_t write_byte, uint8_t *read_byte)
483{
484	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
485	struct intel_dp *intel_dp = container_of(adapter,
486						struct intel_dp,
487						adapter);
488	uint16_t address = algo_data->address;
489	uint8_t msg[5];
490	uint8_t reply[2];
491	unsigned retry;
492	int msg_bytes;
493	int reply_bytes;
494	int ret;
495
496	/* Set up the command byte */
497	if (mode & MODE_I2C_READ)
498		msg[0] = AUX_I2C_READ << 4;
499	else
500		msg[0] = AUX_I2C_WRITE << 4;
501
502	if (!(mode & MODE_I2C_STOP))
503		msg[0] |= AUX_I2C_MOT << 4;
504
505	msg[1] = address >> 8;
506	msg[2] = address;
507
508	switch (mode) {
509	case MODE_I2C_WRITE:
510		msg[3] = 0;
511		msg[4] = write_byte;
512		msg_bytes = 5;
513		reply_bytes = 1;
514		break;
515	case MODE_I2C_READ:
516		msg[3] = 0;
517		msg_bytes = 4;
518		reply_bytes = 2;
519		break;
520	default:
521		msg_bytes = 3;
522		reply_bytes = 1;
523		break;
524	}
525
526	for (retry = 0; retry < 5; retry++) {
527		ret = intel_dp_aux_ch(intel_dp,
528				      msg, msg_bytes,
529				      reply, reply_bytes);
530		if (ret < 0) {
531			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
532			return ret;
533		}
534
535		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
536		case AUX_NATIVE_REPLY_ACK:
537			/* I2C-over-AUX Reply field is only valid
538			 * when paired with AUX ACK.
539			 */
540			break;
541		case AUX_NATIVE_REPLY_NACK:
542			DRM_DEBUG_KMS("aux_ch native nack\n");
543			return -EREMOTEIO;
544		case AUX_NATIVE_REPLY_DEFER:
545			udelay(100);
546			continue;
547		default:
548			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
549				  reply[0]);
550			return -EREMOTEIO;
551		}
552
553		switch (reply[0] & AUX_I2C_REPLY_MASK) {
554		case AUX_I2C_REPLY_ACK:
555			if (mode == MODE_I2C_READ) {
556				*read_byte = reply[1];
557			}
558			return reply_bytes - 1;
559		case AUX_I2C_REPLY_NACK:
560			DRM_DEBUG_KMS("aux_i2c nack\n");
561			return -EREMOTEIO;
562		case AUX_I2C_REPLY_DEFER:
563			DRM_DEBUG_KMS("aux_i2c defer\n");
564			udelay(100);
565			break;
566		default:
567			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
568			return -EREMOTEIO;
569		}
570	}
571
572	DRM_ERROR("too many retries, giving up\n");
573	return -EREMOTEIO;
574}
575
576static int
577intel_dp_i2c_init(struct intel_dp *intel_dp,
578		  struct intel_connector *intel_connector, const char *name)
579{
580	DRM_DEBUG_KMS("i2c_init %s\n", name);
581	intel_dp->algo.running = false;
582	intel_dp->algo.address = 0;
583	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
584
585	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
586	intel_dp->adapter.owner = THIS_MODULE;
587	intel_dp->adapter.class = I2C_CLASS_DDC;
588	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
589	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
590	intel_dp->adapter.algo_data = &intel_dp->algo;
591	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
592
593	return i2c_dp_aux_add_bus(&intel_dp->adapter);
594}
595
596static bool
597intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
598		    struct drm_display_mode *adjusted_mode)
599{
600	struct drm_device *dev = encoder->dev;
601	struct drm_i915_private *dev_priv = dev->dev_private;
602	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
603	int lane_count, clock;
604	int max_lane_count = intel_dp_max_lane_count(intel_dp);
605	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
606	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
607
608	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
609		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
610		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
611					mode, adjusted_mode);
612		/*
613		 * the mode->clock is used to calculate the Data&Link M/N
614		 * of the pipe. For the eDP the fixed clock should be used.
615		 */
616		mode->clock = dev_priv->panel_fixed_mode->clock;
617	}
618
619	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
620		for (clock = 0; clock <= max_clock; clock++) {
621			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
622
623			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
624					<= link_avail) {
625				intel_dp->link_bw = bws[clock];
626				intel_dp->lane_count = lane_count;
627				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
628				DRM_DEBUG_KMS("Display port link bw %02x lane "
629						"count %d clock %d\n",
630				       intel_dp->link_bw, intel_dp->lane_count,
631				       adjusted_mode->clock);
632				return true;
633			}
634		}
635	}
636
637	if (is_edp(intel_dp)) {
638		/* okay we failed just pick the highest */
639		intel_dp->lane_count = max_lane_count;
640		intel_dp->link_bw = bws[max_clock];
641		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
642		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
643			      "count %d clock %d\n",
644			      intel_dp->link_bw, intel_dp->lane_count,
645			      adjusted_mode->clock);
646
647		return true;
648	}
649
650	return false;
651}
652
653struct intel_dp_m_n {
654	uint32_t	tu;
655	uint32_t	gmch_m;
656	uint32_t	gmch_n;
657	uint32_t	link_m;
658	uint32_t	link_n;
659};
660
661static void
662intel_reduce_ratio(uint32_t *num, uint32_t *den)
663{
664	while (*num > 0xffffff || *den > 0xffffff) {
665		*num >>= 1;
666		*den >>= 1;
667	}
668}
669
670static void
671intel_dp_compute_m_n(int bpp,
672		     int nlanes,
673		     int pixel_clock,
674		     int link_clock,
675		     struct intel_dp_m_n *m_n)
676{
677	m_n->tu = 64;
678	m_n->gmch_m = (pixel_clock * bpp) >> 3;
679	m_n->gmch_n = link_clock * nlanes;
680	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
681	m_n->link_m = pixel_clock;
682	m_n->link_n = link_clock;
683	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
684}
685
686void
687intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
688		 struct drm_display_mode *adjusted_mode)
689{
690	struct drm_device *dev = crtc->dev;
691	struct drm_mode_config *mode_config = &dev->mode_config;
692	struct drm_encoder *encoder;
693	struct drm_i915_private *dev_priv = dev->dev_private;
694	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
695	int lane_count = 4;
696	struct intel_dp_m_n m_n;
697	int pipe = intel_crtc->pipe;
698
699	/*
700	 * Find the lane count in the intel_encoder private
701	 */
702	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
703		struct intel_dp *intel_dp;
704
705		if (encoder->crtc != crtc)
706			continue;
707
708		intel_dp = enc_to_intel_dp(encoder);
709		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
710			lane_count = intel_dp->lane_count;
711			break;
712		} else if (is_edp(intel_dp)) {
713			lane_count = dev_priv->edp.lanes;
714			break;
715		}
716	}
717
718	/*
719	 * Compute the GMCH and Link ratios. The '3' here is
720	 * the number of bytes_per_pixel post-LUT, which we always
721	 * set up for 8-bits of R/G/B, or 3 bytes total.
722	 */
723	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
724			     mode->clock, adjusted_mode->clock, &m_n);
725
726	if (HAS_PCH_SPLIT(dev)) {
727		I915_WRITE(TRANSDATA_M1(pipe),
728			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729			   m_n.gmch_m);
730		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
731		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
732		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
733	} else {
734		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
735			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
736			   m_n.gmch_m);
737		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
738		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
739		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
740	}
741}
742
743static void
744intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
745		  struct drm_display_mode *adjusted_mode)
746{
747	struct drm_device *dev = encoder->dev;
748	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
749	struct drm_crtc *crtc = intel_dp->base.base.crtc;
750	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751
752	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
753	intel_dp->DP |= intel_dp->color_range;
754
755	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
756		intel_dp->DP |= DP_SYNC_HS_HIGH;
757	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
758		intel_dp->DP |= DP_SYNC_VS_HIGH;
759
760	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
761		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
762	else
763		intel_dp->DP |= DP_LINK_TRAIN_OFF;
764
765	switch (intel_dp->lane_count) {
766	case 1:
767		intel_dp->DP |= DP_PORT_WIDTH_1;
768		break;
769	case 2:
770		intel_dp->DP |= DP_PORT_WIDTH_2;
771		break;
772	case 4:
773		intel_dp->DP |= DP_PORT_WIDTH_4;
774		break;
775	}
776	if (intel_dp->has_audio)
777		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
778
779	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
780	intel_dp->link_configuration[0] = intel_dp->link_bw;
781	intel_dp->link_configuration[1] = intel_dp->lane_count;
782	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
783
784	/*
785	 * Check for DPCD version > 1.1 and enhanced framing support
786	 */
787	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
788	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
789		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
790		intel_dp->DP |= DP_ENHANCED_FRAMING;
791	}
792
793	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
794	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
795		intel_dp->DP |= DP_PIPEB_SELECT;
796
797	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
798		/* don't miss out required setting for eDP */
799		intel_dp->DP |= DP_PLL_ENABLE;
800		if (adjusted_mode->clock < 200000)
801			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
802		else
803			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
804	}
805}
806
807static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
808{
809	struct drm_device *dev = intel_dp->base.base.dev;
810	struct drm_i915_private *dev_priv = dev->dev_private;
811	u32 pp;
812
813	/*
814	 * If the panel wasn't on, make sure there's not a currently
815	 * active PP sequence before enabling AUX VDD.
816	 */
817	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
818		msleep(dev_priv->panel_t3);
819
820	pp = I915_READ(PCH_PP_CONTROL);
821	pp |= EDP_FORCE_VDD;
822	I915_WRITE(PCH_PP_CONTROL, pp);
823	POSTING_READ(PCH_PP_CONTROL);
824}
825
826static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
827{
828	struct drm_device *dev = intel_dp->base.base.dev;
829	struct drm_i915_private *dev_priv = dev->dev_private;
830	u32 pp;
831
832	pp = I915_READ(PCH_PP_CONTROL);
833	pp &= ~EDP_FORCE_VDD;
834	I915_WRITE(PCH_PP_CONTROL, pp);
835	POSTING_READ(PCH_PP_CONTROL);
836
837	/* Make sure sequencer is idle before allowing subsequent activity */
838	msleep(dev_priv->panel_t12);
839}
840
841/* Returns true if the panel was already on when called */
842static bool ironlake_edp_panel_on(struct intel_dp *intel_dp)
843{
844	struct drm_device *dev = intel_dp->base.base.dev;
845	struct drm_i915_private *dev_priv = dev->dev_private;
846	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
847
848	if (I915_READ(PCH_PP_STATUS) & PP_ON)
849		return true;
850
851	pp = I915_READ(PCH_PP_CONTROL);
852
853	/* ILK workaround: disable reset around power sequence */
854	pp &= ~PANEL_POWER_RESET;
855	I915_WRITE(PCH_PP_CONTROL, pp);
856	POSTING_READ(PCH_PP_CONTROL);
857
858	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
859	I915_WRITE(PCH_PP_CONTROL, pp);
860	POSTING_READ(PCH_PP_CONTROL);
861
862	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
863		     5000))
864		DRM_ERROR("panel on wait timed out: 0x%08x\n",
865			  I915_READ(PCH_PP_STATUS));
866
867	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
868	I915_WRITE(PCH_PP_CONTROL, pp);
869	POSTING_READ(PCH_PP_CONTROL);
870
871	return false;
872}
873
874static void ironlake_edp_panel_off(struct drm_device *dev)
875{
876	struct drm_i915_private *dev_priv = dev->dev_private;
877	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
878		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
879
880	pp = I915_READ(PCH_PP_CONTROL);
881
882	/* ILK workaround: disable reset around power sequence */
883	pp &= ~PANEL_POWER_RESET;
884	I915_WRITE(PCH_PP_CONTROL, pp);
885	POSTING_READ(PCH_PP_CONTROL);
886
887	pp &= ~POWER_TARGET_ON;
888	I915_WRITE(PCH_PP_CONTROL, pp);
889	POSTING_READ(PCH_PP_CONTROL);
890
891	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
892		DRM_ERROR("panel off wait timed out: 0x%08x\n",
893			  I915_READ(PCH_PP_STATUS));
894
895	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
896	I915_WRITE(PCH_PP_CONTROL, pp);
897	POSTING_READ(PCH_PP_CONTROL);
898}
899
900static void ironlake_edp_backlight_on(struct drm_device *dev)
901{
902	struct drm_i915_private *dev_priv = dev->dev_private;
903	u32 pp;
904
905	DRM_DEBUG_KMS("\n");
906	/*
907	 * If we enable the backlight right away following a panel power
908	 * on, we may see slight flicker as the panel syncs with the eDP
909	 * link.  So delay a bit to make sure the image is solid before
910	 * allowing it to appear.
911	 */
912	msleep(300);
913	pp = I915_READ(PCH_PP_CONTROL);
914	pp |= EDP_BLC_ENABLE;
915	I915_WRITE(PCH_PP_CONTROL, pp);
916}
917
918static void ironlake_edp_backlight_off(struct drm_device *dev)
919{
920	struct drm_i915_private *dev_priv = dev->dev_private;
921	u32 pp;
922
923	DRM_DEBUG_KMS("\n");
924	pp = I915_READ(PCH_PP_CONTROL);
925	pp &= ~EDP_BLC_ENABLE;
926	I915_WRITE(PCH_PP_CONTROL, pp);
927}
928
929static void ironlake_edp_pll_on(struct drm_encoder *encoder)
930{
931	struct drm_device *dev = encoder->dev;
932	struct drm_i915_private *dev_priv = dev->dev_private;
933	u32 dpa_ctl;
934
935	DRM_DEBUG_KMS("\n");
936	dpa_ctl = I915_READ(DP_A);
937	dpa_ctl |= DP_PLL_ENABLE;
938	I915_WRITE(DP_A, dpa_ctl);
939	POSTING_READ(DP_A);
940	udelay(200);
941}
942
943static void ironlake_edp_pll_off(struct drm_encoder *encoder)
944{
945	struct drm_device *dev = encoder->dev;
946	struct drm_i915_private *dev_priv = dev->dev_private;
947	u32 dpa_ctl;
948
949	dpa_ctl = I915_READ(DP_A);
950	dpa_ctl &= ~DP_PLL_ENABLE;
951	I915_WRITE(DP_A, dpa_ctl);
952	POSTING_READ(DP_A);
953	udelay(200);
954}
955
956/* If the sink supports it, try to set the power state appropriately */
957static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
958{
959	int ret, i;
960
961	/* Should have a valid DPCD by this point */
962	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
963		return;
964
965	if (mode != DRM_MODE_DPMS_ON) {
966		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
967						  DP_SET_POWER_D3);
968		if (ret != 1)
969			DRM_DEBUG_DRIVER("failed to write sink power state\n");
970	} else {
971		/*
972		 * When turning on, we need to retry for 1ms to give the sink
973		 * time to wake up.
974		 */
975		for (i = 0; i < 3; i++) {
976			ret = intel_dp_aux_native_write_1(intel_dp,
977							  DP_SET_POWER,
978							  DP_SET_POWER_D0);
979			if (ret == 1)
980				break;
981			msleep(1);
982		}
983	}
984}
985
986static void intel_dp_prepare(struct drm_encoder *encoder)
987{
988	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
989	struct drm_device *dev = encoder->dev;
990
991	/* Wake up the sink first */
992	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
993
994	if (is_edp(intel_dp)) {
995		ironlake_edp_backlight_off(dev);
996		ironlake_edp_panel_off(dev);
997		if (!is_pch_edp(intel_dp))
998			ironlake_edp_pll_on(encoder);
999		else
1000			ironlake_edp_pll_off(encoder);
1001	}
1002	intel_dp_link_down(intel_dp);
1003}
1004
1005static void intel_dp_commit(struct drm_encoder *encoder)
1006{
1007	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1008	struct drm_device *dev = encoder->dev;
1009
1010	if (is_edp(intel_dp))
1011		ironlake_edp_panel_vdd_on(intel_dp);
1012
1013	intel_dp_start_link_train(intel_dp);
1014
1015	if (is_edp(intel_dp)) {
1016		ironlake_edp_panel_on(intel_dp);
1017		ironlake_edp_panel_vdd_off(intel_dp);
1018	}
1019
1020	intel_dp_complete_link_train(intel_dp);
1021
1022	if (is_edp(intel_dp))
1023		ironlake_edp_backlight_on(dev);
1024
1025	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1026}
1027
1028static void
1029intel_dp_dpms(struct drm_encoder *encoder, int mode)
1030{
1031	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1032	struct drm_device *dev = encoder->dev;
1033	struct drm_i915_private *dev_priv = dev->dev_private;
1034	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1035
1036	if (mode != DRM_MODE_DPMS_ON) {
1037		if (is_edp(intel_dp))
1038			ironlake_edp_backlight_off(dev);
1039		intel_dp_sink_dpms(intel_dp, mode);
1040		intel_dp_link_down(intel_dp);
1041		if (is_edp(intel_dp))
1042			ironlake_edp_panel_off(dev);
1043		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1044			ironlake_edp_pll_off(encoder);
1045	} else {
1046		if (is_edp(intel_dp))
1047			ironlake_edp_panel_vdd_on(intel_dp);
1048		intel_dp_sink_dpms(intel_dp, mode);
1049		if (!(dp_reg & DP_PORT_EN)) {
1050			intel_dp_start_link_train(intel_dp);
1051			if (is_edp(intel_dp)) {
1052				ironlake_edp_panel_on(intel_dp);
1053				ironlake_edp_panel_vdd_off(intel_dp);
1054			}
1055			intel_dp_complete_link_train(intel_dp);
1056		}
1057		if (is_edp(intel_dp))
1058			ironlake_edp_backlight_on(dev);
1059	}
1060	intel_dp->dpms_mode = mode;
1061}
1062
1063/*
1064 * Native read with retry for link status and receiver capability reads for
1065 * cases where the sink may still be asleep.
1066 */
1067static bool
1068intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1069			       uint8_t *recv, int recv_bytes)
1070{
1071	int ret, i;
1072
1073	/*
1074	 * Sinks are *supposed* to come up within 1ms from an off state,
1075	 * but we're also supposed to retry 3 times per the spec.
1076	 */
1077	for (i = 0; i < 3; i++) {
1078		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1079					       recv_bytes);
1080		if (ret == recv_bytes)
1081			return true;
1082		msleep(1);
1083	}
1084
1085	return false;
1086}
1087
1088/*
1089 * Fetch AUX CH registers 0x202 - 0x207 which contain
1090 * link status information
1091 */
1092static bool
1093intel_dp_get_link_status(struct intel_dp *intel_dp)
1094{
1095	return intel_dp_aux_native_read_retry(intel_dp,
1096					      DP_LANE0_1_STATUS,
1097					      intel_dp->link_status,
1098					      DP_LINK_STATUS_SIZE);
1099}
1100
1101static uint8_t
1102intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1103		     int r)
1104{
1105	return link_status[r - DP_LANE0_1_STATUS];
1106}
1107
1108static uint8_t
1109intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1110				 int lane)
1111{
1112	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1113	int	    s = ((lane & 1) ?
1114			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1115			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1116	uint8_t l = intel_dp_link_status(link_status, i);
1117
1118	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1119}
1120
1121static uint8_t
1122intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1123				      int lane)
1124{
1125	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1126	int	    s = ((lane & 1) ?
1127			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1128			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1129	uint8_t l = intel_dp_link_status(link_status, i);
1130
1131	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1132}
1133
1134
1135#if 0
1136static char	*voltage_names[] = {
1137	"0.4V", "0.6V", "0.8V", "1.2V"
1138};
1139static char	*pre_emph_names[] = {
1140	"0dB", "3.5dB", "6dB", "9.5dB"
1141};
1142static char	*link_train_names[] = {
1143	"pattern 1", "pattern 2", "idle", "off"
1144};
1145#endif
1146
1147/*
1148 * These are source-specific values; current Intel hardware supports
1149 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1150 */
1151#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1152
1153static uint8_t
1154intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1155{
1156	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1157	case DP_TRAIN_VOLTAGE_SWING_400:
1158		return DP_TRAIN_PRE_EMPHASIS_6;
1159	case DP_TRAIN_VOLTAGE_SWING_600:
1160		return DP_TRAIN_PRE_EMPHASIS_6;
1161	case DP_TRAIN_VOLTAGE_SWING_800:
1162		return DP_TRAIN_PRE_EMPHASIS_3_5;
1163	case DP_TRAIN_VOLTAGE_SWING_1200:
1164	default:
1165		return DP_TRAIN_PRE_EMPHASIS_0;
1166	}
1167}
1168
1169static void
1170intel_get_adjust_train(struct intel_dp *intel_dp)
1171{
1172	uint8_t v = 0;
1173	uint8_t p = 0;
1174	int lane;
1175
1176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1177		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1178		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1179
1180		if (this_v > v)
1181			v = this_v;
1182		if (this_p > p)
1183			p = this_p;
1184	}
1185
1186	if (v >= I830_DP_VOLTAGE_MAX)
1187		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1188
1189	if (p >= intel_dp_pre_emphasis_max(v))
1190		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1191
1192	for (lane = 0; lane < 4; lane++)
1193		intel_dp->train_set[lane] = v | p;
1194}
1195
1196static uint32_t
1197intel_dp_signal_levels(uint8_t train_set, int lane_count)
1198{
1199	uint32_t	signal_levels = 0;
1200
1201	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1202	case DP_TRAIN_VOLTAGE_SWING_400:
1203	default:
1204		signal_levels |= DP_VOLTAGE_0_4;
1205		break;
1206	case DP_TRAIN_VOLTAGE_SWING_600:
1207		signal_levels |= DP_VOLTAGE_0_6;
1208		break;
1209	case DP_TRAIN_VOLTAGE_SWING_800:
1210		signal_levels |= DP_VOLTAGE_0_8;
1211		break;
1212	case DP_TRAIN_VOLTAGE_SWING_1200:
1213		signal_levels |= DP_VOLTAGE_1_2;
1214		break;
1215	}
1216	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1217	case DP_TRAIN_PRE_EMPHASIS_0:
1218	default:
1219		signal_levels |= DP_PRE_EMPHASIS_0;
1220		break;
1221	case DP_TRAIN_PRE_EMPHASIS_3_5:
1222		signal_levels |= DP_PRE_EMPHASIS_3_5;
1223		break;
1224	case DP_TRAIN_PRE_EMPHASIS_6:
1225		signal_levels |= DP_PRE_EMPHASIS_6;
1226		break;
1227	case DP_TRAIN_PRE_EMPHASIS_9_5:
1228		signal_levels |= DP_PRE_EMPHASIS_9_5;
1229		break;
1230	}
1231	return signal_levels;
1232}
1233
1234/* Gen6's DP voltage swing and pre-emphasis control */
1235static uint32_t
1236intel_gen6_edp_signal_levels(uint8_t train_set)
1237{
1238	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1239					 DP_TRAIN_PRE_EMPHASIS_MASK);
1240	switch (signal_levels) {
1241	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1242	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1243		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1244	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1245		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1247	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1248		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1250	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1251		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1253	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1254		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1255	default:
1256		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1257			      "0x%x\n", signal_levels);
1258		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1259	}
1260}
1261
1262static uint8_t
1263intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264		      int lane)
1265{
1266	int i = DP_LANE0_1_STATUS + (lane >> 1);
1267	int s = (lane & 1) * 4;
1268	uint8_t l = intel_dp_link_status(link_status, i);
1269
1270	return (l >> s) & 0xf;
1271}
1272
1273/* Check for clock recovery is done on all channels */
1274static bool
1275intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1276{
1277	int lane;
1278	uint8_t lane_status;
1279
1280	for (lane = 0; lane < lane_count; lane++) {
1281		lane_status = intel_get_lane_status(link_status, lane);
1282		if ((lane_status & DP_LANE_CR_DONE) == 0)
1283			return false;
1284	}
1285	return true;
1286}
1287
1288/* Check to see if channel eq is done on all channels */
1289#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1290			 DP_LANE_CHANNEL_EQ_DONE|\
1291			 DP_LANE_SYMBOL_LOCKED)
1292static bool
1293intel_channel_eq_ok(struct intel_dp *intel_dp)
1294{
1295	uint8_t lane_align;
1296	uint8_t lane_status;
1297	int lane;
1298
1299	lane_align = intel_dp_link_status(intel_dp->link_status,
1300					  DP_LANE_ALIGN_STATUS_UPDATED);
1301	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1302		return false;
1303	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1304		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1305		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1306			return false;
1307	}
1308	return true;
1309}
1310
1311static bool
1312intel_dp_set_link_train(struct intel_dp *intel_dp,
1313			uint32_t dp_reg_value,
1314			uint8_t dp_train_pat)
1315{
1316	struct drm_device *dev = intel_dp->base.base.dev;
1317	struct drm_i915_private *dev_priv = dev->dev_private;
1318	int ret;
1319
1320	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1321	POSTING_READ(intel_dp->output_reg);
1322
1323	intel_dp_aux_native_write_1(intel_dp,
1324				    DP_TRAINING_PATTERN_SET,
1325				    dp_train_pat);
1326
1327	ret = intel_dp_aux_native_write(intel_dp,
1328					DP_TRAINING_LANE0_SET,
1329					intel_dp->train_set, 4);
1330	if (ret != 4)
1331		return false;
1332
1333	return true;
1334}
1335
1336/* Enable corresponding port and start training pattern 1 */
1337static void
1338intel_dp_start_link_train(struct intel_dp *intel_dp)
1339{
1340	struct drm_device *dev = intel_dp->base.base.dev;
1341	struct drm_i915_private *dev_priv = dev->dev_private;
1342	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1343	int i;
1344	uint8_t voltage;
1345	bool clock_recovery = false;
1346	int tries;
1347	u32 reg;
1348	uint32_t DP = intel_dp->DP;
1349
1350	/*
1351	 * On CPT we have to enable the port in training pattern 1, which
1352	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1353	 * the port and wait for it to become active.
1354	 */
1355	if (!HAS_PCH_CPT(dev)) {
1356		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1357		POSTING_READ(intel_dp->output_reg);
1358		intel_wait_for_vblank(dev, intel_crtc->pipe);
1359	}
1360
1361	/* Write the link configuration data */
1362	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1363				  intel_dp->link_configuration,
1364				  DP_LINK_CONFIGURATION_SIZE);
1365
1366	DP |= DP_PORT_EN;
1367	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1368		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1369	else
1370		DP &= ~DP_LINK_TRAIN_MASK;
1371	memset(intel_dp->train_set, 0, 4);
1372	voltage = 0xff;
1373	tries = 0;
1374	clock_recovery = false;
1375	for (;;) {
1376		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1377		uint32_t    signal_levels;
1378		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1379			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381		} else {
1382			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1383			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384		}
1385
1386		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1388		else
1389			reg = DP | DP_LINK_TRAIN_PAT_1;
1390
1391		if (!intel_dp_set_link_train(intel_dp, reg,
1392					     DP_TRAINING_PATTERN_1 |
1393					     DP_LINK_SCRAMBLING_DISABLE))
1394			break;
1395		/* Set training pattern 1 */
1396
1397		udelay(100);
1398		if (!intel_dp_get_link_status(intel_dp))
1399			break;
1400
1401		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1402			clock_recovery = true;
1403			break;
1404		}
1405
1406		/* Check to see if we've tried the max voltage */
1407		for (i = 0; i < intel_dp->lane_count; i++)
1408			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1409				break;
1410		if (i == intel_dp->lane_count)
1411			break;
1412
1413		/* Check to see if we've tried the same voltage 5 times */
1414		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1415			++tries;
1416			if (tries == 5)
1417				break;
1418		} else
1419			tries = 0;
1420		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1421
1422		/* Compute new intel_dp->train_set as requested by target */
1423		intel_get_adjust_train(intel_dp);
1424	}
1425
1426	intel_dp->DP = DP;
1427}
1428
1429static void
1430intel_dp_complete_link_train(struct intel_dp *intel_dp)
1431{
1432	struct drm_device *dev = intel_dp->base.base.dev;
1433	struct drm_i915_private *dev_priv = dev->dev_private;
1434	bool channel_eq = false;
1435	int tries, cr_tries;
1436	u32 reg;
1437	uint32_t DP = intel_dp->DP;
1438
1439	/* channel equalization */
1440	tries = 0;
1441	cr_tries = 0;
1442	channel_eq = false;
1443	for (;;) {
1444		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1445		uint32_t    signal_levels;
1446
1447		if (cr_tries > 5) {
1448			DRM_ERROR("failed to train DP, aborting\n");
1449			intel_dp_link_down(intel_dp);
1450			break;
1451		}
1452
1453		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1454			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1455			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1456		} else {
1457			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1458			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1459		}
1460
1461		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1462			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1463		else
1464			reg = DP | DP_LINK_TRAIN_PAT_2;
1465
1466		/* channel eq pattern */
1467		if (!intel_dp_set_link_train(intel_dp, reg,
1468					     DP_TRAINING_PATTERN_2 |
1469					     DP_LINK_SCRAMBLING_DISABLE))
1470			break;
1471
1472		udelay(400);
1473		if (!intel_dp_get_link_status(intel_dp))
1474			break;
1475
1476		/* Make sure clock is still ok */
1477		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1478			intel_dp_start_link_train(intel_dp);
1479			cr_tries++;
1480			continue;
1481		}
1482
1483		if (intel_channel_eq_ok(intel_dp)) {
1484			channel_eq = true;
1485			break;
1486		}
1487
1488		/* Try 5 times, then try clock recovery if that fails */
1489		if (tries > 5) {
1490			intel_dp_link_down(intel_dp);
1491			intel_dp_start_link_train(intel_dp);
1492			tries = 0;
1493			cr_tries++;
1494			continue;
1495		}
1496
1497		/* Compute new intel_dp->train_set as requested by target */
1498		intel_get_adjust_train(intel_dp);
1499		++tries;
1500	}
1501
1502	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1503		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1504	else
1505		reg = DP | DP_LINK_TRAIN_OFF;
1506
1507	I915_WRITE(intel_dp->output_reg, reg);
1508	POSTING_READ(intel_dp->output_reg);
1509	intel_dp_aux_native_write_1(intel_dp,
1510				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1511}
1512
1513static void
1514intel_dp_link_down(struct intel_dp *intel_dp)
1515{
1516	struct drm_device *dev = intel_dp->base.base.dev;
1517	struct drm_i915_private *dev_priv = dev->dev_private;
1518	uint32_t DP = intel_dp->DP;
1519
1520	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1521		return;
1522
1523	DRM_DEBUG_KMS("\n");
1524
1525	if (is_edp(intel_dp)) {
1526		DP &= ~DP_PLL_ENABLE;
1527		I915_WRITE(intel_dp->output_reg, DP);
1528		POSTING_READ(intel_dp->output_reg);
1529		udelay(100);
1530	}
1531
1532	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1533		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1534		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1535	} else {
1536		DP &= ~DP_LINK_TRAIN_MASK;
1537		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1538	}
1539	POSTING_READ(intel_dp->output_reg);
1540
1541	msleep(17);
1542
1543	if (is_edp(intel_dp))
1544		DP |= DP_LINK_TRAIN_OFF;
1545
1546	if (!HAS_PCH_CPT(dev) &&
1547	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1548		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1549
1550		/* Hardware workaround: leaving our transcoder select
1551		 * set to transcoder B while it's off will prevent the
1552		 * corresponding HDMI output on transcoder A.
1553		 *
1554		 * Combine this with another hardware workaround:
1555		 * transcoder select bit can only be cleared while the
1556		 * port is enabled.
1557		 */
1558		DP &= ~DP_PIPEB_SELECT;
1559		I915_WRITE(intel_dp->output_reg, DP);
1560
1561		/* Changes to enable or select take place the vblank
1562		 * after being written.
1563		 */
1564		if (crtc == NULL) {
1565			/* We can arrive here never having been attached
1566			 * to a CRTC, for instance, due to inheriting
1567			 * random state from the BIOS.
1568			 *
1569			 * If the pipe is not running, play safe and
1570			 * wait for the clocks to stabilise before
1571			 * continuing.
1572			 */
1573			POSTING_READ(intel_dp->output_reg);
1574			msleep(50);
1575		} else
1576			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1577	}
1578
1579	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1580	POSTING_READ(intel_dp->output_reg);
1581}
1582
1583static bool
1584intel_dp_get_dpcd(struct intel_dp *intel_dp)
1585{
1586	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1587					   sizeof(intel_dp->dpcd)) &&
1588	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1589		return true;
1590	}
1591
1592	return false;
1593}
1594
1595/*
1596 * According to DP spec
1597 * 5.1.2:
1598 *  1. Read DPCD
1599 *  2. Configure link according to Receiver Capabilities
1600 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1601 *  4. Check link status on receipt of hot-plug interrupt
1602 */
1603
1604static void
1605intel_dp_check_link_status(struct intel_dp *intel_dp)
1606{
1607	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1608		return;
1609
1610	if (!intel_dp->base.base.crtc)
1611		return;
1612
1613	/* Try to read receiver status if the link appears to be up */
1614	if (!intel_dp_get_link_status(intel_dp)) {
1615		intel_dp_link_down(intel_dp);
1616		return;
1617	}
1618
1619	/* Now read the DPCD to see if it's actually running */
1620	if (!intel_dp_get_dpcd(intel_dp)) {
1621		intel_dp_link_down(intel_dp);
1622		return;
1623	}
1624
1625	if (!intel_channel_eq_ok(intel_dp)) {
1626		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1627			      drm_get_encoder_name(&intel_dp->base.base));
1628		intel_dp_start_link_train(intel_dp);
1629		intel_dp_complete_link_train(intel_dp);
1630	}
1631}
1632
1633static enum drm_connector_status
1634intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1635{
1636	if (intel_dp_get_dpcd(intel_dp))
1637		return connector_status_connected;
1638	return connector_status_disconnected;
1639}
1640
1641static enum drm_connector_status
1642ironlake_dp_detect(struct intel_dp *intel_dp)
1643{
1644	enum drm_connector_status status;
1645
1646	/* Can't disconnect eDP, but you can close the lid... */
1647	if (is_edp(intel_dp)) {
1648		status = intel_panel_detect(intel_dp->base.base.dev);
1649		if (status == connector_status_unknown)
1650			status = connector_status_connected;
1651		return status;
1652	}
1653
1654	return intel_dp_detect_dpcd(intel_dp);
1655}
1656
1657static enum drm_connector_status
1658g4x_dp_detect(struct intel_dp *intel_dp)
1659{
1660	struct drm_device *dev = intel_dp->base.base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662	uint32_t temp, bit;
1663
1664	switch (intel_dp->output_reg) {
1665	case DP_B:
1666		bit = DPB_HOTPLUG_INT_STATUS;
1667		break;
1668	case DP_C:
1669		bit = DPC_HOTPLUG_INT_STATUS;
1670		break;
1671	case DP_D:
1672		bit = DPD_HOTPLUG_INT_STATUS;
1673		break;
1674	default:
1675		return connector_status_unknown;
1676	}
1677
1678	temp = I915_READ(PORT_HOTPLUG_STAT);
1679
1680	if ((temp & bit) == 0)
1681		return connector_status_disconnected;
1682
1683	return intel_dp_detect_dpcd(intel_dp);
1684}
1685
1686/**
1687 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1688 *
1689 * \return true if DP port is connected.
1690 * \return false if DP port is disconnected.
1691 */
1692static enum drm_connector_status
1693intel_dp_detect(struct drm_connector *connector, bool force)
1694{
1695	struct intel_dp *intel_dp = intel_attached_dp(connector);
1696	struct drm_device *dev = intel_dp->base.base.dev;
1697	enum drm_connector_status status;
1698	struct edid *edid = NULL;
1699
1700	intel_dp->has_audio = false;
1701
1702	if (HAS_PCH_SPLIT(dev))
1703		status = ironlake_dp_detect(intel_dp);
1704	else
1705		status = g4x_dp_detect(intel_dp);
1706
1707	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1708		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1709		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1710		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
1711
1712	if (status != connector_status_connected)
1713		return status;
1714
1715	if (intel_dp->force_audio) {
1716		intel_dp->has_audio = intel_dp->force_audio > 0;
1717	} else {
1718		edid = drm_get_edid(connector, &intel_dp->adapter);
1719		if (edid) {
1720			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1721			connector->display_info.raw_edid = NULL;
1722			kfree(edid);
1723		}
1724	}
1725
1726	return connector_status_connected;
1727}
1728
1729static int intel_dp_get_modes(struct drm_connector *connector)
1730{
1731	struct intel_dp *intel_dp = intel_attached_dp(connector);
1732	struct drm_device *dev = intel_dp->base.base.dev;
1733	struct drm_i915_private *dev_priv = dev->dev_private;
1734	int ret;
1735
1736	/* We should parse the EDID data and find out if it has an audio sink
1737	 */
1738
1739	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1740	if (ret) {
1741		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1742			struct drm_display_mode *newmode;
1743			list_for_each_entry(newmode, &connector->probed_modes,
1744					    head) {
1745				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1746					dev_priv->panel_fixed_mode =
1747						drm_mode_duplicate(dev, newmode);
1748					break;
1749				}
1750			}
1751		}
1752
1753		return ret;
1754	}
1755
1756	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1757	if (is_edp(intel_dp)) {
1758		if (dev_priv->panel_fixed_mode != NULL) {
1759			struct drm_display_mode *mode;
1760			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1761			drm_mode_probed_add(connector, mode);
1762			return 1;
1763		}
1764	}
1765	return 0;
1766}
1767
1768static bool
1769intel_dp_detect_audio(struct drm_connector *connector)
1770{
1771	struct intel_dp *intel_dp = intel_attached_dp(connector);
1772	struct edid *edid;
1773	bool has_audio = false;
1774
1775	edid = drm_get_edid(connector, &intel_dp->adapter);
1776	if (edid) {
1777		has_audio = drm_detect_monitor_audio(edid);
1778
1779		connector->display_info.raw_edid = NULL;
1780		kfree(edid);
1781	}
1782
1783	return has_audio;
1784}
1785
1786static int
1787intel_dp_set_property(struct drm_connector *connector,
1788		      struct drm_property *property,
1789		      uint64_t val)
1790{
1791	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1792	struct intel_dp *intel_dp = intel_attached_dp(connector);
1793	int ret;
1794
1795	ret = drm_connector_property_set_value(connector, property, val);
1796	if (ret)
1797		return ret;
1798
1799	if (property == dev_priv->force_audio_property) {
1800		int i = val;
1801		bool has_audio;
1802
1803		if (i == intel_dp->force_audio)
1804			return 0;
1805
1806		intel_dp->force_audio = i;
1807
1808		if (i == 0)
1809			has_audio = intel_dp_detect_audio(connector);
1810		else
1811			has_audio = i > 0;
1812
1813		if (has_audio == intel_dp->has_audio)
1814			return 0;
1815
1816		intel_dp->has_audio = has_audio;
1817		goto done;
1818	}
1819
1820	if (property == dev_priv->broadcast_rgb_property) {
1821		if (val == !!intel_dp->color_range)
1822			return 0;
1823
1824		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1825		goto done;
1826	}
1827
1828	return -EINVAL;
1829
1830done:
1831	if (intel_dp->base.base.crtc) {
1832		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1833		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1834					 crtc->x, crtc->y,
1835					 crtc->fb);
1836	}
1837
1838	return 0;
1839}
1840
1841static void
1842intel_dp_destroy(struct drm_connector *connector)
1843{
1844	struct drm_device *dev = connector->dev;
1845
1846	if (intel_dpd_is_edp(dev))
1847		intel_panel_destroy_backlight(dev);
1848
1849	drm_sysfs_connector_remove(connector);
1850	drm_connector_cleanup(connector);
1851	kfree(connector);
1852}
1853
1854static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1855{
1856	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1857
1858	i2c_del_adapter(&intel_dp->adapter);
1859	drm_encoder_cleanup(encoder);
1860	kfree(intel_dp);
1861}
1862
1863static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1864	.dpms = intel_dp_dpms,
1865	.mode_fixup = intel_dp_mode_fixup,
1866	.prepare = intel_dp_prepare,
1867	.mode_set = intel_dp_mode_set,
1868	.commit = intel_dp_commit,
1869};
1870
1871static const struct drm_connector_funcs intel_dp_connector_funcs = {
1872	.dpms = drm_helper_connector_dpms,
1873	.detect = intel_dp_detect,
1874	.fill_modes = drm_helper_probe_single_connector_modes,
1875	.set_property = intel_dp_set_property,
1876	.destroy = intel_dp_destroy,
1877};
1878
1879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1880	.get_modes = intel_dp_get_modes,
1881	.mode_valid = intel_dp_mode_valid,
1882	.best_encoder = intel_best_encoder,
1883};
1884
1885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1886	.destroy = intel_dp_encoder_destroy,
1887};
1888
1889static void
1890intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1891{
1892	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1893
1894	intel_dp_check_link_status(intel_dp);
1895}
1896
1897/* Return which DP Port should be selected for Transcoder DP control */
1898int
1899intel_trans_dp_port_sel(struct drm_crtc *crtc)
1900{
1901	struct drm_device *dev = crtc->dev;
1902	struct drm_mode_config *mode_config = &dev->mode_config;
1903	struct drm_encoder *encoder;
1904
1905	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1906		struct intel_dp *intel_dp;
1907
1908		if (encoder->crtc != crtc)
1909			continue;
1910
1911		intel_dp = enc_to_intel_dp(encoder);
1912		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1913			return intel_dp->output_reg;
1914	}
1915
1916	return -1;
1917}
1918
1919/* check the VBT to see whether the eDP is on DP-D port */
1920bool intel_dpd_is_edp(struct drm_device *dev)
1921{
1922	struct drm_i915_private *dev_priv = dev->dev_private;
1923	struct child_device_config *p_child;
1924	int i;
1925
1926	if (!dev_priv->child_dev_num)
1927		return false;
1928
1929	for (i = 0; i < dev_priv->child_dev_num; i++) {
1930		p_child = dev_priv->child_dev + i;
1931
1932		if (p_child->dvo_port == PORT_IDPD &&
1933		    p_child->device_type == DEVICE_TYPE_eDP)
1934			return true;
1935	}
1936	return false;
1937}
1938
1939static void
1940intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1941{
1942	intel_attach_force_audio_property(connector);
1943	intel_attach_broadcast_rgb_property(connector);
1944}
1945
1946void
1947intel_dp_init(struct drm_device *dev, int output_reg)
1948{
1949	struct drm_i915_private *dev_priv = dev->dev_private;
1950	struct drm_connector *connector;
1951	struct intel_dp *intel_dp;
1952	struct intel_encoder *intel_encoder;
1953	struct intel_connector *intel_connector;
1954	const char *name = NULL;
1955	int type;
1956
1957	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1958	if (!intel_dp)
1959		return;
1960
1961	intel_dp->output_reg = output_reg;
1962	intel_dp->dpms_mode = -1;
1963
1964	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1965	if (!intel_connector) {
1966		kfree(intel_dp);
1967		return;
1968	}
1969	intel_encoder = &intel_dp->base;
1970
1971	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1972		if (intel_dpd_is_edp(dev))
1973			intel_dp->is_pch_edp = true;
1974
1975	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1976		type = DRM_MODE_CONNECTOR_eDP;
1977		intel_encoder->type = INTEL_OUTPUT_EDP;
1978	} else {
1979		type = DRM_MODE_CONNECTOR_DisplayPort;
1980		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1981	}
1982
1983	connector = &intel_connector->base;
1984	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1985	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1986
1987	connector->polled = DRM_CONNECTOR_POLL_HPD;
1988
1989	if (output_reg == DP_B || output_reg == PCH_DP_B)
1990		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1991	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1992		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1993	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1994		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1995
1996	if (is_edp(intel_dp))
1997		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1998
1999	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2000	connector->interlace_allowed = true;
2001	connector->doublescan_allowed = 0;
2002
2003	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2004			 DRM_MODE_ENCODER_TMDS);
2005	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2006
2007	intel_connector_attach_encoder(intel_connector, intel_encoder);
2008	drm_sysfs_connector_add(connector);
2009
2010	/* Set up the DDC bus. */
2011	switch (output_reg) {
2012		case DP_A:
2013			name = "DPDDC-A";
2014			break;
2015		case DP_B:
2016		case PCH_DP_B:
2017			dev_priv->hotplug_supported_mask |=
2018				HDMIB_HOTPLUG_INT_STATUS;
2019			name = "DPDDC-B";
2020			break;
2021		case DP_C:
2022		case PCH_DP_C:
2023			dev_priv->hotplug_supported_mask |=
2024				HDMIC_HOTPLUG_INT_STATUS;
2025			name = "DPDDC-C";
2026			break;
2027		case DP_D:
2028		case PCH_DP_D:
2029			dev_priv->hotplug_supported_mask |=
2030				HDMID_HOTPLUG_INT_STATUS;
2031			name = "DPDDC-D";
2032			break;
2033	}
2034
2035	intel_dp_i2c_init(intel_dp, intel_connector, name);
2036
2037	/* Cache some DPCD data in the eDP case */
2038	if (is_edp(intel_dp)) {
2039		bool ret;
2040		u32 pp_on, pp_div;
2041
2042		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2043		pp_div = I915_READ(PCH_PP_DIVISOR);
2044
2045		/* Get T3 & T12 values (note: VESA not bspec terminology) */
2046		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2047		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2048		dev_priv->panel_t12 = pp_div & 0xf;
2049		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2050
2051		ironlake_edp_panel_vdd_on(intel_dp);
2052		ret = intel_dp_get_dpcd(intel_dp);
2053		ironlake_edp_panel_vdd_off(intel_dp);
2054		if (ret) {
2055			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2056				dev_priv->no_aux_handshake =
2057					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2058					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2059		} else {
2060			/* if this fails, presume the device is a ghost */
2061			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2062			intel_dp_encoder_destroy(&intel_dp->base.base);
2063			intel_dp_destroy(&intel_connector->base);
2064			return;
2065		}
2066	}
2067
2068	intel_encoder->hot_plug = intel_dp_hot_plug;
2069
2070	if (is_edp(intel_dp)) {
2071		/* initialize panel mode from VBT if available for eDP */
2072		if (dev_priv->lfp_lvds_vbt_mode) {
2073			dev_priv->panel_fixed_mode =
2074				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2075			if (dev_priv->panel_fixed_mode) {
2076				dev_priv->panel_fixed_mode->type |=
2077					DRM_MODE_TYPE_PREFERRED;
2078			}
2079		}
2080		dev_priv->int_edp_connector = connector;
2081		intel_panel_setup_backlight(dev);
2082	}
2083
2084	intel_dp_add_properties(intel_dp, connector);
2085
2086	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2087	 * 0xd.  Failure to do so will result in spurious interrupts being
2088	 * generated on the port when a cable is not attached.
2089	 */
2090	if (IS_G4X(dev) && !IS_GM45(dev)) {
2091		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2092		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2093	}
2094}
2095