intel_dp.c revision 0e50338cf0f0009a5c9bc847a4c86a1d4438af66
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41struct dp_link_dpll {
42	int link_bw;
43	struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47	{ DP_LINK_BW_1_62,
48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49	{ DP_LINK_BW_2_7,
50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54	{ DP_LINK_BW_1_62,
55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56	{ DP_LINK_BW_2_7,
57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61	{ DP_LINK_BW_1_62,
62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63	{ DP_LINK_BW_2_7,
64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/*
68 * CHV supports eDP 1.4 that have  more link rates.
69 * Below only provides the fixed rate but exclude variable rate.
70 */
71static const struct dp_link_dpll chv_dpll[] = {
72	/*
73	 * CHV requires to program fractional division for m2.
74	 * m2 is stored in fixed point format using formula below
75	 * (m2_int << 22) | m2_fraction
76	 */
77	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83};
84
85/**
86 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87 * @intel_dp: DP struct
88 *
89 * If a CPU or PCH DP output is attached to an eDP panel, this function
90 * will return true, and false otherwise.
91 */
92static bool is_edp(struct intel_dp *intel_dp)
93{
94	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97}
98
99static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100{
101	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103	return intel_dig_port->base.base.dev;
104}
105
106static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107{
108	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109}
110
111static void intel_dp_link_down(struct intel_dp *intel_dp);
112static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115static int
116intel_dp_max_link_bw(struct intel_dp *intel_dp)
117{
118	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119	struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121	switch (max_link_bw) {
122	case DP_LINK_BW_1_62:
123	case DP_LINK_BW_2_7:
124		break;
125	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127		     INTEL_INFO(dev)->gen >= 8) &&
128		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129			max_link_bw = DP_LINK_BW_5_4;
130		else
131			max_link_bw = DP_LINK_BW_2_7;
132		break;
133	default:
134		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135		     max_link_bw);
136		max_link_bw = DP_LINK_BW_1_62;
137		break;
138	}
139	return max_link_bw;
140}
141
142static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143{
144	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145	struct drm_device *dev = intel_dig_port->base.base.dev;
146	u8 source_max, sink_max;
147
148	source_max = 4;
149	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151		source_max = 2;
152
153	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154
155	return min(source_max, sink_max);
156}
157
158/*
159 * The units on the numbers in the next two are... bizarre.  Examples will
160 * make it clearer; this one parallels an example in the eDP spec.
161 *
162 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163 *
164 *     270000 * 1 * 8 / 10 == 216000
165 *
166 * The actual data capacity of that configuration is 2.16Gbit/s, so the
167 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169 * 119000.  At 18bpp that's 2142000 kilobits per second.
170 *
171 * Thus the strange-looking division by 10 in intel_dp_link_required, to
172 * get the result in decakilobits instead of kilobits.
173 */
174
175static int
176intel_dp_link_required(int pixel_clock, int bpp)
177{
178	return (pixel_clock * bpp + 9) / 10;
179}
180
181static int
182intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183{
184	return (max_link_clock * max_lanes * 8) / 10;
185}
186
187static enum drm_mode_status
188intel_dp_mode_valid(struct drm_connector *connector,
189		    struct drm_display_mode *mode)
190{
191	struct intel_dp *intel_dp = intel_attached_dp(connector);
192	struct intel_connector *intel_connector = to_intel_connector(connector);
193	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
194	int target_clock = mode->clock;
195	int max_rate, mode_rate, max_lanes, max_link_clock;
196
197	if (is_edp(intel_dp) && fixed_mode) {
198		if (mode->hdisplay > fixed_mode->hdisplay)
199			return MODE_PANEL;
200
201		if (mode->vdisplay > fixed_mode->vdisplay)
202			return MODE_PANEL;
203
204		target_clock = fixed_mode->clock;
205	}
206
207	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
208	max_lanes = intel_dp_max_lane_count(intel_dp);
209
210	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211	mode_rate = intel_dp_link_required(target_clock, 18);
212
213	if (mode_rate > max_rate)
214		return MODE_CLOCK_HIGH;
215
216	if (mode->clock < 10000)
217		return MODE_CLOCK_LOW;
218
219	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220		return MODE_H_ILLEGAL;
221
222	return MODE_OK;
223}
224
225static uint32_t
226pack_aux(uint8_t *src, int src_bytes)
227{
228	int	i;
229	uint32_t v = 0;
230
231	if (src_bytes > 4)
232		src_bytes = 4;
233	for (i = 0; i < src_bytes; i++)
234		v |= ((uint32_t) src[i]) << ((3-i) * 8);
235	return v;
236}
237
238static void
239unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240{
241	int i;
242	if (dst_bytes > 4)
243		dst_bytes = 4;
244	for (i = 0; i < dst_bytes; i++)
245		dst[i] = src >> ((3-i) * 8);
246}
247
248/* hrawclock is 1/4 the FSB frequency */
249static int
250intel_hrawclk(struct drm_device *dev)
251{
252	struct drm_i915_private *dev_priv = dev->dev_private;
253	uint32_t clkcfg;
254
255	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256	if (IS_VALLEYVIEW(dev))
257		return 200;
258
259	clkcfg = I915_READ(CLKCFG);
260	switch (clkcfg & CLKCFG_FSB_MASK) {
261	case CLKCFG_FSB_400:
262		return 100;
263	case CLKCFG_FSB_533:
264		return 133;
265	case CLKCFG_FSB_667:
266		return 166;
267	case CLKCFG_FSB_800:
268		return 200;
269	case CLKCFG_FSB_1067:
270		return 266;
271	case CLKCFG_FSB_1333:
272		return 333;
273	/* these two are just a guess; one of them might be right */
274	case CLKCFG_FSB_1600:
275	case CLKCFG_FSB_1600_ALT:
276		return 400;
277	default:
278		return 133;
279	}
280}
281
282static void
283intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284				    struct intel_dp *intel_dp,
285				    struct edp_power_seq *out);
286static void
287intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288					      struct intel_dp *intel_dp,
289					      struct edp_power_seq *out);
290
291static enum pipe
292vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
293{
294	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
296	struct drm_device *dev = intel_dig_port->base.base.dev;
297	struct drm_i915_private *dev_priv = dev->dev_private;
298	enum port port = intel_dig_port->port;
299	enum pipe pipe;
300
301	/* modeset should have pipe */
302	if (crtc)
303		return to_intel_crtc(crtc)->pipe;
304
305	/* init time, try to find a pipe with this port selected */
306	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
307		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
308			PANEL_PORT_SELECT_MASK;
309		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
310			return pipe;
311		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
312			return pipe;
313	}
314
315	/* shrug */
316	return PIPE_A;
317}
318
319static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323	if (HAS_PCH_SPLIT(dev))
324		return PCH_PP_CONTROL;
325	else
326		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327}
328
329static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330{
331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333	if (HAS_PCH_SPLIT(dev))
334		return PCH_PP_STATUS;
335	else
336		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337}
338
339static bool edp_have_panel_power(struct intel_dp *intel_dp)
340{
341	struct drm_device *dev = intel_dp_to_dev(intel_dp);
342	struct drm_i915_private *dev_priv = dev->dev_private;
343
344	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
345}
346
347static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
348{
349	struct drm_device *dev = intel_dp_to_dev(intel_dp);
350	struct drm_i915_private *dev_priv = dev->dev_private;
351	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
352	struct intel_encoder *intel_encoder = &intel_dig_port->base;
353	enum intel_display_power_domain power_domain;
354
355	power_domain = intel_display_port_power_domain(intel_encoder);
356	return intel_display_power_enabled(dev_priv, power_domain) &&
357	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
358}
359
360static void
361intel_dp_check_edp(struct intel_dp *intel_dp)
362{
363	struct drm_device *dev = intel_dp_to_dev(intel_dp);
364	struct drm_i915_private *dev_priv = dev->dev_private;
365
366	if (!is_edp(intel_dp))
367		return;
368
369	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
370		WARN(1, "eDP powered off while attempting aux channel communication.\n");
371		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
372			      I915_READ(_pp_stat_reg(intel_dp)),
373			      I915_READ(_pp_ctrl_reg(intel_dp)));
374	}
375}
376
377static uint32_t
378intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
379{
380	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
381	struct drm_device *dev = intel_dig_port->base.base.dev;
382	struct drm_i915_private *dev_priv = dev->dev_private;
383	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
384	uint32_t status;
385	bool done;
386
387#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388	if (has_aux_irq)
389		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
390					  msecs_to_jiffies_timeout(10));
391	else
392		done = wait_for_atomic(C, 10) == 0;
393	if (!done)
394		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
395			  has_aux_irq);
396#undef C
397
398	return status;
399}
400
401static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
402{
403	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
404	struct drm_device *dev = intel_dig_port->base.base.dev;
405
406	/*
407	 * The clock divider is based off the hrawclk, and would like to run at
408	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
409	 */
410	return index ? 0 : intel_hrawclk(dev) / 2;
411}
412
413static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414{
415	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
416	struct drm_device *dev = intel_dig_port->base.base.dev;
417
418	if (index)
419		return 0;
420
421	if (intel_dig_port->port == PORT_A) {
422		if (IS_GEN6(dev) || IS_GEN7(dev))
423			return 200; /* SNB & IVB eDP input clock at 400Mhz */
424		else
425			return 225; /* eDP input clock at 450Mhz */
426	} else {
427		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
428	}
429}
430
431static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
432{
433	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
434	struct drm_device *dev = intel_dig_port->base.base.dev;
435	struct drm_i915_private *dev_priv = dev->dev_private;
436
437	if (intel_dig_port->port == PORT_A) {
438		if (index)
439			return 0;
440		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
441	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
442		/* Workaround for non-ULT HSW */
443		switch (index) {
444		case 0: return 63;
445		case 1: return 72;
446		default: return 0;
447		}
448	} else  {
449		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
450	}
451}
452
453static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
454{
455	return index ? 0 : 100;
456}
457
458static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
459				      bool has_aux_irq,
460				      int send_bytes,
461				      uint32_t aux_clock_divider)
462{
463	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
464	struct drm_device *dev = intel_dig_port->base.base.dev;
465	uint32_t precharge, timeout;
466
467	if (IS_GEN6(dev))
468		precharge = 3;
469	else
470		precharge = 5;
471
472	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
473		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
474	else
475		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
476
477	return DP_AUX_CH_CTL_SEND_BUSY |
478	       DP_AUX_CH_CTL_DONE |
479	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
480	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
481	       timeout |
482	       DP_AUX_CH_CTL_RECEIVE_ERROR |
483	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
484	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
485	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
486}
487
488static int
489intel_dp_aux_ch(struct intel_dp *intel_dp,
490		uint8_t *send, int send_bytes,
491		uint8_t *recv, int recv_size)
492{
493	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
494	struct drm_device *dev = intel_dig_port->base.base.dev;
495	struct drm_i915_private *dev_priv = dev->dev_private;
496	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
497	uint32_t ch_data = ch_ctl + 4;
498	uint32_t aux_clock_divider;
499	int i, ret, recv_bytes;
500	uint32_t status;
501	int try, clock = 0;
502	bool has_aux_irq = HAS_AUX_IRQ(dev);
503	bool vdd;
504
505	vdd = _edp_panel_vdd_on(intel_dp);
506
507	/* dp aux is extremely sensitive to irq latency, hence request the
508	 * lowest possible wakeup latency and so prevent the cpu from going into
509	 * deep sleep states.
510	 */
511	pm_qos_update_request(&dev_priv->pm_qos, 0);
512
513	intel_dp_check_edp(intel_dp);
514
515	intel_aux_display_runtime_get(dev_priv);
516
517	/* Try to wait for any previous AUX channel activity */
518	for (try = 0; try < 3; try++) {
519		status = I915_READ_NOTRACE(ch_ctl);
520		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
521			break;
522		msleep(1);
523	}
524
525	if (try == 3) {
526		WARN(1, "dp_aux_ch not started status 0x%08x\n",
527		     I915_READ(ch_ctl));
528		ret = -EBUSY;
529		goto out;
530	}
531
532	/* Only 5 data registers! */
533	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
534		ret = -E2BIG;
535		goto out;
536	}
537
538	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
540							  has_aux_irq,
541							  send_bytes,
542							  aux_clock_divider);
543
544		/* Must try at least 3 times according to DP spec */
545		for (try = 0; try < 5; try++) {
546			/* Load the send data into the aux channel data registers */
547			for (i = 0; i < send_bytes; i += 4)
548				I915_WRITE(ch_data + i,
549					   pack_aux(send + i, send_bytes - i));
550
551			/* Send the command and wait for it to complete */
552			I915_WRITE(ch_ctl, send_ctl);
553
554			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
555
556			/* Clear done status and any errors */
557			I915_WRITE(ch_ctl,
558				   status |
559				   DP_AUX_CH_CTL_DONE |
560				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
561				   DP_AUX_CH_CTL_RECEIVE_ERROR);
562
563			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
564				      DP_AUX_CH_CTL_RECEIVE_ERROR))
565				continue;
566			if (status & DP_AUX_CH_CTL_DONE)
567				break;
568		}
569		if (status & DP_AUX_CH_CTL_DONE)
570			break;
571	}
572
573	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
575		ret = -EBUSY;
576		goto out;
577	}
578
579	/* Check for timeout or receive error.
580	 * Timeouts occur when the sink is not connected
581	 */
582	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
584		ret = -EIO;
585		goto out;
586	}
587
588	/* Timeouts occur when the device isn't connected, so they're
589	 * "normal" -- don't fill the kernel log with these */
590	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
592		ret = -ETIMEDOUT;
593		goto out;
594	}
595
596	/* Unload any bytes sent back from the other side */
597	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
598		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
599	if (recv_bytes > recv_size)
600		recv_bytes = recv_size;
601
602	for (i = 0; i < recv_bytes; i += 4)
603		unpack_aux(I915_READ(ch_data + i),
604			   recv + i, recv_bytes - i);
605
606	ret = recv_bytes;
607out:
608	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
609	intel_aux_display_runtime_put(dev_priv);
610
611	if (vdd)
612		edp_panel_vdd_off(intel_dp, false);
613
614	return ret;
615}
616
617#define BARE_ADDRESS_SIZE	3
618#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
619static ssize_t
620intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
621{
622	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
623	uint8_t txbuf[20], rxbuf[20];
624	size_t txsize, rxsize;
625	int ret;
626
627	txbuf[0] = msg->request << 4;
628	txbuf[1] = msg->address >> 8;
629	txbuf[2] = msg->address & 0xff;
630	txbuf[3] = msg->size - 1;
631
632	switch (msg->request & ~DP_AUX_I2C_MOT) {
633	case DP_AUX_NATIVE_WRITE:
634	case DP_AUX_I2C_WRITE:
635		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636		rxsize = 1;
637
638		if (WARN_ON(txsize > 20))
639			return -E2BIG;
640
641		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642
643		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644		if (ret > 0) {
645			msg->reply = rxbuf[0] >> 4;
646
647			/* Return payload size. */
648			ret = msg->size;
649		}
650		break;
651
652	case DP_AUX_NATIVE_READ:
653	case DP_AUX_I2C_READ:
654		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655		rxsize = msg->size + 1;
656
657		if (WARN_ON(rxsize > 20))
658			return -E2BIG;
659
660		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
661		if (ret > 0) {
662			msg->reply = rxbuf[0] >> 4;
663			/*
664			 * Assume happy day, and copy the data. The caller is
665			 * expected to check msg->reply before touching it.
666			 *
667			 * Return payload size.
668			 */
669			ret--;
670			memcpy(msg->buffer, rxbuf + 1, ret);
671		}
672		break;
673
674	default:
675		ret = -EINVAL;
676		break;
677	}
678
679	return ret;
680}
681
682static void
683intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
684{
685	struct drm_device *dev = intel_dp_to_dev(intel_dp);
686	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687	enum port port = intel_dig_port->port;
688	const char *name = NULL;
689	int ret;
690
691	switch (port) {
692	case PORT_A:
693		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694		name = "DPDDC-A";
695		break;
696	case PORT_B:
697		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698		name = "DPDDC-B";
699		break;
700	case PORT_C:
701		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702		name = "DPDDC-C";
703		break;
704	case PORT_D:
705		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706		name = "DPDDC-D";
707		break;
708	default:
709		BUG();
710	}
711
712	if (!HAS_DDI(dev))
713		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
714
715	intel_dp->aux.name = name;
716	intel_dp->aux.dev = dev->dev;
717	intel_dp->aux.transfer = intel_dp_aux_transfer;
718
719	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
720		      connector->base.kdev->kobj.name);
721
722	ret = drm_dp_aux_register(&intel_dp->aux);
723	if (ret < 0) {
724		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
725			  name, ret);
726		return;
727	}
728
729	ret = sysfs_create_link(&connector->base.kdev->kobj,
730				&intel_dp->aux.ddc.dev.kobj,
731				intel_dp->aux.ddc.dev.kobj.name);
732	if (ret < 0) {
733		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
734		drm_dp_aux_unregister(&intel_dp->aux);
735	}
736}
737
738static void
739intel_dp_connector_unregister(struct intel_connector *intel_connector)
740{
741	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
742
743	sysfs_remove_link(&intel_connector->base.kdev->kobj,
744			  intel_dp->aux.ddc.dev.kobj.name);
745	intel_connector_unregister(intel_connector);
746}
747
748static void
749hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
750{
751	switch (link_bw) {
752	case DP_LINK_BW_1_62:
753		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
754		break;
755	case DP_LINK_BW_2_7:
756		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
757		break;
758	case DP_LINK_BW_5_4:
759		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
760		break;
761	}
762}
763
764static void
765intel_dp_set_clock(struct intel_encoder *encoder,
766		   struct intel_crtc_config *pipe_config, int link_bw)
767{
768	struct drm_device *dev = encoder->base.dev;
769	const struct dp_link_dpll *divisor = NULL;
770	int i, count = 0;
771
772	if (IS_G4X(dev)) {
773		divisor = gen4_dpll;
774		count = ARRAY_SIZE(gen4_dpll);
775	} else if (HAS_PCH_SPLIT(dev)) {
776		divisor = pch_dpll;
777		count = ARRAY_SIZE(pch_dpll);
778	} else if (IS_CHERRYVIEW(dev)) {
779		divisor = chv_dpll;
780		count = ARRAY_SIZE(chv_dpll);
781	} else if (IS_VALLEYVIEW(dev)) {
782		divisor = vlv_dpll;
783		count = ARRAY_SIZE(vlv_dpll);
784	}
785
786	if (divisor && count) {
787		for (i = 0; i < count; i++) {
788			if (link_bw == divisor[i].link_bw) {
789				pipe_config->dpll = divisor[i].dpll;
790				pipe_config->clock_set = true;
791				break;
792			}
793		}
794	}
795}
796
797static void
798intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
799{
800	struct drm_device *dev = crtc->base.dev;
801	struct drm_i915_private *dev_priv = dev->dev_private;
802	enum transcoder transcoder = crtc->config.cpu_transcoder;
803
804	I915_WRITE(PIPE_DATA_M2(transcoder),
805		TU_SIZE(m_n->tu) | m_n->gmch_m);
806	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
807	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
808	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
809}
810
811bool
812intel_dp_compute_config(struct intel_encoder *encoder,
813			struct intel_crtc_config *pipe_config)
814{
815	struct drm_device *dev = encoder->base.dev;
816	struct drm_i915_private *dev_priv = dev->dev_private;
817	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
818	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
819	enum port port = dp_to_dig_port(intel_dp)->port;
820	struct intel_crtc *intel_crtc = encoder->new_crtc;
821	struct intel_connector *intel_connector = intel_dp->attached_connector;
822	int lane_count, clock;
823	int min_lane_count = 1;
824	int max_lane_count = intel_dp_max_lane_count(intel_dp);
825	/* Conveniently, the link BW constants become indices with a shift...*/
826	int min_clock = 0;
827	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
828	int bpp, mode_rate;
829	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
830	int link_avail, link_clock;
831
832	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
833		pipe_config->has_pch_encoder = true;
834
835	pipe_config->has_dp_encoder = true;
836	pipe_config->has_audio = intel_dp->has_audio;
837
838	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
839		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
840				       adjusted_mode);
841		if (!HAS_PCH_SPLIT(dev))
842			intel_gmch_panel_fitting(intel_crtc, pipe_config,
843						 intel_connector->panel.fitting_mode);
844		else
845			intel_pch_panel_fitting(intel_crtc, pipe_config,
846						intel_connector->panel.fitting_mode);
847	}
848
849	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
850		return false;
851
852	DRM_DEBUG_KMS("DP link computation with max lane count %i "
853		      "max bw %02x pixel clock %iKHz\n",
854		      max_lane_count, bws[max_clock],
855		      adjusted_mode->crtc_clock);
856
857	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
858	 * bpc in between. */
859	bpp = pipe_config->pipe_bpp;
860	if (is_edp(intel_dp)) {
861		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
862			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
863				      dev_priv->vbt.edp_bpp);
864			bpp = dev_priv->vbt.edp_bpp;
865		}
866
867		if (IS_BROADWELL(dev)) {
868			/* Yes, it's an ugly hack. */
869			min_lane_count = max_lane_count;
870			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
871				      min_lane_count);
872		} else if (dev_priv->vbt.edp_lanes) {
873			min_lane_count = min(dev_priv->vbt.edp_lanes,
874					     max_lane_count);
875			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
876				      min_lane_count);
877		}
878
879		if (dev_priv->vbt.edp_rate) {
880			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
881			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
882				      bws[min_clock]);
883		}
884	}
885
886	for (; bpp >= 6*3; bpp -= 2*3) {
887		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
888						   bpp);
889
890		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
891			for (clock = min_clock; clock <= max_clock; clock++) {
892				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
893				link_avail = intel_dp_max_data_rate(link_clock,
894								    lane_count);
895
896				if (mode_rate <= link_avail) {
897					goto found;
898				}
899			}
900		}
901	}
902
903	return false;
904
905found:
906	if (intel_dp->color_range_auto) {
907		/*
908		 * See:
909		 * CEA-861-E - 5.1 Default Encoding Parameters
910		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
911		 */
912		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
913			intel_dp->color_range = DP_COLOR_RANGE_16_235;
914		else
915			intel_dp->color_range = 0;
916	}
917
918	if (intel_dp->color_range)
919		pipe_config->limited_color_range = true;
920
921	intel_dp->link_bw = bws[clock];
922	intel_dp->lane_count = lane_count;
923	pipe_config->pipe_bpp = bpp;
924	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
925
926	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
927		      intel_dp->link_bw, intel_dp->lane_count,
928		      pipe_config->port_clock, bpp);
929	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
930		      mode_rate, link_avail);
931
932	intel_link_compute_m_n(bpp, lane_count,
933			       adjusted_mode->crtc_clock,
934			       pipe_config->port_clock,
935			       &pipe_config->dp_m_n);
936
937	if (intel_connector->panel.downclock_mode != NULL &&
938		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
939			intel_link_compute_m_n(bpp, lane_count,
940				intel_connector->panel.downclock_mode->clock,
941				pipe_config->port_clock,
942				&pipe_config->dp_m2_n2);
943	}
944
945	if (HAS_DDI(dev))
946		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
947	else
948		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
949
950	return true;
951}
952
953static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
954{
955	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
956	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
957	struct drm_device *dev = crtc->base.dev;
958	struct drm_i915_private *dev_priv = dev->dev_private;
959	u32 dpa_ctl;
960
961	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
962	dpa_ctl = I915_READ(DP_A);
963	dpa_ctl &= ~DP_PLL_FREQ_MASK;
964
965	if (crtc->config.port_clock == 162000) {
966		/* For a long time we've carried around a ILK-DevA w/a for the
967		 * 160MHz clock. If we're really unlucky, it's still required.
968		 */
969		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
970		dpa_ctl |= DP_PLL_FREQ_160MHZ;
971		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
972	} else {
973		dpa_ctl |= DP_PLL_FREQ_270MHZ;
974		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
975	}
976
977	I915_WRITE(DP_A, dpa_ctl);
978
979	POSTING_READ(DP_A);
980	udelay(500);
981}
982
983static void intel_dp_prepare(struct intel_encoder *encoder)
984{
985	struct drm_device *dev = encoder->base.dev;
986	struct drm_i915_private *dev_priv = dev->dev_private;
987	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
988	enum port port = dp_to_dig_port(intel_dp)->port;
989	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
990	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
991
992	/*
993	 * There are four kinds of DP registers:
994	 *
995	 * 	IBX PCH
996	 * 	SNB CPU
997	 *	IVB CPU
998	 * 	CPT PCH
999	 *
1000	 * IBX PCH and CPU are the same for almost everything,
1001	 * except that the CPU DP PLL is configured in this
1002	 * register
1003	 *
1004	 * CPT PCH is quite different, having many bits moved
1005	 * to the TRANS_DP_CTL register instead. That
1006	 * configuration happens (oddly) in ironlake_pch_enable
1007	 */
1008
1009	/* Preserve the BIOS-computed detected bit. This is
1010	 * supposed to be read-only.
1011	 */
1012	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1013
1014	/* Handle DP bits in common between all three register formats */
1015	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1016	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1017
1018	if (crtc->config.has_audio) {
1019		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1020				 pipe_name(crtc->pipe));
1021		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1022		intel_write_eld(&encoder->base, adjusted_mode);
1023	}
1024
1025	/* Split out the IBX/CPU vs CPT settings */
1026
1027	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1028		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1029			intel_dp->DP |= DP_SYNC_HS_HIGH;
1030		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1031			intel_dp->DP |= DP_SYNC_VS_HIGH;
1032		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1033
1034		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1035			intel_dp->DP |= DP_ENHANCED_FRAMING;
1036
1037		intel_dp->DP |= crtc->pipe << 29;
1038	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1039		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1040			intel_dp->DP |= intel_dp->color_range;
1041
1042		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1043			intel_dp->DP |= DP_SYNC_HS_HIGH;
1044		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1045			intel_dp->DP |= DP_SYNC_VS_HIGH;
1046		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1047
1048		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1049			intel_dp->DP |= DP_ENHANCED_FRAMING;
1050
1051		if (!IS_CHERRYVIEW(dev)) {
1052			if (crtc->pipe == 1)
1053				intel_dp->DP |= DP_PIPEB_SELECT;
1054		} else {
1055			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1056		}
1057	} else {
1058		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059	}
1060}
1061
1062#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1063#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1064
1065#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1066#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1067
1068#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1069#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1070
1071static void wait_panel_status(struct intel_dp *intel_dp,
1072				       u32 mask,
1073				       u32 value)
1074{
1075	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1076	struct drm_i915_private *dev_priv = dev->dev_private;
1077	u32 pp_stat_reg, pp_ctrl_reg;
1078
1079	pp_stat_reg = _pp_stat_reg(intel_dp);
1080	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1081
1082	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1083			mask, value,
1084			I915_READ(pp_stat_reg),
1085			I915_READ(pp_ctrl_reg));
1086
1087	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1088		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1089				I915_READ(pp_stat_reg),
1090				I915_READ(pp_ctrl_reg));
1091	}
1092
1093	DRM_DEBUG_KMS("Wait complete\n");
1094}
1095
1096static void wait_panel_on(struct intel_dp *intel_dp)
1097{
1098	DRM_DEBUG_KMS("Wait for panel power on\n");
1099	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1100}
1101
1102static void wait_panel_off(struct intel_dp *intel_dp)
1103{
1104	DRM_DEBUG_KMS("Wait for panel power off time\n");
1105	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1106}
1107
1108static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1109{
1110	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1111
1112	/* When we disable the VDD override bit last we have to do the manual
1113	 * wait. */
1114	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1115				       intel_dp->panel_power_cycle_delay);
1116
1117	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1118}
1119
1120static void wait_backlight_on(struct intel_dp *intel_dp)
1121{
1122	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1123				       intel_dp->backlight_on_delay);
1124}
1125
1126static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1127{
1128	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1129				       intel_dp->backlight_off_delay);
1130}
1131
1132/* Read the current pp_control value, unlocking the register if it
1133 * is locked
1134 */
1135
1136static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1137{
1138	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1139	struct drm_i915_private *dev_priv = dev->dev_private;
1140	u32 control;
1141
1142	control = I915_READ(_pp_ctrl_reg(intel_dp));
1143	control &= ~PANEL_UNLOCK_MASK;
1144	control |= PANEL_UNLOCK_REGS;
1145	return control;
1146}
1147
1148static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1149{
1150	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1151	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1152	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1153	struct drm_i915_private *dev_priv = dev->dev_private;
1154	enum intel_display_power_domain power_domain;
1155	u32 pp;
1156	u32 pp_stat_reg, pp_ctrl_reg;
1157	bool need_to_disable = !intel_dp->want_panel_vdd;
1158
1159	if (!is_edp(intel_dp))
1160		return false;
1161
1162	intel_dp->want_panel_vdd = true;
1163
1164	if (edp_have_panel_vdd(intel_dp))
1165		return need_to_disable;
1166
1167	power_domain = intel_display_port_power_domain(intel_encoder);
1168	intel_display_power_get(dev_priv, power_domain);
1169
1170	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1171
1172	if (!edp_have_panel_power(intel_dp))
1173		wait_panel_power_cycle(intel_dp);
1174
1175	pp = ironlake_get_pp_control(intel_dp);
1176	pp |= EDP_FORCE_VDD;
1177
1178	pp_stat_reg = _pp_stat_reg(intel_dp);
1179	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1180
1181	I915_WRITE(pp_ctrl_reg, pp);
1182	POSTING_READ(pp_ctrl_reg);
1183	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1184			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1185	/*
1186	 * If the panel wasn't on, delay before accessing aux channel
1187	 */
1188	if (!edp_have_panel_power(intel_dp)) {
1189		DRM_DEBUG_KMS("eDP was not running\n");
1190		msleep(intel_dp->panel_power_up_delay);
1191	}
1192
1193	return need_to_disable;
1194}
1195
1196void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1197{
1198	if (is_edp(intel_dp)) {
1199		bool vdd = _edp_panel_vdd_on(intel_dp);
1200
1201		WARN(!vdd, "eDP VDD already requested on\n");
1202	}
1203}
1204
1205static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1206{
1207	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1208	struct drm_i915_private *dev_priv = dev->dev_private;
1209	u32 pp;
1210	u32 pp_stat_reg, pp_ctrl_reg;
1211
1212	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1213
1214	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1215		struct intel_digital_port *intel_dig_port =
1216						dp_to_dig_port(intel_dp);
1217		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1218		enum intel_display_power_domain power_domain;
1219
1220		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1221
1222		pp = ironlake_get_pp_control(intel_dp);
1223		pp &= ~EDP_FORCE_VDD;
1224
1225		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1226		pp_stat_reg = _pp_stat_reg(intel_dp);
1227
1228		I915_WRITE(pp_ctrl_reg, pp);
1229		POSTING_READ(pp_ctrl_reg);
1230
1231		/* Make sure sequencer is idle before allowing subsequent activity */
1232		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1233		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1234
1235		if ((pp & POWER_TARGET_ON) == 0)
1236			intel_dp->last_power_cycle = jiffies;
1237
1238		power_domain = intel_display_port_power_domain(intel_encoder);
1239		intel_display_power_put(dev_priv, power_domain);
1240	}
1241}
1242
1243static void edp_panel_vdd_work(struct work_struct *__work)
1244{
1245	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1246						 struct intel_dp, panel_vdd_work);
1247	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248
1249	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1250	edp_panel_vdd_off_sync(intel_dp);
1251	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1252}
1253
1254static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1255{
1256	if (!is_edp(intel_dp))
1257		return;
1258
1259	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1260
1261	intel_dp->want_panel_vdd = false;
1262
1263	if (sync) {
1264		edp_panel_vdd_off_sync(intel_dp);
1265	} else {
1266		/*
1267		 * Queue the timer to fire a long
1268		 * time from now (relative to the power down delay)
1269		 * to keep the panel power up across a sequence of operations
1270		 */
1271		schedule_delayed_work(&intel_dp->panel_vdd_work,
1272				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1273	}
1274}
1275
1276void intel_edp_panel_on(struct intel_dp *intel_dp)
1277{
1278	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279	struct drm_i915_private *dev_priv = dev->dev_private;
1280	u32 pp;
1281	u32 pp_ctrl_reg;
1282
1283	if (!is_edp(intel_dp))
1284		return;
1285
1286	DRM_DEBUG_KMS("Turn eDP power on\n");
1287
1288	if (edp_have_panel_power(intel_dp)) {
1289		DRM_DEBUG_KMS("eDP power already on\n");
1290		return;
1291	}
1292
1293	wait_panel_power_cycle(intel_dp);
1294
1295	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1296	pp = ironlake_get_pp_control(intel_dp);
1297	if (IS_GEN5(dev)) {
1298		/* ILK workaround: disable reset around power sequence */
1299		pp &= ~PANEL_POWER_RESET;
1300		I915_WRITE(pp_ctrl_reg, pp);
1301		POSTING_READ(pp_ctrl_reg);
1302	}
1303
1304	pp |= POWER_TARGET_ON;
1305	if (!IS_GEN5(dev))
1306		pp |= PANEL_POWER_RESET;
1307
1308	I915_WRITE(pp_ctrl_reg, pp);
1309	POSTING_READ(pp_ctrl_reg);
1310
1311	wait_panel_on(intel_dp);
1312	intel_dp->last_power_on = jiffies;
1313
1314	if (IS_GEN5(dev)) {
1315		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1316		I915_WRITE(pp_ctrl_reg, pp);
1317		POSTING_READ(pp_ctrl_reg);
1318	}
1319}
1320
1321void intel_edp_panel_off(struct intel_dp *intel_dp)
1322{
1323	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1324	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1325	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1326	struct drm_i915_private *dev_priv = dev->dev_private;
1327	enum intel_display_power_domain power_domain;
1328	u32 pp;
1329	u32 pp_ctrl_reg;
1330
1331	if (!is_edp(intel_dp))
1332		return;
1333
1334	DRM_DEBUG_KMS("Turn eDP power off\n");
1335
1336	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1337
1338	pp = ironlake_get_pp_control(intel_dp);
1339	/* We need to switch off panel power _and_ force vdd, for otherwise some
1340	 * panels get very unhappy and cease to work. */
1341	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1342		EDP_BLC_ENABLE);
1343
1344	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1345
1346	intel_dp->want_panel_vdd = false;
1347
1348	I915_WRITE(pp_ctrl_reg, pp);
1349	POSTING_READ(pp_ctrl_reg);
1350
1351	intel_dp->last_power_cycle = jiffies;
1352	wait_panel_off(intel_dp);
1353
1354	/* We got a reference when we enabled the VDD. */
1355	power_domain = intel_display_port_power_domain(intel_encoder);
1356	intel_display_power_put(dev_priv, power_domain);
1357}
1358
1359void intel_edp_backlight_on(struct intel_dp *intel_dp)
1360{
1361	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362	struct drm_device *dev = intel_dig_port->base.base.dev;
1363	struct drm_i915_private *dev_priv = dev->dev_private;
1364	u32 pp;
1365	u32 pp_ctrl_reg;
1366
1367	if (!is_edp(intel_dp))
1368		return;
1369
1370	DRM_DEBUG_KMS("\n");
1371
1372	intel_panel_enable_backlight(intel_dp->attached_connector);
1373
1374	/*
1375	 * If we enable the backlight right away following a panel power
1376	 * on, we may see slight flicker as the panel syncs with the eDP
1377	 * link.  So delay a bit to make sure the image is solid before
1378	 * allowing it to appear.
1379	 */
1380	wait_backlight_on(intel_dp);
1381	pp = ironlake_get_pp_control(intel_dp);
1382	pp |= EDP_BLC_ENABLE;
1383
1384	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1385
1386	I915_WRITE(pp_ctrl_reg, pp);
1387	POSTING_READ(pp_ctrl_reg);
1388}
1389
1390void intel_edp_backlight_off(struct intel_dp *intel_dp)
1391{
1392	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1393	struct drm_i915_private *dev_priv = dev->dev_private;
1394	u32 pp;
1395	u32 pp_ctrl_reg;
1396
1397	if (!is_edp(intel_dp))
1398		return;
1399
1400	DRM_DEBUG_KMS("\n");
1401	pp = ironlake_get_pp_control(intel_dp);
1402	pp &= ~EDP_BLC_ENABLE;
1403
1404	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1405
1406	I915_WRITE(pp_ctrl_reg, pp);
1407	POSTING_READ(pp_ctrl_reg);
1408	intel_dp->last_backlight_off = jiffies;
1409
1410	edp_wait_backlight_off(intel_dp);
1411
1412	intel_panel_disable_backlight(intel_dp->attached_connector);
1413}
1414
1415static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1416{
1417	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1418	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1419	struct drm_device *dev = crtc->dev;
1420	struct drm_i915_private *dev_priv = dev->dev_private;
1421	u32 dpa_ctl;
1422
1423	assert_pipe_disabled(dev_priv,
1424			     to_intel_crtc(crtc)->pipe);
1425
1426	DRM_DEBUG_KMS("\n");
1427	dpa_ctl = I915_READ(DP_A);
1428	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1429	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1430
1431	/* We don't adjust intel_dp->DP while tearing down the link, to
1432	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1433	 * enable bits here to ensure that we don't enable too much. */
1434	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1435	intel_dp->DP |= DP_PLL_ENABLE;
1436	I915_WRITE(DP_A, intel_dp->DP);
1437	POSTING_READ(DP_A);
1438	udelay(200);
1439}
1440
1441static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1442{
1443	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1444	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1445	struct drm_device *dev = crtc->dev;
1446	struct drm_i915_private *dev_priv = dev->dev_private;
1447	u32 dpa_ctl;
1448
1449	assert_pipe_disabled(dev_priv,
1450			     to_intel_crtc(crtc)->pipe);
1451
1452	dpa_ctl = I915_READ(DP_A);
1453	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1454	     "dp pll off, should be on\n");
1455	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1456
1457	/* We can't rely on the value tracked for the DP register in
1458	 * intel_dp->DP because link_down must not change that (otherwise link
1459	 * re-training will fail. */
1460	dpa_ctl &= ~DP_PLL_ENABLE;
1461	I915_WRITE(DP_A, dpa_ctl);
1462	POSTING_READ(DP_A);
1463	udelay(200);
1464}
1465
1466/* If the sink supports it, try to set the power state appropriately */
1467void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1468{
1469	int ret, i;
1470
1471	/* Should have a valid DPCD by this point */
1472	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1473		return;
1474
1475	if (mode != DRM_MODE_DPMS_ON) {
1476		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1477					 DP_SET_POWER_D3);
1478		if (ret != 1)
1479			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1480	} else {
1481		/*
1482		 * When turning on, we need to retry for 1ms to give the sink
1483		 * time to wake up.
1484		 */
1485		for (i = 0; i < 3; i++) {
1486			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1487						 DP_SET_POWER_D0);
1488			if (ret == 1)
1489				break;
1490			msleep(1);
1491		}
1492	}
1493}
1494
1495static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1496				  enum pipe *pipe)
1497{
1498	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1499	enum port port = dp_to_dig_port(intel_dp)->port;
1500	struct drm_device *dev = encoder->base.dev;
1501	struct drm_i915_private *dev_priv = dev->dev_private;
1502	enum intel_display_power_domain power_domain;
1503	u32 tmp;
1504
1505	power_domain = intel_display_port_power_domain(encoder);
1506	if (!intel_display_power_enabled(dev_priv, power_domain))
1507		return false;
1508
1509	tmp = I915_READ(intel_dp->output_reg);
1510
1511	if (!(tmp & DP_PORT_EN))
1512		return false;
1513
1514	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1515		*pipe = PORT_TO_PIPE_CPT(tmp);
1516	} else if (IS_CHERRYVIEW(dev)) {
1517		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1518	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1519		*pipe = PORT_TO_PIPE(tmp);
1520	} else {
1521		u32 trans_sel;
1522		u32 trans_dp;
1523		int i;
1524
1525		switch (intel_dp->output_reg) {
1526		case PCH_DP_B:
1527			trans_sel = TRANS_DP_PORT_SEL_B;
1528			break;
1529		case PCH_DP_C:
1530			trans_sel = TRANS_DP_PORT_SEL_C;
1531			break;
1532		case PCH_DP_D:
1533			trans_sel = TRANS_DP_PORT_SEL_D;
1534			break;
1535		default:
1536			return true;
1537		}
1538
1539		for_each_pipe(i) {
1540			trans_dp = I915_READ(TRANS_DP_CTL(i));
1541			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1542				*pipe = i;
1543				return true;
1544			}
1545		}
1546
1547		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1548			      intel_dp->output_reg);
1549	}
1550
1551	return true;
1552}
1553
1554static void intel_dp_get_config(struct intel_encoder *encoder,
1555				struct intel_crtc_config *pipe_config)
1556{
1557	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1558	u32 tmp, flags = 0;
1559	struct drm_device *dev = encoder->base.dev;
1560	struct drm_i915_private *dev_priv = dev->dev_private;
1561	enum port port = dp_to_dig_port(intel_dp)->port;
1562	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1563	int dotclock;
1564
1565	tmp = I915_READ(intel_dp->output_reg);
1566	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1567		pipe_config->has_audio = true;
1568
1569	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1570		if (tmp & DP_SYNC_HS_HIGH)
1571			flags |= DRM_MODE_FLAG_PHSYNC;
1572		else
1573			flags |= DRM_MODE_FLAG_NHSYNC;
1574
1575		if (tmp & DP_SYNC_VS_HIGH)
1576			flags |= DRM_MODE_FLAG_PVSYNC;
1577		else
1578			flags |= DRM_MODE_FLAG_NVSYNC;
1579	} else {
1580		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1581		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1582			flags |= DRM_MODE_FLAG_PHSYNC;
1583		else
1584			flags |= DRM_MODE_FLAG_NHSYNC;
1585
1586		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1587			flags |= DRM_MODE_FLAG_PVSYNC;
1588		else
1589			flags |= DRM_MODE_FLAG_NVSYNC;
1590	}
1591
1592	pipe_config->adjusted_mode.flags |= flags;
1593
1594	pipe_config->has_dp_encoder = true;
1595
1596	intel_dp_get_m_n(crtc, pipe_config);
1597
1598	if (port == PORT_A) {
1599		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1600			pipe_config->port_clock = 162000;
1601		else
1602			pipe_config->port_clock = 270000;
1603	}
1604
1605	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1606					    &pipe_config->dp_m_n);
1607
1608	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1609		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1610
1611	pipe_config->adjusted_mode.crtc_clock = dotclock;
1612
1613	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1614	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1615		/*
1616		 * This is a big fat ugly hack.
1617		 *
1618		 * Some machines in UEFI boot mode provide us a VBT that has 18
1619		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1620		 * unknown we fail to light up. Yet the same BIOS boots up with
1621		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1622		 * max, not what it tells us to use.
1623		 *
1624		 * Note: This will still be broken if the eDP panel is not lit
1625		 * up by the BIOS, and thus we can't get the mode at module
1626		 * load.
1627		 */
1628		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1629			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1630		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1631	}
1632}
1633
1634static bool is_edp_psr(struct intel_dp *intel_dp)
1635{
1636	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1637}
1638
1639static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1640{
1641	struct drm_i915_private *dev_priv = dev->dev_private;
1642
1643	if (!HAS_PSR(dev))
1644		return false;
1645
1646	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1647}
1648
1649static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1650				    struct edp_vsc_psr *vsc_psr)
1651{
1652	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1653	struct drm_device *dev = dig_port->base.base.dev;
1654	struct drm_i915_private *dev_priv = dev->dev_private;
1655	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1656	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1657	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1658	uint32_t *data = (uint32_t *) vsc_psr;
1659	unsigned int i;
1660
1661	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1662	   the video DIP being updated before program video DIP data buffer
1663	   registers for DIP being updated. */
1664	I915_WRITE(ctl_reg, 0);
1665	POSTING_READ(ctl_reg);
1666
1667	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1668		if (i < sizeof(struct edp_vsc_psr))
1669			I915_WRITE(data_reg + i, *data++);
1670		else
1671			I915_WRITE(data_reg + i, 0);
1672	}
1673
1674	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1675	POSTING_READ(ctl_reg);
1676}
1677
1678static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1679{
1680	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1681	struct drm_i915_private *dev_priv = dev->dev_private;
1682	struct edp_vsc_psr psr_vsc;
1683
1684	if (dev_priv->psr.setup_done)
1685		return;
1686
1687	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1688	memset(&psr_vsc, 0, sizeof(psr_vsc));
1689	psr_vsc.sdp_header.HB0 = 0;
1690	psr_vsc.sdp_header.HB1 = 0x7;
1691	psr_vsc.sdp_header.HB2 = 0x2;
1692	psr_vsc.sdp_header.HB3 = 0x8;
1693	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1694
1695	/* Avoid continuous PSR exit by masking memup and hpd */
1696	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1697		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1698
1699	dev_priv->psr.setup_done = true;
1700}
1701
1702static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1703{
1704	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1705	struct drm_device *dev = dig_port->base.base.dev;
1706	struct drm_i915_private *dev_priv = dev->dev_private;
1707	uint32_t aux_clock_divider;
1708	int precharge = 0x3;
1709	int msg_size = 5;       /* Header(4) + Message(1) */
1710	bool only_standby = false;
1711
1712	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1713
1714	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1715		only_standby = true;
1716
1717	/* Enable PSR in sink */
1718	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1719		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1720				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1721	else
1722		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1723				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1724
1725	/* Setup AUX registers */
1726	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1727	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1728	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1729		   DP_AUX_CH_CTL_TIME_OUT_400us |
1730		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1731		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1732		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1733}
1734
1735static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1736{
1737	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1738	struct drm_device *dev = dig_port->base.base.dev;
1739	struct drm_i915_private *dev_priv = dev->dev_private;
1740	uint32_t max_sleep_time = 0x1f;
1741	uint32_t idle_frames = 1;
1742	uint32_t val = 0x0;
1743	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1744	bool only_standby = false;
1745
1746	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1747		only_standby = true;
1748
1749	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1750		val |= EDP_PSR_LINK_STANDBY;
1751		val |= EDP_PSR_TP2_TP3_TIME_0us;
1752		val |= EDP_PSR_TP1_TIME_0us;
1753		val |= EDP_PSR_SKIP_AUX_EXIT;
1754		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1755	} else
1756		val |= EDP_PSR_LINK_DISABLE;
1757
1758	I915_WRITE(EDP_PSR_CTL(dev), val |
1759		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1760		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1761		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1762		   EDP_PSR_ENABLE);
1763}
1764
1765static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1766{
1767	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1768	struct drm_device *dev = dig_port->base.base.dev;
1769	struct drm_i915_private *dev_priv = dev->dev_private;
1770	struct drm_crtc *crtc = dig_port->base.base.crtc;
1771	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1772	struct drm_i915_gem_object *obj = intel_fb_obj(crtc->primary->fb);
1773	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1774
1775	dev_priv->psr.source_ok = false;
1776
1777	if (!HAS_PSR(dev)) {
1778		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1779		return false;
1780	}
1781
1782	if (IS_HASWELL(dev) && (intel_encoder->type != INTEL_OUTPUT_EDP ||
1783				dig_port->port != PORT_A)) {
1784		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1785		return false;
1786	}
1787
1788	if (!i915.enable_psr) {
1789		DRM_DEBUG_KMS("PSR disable by flag\n");
1790		return false;
1791	}
1792
1793	crtc = dig_port->base.base.crtc;
1794	if (crtc == NULL) {
1795		DRM_DEBUG_KMS("crtc not active for PSR\n");
1796		return false;
1797	}
1798
1799	intel_crtc = to_intel_crtc(crtc);
1800	if (!intel_crtc_active(crtc)) {
1801		DRM_DEBUG_KMS("crtc not active for PSR\n");
1802		return false;
1803	}
1804
1805	if (obj->tiling_mode != I915_TILING_X ||
1806	    obj->fence_reg == I915_FENCE_REG_NONE) {
1807		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1808		return false;
1809	}
1810
1811	/* Below limitations aren't valid for Broadwell */
1812	if (IS_BROADWELL(dev))
1813		goto out;
1814
1815	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1816		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1817		return false;
1818	}
1819
1820	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1821	    S3D_ENABLE) {
1822		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1823		return false;
1824	}
1825
1826	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1827		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1828		return false;
1829	}
1830
1831 out:
1832	dev_priv->psr.source_ok = true;
1833	return true;
1834}
1835
1836static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1837{
1838	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1839	struct drm_device *dev = intel_dig_port->base.base.dev;
1840	struct drm_i915_private *dev_priv = dev->dev_private;
1841
1842	if (intel_edp_is_psr_enabled(dev))
1843		return;
1844
1845	/* Enable PSR on the panel */
1846	intel_edp_psr_enable_sink(intel_dp);
1847
1848	/* Enable PSR on the host */
1849	intel_edp_psr_enable_source(intel_dp);
1850
1851	dev_priv->psr.enabled = true;
1852	dev_priv->psr.active = true;
1853}
1854
1855void intel_edp_psr_enable(struct intel_dp *intel_dp)
1856{
1857	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1858
1859	if (!HAS_PSR(dev)) {
1860		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1861		return;
1862	}
1863
1864	if (!is_edp_psr(intel_dp)) {
1865		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1866		return;
1867	}
1868
1869	/* Setup PSR once */
1870	intel_edp_psr_setup(intel_dp);
1871
1872	if (intel_edp_psr_match_conditions(intel_dp))
1873		intel_edp_psr_do_enable(intel_dp);
1874}
1875
1876void intel_edp_psr_disable(struct intel_dp *intel_dp)
1877{
1878	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1879	struct drm_i915_private *dev_priv = dev->dev_private;
1880
1881	if (!dev_priv->psr.enabled)
1882		return;
1883
1884	I915_WRITE(EDP_PSR_CTL(dev),
1885		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1886
1887	/* Wait till PSR is idle */
1888	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1889		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1890		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1891
1892	dev_priv->psr.enabled = false;
1893}
1894
1895static void intel_edp_psr_work(struct work_struct *work)
1896{
1897	struct drm_i915_private *dev_priv =
1898		container_of(work, typeof(*dev_priv), psr.work.work);
1899	struct drm_device *dev = dev_priv->dev;
1900	struct intel_encoder *encoder;
1901	struct intel_dp *intel_dp = NULL;
1902
1903	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1904		if (encoder->type == INTEL_OUTPUT_EDP) {
1905			intel_dp = enc_to_intel_dp(&encoder->base);
1906
1907			if (!intel_edp_psr_match_conditions(intel_dp))
1908				intel_edp_psr_disable(intel_dp);
1909			else
1910				intel_edp_psr_do_enable(intel_dp);
1911		}
1912}
1913
1914static void intel_edp_psr_inactivate(struct drm_device *dev)
1915{
1916	struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918	dev_priv->psr.active = false;
1919
1920	I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev))
1921		   & ~EDP_PSR_ENABLE);
1922}
1923
1924void intel_edp_psr_exit(struct drm_device *dev)
1925{
1926	struct drm_i915_private *dev_priv = dev->dev_private;
1927
1928	if (!HAS_PSR(dev))
1929		return;
1930
1931	if (!dev_priv->psr.setup_done)
1932		return;
1933
1934	cancel_delayed_work_sync(&dev_priv->psr.work);
1935
1936	if (dev_priv->psr.active)
1937		intel_edp_psr_inactivate(dev);
1938
1939	schedule_delayed_work(&dev_priv->psr.work,
1940			      msecs_to_jiffies(100));
1941}
1942
1943void intel_edp_psr_init(struct drm_device *dev)
1944{
1945	struct drm_i915_private *dev_priv = dev->dev_private;
1946
1947	if (!HAS_PSR(dev))
1948		return;
1949
1950	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
1951}
1952
1953static void intel_disable_dp(struct intel_encoder *encoder)
1954{
1955	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1956	enum port port = dp_to_dig_port(intel_dp)->port;
1957	struct drm_device *dev = encoder->base.dev;
1958
1959	/* Make sure the panel is off before trying to change the mode. But also
1960	 * ensure that we have vdd while we switch off the panel. */
1961	intel_edp_panel_vdd_on(intel_dp);
1962	intel_edp_backlight_off(intel_dp);
1963	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1964	intel_edp_panel_off(intel_dp);
1965
1966	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1967	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1968		intel_dp_link_down(intel_dp);
1969}
1970
1971static void g4x_post_disable_dp(struct intel_encoder *encoder)
1972{
1973	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1974	enum port port = dp_to_dig_port(intel_dp)->port;
1975
1976	if (port != PORT_A)
1977		return;
1978
1979	intel_dp_link_down(intel_dp);
1980	ironlake_edp_pll_off(intel_dp);
1981}
1982
1983static void vlv_post_disable_dp(struct intel_encoder *encoder)
1984{
1985	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1986
1987	intel_dp_link_down(intel_dp);
1988}
1989
1990static void chv_post_disable_dp(struct intel_encoder *encoder)
1991{
1992	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1993	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1994	struct drm_device *dev = encoder->base.dev;
1995	struct drm_i915_private *dev_priv = dev->dev_private;
1996	struct intel_crtc *intel_crtc =
1997		to_intel_crtc(encoder->base.crtc);
1998	enum dpio_channel ch = vlv_dport_to_channel(dport);
1999	enum pipe pipe = intel_crtc->pipe;
2000	u32 val;
2001
2002	intel_dp_link_down(intel_dp);
2003
2004	mutex_lock(&dev_priv->dpio_lock);
2005
2006	/* Propagate soft reset to data lane reset */
2007	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2008	val |= CHV_PCS_REQ_SOFTRESET_EN;
2009	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2010
2011	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2012	val |= CHV_PCS_REQ_SOFTRESET_EN;
2013	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2014
2015	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2016	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2017	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2018
2019	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2020	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2021	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2022
2023	mutex_unlock(&dev_priv->dpio_lock);
2024}
2025
2026static void intel_enable_dp(struct intel_encoder *encoder)
2027{
2028	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2029	struct drm_device *dev = encoder->base.dev;
2030	struct drm_i915_private *dev_priv = dev->dev_private;
2031	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2032
2033	if (WARN_ON(dp_reg & DP_PORT_EN))
2034		return;
2035
2036	intel_edp_panel_vdd_on(intel_dp);
2037	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2038	intel_dp_start_link_train(intel_dp);
2039	intel_edp_panel_on(intel_dp);
2040	edp_panel_vdd_off(intel_dp, true);
2041	intel_dp_complete_link_train(intel_dp);
2042	intel_dp_stop_link_train(intel_dp);
2043}
2044
2045static void g4x_enable_dp(struct intel_encoder *encoder)
2046{
2047	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2048
2049	intel_enable_dp(encoder);
2050	intel_edp_backlight_on(intel_dp);
2051}
2052
2053static void vlv_enable_dp(struct intel_encoder *encoder)
2054{
2055	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2056
2057	intel_edp_backlight_on(intel_dp);
2058}
2059
2060static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2061{
2062	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2063	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2064
2065	intel_dp_prepare(encoder);
2066
2067	/* Only ilk+ has port A */
2068	if (dport->port == PORT_A) {
2069		ironlake_set_pll_cpu_edp(intel_dp);
2070		ironlake_edp_pll_on(intel_dp);
2071	}
2072}
2073
2074static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2075{
2076	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2077	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2078	struct drm_device *dev = encoder->base.dev;
2079	struct drm_i915_private *dev_priv = dev->dev_private;
2080	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2081	enum dpio_channel port = vlv_dport_to_channel(dport);
2082	int pipe = intel_crtc->pipe;
2083	struct edp_power_seq power_seq;
2084	u32 val;
2085
2086	mutex_lock(&dev_priv->dpio_lock);
2087
2088	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2089	val = 0;
2090	if (pipe)
2091		val |= (1<<21);
2092	else
2093		val &= ~(1<<21);
2094	val |= 0x001000c4;
2095	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2096	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2097	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2098
2099	mutex_unlock(&dev_priv->dpio_lock);
2100
2101	if (is_edp(intel_dp)) {
2102		/* init power sequencer on this pipe and port */
2103		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2104		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2105							      &power_seq);
2106	}
2107
2108	intel_enable_dp(encoder);
2109
2110	vlv_wait_port_ready(dev_priv, dport);
2111}
2112
2113static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2114{
2115	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2116	struct drm_device *dev = encoder->base.dev;
2117	struct drm_i915_private *dev_priv = dev->dev_private;
2118	struct intel_crtc *intel_crtc =
2119		to_intel_crtc(encoder->base.crtc);
2120	enum dpio_channel port = vlv_dport_to_channel(dport);
2121	int pipe = intel_crtc->pipe;
2122
2123	intel_dp_prepare(encoder);
2124
2125	/* Program Tx lane resets to default */
2126	mutex_lock(&dev_priv->dpio_lock);
2127	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2128			 DPIO_PCS_TX_LANE2_RESET |
2129			 DPIO_PCS_TX_LANE1_RESET);
2130	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2131			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2132			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2133			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2134				 DPIO_PCS_CLK_SOFT_RESET);
2135
2136	/* Fix up inter-pair skew failure */
2137	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2138	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2139	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2140	mutex_unlock(&dev_priv->dpio_lock);
2141}
2142
2143static void chv_pre_enable_dp(struct intel_encoder *encoder)
2144{
2145	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2146	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2147	struct drm_device *dev = encoder->base.dev;
2148	struct drm_i915_private *dev_priv = dev->dev_private;
2149	struct edp_power_seq power_seq;
2150	struct intel_crtc *intel_crtc =
2151		to_intel_crtc(encoder->base.crtc);
2152	enum dpio_channel ch = vlv_dport_to_channel(dport);
2153	int pipe = intel_crtc->pipe;
2154	int data, i;
2155	u32 val;
2156
2157	mutex_lock(&dev_priv->dpio_lock);
2158
2159	/* Deassert soft data lane reset*/
2160	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2161	val |= CHV_PCS_REQ_SOFTRESET_EN;
2162	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2163
2164	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2165	val |= CHV_PCS_REQ_SOFTRESET_EN;
2166	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2167
2168	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2169	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2170	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2171
2172	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2173	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2174	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2175
2176	/* Program Tx lane latency optimal setting*/
2177	for (i = 0; i < 4; i++) {
2178		/* Set the latency optimal bit */
2179		data = (i == 1) ? 0x0 : 0x6;
2180		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2181				data << DPIO_FRC_LATENCY_SHFIT);
2182
2183		/* Set the upar bit */
2184		data = (i == 1) ? 0x0 : 0x1;
2185		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2186				data << DPIO_UPAR_SHIFT);
2187	}
2188
2189	/* Data lane stagger programming */
2190	/* FIXME: Fix up value only after power analysis */
2191
2192	mutex_unlock(&dev_priv->dpio_lock);
2193
2194	if (is_edp(intel_dp)) {
2195		/* init power sequencer on this pipe and port */
2196		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2197		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2198							      &power_seq);
2199	}
2200
2201	intel_enable_dp(encoder);
2202
2203	vlv_wait_port_ready(dev_priv, dport);
2204}
2205
2206static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2207{
2208	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2209	struct drm_device *dev = encoder->base.dev;
2210	struct drm_i915_private *dev_priv = dev->dev_private;
2211	struct intel_crtc *intel_crtc =
2212		to_intel_crtc(encoder->base.crtc);
2213	enum dpio_channel ch = vlv_dport_to_channel(dport);
2214	enum pipe pipe = intel_crtc->pipe;
2215	u32 val;
2216
2217	mutex_lock(&dev_priv->dpio_lock);
2218
2219	/* program left/right clock distribution */
2220	if (pipe != PIPE_B) {
2221		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2222		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2223		if (ch == DPIO_CH0)
2224			val |= CHV_BUFLEFTENA1_FORCE;
2225		if (ch == DPIO_CH1)
2226			val |= CHV_BUFRIGHTENA1_FORCE;
2227		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2228	} else {
2229		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2230		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2231		if (ch == DPIO_CH0)
2232			val |= CHV_BUFLEFTENA2_FORCE;
2233		if (ch == DPIO_CH1)
2234			val |= CHV_BUFRIGHTENA2_FORCE;
2235		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2236	}
2237
2238	/* program clock channel usage */
2239	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2240	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2241	if (pipe != PIPE_B)
2242		val &= ~CHV_PCS_USEDCLKCHANNEL;
2243	else
2244		val |= CHV_PCS_USEDCLKCHANNEL;
2245	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2246
2247	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2248	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2249	if (pipe != PIPE_B)
2250		val &= ~CHV_PCS_USEDCLKCHANNEL;
2251	else
2252		val |= CHV_PCS_USEDCLKCHANNEL;
2253	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2254
2255	/*
2256	 * This a a bit weird since generally CL
2257	 * matches the pipe, but here we need to
2258	 * pick the CL based on the port.
2259	 */
2260	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2261	if (pipe != PIPE_B)
2262		val &= ~CHV_CMN_USEDCLKCHANNEL;
2263	else
2264		val |= CHV_CMN_USEDCLKCHANNEL;
2265	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2266
2267	mutex_unlock(&dev_priv->dpio_lock);
2268}
2269
2270/*
2271 * Native read with retry for link status and receiver capability reads for
2272 * cases where the sink may still be asleep.
2273 *
2274 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2275 * supposed to retry 3 times per the spec.
2276 */
2277static ssize_t
2278intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2279			void *buffer, size_t size)
2280{
2281	ssize_t ret;
2282	int i;
2283
2284	for (i = 0; i < 3; i++) {
2285		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2286		if (ret == size)
2287			return ret;
2288		msleep(1);
2289	}
2290
2291	return ret;
2292}
2293
2294/*
2295 * Fetch AUX CH registers 0x202 - 0x207 which contain
2296 * link status information
2297 */
2298static bool
2299intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2300{
2301	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2302				       DP_LANE0_1_STATUS,
2303				       link_status,
2304				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2305}
2306
2307/* These are source-specific values. */
2308static uint8_t
2309intel_dp_voltage_max(struct intel_dp *intel_dp)
2310{
2311	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2312	enum port port = dp_to_dig_port(intel_dp)->port;
2313
2314	if (IS_VALLEYVIEW(dev))
2315		return DP_TRAIN_VOLTAGE_SWING_1200;
2316	else if (IS_GEN7(dev) && port == PORT_A)
2317		return DP_TRAIN_VOLTAGE_SWING_800;
2318	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2319		return DP_TRAIN_VOLTAGE_SWING_1200;
2320	else
2321		return DP_TRAIN_VOLTAGE_SWING_800;
2322}
2323
2324static uint8_t
2325intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2326{
2327	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2328	enum port port = dp_to_dig_port(intel_dp)->port;
2329
2330	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2331		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2332		case DP_TRAIN_VOLTAGE_SWING_400:
2333			return DP_TRAIN_PRE_EMPHASIS_9_5;
2334		case DP_TRAIN_VOLTAGE_SWING_600:
2335			return DP_TRAIN_PRE_EMPHASIS_6;
2336		case DP_TRAIN_VOLTAGE_SWING_800:
2337			return DP_TRAIN_PRE_EMPHASIS_3_5;
2338		case DP_TRAIN_VOLTAGE_SWING_1200:
2339		default:
2340			return DP_TRAIN_PRE_EMPHASIS_0;
2341		}
2342	} else if (IS_VALLEYVIEW(dev)) {
2343		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2344		case DP_TRAIN_VOLTAGE_SWING_400:
2345			return DP_TRAIN_PRE_EMPHASIS_9_5;
2346		case DP_TRAIN_VOLTAGE_SWING_600:
2347			return DP_TRAIN_PRE_EMPHASIS_6;
2348		case DP_TRAIN_VOLTAGE_SWING_800:
2349			return DP_TRAIN_PRE_EMPHASIS_3_5;
2350		case DP_TRAIN_VOLTAGE_SWING_1200:
2351		default:
2352			return DP_TRAIN_PRE_EMPHASIS_0;
2353		}
2354	} else if (IS_GEN7(dev) && port == PORT_A) {
2355		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2356		case DP_TRAIN_VOLTAGE_SWING_400:
2357			return DP_TRAIN_PRE_EMPHASIS_6;
2358		case DP_TRAIN_VOLTAGE_SWING_600:
2359		case DP_TRAIN_VOLTAGE_SWING_800:
2360			return DP_TRAIN_PRE_EMPHASIS_3_5;
2361		default:
2362			return DP_TRAIN_PRE_EMPHASIS_0;
2363		}
2364	} else {
2365		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2366		case DP_TRAIN_VOLTAGE_SWING_400:
2367			return DP_TRAIN_PRE_EMPHASIS_6;
2368		case DP_TRAIN_VOLTAGE_SWING_600:
2369			return DP_TRAIN_PRE_EMPHASIS_6;
2370		case DP_TRAIN_VOLTAGE_SWING_800:
2371			return DP_TRAIN_PRE_EMPHASIS_3_5;
2372		case DP_TRAIN_VOLTAGE_SWING_1200:
2373		default:
2374			return DP_TRAIN_PRE_EMPHASIS_0;
2375		}
2376	}
2377}
2378
2379static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2380{
2381	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2382	struct drm_i915_private *dev_priv = dev->dev_private;
2383	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2384	struct intel_crtc *intel_crtc =
2385		to_intel_crtc(dport->base.base.crtc);
2386	unsigned long demph_reg_value, preemph_reg_value,
2387		uniqtranscale_reg_value;
2388	uint8_t train_set = intel_dp->train_set[0];
2389	enum dpio_channel port = vlv_dport_to_channel(dport);
2390	int pipe = intel_crtc->pipe;
2391
2392	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2393	case DP_TRAIN_PRE_EMPHASIS_0:
2394		preemph_reg_value = 0x0004000;
2395		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2396		case DP_TRAIN_VOLTAGE_SWING_400:
2397			demph_reg_value = 0x2B405555;
2398			uniqtranscale_reg_value = 0x552AB83A;
2399			break;
2400		case DP_TRAIN_VOLTAGE_SWING_600:
2401			demph_reg_value = 0x2B404040;
2402			uniqtranscale_reg_value = 0x5548B83A;
2403			break;
2404		case DP_TRAIN_VOLTAGE_SWING_800:
2405			demph_reg_value = 0x2B245555;
2406			uniqtranscale_reg_value = 0x5560B83A;
2407			break;
2408		case DP_TRAIN_VOLTAGE_SWING_1200:
2409			demph_reg_value = 0x2B405555;
2410			uniqtranscale_reg_value = 0x5598DA3A;
2411			break;
2412		default:
2413			return 0;
2414		}
2415		break;
2416	case DP_TRAIN_PRE_EMPHASIS_3_5:
2417		preemph_reg_value = 0x0002000;
2418		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2419		case DP_TRAIN_VOLTAGE_SWING_400:
2420			demph_reg_value = 0x2B404040;
2421			uniqtranscale_reg_value = 0x5552B83A;
2422			break;
2423		case DP_TRAIN_VOLTAGE_SWING_600:
2424			demph_reg_value = 0x2B404848;
2425			uniqtranscale_reg_value = 0x5580B83A;
2426			break;
2427		case DP_TRAIN_VOLTAGE_SWING_800:
2428			demph_reg_value = 0x2B404040;
2429			uniqtranscale_reg_value = 0x55ADDA3A;
2430			break;
2431		default:
2432			return 0;
2433		}
2434		break;
2435	case DP_TRAIN_PRE_EMPHASIS_6:
2436		preemph_reg_value = 0x0000000;
2437		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2438		case DP_TRAIN_VOLTAGE_SWING_400:
2439			demph_reg_value = 0x2B305555;
2440			uniqtranscale_reg_value = 0x5570B83A;
2441			break;
2442		case DP_TRAIN_VOLTAGE_SWING_600:
2443			demph_reg_value = 0x2B2B4040;
2444			uniqtranscale_reg_value = 0x55ADDA3A;
2445			break;
2446		default:
2447			return 0;
2448		}
2449		break;
2450	case DP_TRAIN_PRE_EMPHASIS_9_5:
2451		preemph_reg_value = 0x0006000;
2452		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2453		case DP_TRAIN_VOLTAGE_SWING_400:
2454			demph_reg_value = 0x1B405555;
2455			uniqtranscale_reg_value = 0x55ADDA3A;
2456			break;
2457		default:
2458			return 0;
2459		}
2460		break;
2461	default:
2462		return 0;
2463	}
2464
2465	mutex_lock(&dev_priv->dpio_lock);
2466	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2467	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2468	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2469			 uniqtranscale_reg_value);
2470	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2471	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2472	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2473	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2474	mutex_unlock(&dev_priv->dpio_lock);
2475
2476	return 0;
2477}
2478
2479static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2480{
2481	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2482	struct drm_i915_private *dev_priv = dev->dev_private;
2483	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2484	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2485	u32 deemph_reg_value, margin_reg_value, val;
2486	uint8_t train_set = intel_dp->train_set[0];
2487	enum dpio_channel ch = vlv_dport_to_channel(dport);
2488	enum pipe pipe = intel_crtc->pipe;
2489	int i;
2490
2491	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2492	case DP_TRAIN_PRE_EMPHASIS_0:
2493		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2494		case DP_TRAIN_VOLTAGE_SWING_400:
2495			deemph_reg_value = 128;
2496			margin_reg_value = 52;
2497			break;
2498		case DP_TRAIN_VOLTAGE_SWING_600:
2499			deemph_reg_value = 128;
2500			margin_reg_value = 77;
2501			break;
2502		case DP_TRAIN_VOLTAGE_SWING_800:
2503			deemph_reg_value = 128;
2504			margin_reg_value = 102;
2505			break;
2506		case DP_TRAIN_VOLTAGE_SWING_1200:
2507			deemph_reg_value = 128;
2508			margin_reg_value = 154;
2509			/* FIXME extra to set for 1200 */
2510			break;
2511		default:
2512			return 0;
2513		}
2514		break;
2515	case DP_TRAIN_PRE_EMPHASIS_3_5:
2516		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2517		case DP_TRAIN_VOLTAGE_SWING_400:
2518			deemph_reg_value = 85;
2519			margin_reg_value = 78;
2520			break;
2521		case DP_TRAIN_VOLTAGE_SWING_600:
2522			deemph_reg_value = 85;
2523			margin_reg_value = 116;
2524			break;
2525		case DP_TRAIN_VOLTAGE_SWING_800:
2526			deemph_reg_value = 85;
2527			margin_reg_value = 154;
2528			break;
2529		default:
2530			return 0;
2531		}
2532		break;
2533	case DP_TRAIN_PRE_EMPHASIS_6:
2534		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2535		case DP_TRAIN_VOLTAGE_SWING_400:
2536			deemph_reg_value = 64;
2537			margin_reg_value = 104;
2538			break;
2539		case DP_TRAIN_VOLTAGE_SWING_600:
2540			deemph_reg_value = 64;
2541			margin_reg_value = 154;
2542			break;
2543		default:
2544			return 0;
2545		}
2546		break;
2547	case DP_TRAIN_PRE_EMPHASIS_9_5:
2548		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2549		case DP_TRAIN_VOLTAGE_SWING_400:
2550			deemph_reg_value = 43;
2551			margin_reg_value = 154;
2552			break;
2553		default:
2554			return 0;
2555		}
2556		break;
2557	default:
2558		return 0;
2559	}
2560
2561	mutex_lock(&dev_priv->dpio_lock);
2562
2563	/* Clear calc init */
2564	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2565	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2566	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2567
2568	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2569	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2570	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2571
2572	/* Program swing deemph */
2573	for (i = 0; i < 4; i++) {
2574		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2575		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2576		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2577		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2578	}
2579
2580	/* Program swing margin */
2581	for (i = 0; i < 4; i++) {
2582		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2583		val &= ~DPIO_SWING_MARGIN_MASK;
2584		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2585		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2586	}
2587
2588	/* Disable unique transition scale */
2589	for (i = 0; i < 4; i++) {
2590		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2591		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2592		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2593	}
2594
2595	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2596			== DP_TRAIN_PRE_EMPHASIS_0) &&
2597		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2598			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2599
2600		/*
2601		 * The document said it needs to set bit 27 for ch0 and bit 26
2602		 * for ch1. Might be a typo in the doc.
2603		 * For now, for this unique transition scale selection, set bit
2604		 * 27 for ch0 and ch1.
2605		 */
2606		for (i = 0; i < 4; i++) {
2607			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2608			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2609			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2610		}
2611
2612		for (i = 0; i < 4; i++) {
2613			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2614			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2615			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2616			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2617		}
2618	}
2619
2620	/* Start swing calculation */
2621	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2622	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2623	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2624
2625	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2626	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2627	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2628
2629	/* LRC Bypass */
2630	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2631	val |= DPIO_LRC_BYPASS;
2632	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2633
2634	mutex_unlock(&dev_priv->dpio_lock);
2635
2636	return 0;
2637}
2638
2639static void
2640intel_get_adjust_train(struct intel_dp *intel_dp,
2641		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2642{
2643	uint8_t v = 0;
2644	uint8_t p = 0;
2645	int lane;
2646	uint8_t voltage_max;
2647	uint8_t preemph_max;
2648
2649	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2650		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2651		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2652
2653		if (this_v > v)
2654			v = this_v;
2655		if (this_p > p)
2656			p = this_p;
2657	}
2658
2659	voltage_max = intel_dp_voltage_max(intel_dp);
2660	if (v >= voltage_max)
2661		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2662
2663	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2664	if (p >= preemph_max)
2665		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2666
2667	for (lane = 0; lane < 4; lane++)
2668		intel_dp->train_set[lane] = v | p;
2669}
2670
2671static uint32_t
2672intel_gen4_signal_levels(uint8_t train_set)
2673{
2674	uint32_t	signal_levels = 0;
2675
2676	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2677	case DP_TRAIN_VOLTAGE_SWING_400:
2678	default:
2679		signal_levels |= DP_VOLTAGE_0_4;
2680		break;
2681	case DP_TRAIN_VOLTAGE_SWING_600:
2682		signal_levels |= DP_VOLTAGE_0_6;
2683		break;
2684	case DP_TRAIN_VOLTAGE_SWING_800:
2685		signal_levels |= DP_VOLTAGE_0_8;
2686		break;
2687	case DP_TRAIN_VOLTAGE_SWING_1200:
2688		signal_levels |= DP_VOLTAGE_1_2;
2689		break;
2690	}
2691	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2692	case DP_TRAIN_PRE_EMPHASIS_0:
2693	default:
2694		signal_levels |= DP_PRE_EMPHASIS_0;
2695		break;
2696	case DP_TRAIN_PRE_EMPHASIS_3_5:
2697		signal_levels |= DP_PRE_EMPHASIS_3_5;
2698		break;
2699	case DP_TRAIN_PRE_EMPHASIS_6:
2700		signal_levels |= DP_PRE_EMPHASIS_6;
2701		break;
2702	case DP_TRAIN_PRE_EMPHASIS_9_5:
2703		signal_levels |= DP_PRE_EMPHASIS_9_5;
2704		break;
2705	}
2706	return signal_levels;
2707}
2708
2709/* Gen6's DP voltage swing and pre-emphasis control */
2710static uint32_t
2711intel_gen6_edp_signal_levels(uint8_t train_set)
2712{
2713	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2714					 DP_TRAIN_PRE_EMPHASIS_MASK);
2715	switch (signal_levels) {
2716	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2717	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2718		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2719	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2720		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2721	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2722	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2723		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2724	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2725	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2726		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2727	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2728	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2729		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2730	default:
2731		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2732			      "0x%x\n", signal_levels);
2733		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2734	}
2735}
2736
2737/* Gen7's DP voltage swing and pre-emphasis control */
2738static uint32_t
2739intel_gen7_edp_signal_levels(uint8_t train_set)
2740{
2741	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2742					 DP_TRAIN_PRE_EMPHASIS_MASK);
2743	switch (signal_levels) {
2744	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2745		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2746	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2747		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2748	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2749		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2750
2751	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2752		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2753	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2754		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2755
2756	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2757		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2758	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2759		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2760
2761	default:
2762		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2763			      "0x%x\n", signal_levels);
2764		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2765	}
2766}
2767
2768/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2769static uint32_t
2770intel_hsw_signal_levels(uint8_t train_set)
2771{
2772	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2773					 DP_TRAIN_PRE_EMPHASIS_MASK);
2774	switch (signal_levels) {
2775	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2776		return DDI_BUF_EMP_400MV_0DB_HSW;
2777	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2778		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2779	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2780		return DDI_BUF_EMP_400MV_6DB_HSW;
2781	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2782		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2783
2784	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2785		return DDI_BUF_EMP_600MV_0DB_HSW;
2786	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2787		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2788	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2789		return DDI_BUF_EMP_600MV_6DB_HSW;
2790
2791	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2792		return DDI_BUF_EMP_800MV_0DB_HSW;
2793	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2794		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2795	default:
2796		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2797			      "0x%x\n", signal_levels);
2798		return DDI_BUF_EMP_400MV_0DB_HSW;
2799	}
2800}
2801
2802/* Properly updates "DP" with the correct signal levels. */
2803static void
2804intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2805{
2806	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2807	enum port port = intel_dig_port->port;
2808	struct drm_device *dev = intel_dig_port->base.base.dev;
2809	uint32_t signal_levels, mask;
2810	uint8_t train_set = intel_dp->train_set[0];
2811
2812	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2813		signal_levels = intel_hsw_signal_levels(train_set);
2814		mask = DDI_BUF_EMP_MASK;
2815	} else if (IS_CHERRYVIEW(dev)) {
2816		signal_levels = intel_chv_signal_levels(intel_dp);
2817		mask = 0;
2818	} else if (IS_VALLEYVIEW(dev)) {
2819		signal_levels = intel_vlv_signal_levels(intel_dp);
2820		mask = 0;
2821	} else if (IS_GEN7(dev) && port == PORT_A) {
2822		signal_levels = intel_gen7_edp_signal_levels(train_set);
2823		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2824	} else if (IS_GEN6(dev) && port == PORT_A) {
2825		signal_levels = intel_gen6_edp_signal_levels(train_set);
2826		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2827	} else {
2828		signal_levels = intel_gen4_signal_levels(train_set);
2829		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2830	}
2831
2832	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2833
2834	*DP = (*DP & ~mask) | signal_levels;
2835}
2836
2837static bool
2838intel_dp_set_link_train(struct intel_dp *intel_dp,
2839			uint32_t *DP,
2840			uint8_t dp_train_pat)
2841{
2842	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843	struct drm_device *dev = intel_dig_port->base.base.dev;
2844	struct drm_i915_private *dev_priv = dev->dev_private;
2845	enum port port = intel_dig_port->port;
2846	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2847	int ret, len;
2848
2849	if (HAS_DDI(dev)) {
2850		uint32_t temp = I915_READ(DP_TP_CTL(port));
2851
2852		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2853			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2854		else
2855			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2856
2857		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2858		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2859		case DP_TRAINING_PATTERN_DISABLE:
2860			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2861
2862			break;
2863		case DP_TRAINING_PATTERN_1:
2864			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2865			break;
2866		case DP_TRAINING_PATTERN_2:
2867			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2868			break;
2869		case DP_TRAINING_PATTERN_3:
2870			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2871			break;
2872		}
2873		I915_WRITE(DP_TP_CTL(port), temp);
2874
2875	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2876		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2877
2878		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2879		case DP_TRAINING_PATTERN_DISABLE:
2880			*DP |= DP_LINK_TRAIN_OFF_CPT;
2881			break;
2882		case DP_TRAINING_PATTERN_1:
2883			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2884			break;
2885		case DP_TRAINING_PATTERN_2:
2886			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2887			break;
2888		case DP_TRAINING_PATTERN_3:
2889			DRM_ERROR("DP training pattern 3 not supported\n");
2890			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2891			break;
2892		}
2893
2894	} else {
2895		*DP &= ~DP_LINK_TRAIN_MASK;
2896
2897		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2898		case DP_TRAINING_PATTERN_DISABLE:
2899			*DP |= DP_LINK_TRAIN_OFF;
2900			break;
2901		case DP_TRAINING_PATTERN_1:
2902			*DP |= DP_LINK_TRAIN_PAT_1;
2903			break;
2904		case DP_TRAINING_PATTERN_2:
2905			*DP |= DP_LINK_TRAIN_PAT_2;
2906			break;
2907		case DP_TRAINING_PATTERN_3:
2908			DRM_ERROR("DP training pattern 3 not supported\n");
2909			*DP |= DP_LINK_TRAIN_PAT_2;
2910			break;
2911		}
2912	}
2913
2914	I915_WRITE(intel_dp->output_reg, *DP);
2915	POSTING_READ(intel_dp->output_reg);
2916
2917	buf[0] = dp_train_pat;
2918	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2919	    DP_TRAINING_PATTERN_DISABLE) {
2920		/* don't write DP_TRAINING_LANEx_SET on disable */
2921		len = 1;
2922	} else {
2923		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2924		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2925		len = intel_dp->lane_count + 1;
2926	}
2927
2928	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2929				buf, len);
2930
2931	return ret == len;
2932}
2933
2934static bool
2935intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2936			uint8_t dp_train_pat)
2937{
2938	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2939	intel_dp_set_signal_levels(intel_dp, DP);
2940	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2941}
2942
2943static bool
2944intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2945			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2946{
2947	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2948	struct drm_device *dev = intel_dig_port->base.base.dev;
2949	struct drm_i915_private *dev_priv = dev->dev_private;
2950	int ret;
2951
2952	intel_get_adjust_train(intel_dp, link_status);
2953	intel_dp_set_signal_levels(intel_dp, DP);
2954
2955	I915_WRITE(intel_dp->output_reg, *DP);
2956	POSTING_READ(intel_dp->output_reg);
2957
2958	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2959				intel_dp->train_set, intel_dp->lane_count);
2960
2961	return ret == intel_dp->lane_count;
2962}
2963
2964static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2965{
2966	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2967	struct drm_device *dev = intel_dig_port->base.base.dev;
2968	struct drm_i915_private *dev_priv = dev->dev_private;
2969	enum port port = intel_dig_port->port;
2970	uint32_t val;
2971
2972	if (!HAS_DDI(dev))
2973		return;
2974
2975	val = I915_READ(DP_TP_CTL(port));
2976	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2977	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2978	I915_WRITE(DP_TP_CTL(port), val);
2979
2980	/*
2981	 * On PORT_A we can have only eDP in SST mode. There the only reason
2982	 * we need to set idle transmission mode is to work around a HW issue
2983	 * where we enable the pipe while not in idle link-training mode.
2984	 * In this case there is requirement to wait for a minimum number of
2985	 * idle patterns to be sent.
2986	 */
2987	if (port == PORT_A)
2988		return;
2989
2990	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2991		     1))
2992		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2993}
2994
2995/* Enable corresponding port and start training pattern 1 */
2996void
2997intel_dp_start_link_train(struct intel_dp *intel_dp)
2998{
2999	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3000	struct drm_device *dev = encoder->dev;
3001	int i;
3002	uint8_t voltage;
3003	int voltage_tries, loop_tries;
3004	uint32_t DP = intel_dp->DP;
3005	uint8_t link_config[2];
3006
3007	if (HAS_DDI(dev))
3008		intel_ddi_prepare_link_retrain(encoder);
3009
3010	/* Write the link configuration data */
3011	link_config[0] = intel_dp->link_bw;
3012	link_config[1] = intel_dp->lane_count;
3013	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3014		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3015	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3016
3017	link_config[0] = 0;
3018	link_config[1] = DP_SET_ANSI_8B10B;
3019	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3020
3021	DP |= DP_PORT_EN;
3022
3023	/* clock recovery */
3024	if (!intel_dp_reset_link_train(intel_dp, &DP,
3025				       DP_TRAINING_PATTERN_1 |
3026				       DP_LINK_SCRAMBLING_DISABLE)) {
3027		DRM_ERROR("failed to enable link training\n");
3028		return;
3029	}
3030
3031	voltage = 0xff;
3032	voltage_tries = 0;
3033	loop_tries = 0;
3034	for (;;) {
3035		uint8_t link_status[DP_LINK_STATUS_SIZE];
3036
3037		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3038		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3039			DRM_ERROR("failed to get link status\n");
3040			break;
3041		}
3042
3043		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3044			DRM_DEBUG_KMS("clock recovery OK\n");
3045			break;
3046		}
3047
3048		/* Check to see if we've tried the max voltage */
3049		for (i = 0; i < intel_dp->lane_count; i++)
3050			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3051				break;
3052		if (i == intel_dp->lane_count) {
3053			++loop_tries;
3054			if (loop_tries == 5) {
3055				DRM_ERROR("too many full retries, give up\n");
3056				break;
3057			}
3058			intel_dp_reset_link_train(intel_dp, &DP,
3059						  DP_TRAINING_PATTERN_1 |
3060						  DP_LINK_SCRAMBLING_DISABLE);
3061			voltage_tries = 0;
3062			continue;
3063		}
3064
3065		/* Check to see if we've tried the same voltage 5 times */
3066		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3067			++voltage_tries;
3068			if (voltage_tries == 5) {
3069				DRM_ERROR("too many voltage retries, give up\n");
3070				break;
3071			}
3072		} else
3073			voltage_tries = 0;
3074		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3075
3076		/* Update training set as requested by target */
3077		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3078			DRM_ERROR("failed to update link training\n");
3079			break;
3080		}
3081	}
3082
3083	intel_dp->DP = DP;
3084}
3085
3086void
3087intel_dp_complete_link_train(struct intel_dp *intel_dp)
3088{
3089	bool channel_eq = false;
3090	int tries, cr_tries;
3091	uint32_t DP = intel_dp->DP;
3092	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3093
3094	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3095	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3096		training_pattern = DP_TRAINING_PATTERN_3;
3097
3098	/* channel equalization */
3099	if (!intel_dp_set_link_train(intel_dp, &DP,
3100				     training_pattern |
3101				     DP_LINK_SCRAMBLING_DISABLE)) {
3102		DRM_ERROR("failed to start channel equalization\n");
3103		return;
3104	}
3105
3106	tries = 0;
3107	cr_tries = 0;
3108	channel_eq = false;
3109	for (;;) {
3110		uint8_t link_status[DP_LINK_STATUS_SIZE];
3111
3112		if (cr_tries > 5) {
3113			DRM_ERROR("failed to train DP, aborting\n");
3114			break;
3115		}
3116
3117		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3118		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3119			DRM_ERROR("failed to get link status\n");
3120			break;
3121		}
3122
3123		/* Make sure clock is still ok */
3124		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3125			intel_dp_start_link_train(intel_dp);
3126			intel_dp_set_link_train(intel_dp, &DP,
3127						training_pattern |
3128						DP_LINK_SCRAMBLING_DISABLE);
3129			cr_tries++;
3130			continue;
3131		}
3132
3133		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3134			channel_eq = true;
3135			break;
3136		}
3137
3138		/* Try 5 times, then try clock recovery if that fails */
3139		if (tries > 5) {
3140			intel_dp_link_down(intel_dp);
3141			intel_dp_start_link_train(intel_dp);
3142			intel_dp_set_link_train(intel_dp, &DP,
3143						training_pattern |
3144						DP_LINK_SCRAMBLING_DISABLE);
3145			tries = 0;
3146			cr_tries++;
3147			continue;
3148		}
3149
3150		/* Update training set as requested by target */
3151		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3152			DRM_ERROR("failed to update link training\n");
3153			break;
3154		}
3155		++tries;
3156	}
3157
3158	intel_dp_set_idle_link_train(intel_dp);
3159
3160	intel_dp->DP = DP;
3161
3162	if (channel_eq)
3163		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3164
3165}
3166
3167void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3168{
3169	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3170				DP_TRAINING_PATTERN_DISABLE);
3171}
3172
3173static void
3174intel_dp_link_down(struct intel_dp *intel_dp)
3175{
3176	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3177	enum port port = intel_dig_port->port;
3178	struct drm_device *dev = intel_dig_port->base.base.dev;
3179	struct drm_i915_private *dev_priv = dev->dev_private;
3180	struct intel_crtc *intel_crtc =
3181		to_intel_crtc(intel_dig_port->base.base.crtc);
3182	uint32_t DP = intel_dp->DP;
3183
3184	if (WARN_ON(HAS_DDI(dev)))
3185		return;
3186
3187	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3188		return;
3189
3190	DRM_DEBUG_KMS("\n");
3191
3192	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3193		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3194		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3195	} else {
3196		DP &= ~DP_LINK_TRAIN_MASK;
3197		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3198	}
3199	POSTING_READ(intel_dp->output_reg);
3200
3201	if (HAS_PCH_IBX(dev) &&
3202	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3203		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3204
3205		/* Hardware workaround: leaving our transcoder select
3206		 * set to transcoder B while it's off will prevent the
3207		 * corresponding HDMI output on transcoder A.
3208		 *
3209		 * Combine this with another hardware workaround:
3210		 * transcoder select bit can only be cleared while the
3211		 * port is enabled.
3212		 */
3213		DP &= ~DP_PIPEB_SELECT;
3214		I915_WRITE(intel_dp->output_reg, DP);
3215
3216		/* Changes to enable or select take place the vblank
3217		 * after being written.
3218		 */
3219		if (WARN_ON(crtc == NULL)) {
3220			/* We should never try to disable a port without a crtc
3221			 * attached. For paranoia keep the code around for a
3222			 * bit. */
3223			POSTING_READ(intel_dp->output_reg);
3224			msleep(50);
3225		} else
3226			intel_wait_for_vblank(dev, intel_crtc->pipe);
3227	}
3228
3229	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3230	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3231	POSTING_READ(intel_dp->output_reg);
3232	msleep(intel_dp->panel_power_down_delay);
3233}
3234
3235static bool
3236intel_dp_get_dpcd(struct intel_dp *intel_dp)
3237{
3238	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3239	struct drm_device *dev = dig_port->base.base.dev;
3240	struct drm_i915_private *dev_priv = dev->dev_private;
3241
3242	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3243
3244	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3245				    sizeof(intel_dp->dpcd)) < 0)
3246		return false; /* aux transfer failed */
3247
3248	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3249			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3250	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3251
3252	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3253		return false; /* DPCD not present */
3254
3255	/* Check if the panel supports PSR */
3256	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3257	if (is_edp(intel_dp)) {
3258		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3259					intel_dp->psr_dpcd,
3260					sizeof(intel_dp->psr_dpcd));
3261		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3262			dev_priv->psr.sink_support = true;
3263			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3264		}
3265	}
3266
3267	/* Training Pattern 3 support */
3268	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3269	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3270		intel_dp->use_tps3 = true;
3271		DRM_DEBUG_KMS("Displayport TPS3 supported");
3272	} else
3273		intel_dp->use_tps3 = false;
3274
3275	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3276	      DP_DWN_STRM_PORT_PRESENT))
3277		return true; /* native DP sink */
3278
3279	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3280		return true; /* no per-port downstream info */
3281
3282	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3283				    intel_dp->downstream_ports,
3284				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3285		return false; /* downstream port status fetch failed */
3286
3287	return true;
3288}
3289
3290static void
3291intel_dp_probe_oui(struct intel_dp *intel_dp)
3292{
3293	u8 buf[3];
3294
3295	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3296		return;
3297
3298	intel_edp_panel_vdd_on(intel_dp);
3299
3300	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3301		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3302			      buf[0], buf[1], buf[2]);
3303
3304	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3305		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3306			      buf[0], buf[1], buf[2]);
3307
3308	edp_panel_vdd_off(intel_dp, false);
3309}
3310
3311int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3312{
3313	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3314	struct drm_device *dev = intel_dig_port->base.base.dev;
3315	struct intel_crtc *intel_crtc =
3316		to_intel_crtc(intel_dig_port->base.base.crtc);
3317	u8 buf[1];
3318
3319	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3320		return -EAGAIN;
3321
3322	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3323		return -ENOTTY;
3324
3325	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3326			       DP_TEST_SINK_START) < 0)
3327		return -EAGAIN;
3328
3329	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3330	intel_wait_for_vblank(dev, intel_crtc->pipe);
3331	intel_wait_for_vblank(dev, intel_crtc->pipe);
3332
3333	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3334		return -EAGAIN;
3335
3336	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3337	return 0;
3338}
3339
3340static bool
3341intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3342{
3343	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3344				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3345				       sink_irq_vector, 1) == 1;
3346}
3347
3348static void
3349intel_dp_handle_test_request(struct intel_dp *intel_dp)
3350{
3351	/* NAK by default */
3352	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3353}
3354
3355/*
3356 * According to DP spec
3357 * 5.1.2:
3358 *  1. Read DPCD
3359 *  2. Configure link according to Receiver Capabilities
3360 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3361 *  4. Check link status on receipt of hot-plug interrupt
3362 */
3363
3364void
3365intel_dp_check_link_status(struct intel_dp *intel_dp)
3366{
3367	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3368	u8 sink_irq_vector;
3369	u8 link_status[DP_LINK_STATUS_SIZE];
3370
3371	/* FIXME: This access isn't protected by any locks. */
3372	if (!intel_encoder->connectors_active)
3373		return;
3374
3375	if (WARN_ON(!intel_encoder->base.crtc))
3376		return;
3377
3378	/* Try to read receiver status if the link appears to be up */
3379	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3380		return;
3381	}
3382
3383	/* Now read the DPCD to see if it's actually running */
3384	if (!intel_dp_get_dpcd(intel_dp)) {
3385		return;
3386	}
3387
3388	/* Try to read the source of the interrupt */
3389	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3390	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3391		/* Clear interrupt source */
3392		drm_dp_dpcd_writeb(&intel_dp->aux,
3393				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3394				   sink_irq_vector);
3395
3396		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3397			intel_dp_handle_test_request(intel_dp);
3398		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3399			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3400	}
3401
3402	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3403		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3404			      intel_encoder->base.name);
3405		intel_dp_start_link_train(intel_dp);
3406		intel_dp_complete_link_train(intel_dp);
3407		intel_dp_stop_link_train(intel_dp);
3408	}
3409}
3410
3411/* XXX this is probably wrong for multiple downstream ports */
3412static enum drm_connector_status
3413intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3414{
3415	uint8_t *dpcd = intel_dp->dpcd;
3416	uint8_t type;
3417
3418	if (!intel_dp_get_dpcd(intel_dp))
3419		return connector_status_disconnected;
3420
3421	/* if there's no downstream port, we're done */
3422	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3423		return connector_status_connected;
3424
3425	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3426	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3427	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3428		uint8_t reg;
3429
3430		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3431					    &reg, 1) < 0)
3432			return connector_status_unknown;
3433
3434		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3435					      : connector_status_disconnected;
3436	}
3437
3438	/* If no HPD, poke DDC gently */
3439	if (drm_probe_ddc(&intel_dp->aux.ddc))
3440		return connector_status_connected;
3441
3442	/* Well we tried, say unknown for unreliable port types */
3443	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3444		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3445		if (type == DP_DS_PORT_TYPE_VGA ||
3446		    type == DP_DS_PORT_TYPE_NON_EDID)
3447			return connector_status_unknown;
3448	} else {
3449		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3450			DP_DWN_STRM_PORT_TYPE_MASK;
3451		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3452		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3453			return connector_status_unknown;
3454	}
3455
3456	/* Anything else is out of spec, warn and ignore */
3457	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3458	return connector_status_disconnected;
3459}
3460
3461static enum drm_connector_status
3462ironlake_dp_detect(struct intel_dp *intel_dp)
3463{
3464	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3465	struct drm_i915_private *dev_priv = dev->dev_private;
3466	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3467	enum drm_connector_status status;
3468
3469	/* Can't disconnect eDP, but you can close the lid... */
3470	if (is_edp(intel_dp)) {
3471		status = intel_panel_detect(dev);
3472		if (status == connector_status_unknown)
3473			status = connector_status_connected;
3474		return status;
3475	}
3476
3477	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3478		return connector_status_disconnected;
3479
3480	return intel_dp_detect_dpcd(intel_dp);
3481}
3482
3483static enum drm_connector_status
3484g4x_dp_detect(struct intel_dp *intel_dp)
3485{
3486	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3487	struct drm_i915_private *dev_priv = dev->dev_private;
3488	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3489	uint32_t bit;
3490
3491	/* Can't disconnect eDP, but you can close the lid... */
3492	if (is_edp(intel_dp)) {
3493		enum drm_connector_status status;
3494
3495		status = intel_panel_detect(dev);
3496		if (status == connector_status_unknown)
3497			status = connector_status_connected;
3498		return status;
3499	}
3500
3501	if (IS_VALLEYVIEW(dev)) {
3502		switch (intel_dig_port->port) {
3503		case PORT_B:
3504			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3505			break;
3506		case PORT_C:
3507			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3508			break;
3509		case PORT_D:
3510			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3511			break;
3512		default:
3513			return connector_status_unknown;
3514		}
3515	} else {
3516		switch (intel_dig_port->port) {
3517		case PORT_B:
3518			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3519			break;
3520		case PORT_C:
3521			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3522			break;
3523		case PORT_D:
3524			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3525			break;
3526		default:
3527			return connector_status_unknown;
3528		}
3529	}
3530
3531	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3532		return connector_status_disconnected;
3533
3534	return intel_dp_detect_dpcd(intel_dp);
3535}
3536
3537static struct edid *
3538intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3539{
3540	struct intel_connector *intel_connector = to_intel_connector(connector);
3541
3542	/* use cached edid if we have one */
3543	if (intel_connector->edid) {
3544		/* invalid edid */
3545		if (IS_ERR(intel_connector->edid))
3546			return NULL;
3547
3548		return drm_edid_duplicate(intel_connector->edid);
3549	}
3550
3551	return drm_get_edid(connector, adapter);
3552}
3553
3554static int
3555intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3556{
3557	struct intel_connector *intel_connector = to_intel_connector(connector);
3558
3559	/* use cached edid if we have one */
3560	if (intel_connector->edid) {
3561		/* invalid edid */
3562		if (IS_ERR(intel_connector->edid))
3563			return 0;
3564
3565		return intel_connector_update_modes(connector,
3566						    intel_connector->edid);
3567	}
3568
3569	return intel_ddc_get_modes(connector, adapter);
3570}
3571
3572static enum drm_connector_status
3573intel_dp_detect(struct drm_connector *connector, bool force)
3574{
3575	struct intel_dp *intel_dp = intel_attached_dp(connector);
3576	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3577	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3578	struct drm_device *dev = connector->dev;
3579	struct drm_i915_private *dev_priv = dev->dev_private;
3580	enum drm_connector_status status;
3581	enum intel_display_power_domain power_domain;
3582	struct edid *edid = NULL;
3583
3584	intel_runtime_pm_get(dev_priv);
3585
3586	power_domain = intel_display_port_power_domain(intel_encoder);
3587	intel_display_power_get(dev_priv, power_domain);
3588
3589	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3590		      connector->base.id, connector->name);
3591
3592	intel_dp->has_audio = false;
3593
3594	if (HAS_PCH_SPLIT(dev))
3595		status = ironlake_dp_detect(intel_dp);
3596	else
3597		status = g4x_dp_detect(intel_dp);
3598
3599	if (status != connector_status_connected)
3600		goto out;
3601
3602	intel_dp_probe_oui(intel_dp);
3603
3604	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3605		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3606	} else {
3607		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3608		if (edid) {
3609			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3610			kfree(edid);
3611		}
3612	}
3613
3614	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3615		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3616	status = connector_status_connected;
3617
3618out:
3619	intel_display_power_put(dev_priv, power_domain);
3620
3621	intel_runtime_pm_put(dev_priv);
3622
3623	return status;
3624}
3625
3626static int intel_dp_get_modes(struct drm_connector *connector)
3627{
3628	struct intel_dp *intel_dp = intel_attached_dp(connector);
3629	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3630	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3631	struct intel_connector *intel_connector = to_intel_connector(connector);
3632	struct drm_device *dev = connector->dev;
3633	struct drm_i915_private *dev_priv = dev->dev_private;
3634	enum intel_display_power_domain power_domain;
3635	int ret;
3636
3637	/* We should parse the EDID data and find out if it has an audio sink
3638	 */
3639
3640	power_domain = intel_display_port_power_domain(intel_encoder);
3641	intel_display_power_get(dev_priv, power_domain);
3642
3643	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3644	intel_display_power_put(dev_priv, power_domain);
3645	if (ret)
3646		return ret;
3647
3648	/* if eDP has no EDID, fall back to fixed mode */
3649	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3650		struct drm_display_mode *mode;
3651		mode = drm_mode_duplicate(dev,
3652					  intel_connector->panel.fixed_mode);
3653		if (mode) {
3654			drm_mode_probed_add(connector, mode);
3655			return 1;
3656		}
3657	}
3658	return 0;
3659}
3660
3661static bool
3662intel_dp_detect_audio(struct drm_connector *connector)
3663{
3664	struct intel_dp *intel_dp = intel_attached_dp(connector);
3665	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3666	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3667	struct drm_device *dev = connector->dev;
3668	struct drm_i915_private *dev_priv = dev->dev_private;
3669	enum intel_display_power_domain power_domain;
3670	struct edid *edid;
3671	bool has_audio = false;
3672
3673	power_domain = intel_display_port_power_domain(intel_encoder);
3674	intel_display_power_get(dev_priv, power_domain);
3675
3676	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3677	if (edid) {
3678		has_audio = drm_detect_monitor_audio(edid);
3679		kfree(edid);
3680	}
3681
3682	intel_display_power_put(dev_priv, power_domain);
3683
3684	return has_audio;
3685}
3686
3687static int
3688intel_dp_set_property(struct drm_connector *connector,
3689		      struct drm_property *property,
3690		      uint64_t val)
3691{
3692	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3693	struct intel_connector *intel_connector = to_intel_connector(connector);
3694	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3695	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3696	int ret;
3697
3698	ret = drm_object_property_set_value(&connector->base, property, val);
3699	if (ret)
3700		return ret;
3701
3702	if (property == dev_priv->force_audio_property) {
3703		int i = val;
3704		bool has_audio;
3705
3706		if (i == intel_dp->force_audio)
3707			return 0;
3708
3709		intel_dp->force_audio = i;
3710
3711		if (i == HDMI_AUDIO_AUTO)
3712			has_audio = intel_dp_detect_audio(connector);
3713		else
3714			has_audio = (i == HDMI_AUDIO_ON);
3715
3716		if (has_audio == intel_dp->has_audio)
3717			return 0;
3718
3719		intel_dp->has_audio = has_audio;
3720		goto done;
3721	}
3722
3723	if (property == dev_priv->broadcast_rgb_property) {
3724		bool old_auto = intel_dp->color_range_auto;
3725		uint32_t old_range = intel_dp->color_range;
3726
3727		switch (val) {
3728		case INTEL_BROADCAST_RGB_AUTO:
3729			intel_dp->color_range_auto = true;
3730			break;
3731		case INTEL_BROADCAST_RGB_FULL:
3732			intel_dp->color_range_auto = false;
3733			intel_dp->color_range = 0;
3734			break;
3735		case INTEL_BROADCAST_RGB_LIMITED:
3736			intel_dp->color_range_auto = false;
3737			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3738			break;
3739		default:
3740			return -EINVAL;
3741		}
3742
3743		if (old_auto == intel_dp->color_range_auto &&
3744		    old_range == intel_dp->color_range)
3745			return 0;
3746
3747		goto done;
3748	}
3749
3750	if (is_edp(intel_dp) &&
3751	    property == connector->dev->mode_config.scaling_mode_property) {
3752		if (val == DRM_MODE_SCALE_NONE) {
3753			DRM_DEBUG_KMS("no scaling not supported\n");
3754			return -EINVAL;
3755		}
3756
3757		if (intel_connector->panel.fitting_mode == val) {
3758			/* the eDP scaling property is not changed */
3759			return 0;
3760		}
3761		intel_connector->panel.fitting_mode = val;
3762
3763		goto done;
3764	}
3765
3766	return -EINVAL;
3767
3768done:
3769	if (intel_encoder->base.crtc)
3770		intel_crtc_restore_mode(intel_encoder->base.crtc);
3771
3772	return 0;
3773}
3774
3775static void
3776intel_dp_connector_destroy(struct drm_connector *connector)
3777{
3778	struct intel_connector *intel_connector = to_intel_connector(connector);
3779
3780	if (!IS_ERR_OR_NULL(intel_connector->edid))
3781		kfree(intel_connector->edid);
3782
3783	/* Can't call is_edp() since the encoder may have been destroyed
3784	 * already. */
3785	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3786		intel_panel_fini(&intel_connector->panel);
3787
3788	drm_connector_cleanup(connector);
3789	kfree(connector);
3790}
3791
3792void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3793{
3794	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3795	struct intel_dp *intel_dp = &intel_dig_port->dp;
3796	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3797
3798	drm_dp_aux_unregister(&intel_dp->aux);
3799	drm_encoder_cleanup(encoder);
3800	if (is_edp(intel_dp)) {
3801		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3802		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3803		edp_panel_vdd_off_sync(intel_dp);
3804		drm_modeset_unlock(&dev->mode_config.connection_mutex);
3805	}
3806	kfree(intel_dig_port);
3807}
3808
3809static const struct drm_connector_funcs intel_dp_connector_funcs = {
3810	.dpms = intel_connector_dpms,
3811	.detect = intel_dp_detect,
3812	.fill_modes = drm_helper_probe_single_connector_modes,
3813	.set_property = intel_dp_set_property,
3814	.destroy = intel_dp_connector_destroy,
3815};
3816
3817static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3818	.get_modes = intel_dp_get_modes,
3819	.mode_valid = intel_dp_mode_valid,
3820	.best_encoder = intel_best_encoder,
3821};
3822
3823static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3824	.destroy = intel_dp_encoder_destroy,
3825};
3826
3827static void
3828intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3829{
3830	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3831
3832	intel_dp_check_link_status(intel_dp);
3833}
3834
3835bool
3836intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
3837{
3838	struct intel_dp *intel_dp = &intel_dig_port->dp;
3839
3840	if (long_hpd)
3841		return true;
3842
3843	/*
3844	 * we'll check the link status via the normal hot plug path later -
3845	 * but for short hpds we should check it now
3846	 */
3847	intel_dp_check_link_status(intel_dp);
3848	return false;
3849}
3850
3851/* Return which DP Port should be selected for Transcoder DP control */
3852int
3853intel_trans_dp_port_sel(struct drm_crtc *crtc)
3854{
3855	struct drm_device *dev = crtc->dev;
3856	struct intel_encoder *intel_encoder;
3857	struct intel_dp *intel_dp;
3858
3859	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3860		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3861
3862		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3863		    intel_encoder->type == INTEL_OUTPUT_EDP)
3864			return intel_dp->output_reg;
3865	}
3866
3867	return -1;
3868}
3869
3870/* check the VBT to see whether the eDP is on DP-D port */
3871bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3872{
3873	struct drm_i915_private *dev_priv = dev->dev_private;
3874	union child_device_config *p_child;
3875	int i;
3876	static const short port_mapping[] = {
3877		[PORT_B] = PORT_IDPB,
3878		[PORT_C] = PORT_IDPC,
3879		[PORT_D] = PORT_IDPD,
3880	};
3881
3882	if (port == PORT_A)
3883		return true;
3884
3885	if (!dev_priv->vbt.child_dev_num)
3886		return false;
3887
3888	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3889		p_child = dev_priv->vbt.child_dev + i;
3890
3891		if (p_child->common.dvo_port == port_mapping[port] &&
3892		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3893		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3894			return true;
3895	}
3896	return false;
3897}
3898
3899static void
3900intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3901{
3902	struct intel_connector *intel_connector = to_intel_connector(connector);
3903
3904	intel_attach_force_audio_property(connector);
3905	intel_attach_broadcast_rgb_property(connector);
3906	intel_dp->color_range_auto = true;
3907
3908	if (is_edp(intel_dp)) {
3909		drm_mode_create_scaling_mode_property(connector->dev);
3910		drm_object_attach_property(
3911			&connector->base,
3912			connector->dev->mode_config.scaling_mode_property,
3913			DRM_MODE_SCALE_ASPECT);
3914		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3915	}
3916}
3917
3918static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3919{
3920	intel_dp->last_power_cycle = jiffies;
3921	intel_dp->last_power_on = jiffies;
3922	intel_dp->last_backlight_off = jiffies;
3923}
3924
3925static void
3926intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3927				    struct intel_dp *intel_dp,
3928				    struct edp_power_seq *out)
3929{
3930	struct drm_i915_private *dev_priv = dev->dev_private;
3931	struct edp_power_seq cur, vbt, spec, final;
3932	u32 pp_on, pp_off, pp_div, pp;
3933	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3934
3935	if (HAS_PCH_SPLIT(dev)) {
3936		pp_ctrl_reg = PCH_PP_CONTROL;
3937		pp_on_reg = PCH_PP_ON_DELAYS;
3938		pp_off_reg = PCH_PP_OFF_DELAYS;
3939		pp_div_reg = PCH_PP_DIVISOR;
3940	} else {
3941		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3942
3943		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3944		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3945		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3946		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3947	}
3948
3949	/* Workaround: Need to write PP_CONTROL with the unlock key as
3950	 * the very first thing. */
3951	pp = ironlake_get_pp_control(intel_dp);
3952	I915_WRITE(pp_ctrl_reg, pp);
3953
3954	pp_on = I915_READ(pp_on_reg);
3955	pp_off = I915_READ(pp_off_reg);
3956	pp_div = I915_READ(pp_div_reg);
3957
3958	/* Pull timing values out of registers */
3959	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3960		PANEL_POWER_UP_DELAY_SHIFT;
3961
3962	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3963		PANEL_LIGHT_ON_DELAY_SHIFT;
3964
3965	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3966		PANEL_LIGHT_OFF_DELAY_SHIFT;
3967
3968	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3969		PANEL_POWER_DOWN_DELAY_SHIFT;
3970
3971	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3972		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3973
3974	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3975		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3976
3977	vbt = dev_priv->vbt.edp_pps;
3978
3979	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3980	 * our hw here, which are all in 100usec. */
3981	spec.t1_t3 = 210 * 10;
3982	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3983	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3984	spec.t10 = 500 * 10;
3985	/* This one is special and actually in units of 100ms, but zero
3986	 * based in the hw (so we need to add 100 ms). But the sw vbt
3987	 * table multiplies it with 1000 to make it in units of 100usec,
3988	 * too. */
3989	spec.t11_t12 = (510 + 100) * 10;
3990
3991	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3992		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3993
3994	/* Use the max of the register settings and vbt. If both are
3995	 * unset, fall back to the spec limits. */
3996#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3997				       spec.field : \
3998				       max(cur.field, vbt.field))
3999	assign_final(t1_t3);
4000	assign_final(t8);
4001	assign_final(t9);
4002	assign_final(t10);
4003	assign_final(t11_t12);
4004#undef assign_final
4005
4006#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4007	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4008	intel_dp->backlight_on_delay = get_delay(t8);
4009	intel_dp->backlight_off_delay = get_delay(t9);
4010	intel_dp->panel_power_down_delay = get_delay(t10);
4011	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4012#undef get_delay
4013
4014	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4015		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4016		      intel_dp->panel_power_cycle_delay);
4017
4018	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4019		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4020
4021	if (out)
4022		*out = final;
4023}
4024
4025static void
4026intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4027					      struct intel_dp *intel_dp,
4028					      struct edp_power_seq *seq)
4029{
4030	struct drm_i915_private *dev_priv = dev->dev_private;
4031	u32 pp_on, pp_off, pp_div, port_sel = 0;
4032	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4033	int pp_on_reg, pp_off_reg, pp_div_reg;
4034
4035	if (HAS_PCH_SPLIT(dev)) {
4036		pp_on_reg = PCH_PP_ON_DELAYS;
4037		pp_off_reg = PCH_PP_OFF_DELAYS;
4038		pp_div_reg = PCH_PP_DIVISOR;
4039	} else {
4040		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4041
4042		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4043		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4044		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4045	}
4046
4047	/*
4048	 * And finally store the new values in the power sequencer. The
4049	 * backlight delays are set to 1 because we do manual waits on them. For
4050	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4051	 * we'll end up waiting for the backlight off delay twice: once when we
4052	 * do the manual sleep, and once when we disable the panel and wait for
4053	 * the PP_STATUS bit to become zero.
4054	 */
4055	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4056		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4057	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4058		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4059	/* Compute the divisor for the pp clock, simply match the Bspec
4060	 * formula. */
4061	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4062	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4063			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4064
4065	/* Haswell doesn't have any port selection bits for the panel
4066	 * power sequencer any more. */
4067	if (IS_VALLEYVIEW(dev)) {
4068		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4069			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4070		else
4071			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4072	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4073		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4074			port_sel = PANEL_PORT_SELECT_DPA;
4075		else
4076			port_sel = PANEL_PORT_SELECT_DPD;
4077	}
4078
4079	pp_on |= port_sel;
4080
4081	I915_WRITE(pp_on_reg, pp_on);
4082	I915_WRITE(pp_off_reg, pp_off);
4083	I915_WRITE(pp_div_reg, pp_div);
4084
4085	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4086		      I915_READ(pp_on_reg),
4087		      I915_READ(pp_off_reg),
4088		      I915_READ(pp_div_reg));
4089}
4090
4091void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4092{
4093	struct drm_i915_private *dev_priv = dev->dev_private;
4094	struct intel_encoder *encoder;
4095	struct intel_dp *intel_dp = NULL;
4096	struct intel_crtc_config *config = NULL;
4097	struct intel_crtc *intel_crtc = NULL;
4098	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4099	u32 reg, val;
4100	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4101
4102	if (refresh_rate <= 0) {
4103		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4104		return;
4105	}
4106
4107	if (intel_connector == NULL) {
4108		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4109		return;
4110	}
4111
4112	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4113		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4114		return;
4115	}
4116
4117	encoder = intel_attached_encoder(&intel_connector->base);
4118	intel_dp = enc_to_intel_dp(&encoder->base);
4119	intel_crtc = encoder->new_crtc;
4120
4121	if (!intel_crtc) {
4122		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4123		return;
4124	}
4125
4126	config = &intel_crtc->config;
4127
4128	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4129		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4130		return;
4131	}
4132
4133	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4134		index = DRRS_LOW_RR;
4135
4136	if (index == intel_dp->drrs_state.refresh_rate_type) {
4137		DRM_DEBUG_KMS(
4138			"DRRS requested for previously set RR...ignoring\n");
4139		return;
4140	}
4141
4142	if (!intel_crtc->active) {
4143		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4144		return;
4145	}
4146
4147	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4148		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4149		val = I915_READ(reg);
4150		if (index > DRRS_HIGH_RR) {
4151			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4152			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4153		} else {
4154			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4155		}
4156		I915_WRITE(reg, val);
4157	}
4158
4159	/*
4160	 * mutex taken to ensure that there is no race between differnt
4161	 * drrs calls trying to update refresh rate. This scenario may occur
4162	 * in future when idleness detection based DRRS in kernel and
4163	 * possible calls from user space to set differnt RR are made.
4164	 */
4165
4166	mutex_lock(&intel_dp->drrs_state.mutex);
4167
4168	intel_dp->drrs_state.refresh_rate_type = index;
4169
4170	mutex_unlock(&intel_dp->drrs_state.mutex);
4171
4172	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4173}
4174
4175static struct drm_display_mode *
4176intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4177			struct intel_connector *intel_connector,
4178			struct drm_display_mode *fixed_mode)
4179{
4180	struct drm_connector *connector = &intel_connector->base;
4181	struct intel_dp *intel_dp = &intel_dig_port->dp;
4182	struct drm_device *dev = intel_dig_port->base.base.dev;
4183	struct drm_i915_private *dev_priv = dev->dev_private;
4184	struct drm_display_mode *downclock_mode = NULL;
4185
4186	if (INTEL_INFO(dev)->gen <= 6) {
4187		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4188		return NULL;
4189	}
4190
4191	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4192		DRM_INFO("VBT doesn't support DRRS\n");
4193		return NULL;
4194	}
4195
4196	downclock_mode = intel_find_panel_downclock
4197					(dev, fixed_mode, connector);
4198
4199	if (!downclock_mode) {
4200		DRM_INFO("DRRS not supported\n");
4201		return NULL;
4202	}
4203
4204	dev_priv->drrs.connector = intel_connector;
4205
4206	mutex_init(&intel_dp->drrs_state.mutex);
4207
4208	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4209
4210	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4211	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4212	return downclock_mode;
4213}
4214
4215static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4216				     struct intel_connector *intel_connector,
4217				     struct edp_power_seq *power_seq)
4218{
4219	struct drm_connector *connector = &intel_connector->base;
4220	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4221	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4222	struct drm_device *dev = intel_encoder->base.dev;
4223	struct drm_i915_private *dev_priv = dev->dev_private;
4224	struct drm_display_mode *fixed_mode = NULL;
4225	struct drm_display_mode *downclock_mode = NULL;
4226	bool has_dpcd;
4227	struct drm_display_mode *scan;
4228	struct edid *edid;
4229
4230	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4231
4232	if (!is_edp(intel_dp))
4233		return true;
4234
4235	/* The VDD bit needs a power domain reference, so if the bit is already
4236	 * enabled when we boot, grab this reference. */
4237	if (edp_have_panel_vdd(intel_dp)) {
4238		enum intel_display_power_domain power_domain;
4239		power_domain = intel_display_port_power_domain(intel_encoder);
4240		intel_display_power_get(dev_priv, power_domain);
4241	}
4242
4243	/* Cache DPCD and EDID for edp. */
4244	intel_edp_panel_vdd_on(intel_dp);
4245	has_dpcd = intel_dp_get_dpcd(intel_dp);
4246	edp_panel_vdd_off(intel_dp, false);
4247
4248	if (has_dpcd) {
4249		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4250			dev_priv->no_aux_handshake =
4251				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4252				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4253	} else {
4254		/* if this fails, presume the device is a ghost */
4255		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4256		return false;
4257	}
4258
4259	/* We now know it's not a ghost, init power sequence regs. */
4260	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4261
4262	mutex_lock(&dev->mode_config.mutex);
4263	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4264	if (edid) {
4265		if (drm_add_edid_modes(connector, edid)) {
4266			drm_mode_connector_update_edid_property(connector,
4267								edid);
4268			drm_edid_to_eld(connector, edid);
4269		} else {
4270			kfree(edid);
4271			edid = ERR_PTR(-EINVAL);
4272		}
4273	} else {
4274		edid = ERR_PTR(-ENOENT);
4275	}
4276	intel_connector->edid = edid;
4277
4278	/* prefer fixed mode from EDID if available */
4279	list_for_each_entry(scan, &connector->probed_modes, head) {
4280		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4281			fixed_mode = drm_mode_duplicate(dev, scan);
4282			downclock_mode = intel_dp_drrs_init(
4283						intel_dig_port,
4284						intel_connector, fixed_mode);
4285			break;
4286		}
4287	}
4288
4289	/* fallback to VBT if available for eDP */
4290	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4291		fixed_mode = drm_mode_duplicate(dev,
4292					dev_priv->vbt.lfp_lvds_vbt_mode);
4293		if (fixed_mode)
4294			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4295	}
4296	mutex_unlock(&dev->mode_config.mutex);
4297
4298	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4299	intel_panel_setup_backlight(connector);
4300
4301	return true;
4302}
4303
4304bool
4305intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4306			struct intel_connector *intel_connector)
4307{
4308	struct drm_connector *connector = &intel_connector->base;
4309	struct intel_dp *intel_dp = &intel_dig_port->dp;
4310	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4311	struct drm_device *dev = intel_encoder->base.dev;
4312	struct drm_i915_private *dev_priv = dev->dev_private;
4313	enum port port = intel_dig_port->port;
4314	struct edp_power_seq power_seq = { 0 };
4315	int type;
4316
4317	/* intel_dp vfuncs */
4318	if (IS_VALLEYVIEW(dev))
4319		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4320	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4321		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4322	else if (HAS_PCH_SPLIT(dev))
4323		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4324	else
4325		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4326
4327	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4328
4329	/* Preserve the current hw state. */
4330	intel_dp->DP = I915_READ(intel_dp->output_reg);
4331	intel_dp->attached_connector = intel_connector;
4332
4333	if (intel_dp_is_edp(dev, port))
4334		type = DRM_MODE_CONNECTOR_eDP;
4335	else
4336		type = DRM_MODE_CONNECTOR_DisplayPort;
4337
4338	/*
4339	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4340	 * for DP the encoder type can be set by the caller to
4341	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4342	 */
4343	if (type == DRM_MODE_CONNECTOR_eDP)
4344		intel_encoder->type = INTEL_OUTPUT_EDP;
4345
4346	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4347			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4348			port_name(port));
4349
4350	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4351	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4352
4353	connector->interlace_allowed = true;
4354	connector->doublescan_allowed = 0;
4355
4356	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4357			  edp_panel_vdd_work);
4358
4359	intel_connector_attach_encoder(intel_connector, intel_encoder);
4360	drm_sysfs_connector_add(connector);
4361
4362	if (HAS_DDI(dev))
4363		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4364	else
4365		intel_connector->get_hw_state = intel_connector_get_hw_state;
4366	intel_connector->unregister = intel_dp_connector_unregister;
4367
4368	/* Set up the hotplug pin. */
4369	switch (port) {
4370	case PORT_A:
4371		intel_encoder->hpd_pin = HPD_PORT_A;
4372		break;
4373	case PORT_B:
4374		intel_encoder->hpd_pin = HPD_PORT_B;
4375		break;
4376	case PORT_C:
4377		intel_encoder->hpd_pin = HPD_PORT_C;
4378		break;
4379	case PORT_D:
4380		intel_encoder->hpd_pin = HPD_PORT_D;
4381		break;
4382	default:
4383		BUG();
4384	}
4385
4386	if (is_edp(intel_dp)) {
4387		intel_dp_init_panel_power_timestamps(intel_dp);
4388		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4389	}
4390
4391	intel_dp_aux_init(intel_dp, intel_connector);
4392
4393	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4394		drm_dp_aux_unregister(&intel_dp->aux);
4395		if (is_edp(intel_dp)) {
4396			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4397			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4398			edp_panel_vdd_off_sync(intel_dp);
4399			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4400		}
4401		drm_sysfs_connector_remove(connector);
4402		drm_connector_cleanup(connector);
4403		return false;
4404	}
4405
4406	intel_dp_add_properties(intel_dp, connector);
4407
4408	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4409	 * 0xd.  Failure to do so will result in spurious interrupts being
4410	 * generated on the port when a cable is not attached.
4411	 */
4412	if (IS_G4X(dev) && !IS_GM45(dev)) {
4413		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4414		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4415	}
4416
4417	return true;
4418}
4419
4420void
4421intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4422{
4423	struct drm_i915_private *dev_priv = dev->dev_private;
4424	struct intel_digital_port *intel_dig_port;
4425	struct intel_encoder *intel_encoder;
4426	struct drm_encoder *encoder;
4427	struct intel_connector *intel_connector;
4428
4429	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4430	if (!intel_dig_port)
4431		return;
4432
4433	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4434	if (!intel_connector) {
4435		kfree(intel_dig_port);
4436		return;
4437	}
4438
4439	intel_encoder = &intel_dig_port->base;
4440	encoder = &intel_encoder->base;
4441
4442	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4443			 DRM_MODE_ENCODER_TMDS);
4444
4445	intel_encoder->compute_config = intel_dp_compute_config;
4446	intel_encoder->disable = intel_disable_dp;
4447	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4448	intel_encoder->get_config = intel_dp_get_config;
4449	if (IS_CHERRYVIEW(dev)) {
4450		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4451		intel_encoder->pre_enable = chv_pre_enable_dp;
4452		intel_encoder->enable = vlv_enable_dp;
4453		intel_encoder->post_disable = chv_post_disable_dp;
4454	} else if (IS_VALLEYVIEW(dev)) {
4455		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4456		intel_encoder->pre_enable = vlv_pre_enable_dp;
4457		intel_encoder->enable = vlv_enable_dp;
4458		intel_encoder->post_disable = vlv_post_disable_dp;
4459	} else {
4460		intel_encoder->pre_enable = g4x_pre_enable_dp;
4461		intel_encoder->enable = g4x_enable_dp;
4462		intel_encoder->post_disable = g4x_post_disable_dp;
4463	}
4464
4465	intel_dig_port->port = port;
4466	intel_dig_port->dp.output_reg = output_reg;
4467
4468	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4469	if (IS_CHERRYVIEW(dev)) {
4470		if (port == PORT_D)
4471			intel_encoder->crtc_mask = 1 << 2;
4472		else
4473			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4474	} else {
4475		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4476	}
4477	intel_encoder->cloneable = 0;
4478	intel_encoder->hot_plug = intel_dp_hot_plug;
4479
4480	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4481	dev_priv->hpd_irq_port[port] = intel_dig_port;
4482
4483	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4484		drm_encoder_cleanup(encoder);
4485		kfree(intel_dig_port);
4486		kfree(intel_connector);
4487	}
4488}
4489