intel_dp.c revision 10aa17c86f0de1fd902f7b8ee487a3682d7401df
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41/**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48static bool is_edp(struct intel_dp *intel_dp)
49{
50	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53}
54
55/**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise.  Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63static bool is_pch_edp(struct intel_dp *intel_dp)
64{
65	return intel_dp->is_pch_edp;
66}
67
68/**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74static bool is_cpu_edp(struct intel_dp *intel_dp)
75{
76	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77}
78
79static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80{
81	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83	return intel_dig_port->base.base.dev;
84}
85
86static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87{
88	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89}
90
91/**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96 * by intel_display.c.
97 */
98bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99{
100	struct intel_dp *intel_dp;
101
102	if (!encoder)
103		return false;
104
105	intel_dp = enc_to_intel_dp(encoder);
106
107	return is_pch_edp(intel_dp);
108}
109
110static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112void
113intel_edp_link_config(struct intel_encoder *intel_encoder,
114		       int *lane_num, int *link_bw)
115{
116	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118	*lane_num = intel_dp->lane_count;
119	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120}
121
122int
123intel_edp_target_clock(struct intel_encoder *intel_encoder,
124		       struct drm_display_mode *mode)
125{
126	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127	struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129	if (intel_connector->panel.fixed_mode)
130		return intel_connector->panel.fixed_mode->clock;
131	else
132		return mode->clock;
133}
134
135static int
136intel_dp_max_link_bw(struct intel_dp *intel_dp)
137{
138	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140	switch (max_link_bw) {
141	case DP_LINK_BW_1_62:
142	case DP_LINK_BW_2_7:
143		break;
144	default:
145		max_link_bw = DP_LINK_BW_1_62;
146		break;
147	}
148	return max_link_bw;
149}
150
151/*
152 * The units on the numbers in the next two are... bizarre.  Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 *     270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000.  At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168static int
169intel_dp_link_required(int pixel_clock, int bpp)
170{
171	return (pixel_clock * bpp + 9) / 10;
172}
173
174static int
175intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176{
177	return (max_link_clock * max_lanes * 8) / 10;
178}
179
180static bool
181intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182			  struct drm_display_mode *mode,
183			  bool adjust_mode)
184{
185	int max_link_clock =
186		drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188	int max_rate, mode_rate;
189
190	mode_rate = intel_dp_link_required(mode->clock, 24);
191	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193	if (mode_rate > max_rate) {
194		mode_rate = intel_dp_link_required(mode->clock, 18);
195		if (mode_rate > max_rate)
196			return false;
197
198		if (adjust_mode)
199			mode->private_flags
200				|= INTEL_MODE_DP_FORCE_6BPC;
201
202		return true;
203	}
204
205	return true;
206}
207
208static int
209intel_dp_mode_valid(struct drm_connector *connector,
210		    struct drm_display_mode *mode)
211{
212	struct intel_dp *intel_dp = intel_attached_dp(connector);
213	struct intel_connector *intel_connector = to_intel_connector(connector);
214	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216	if (is_edp(intel_dp) && fixed_mode) {
217		if (mode->hdisplay > fixed_mode->hdisplay)
218			return MODE_PANEL;
219
220		if (mode->vdisplay > fixed_mode->vdisplay)
221			return MODE_PANEL;
222	}
223
224	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225		return MODE_CLOCK_HIGH;
226
227	if (mode->clock < 10000)
228		return MODE_CLOCK_LOW;
229
230	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231		return MODE_H_ILLEGAL;
232
233	return MODE_OK;
234}
235
236static uint32_t
237pack_aux(uint8_t *src, int src_bytes)
238{
239	int	i;
240	uint32_t v = 0;
241
242	if (src_bytes > 4)
243		src_bytes = 4;
244	for (i = 0; i < src_bytes; i++)
245		v |= ((uint32_t) src[i]) << ((3-i) * 8);
246	return v;
247}
248
249static void
250unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251{
252	int i;
253	if (dst_bytes > 4)
254		dst_bytes = 4;
255	for (i = 0; i < dst_bytes; i++)
256		dst[i] = src >> ((3-i) * 8);
257}
258
259/* hrawclock is 1/4 the FSB frequency */
260static int
261intel_hrawclk(struct drm_device *dev)
262{
263	struct drm_i915_private *dev_priv = dev->dev_private;
264	uint32_t clkcfg;
265
266	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267	if (IS_VALLEYVIEW(dev))
268		return 200;
269
270	clkcfg = I915_READ(CLKCFG);
271	switch (clkcfg & CLKCFG_FSB_MASK) {
272	case CLKCFG_FSB_400:
273		return 100;
274	case CLKCFG_FSB_533:
275		return 133;
276	case CLKCFG_FSB_667:
277		return 166;
278	case CLKCFG_FSB_800:
279		return 200;
280	case CLKCFG_FSB_1067:
281		return 266;
282	case CLKCFG_FSB_1333:
283		return 333;
284	/* these two are just a guess; one of them might be right */
285	case CLKCFG_FSB_1600:
286	case CLKCFG_FSB_1600_ALT:
287		return 400;
288	default:
289		return 133;
290	}
291}
292
293static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294{
295	struct drm_device *dev = intel_dp_to_dev(intel_dp);
296	struct drm_i915_private *dev_priv = dev->dev_private;
297
298	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299}
300
301static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302{
303	struct drm_device *dev = intel_dp_to_dev(intel_dp);
304	struct drm_i915_private *dev_priv = dev->dev_private;
305
306	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307}
308
309static void
310intel_dp_check_edp(struct intel_dp *intel_dp)
311{
312	struct drm_device *dev = intel_dp_to_dev(intel_dp);
313	struct drm_i915_private *dev_priv = dev->dev_private;
314
315	if (!is_edp(intel_dp))
316		return;
317	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318		WARN(1, "eDP powered off while attempting aux channel communication.\n");
319		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320			      I915_READ(PCH_PP_STATUS),
321			      I915_READ(PCH_PP_CONTROL));
322	}
323}
324
325static uint32_t
326intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327{
328	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329	struct drm_device *dev = intel_dig_port->base.base.dev;
330	struct drm_i915_private *dev_priv = dev->dev_private;
331	uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332	uint32_t status;
333	bool done;
334
335	if (IS_HASWELL(dev)) {
336		switch (intel_dig_port->port) {
337		case PORT_A:
338			ch_ctl = DPA_AUX_CH_CTL;
339			break;
340		case PORT_B:
341			ch_ctl = PCH_DPB_AUX_CH_CTL;
342			break;
343		case PORT_C:
344			ch_ctl = PCH_DPC_AUX_CH_CTL;
345			break;
346		case PORT_D:
347			ch_ctl = PCH_DPD_AUX_CH_CTL;
348			break;
349		default:
350			BUG();
351		}
352	}
353
354#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355	if (has_aux_irq)
356		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
357	else
358		done = wait_for_atomic(C, 10) == 0;
359	if (!done)
360		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
361			  has_aux_irq);
362#undef C
363
364	return status;
365}
366
367static int
368intel_dp_aux_ch(struct intel_dp *intel_dp,
369		uint8_t *send, int send_bytes,
370		uint8_t *recv, int recv_size)
371{
372	uint32_t output_reg = intel_dp->output_reg;
373	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374	struct drm_device *dev = intel_dig_port->base.base.dev;
375	struct drm_i915_private *dev_priv = dev->dev_private;
376	uint32_t ch_ctl = output_reg + 0x10;
377	uint32_t ch_data = ch_ctl + 4;
378	int i, ret, recv_bytes;
379	uint32_t status;
380	uint32_t aux_clock_divider;
381	int try, precharge;
382	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
383
384	/* dp aux is extremely sensitive to irq latency, hence request the
385	 * lowest possible wakeup latency and so prevent the cpu from going into
386	 * deep sleep states.
387	 */
388	pm_qos_update_request(&dev_priv->pm_qos, 0);
389
390	if (IS_HASWELL(dev)) {
391		switch (intel_dig_port->port) {
392		case PORT_A:
393			ch_ctl = DPA_AUX_CH_CTL;
394			ch_data = DPA_AUX_CH_DATA1;
395			break;
396		case PORT_B:
397			ch_ctl = PCH_DPB_AUX_CH_CTL;
398			ch_data = PCH_DPB_AUX_CH_DATA1;
399			break;
400		case PORT_C:
401			ch_ctl = PCH_DPC_AUX_CH_CTL;
402			ch_data = PCH_DPC_AUX_CH_DATA1;
403			break;
404		case PORT_D:
405			ch_ctl = PCH_DPD_AUX_CH_CTL;
406			ch_data = PCH_DPD_AUX_CH_DATA1;
407			break;
408		default:
409			BUG();
410		}
411	}
412
413	intel_dp_check_edp(intel_dp);
414	/* The clock divider is based off the hrawclk,
415	 * and would like to run at 2MHz. So, take the
416	 * hrawclk value and divide by 2 and use that
417	 *
418	 * Note that PCH attached eDP panels should use a 125MHz input
419	 * clock divider.
420	 */
421	if (is_cpu_edp(intel_dp)) {
422		if (HAS_DDI(dev))
423			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
424		else if (IS_VALLEYVIEW(dev))
425			aux_clock_divider = 100;
426		else if (IS_GEN6(dev) || IS_GEN7(dev))
427			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
428		else
429			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
430	} else if (HAS_PCH_SPLIT(dev))
431		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
432	else
433		aux_clock_divider = intel_hrawclk(dev) / 2;
434
435	if (IS_GEN6(dev))
436		precharge = 3;
437	else
438		precharge = 5;
439
440	/* Try to wait for any previous AUX channel activity */
441	for (try = 0; try < 3; try++) {
442		status = I915_READ_NOTRACE(ch_ctl);
443		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
444			break;
445		msleep(1);
446	}
447
448	if (try == 3) {
449		WARN(1, "dp_aux_ch not started status 0x%08x\n",
450		     I915_READ(ch_ctl));
451		ret = -EBUSY;
452		goto out;
453	}
454
455	/* Must try at least 3 times according to DP spec */
456	for (try = 0; try < 5; try++) {
457		/* Load the send data into the aux channel data registers */
458		for (i = 0; i < send_bytes; i += 4)
459			I915_WRITE(ch_data + i,
460				   pack_aux(send + i, send_bytes - i));
461
462		/* Send the command and wait for it to complete */
463		I915_WRITE(ch_ctl,
464			   DP_AUX_CH_CTL_SEND_BUSY |
465			   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
466			   DP_AUX_CH_CTL_TIME_OUT_400us |
467			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
468			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
469			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
470			   DP_AUX_CH_CTL_DONE |
471			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
472			   DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
475
476		/* Clear done status and any errors */
477		I915_WRITE(ch_ctl,
478			   status |
479			   DP_AUX_CH_CTL_DONE |
480			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
481			   DP_AUX_CH_CTL_RECEIVE_ERROR);
482
483		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
484			      DP_AUX_CH_CTL_RECEIVE_ERROR))
485			continue;
486		if (status & DP_AUX_CH_CTL_DONE)
487			break;
488	}
489
490	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492		ret = -EBUSY;
493		goto out;
494	}
495
496	/* Check for timeout or receive error.
497	 * Timeouts occur when the sink is not connected
498	 */
499	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501		ret = -EIO;
502		goto out;
503	}
504
505	/* Timeouts occur when the device isn't connected, so they're
506	 * "normal" -- don't fill the kernel log with these */
507	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509		ret = -ETIMEDOUT;
510		goto out;
511	}
512
513	/* Unload any bytes sent back from the other side */
514	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516	if (recv_bytes > recv_size)
517		recv_bytes = recv_size;
518
519	for (i = 0; i < recv_bytes; i += 4)
520		unpack_aux(I915_READ(ch_data + i),
521			   recv + i, recv_bytes - i);
522
523	ret = recv_bytes;
524out:
525	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526
527	return ret;
528}
529
530/* Write data to the aux channel in native mode */
531static int
532intel_dp_aux_native_write(struct intel_dp *intel_dp,
533			  uint16_t address, uint8_t *send, int send_bytes)
534{
535	int ret;
536	uint8_t	msg[20];
537	int msg_bytes;
538	uint8_t	ack;
539
540	intel_dp_check_edp(intel_dp);
541	if (send_bytes > 16)
542		return -1;
543	msg[0] = AUX_NATIVE_WRITE << 4;
544	msg[1] = address >> 8;
545	msg[2] = address & 0xff;
546	msg[3] = send_bytes - 1;
547	memcpy(&msg[4], send, send_bytes);
548	msg_bytes = send_bytes + 4;
549	for (;;) {
550		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
551		if (ret < 0)
552			return ret;
553		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
554			break;
555		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
556			udelay(100);
557		else
558			return -EIO;
559	}
560	return send_bytes;
561}
562
563/* Write a single byte to the aux channel in native mode */
564static int
565intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
566			    uint16_t address, uint8_t byte)
567{
568	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
569}
570
571/* read bytes from a native aux channel */
572static int
573intel_dp_aux_native_read(struct intel_dp *intel_dp,
574			 uint16_t address, uint8_t *recv, int recv_bytes)
575{
576	uint8_t msg[4];
577	int msg_bytes;
578	uint8_t reply[20];
579	int reply_bytes;
580	uint8_t ack;
581	int ret;
582
583	intel_dp_check_edp(intel_dp);
584	msg[0] = AUX_NATIVE_READ << 4;
585	msg[1] = address >> 8;
586	msg[2] = address & 0xff;
587	msg[3] = recv_bytes - 1;
588
589	msg_bytes = 4;
590	reply_bytes = recv_bytes + 1;
591
592	for (;;) {
593		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
594				      reply, reply_bytes);
595		if (ret == 0)
596			return -EPROTO;
597		if (ret < 0)
598			return ret;
599		ack = reply[0];
600		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
601			memcpy(recv, reply + 1, ret - 1);
602			return ret - 1;
603		}
604		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
605			udelay(100);
606		else
607			return -EIO;
608	}
609}
610
611static int
612intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
613		    uint8_t write_byte, uint8_t *read_byte)
614{
615	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
616	struct intel_dp *intel_dp = container_of(adapter,
617						struct intel_dp,
618						adapter);
619	uint16_t address = algo_data->address;
620	uint8_t msg[5];
621	uint8_t reply[2];
622	unsigned retry;
623	int msg_bytes;
624	int reply_bytes;
625	int ret;
626
627	intel_dp_check_edp(intel_dp);
628	/* Set up the command byte */
629	if (mode & MODE_I2C_READ)
630		msg[0] = AUX_I2C_READ << 4;
631	else
632		msg[0] = AUX_I2C_WRITE << 4;
633
634	if (!(mode & MODE_I2C_STOP))
635		msg[0] |= AUX_I2C_MOT << 4;
636
637	msg[1] = address >> 8;
638	msg[2] = address;
639
640	switch (mode) {
641	case MODE_I2C_WRITE:
642		msg[3] = 0;
643		msg[4] = write_byte;
644		msg_bytes = 5;
645		reply_bytes = 1;
646		break;
647	case MODE_I2C_READ:
648		msg[3] = 0;
649		msg_bytes = 4;
650		reply_bytes = 2;
651		break;
652	default:
653		msg_bytes = 3;
654		reply_bytes = 1;
655		break;
656	}
657
658	for (retry = 0; retry < 5; retry++) {
659		ret = intel_dp_aux_ch(intel_dp,
660				      msg, msg_bytes,
661				      reply, reply_bytes);
662		if (ret < 0) {
663			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
664			return ret;
665		}
666
667		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
668		case AUX_NATIVE_REPLY_ACK:
669			/* I2C-over-AUX Reply field is only valid
670			 * when paired with AUX ACK.
671			 */
672			break;
673		case AUX_NATIVE_REPLY_NACK:
674			DRM_DEBUG_KMS("aux_ch native nack\n");
675			return -EREMOTEIO;
676		case AUX_NATIVE_REPLY_DEFER:
677			udelay(100);
678			continue;
679		default:
680			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
681				  reply[0]);
682			return -EREMOTEIO;
683		}
684
685		switch (reply[0] & AUX_I2C_REPLY_MASK) {
686		case AUX_I2C_REPLY_ACK:
687			if (mode == MODE_I2C_READ) {
688				*read_byte = reply[1];
689			}
690			return reply_bytes - 1;
691		case AUX_I2C_REPLY_NACK:
692			DRM_DEBUG_KMS("aux_i2c nack\n");
693			return -EREMOTEIO;
694		case AUX_I2C_REPLY_DEFER:
695			DRM_DEBUG_KMS("aux_i2c defer\n");
696			udelay(100);
697			break;
698		default:
699			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
700			return -EREMOTEIO;
701		}
702	}
703
704	DRM_ERROR("too many retries, giving up\n");
705	return -EREMOTEIO;
706}
707
708static int
709intel_dp_i2c_init(struct intel_dp *intel_dp,
710		  struct intel_connector *intel_connector, const char *name)
711{
712	int	ret;
713
714	DRM_DEBUG_KMS("i2c_init %s\n", name);
715	intel_dp->algo.running = false;
716	intel_dp->algo.address = 0;
717	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
718
719	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
720	intel_dp->adapter.owner = THIS_MODULE;
721	intel_dp->adapter.class = I2C_CLASS_DDC;
722	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
723	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
724	intel_dp->adapter.algo_data = &intel_dp->algo;
725	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
726
727	ironlake_edp_panel_vdd_on(intel_dp);
728	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
729	ironlake_edp_panel_vdd_off(intel_dp, false);
730	return ret;
731}
732
733bool
734intel_dp_mode_fixup(struct drm_encoder *encoder,
735		    const struct drm_display_mode *mode,
736		    struct drm_display_mode *adjusted_mode)
737{
738	struct drm_device *dev = encoder->dev;
739	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
740	struct intel_connector *intel_connector = intel_dp->attached_connector;
741	int lane_count, clock;
742	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
743	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
744	int bpp, mode_rate;
745	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
746
747	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
748		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
749				       adjusted_mode);
750		intel_pch_panel_fitting(dev,
751					intel_connector->panel.fitting_mode,
752					mode, adjusted_mode);
753	}
754
755	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
756		return false;
757
758	DRM_DEBUG_KMS("DP link computation with max lane count %i "
759		      "max bw %02x pixel clock %iKHz\n",
760		      max_lane_count, bws[max_clock], adjusted_mode->clock);
761
762	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
763		return false;
764
765	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
766
767	if (intel_dp->color_range_auto) {
768		/*
769		 * See:
770		 * CEA-861-E - 5.1 Default Encoding Parameters
771		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
772		 */
773		if (bpp != 18 && drm_mode_cea_vic(adjusted_mode) > 1)
774			intel_dp->color_range = DP_COLOR_RANGE_16_235;
775		else
776			intel_dp->color_range = 0;
777	}
778
779	if (intel_dp->color_range)
780		adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
781
782	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
783
784	for (clock = 0; clock <= max_clock; clock++) {
785		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
786			int link_bw_clock =
787				drm_dp_bw_code_to_link_rate(bws[clock]);
788			int link_avail = intel_dp_max_data_rate(link_bw_clock,
789								lane_count);
790
791			if (mode_rate <= link_avail) {
792				intel_dp->link_bw = bws[clock];
793				intel_dp->lane_count = lane_count;
794				adjusted_mode->clock = link_bw_clock;
795				DRM_DEBUG_KMS("DP link bw %02x lane "
796						"count %d clock %d bpp %d\n",
797				       intel_dp->link_bw, intel_dp->lane_count,
798				       adjusted_mode->clock, bpp);
799				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
800					      mode_rate, link_avail);
801				return true;
802			}
803		}
804	}
805
806	return false;
807}
808
809void
810intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
811		 struct drm_display_mode *adjusted_mode)
812{
813	struct drm_device *dev = crtc->dev;
814	struct intel_encoder *intel_encoder;
815	struct intel_dp *intel_dp;
816	struct drm_i915_private *dev_priv = dev->dev_private;
817	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
818	int lane_count = 4;
819	struct intel_link_m_n m_n;
820	int pipe = intel_crtc->pipe;
821	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
822
823	/*
824	 * Find the lane count in the intel_encoder private
825	 */
826	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
827		intel_dp = enc_to_intel_dp(&intel_encoder->base);
828
829		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
830		    intel_encoder->type == INTEL_OUTPUT_EDP)
831		{
832			lane_count = intel_dp->lane_count;
833			break;
834		}
835	}
836
837	/*
838	 * Compute the GMCH and Link ratios. The '3' here is
839	 * the number of bytes_per_pixel post-LUT, which we always
840	 * set up for 8-bits of R/G/B, or 3 bytes total.
841	 */
842	intel_link_compute_m_n(intel_crtc->bpp, lane_count,
843			       mode->clock, adjusted_mode->clock, &m_n);
844
845	if (IS_HASWELL(dev)) {
846		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
847			   TU_SIZE(m_n.tu) | m_n.gmch_m);
848		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
849		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
850		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
851	} else if (HAS_PCH_SPLIT(dev)) {
852		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
853		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
854		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
855		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
856	} else if (IS_VALLEYVIEW(dev)) {
857		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
858		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
859		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
860		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
861	} else {
862		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
863			   TU_SIZE(m_n.tu) | m_n.gmch_m);
864		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
865		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
866		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
867	}
868}
869
870void intel_dp_init_link_config(struct intel_dp *intel_dp)
871{
872	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
873	intel_dp->link_configuration[0] = intel_dp->link_bw;
874	intel_dp->link_configuration[1] = intel_dp->lane_count;
875	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
876	/*
877	 * Check for DPCD version > 1.1 and enhanced framing support
878	 */
879	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
880	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
881		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
882	}
883}
884
885static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
886{
887	struct drm_device *dev = crtc->dev;
888	struct drm_i915_private *dev_priv = dev->dev_private;
889	u32 dpa_ctl;
890
891	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
892	dpa_ctl = I915_READ(DP_A);
893	dpa_ctl &= ~DP_PLL_FREQ_MASK;
894
895	if (clock < 200000) {
896		/* For a long time we've carried around a ILK-DevA w/a for the
897		 * 160MHz clock. If we're really unlucky, it's still required.
898		 */
899		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
900		dpa_ctl |= DP_PLL_FREQ_160MHZ;
901	} else {
902		dpa_ctl |= DP_PLL_FREQ_270MHZ;
903	}
904
905	I915_WRITE(DP_A, dpa_ctl);
906
907	POSTING_READ(DP_A);
908	udelay(500);
909}
910
911static void
912intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
913		  struct drm_display_mode *adjusted_mode)
914{
915	struct drm_device *dev = encoder->dev;
916	struct drm_i915_private *dev_priv = dev->dev_private;
917	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
918	struct drm_crtc *crtc = encoder->crtc;
919	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
920
921	/*
922	 * There are four kinds of DP registers:
923	 *
924	 * 	IBX PCH
925	 * 	SNB CPU
926	 *	IVB CPU
927	 * 	CPT PCH
928	 *
929	 * IBX PCH and CPU are the same for almost everything,
930	 * except that the CPU DP PLL is configured in this
931	 * register
932	 *
933	 * CPT PCH is quite different, having many bits moved
934	 * to the TRANS_DP_CTL register instead. That
935	 * configuration happens (oddly) in ironlake_pch_enable
936	 */
937
938	/* Preserve the BIOS-computed detected bit. This is
939	 * supposed to be read-only.
940	 */
941	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
942
943	/* Handle DP bits in common between all three register formats */
944	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
945
946	switch (intel_dp->lane_count) {
947	case 1:
948		intel_dp->DP |= DP_PORT_WIDTH_1;
949		break;
950	case 2:
951		intel_dp->DP |= DP_PORT_WIDTH_2;
952		break;
953	case 4:
954		intel_dp->DP |= DP_PORT_WIDTH_4;
955		break;
956	}
957	if (intel_dp->has_audio) {
958		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
959				 pipe_name(intel_crtc->pipe));
960		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
961		intel_write_eld(encoder, adjusted_mode);
962	}
963
964	intel_dp_init_link_config(intel_dp);
965
966	/* Split out the IBX/CPU vs CPT settings */
967
968	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
969		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
970			intel_dp->DP |= DP_SYNC_HS_HIGH;
971		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
972			intel_dp->DP |= DP_SYNC_VS_HIGH;
973		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
974
975		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
976			intel_dp->DP |= DP_ENHANCED_FRAMING;
977
978		intel_dp->DP |= intel_crtc->pipe << 29;
979
980		/* don't miss out required setting for eDP */
981		if (adjusted_mode->clock < 200000)
982			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
983		else
984			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
985	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
986		if (!HAS_PCH_SPLIT(dev))
987			intel_dp->DP |= intel_dp->color_range;
988
989		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
990			intel_dp->DP |= DP_SYNC_HS_HIGH;
991		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
992			intel_dp->DP |= DP_SYNC_VS_HIGH;
993		intel_dp->DP |= DP_LINK_TRAIN_OFF;
994
995		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
996			intel_dp->DP |= DP_ENHANCED_FRAMING;
997
998		if (intel_crtc->pipe == 1)
999			intel_dp->DP |= DP_PIPEB_SELECT;
1000
1001		if (is_cpu_edp(intel_dp)) {
1002			/* don't miss out required setting for eDP */
1003			if (adjusted_mode->clock < 200000)
1004				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1005			else
1006				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1007		}
1008	} else {
1009		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1010	}
1011
1012	if (is_cpu_edp(intel_dp))
1013		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
1014}
1015
1016#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1017#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1018
1019#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1020#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1021
1022#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1023#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1024
1025static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1026				       u32 mask,
1027				       u32 value)
1028{
1029	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1030	struct drm_i915_private *dev_priv = dev->dev_private;
1031
1032	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1033		      mask, value,
1034		      I915_READ(PCH_PP_STATUS),
1035		      I915_READ(PCH_PP_CONTROL));
1036
1037	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1038		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1039			  I915_READ(PCH_PP_STATUS),
1040			  I915_READ(PCH_PP_CONTROL));
1041	}
1042}
1043
1044static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1045{
1046	DRM_DEBUG_KMS("Wait for panel power on\n");
1047	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1048}
1049
1050static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1051{
1052	DRM_DEBUG_KMS("Wait for panel power off time\n");
1053	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1054}
1055
1056static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1057{
1058	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1059	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1060}
1061
1062
1063/* Read the current pp_control value, unlocking the register if it
1064 * is locked
1065 */
1066
1067static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1068{
1069	u32	control = I915_READ(PCH_PP_CONTROL);
1070
1071	control &= ~PANEL_UNLOCK_MASK;
1072	control |= PANEL_UNLOCK_REGS;
1073	return control;
1074}
1075
1076void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1077{
1078	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1079	struct drm_i915_private *dev_priv = dev->dev_private;
1080	u32 pp;
1081
1082	if (!is_edp(intel_dp))
1083		return;
1084	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1085
1086	WARN(intel_dp->want_panel_vdd,
1087	     "eDP VDD already requested on\n");
1088
1089	intel_dp->want_panel_vdd = true;
1090
1091	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1092		DRM_DEBUG_KMS("eDP VDD already on\n");
1093		return;
1094	}
1095
1096	if (!ironlake_edp_have_panel_power(intel_dp))
1097		ironlake_wait_panel_power_cycle(intel_dp);
1098
1099	pp = ironlake_get_pp_control(dev_priv);
1100	pp |= EDP_FORCE_VDD;
1101	I915_WRITE(PCH_PP_CONTROL, pp);
1102	POSTING_READ(PCH_PP_CONTROL);
1103	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1104		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1105
1106	/*
1107	 * If the panel wasn't on, delay before accessing aux channel
1108	 */
1109	if (!ironlake_edp_have_panel_power(intel_dp)) {
1110		DRM_DEBUG_KMS("eDP was not running\n");
1111		msleep(intel_dp->panel_power_up_delay);
1112	}
1113}
1114
1115static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1116{
1117	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1118	struct drm_i915_private *dev_priv = dev->dev_private;
1119	u32 pp;
1120
1121	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1122		pp = ironlake_get_pp_control(dev_priv);
1123		pp &= ~EDP_FORCE_VDD;
1124		I915_WRITE(PCH_PP_CONTROL, pp);
1125		POSTING_READ(PCH_PP_CONTROL);
1126
1127		/* Make sure sequencer is idle before allowing subsequent activity */
1128		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1129			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1130
1131		msleep(intel_dp->panel_power_down_delay);
1132	}
1133}
1134
1135static void ironlake_panel_vdd_work(struct work_struct *__work)
1136{
1137	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1138						 struct intel_dp, panel_vdd_work);
1139	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1140
1141	mutex_lock(&dev->mode_config.mutex);
1142	ironlake_panel_vdd_off_sync(intel_dp);
1143	mutex_unlock(&dev->mode_config.mutex);
1144}
1145
1146void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1147{
1148	if (!is_edp(intel_dp))
1149		return;
1150
1151	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1152	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1153
1154	intel_dp->want_panel_vdd = false;
1155
1156	if (sync) {
1157		ironlake_panel_vdd_off_sync(intel_dp);
1158	} else {
1159		/*
1160		 * Queue the timer to fire a long
1161		 * time from now (relative to the power down delay)
1162		 * to keep the panel power up across a sequence of operations
1163		 */
1164		schedule_delayed_work(&intel_dp->panel_vdd_work,
1165				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1166	}
1167}
1168
1169void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1170{
1171	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172	struct drm_i915_private *dev_priv = dev->dev_private;
1173	u32 pp;
1174
1175	if (!is_edp(intel_dp))
1176		return;
1177
1178	DRM_DEBUG_KMS("Turn eDP power on\n");
1179
1180	if (ironlake_edp_have_panel_power(intel_dp)) {
1181		DRM_DEBUG_KMS("eDP power already on\n");
1182		return;
1183	}
1184
1185	ironlake_wait_panel_power_cycle(intel_dp);
1186
1187	pp = ironlake_get_pp_control(dev_priv);
1188	if (IS_GEN5(dev)) {
1189		/* ILK workaround: disable reset around power sequence */
1190		pp &= ~PANEL_POWER_RESET;
1191		I915_WRITE(PCH_PP_CONTROL, pp);
1192		POSTING_READ(PCH_PP_CONTROL);
1193	}
1194
1195	pp |= POWER_TARGET_ON;
1196	if (!IS_GEN5(dev))
1197		pp |= PANEL_POWER_RESET;
1198
1199	I915_WRITE(PCH_PP_CONTROL, pp);
1200	POSTING_READ(PCH_PP_CONTROL);
1201
1202	ironlake_wait_panel_on(intel_dp);
1203
1204	if (IS_GEN5(dev)) {
1205		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1206		I915_WRITE(PCH_PP_CONTROL, pp);
1207		POSTING_READ(PCH_PP_CONTROL);
1208	}
1209}
1210
1211void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1212{
1213	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1214	struct drm_i915_private *dev_priv = dev->dev_private;
1215	u32 pp;
1216
1217	if (!is_edp(intel_dp))
1218		return;
1219
1220	DRM_DEBUG_KMS("Turn eDP power off\n");
1221
1222	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1223
1224	pp = ironlake_get_pp_control(dev_priv);
1225	/* We need to switch off panel power _and_ force vdd, for otherwise some
1226	 * panels get very unhappy and cease to work. */
1227	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1228	I915_WRITE(PCH_PP_CONTROL, pp);
1229	POSTING_READ(PCH_PP_CONTROL);
1230
1231	intel_dp->want_panel_vdd = false;
1232
1233	ironlake_wait_panel_off(intel_dp);
1234}
1235
1236void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1237{
1238	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1239	struct drm_device *dev = intel_dig_port->base.base.dev;
1240	struct drm_i915_private *dev_priv = dev->dev_private;
1241	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1242	u32 pp;
1243
1244	if (!is_edp(intel_dp))
1245		return;
1246
1247	DRM_DEBUG_KMS("\n");
1248	/*
1249	 * If we enable the backlight right away following a panel power
1250	 * on, we may see slight flicker as the panel syncs with the eDP
1251	 * link.  So delay a bit to make sure the image is solid before
1252	 * allowing it to appear.
1253	 */
1254	msleep(intel_dp->backlight_on_delay);
1255	pp = ironlake_get_pp_control(dev_priv);
1256	pp |= EDP_BLC_ENABLE;
1257	I915_WRITE(PCH_PP_CONTROL, pp);
1258	POSTING_READ(PCH_PP_CONTROL);
1259
1260	intel_panel_enable_backlight(dev, pipe);
1261}
1262
1263void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1264{
1265	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1266	struct drm_i915_private *dev_priv = dev->dev_private;
1267	u32 pp;
1268
1269	if (!is_edp(intel_dp))
1270		return;
1271
1272	intel_panel_disable_backlight(dev);
1273
1274	DRM_DEBUG_KMS("\n");
1275	pp = ironlake_get_pp_control(dev_priv);
1276	pp &= ~EDP_BLC_ENABLE;
1277	I915_WRITE(PCH_PP_CONTROL, pp);
1278	POSTING_READ(PCH_PP_CONTROL);
1279	msleep(intel_dp->backlight_off_delay);
1280}
1281
1282static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1283{
1284	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1285	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1286	struct drm_device *dev = crtc->dev;
1287	struct drm_i915_private *dev_priv = dev->dev_private;
1288	u32 dpa_ctl;
1289
1290	assert_pipe_disabled(dev_priv,
1291			     to_intel_crtc(crtc)->pipe);
1292
1293	DRM_DEBUG_KMS("\n");
1294	dpa_ctl = I915_READ(DP_A);
1295	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1296	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1297
1298	/* We don't adjust intel_dp->DP while tearing down the link, to
1299	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1300	 * enable bits here to ensure that we don't enable too much. */
1301	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1302	intel_dp->DP |= DP_PLL_ENABLE;
1303	I915_WRITE(DP_A, intel_dp->DP);
1304	POSTING_READ(DP_A);
1305	udelay(200);
1306}
1307
1308static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1309{
1310	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1311	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1312	struct drm_device *dev = crtc->dev;
1313	struct drm_i915_private *dev_priv = dev->dev_private;
1314	u32 dpa_ctl;
1315
1316	assert_pipe_disabled(dev_priv,
1317			     to_intel_crtc(crtc)->pipe);
1318
1319	dpa_ctl = I915_READ(DP_A);
1320	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1321	     "dp pll off, should be on\n");
1322	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1323
1324	/* We can't rely on the value tracked for the DP register in
1325	 * intel_dp->DP because link_down must not change that (otherwise link
1326	 * re-training will fail. */
1327	dpa_ctl &= ~DP_PLL_ENABLE;
1328	I915_WRITE(DP_A, dpa_ctl);
1329	POSTING_READ(DP_A);
1330	udelay(200);
1331}
1332
1333/* If the sink supports it, try to set the power state appropriately */
1334void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1335{
1336	int ret, i;
1337
1338	/* Should have a valid DPCD by this point */
1339	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1340		return;
1341
1342	if (mode != DRM_MODE_DPMS_ON) {
1343		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1344						  DP_SET_POWER_D3);
1345		if (ret != 1)
1346			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1347	} else {
1348		/*
1349		 * When turning on, we need to retry for 1ms to give the sink
1350		 * time to wake up.
1351		 */
1352		for (i = 0; i < 3; i++) {
1353			ret = intel_dp_aux_native_write_1(intel_dp,
1354							  DP_SET_POWER,
1355							  DP_SET_POWER_D0);
1356			if (ret == 1)
1357				break;
1358			msleep(1);
1359		}
1360	}
1361}
1362
1363static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1364				  enum pipe *pipe)
1365{
1366	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1367	struct drm_device *dev = encoder->base.dev;
1368	struct drm_i915_private *dev_priv = dev->dev_private;
1369	u32 tmp = I915_READ(intel_dp->output_reg);
1370
1371	if (!(tmp & DP_PORT_EN))
1372		return false;
1373
1374	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1375		*pipe = PORT_TO_PIPE_CPT(tmp);
1376	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1377		*pipe = PORT_TO_PIPE(tmp);
1378	} else {
1379		u32 trans_sel;
1380		u32 trans_dp;
1381		int i;
1382
1383		switch (intel_dp->output_reg) {
1384		case PCH_DP_B:
1385			trans_sel = TRANS_DP_PORT_SEL_B;
1386			break;
1387		case PCH_DP_C:
1388			trans_sel = TRANS_DP_PORT_SEL_C;
1389			break;
1390		case PCH_DP_D:
1391			trans_sel = TRANS_DP_PORT_SEL_D;
1392			break;
1393		default:
1394			return true;
1395		}
1396
1397		for_each_pipe(i) {
1398			trans_dp = I915_READ(TRANS_DP_CTL(i));
1399			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1400				*pipe = i;
1401				return true;
1402			}
1403		}
1404
1405		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1406			      intel_dp->output_reg);
1407	}
1408
1409	return true;
1410}
1411
1412static void intel_disable_dp(struct intel_encoder *encoder)
1413{
1414	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1415
1416	/* Make sure the panel is off before trying to change the mode. But also
1417	 * ensure that we have vdd while we switch off the panel. */
1418	ironlake_edp_panel_vdd_on(intel_dp);
1419	ironlake_edp_backlight_off(intel_dp);
1420	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1421	ironlake_edp_panel_off(intel_dp);
1422
1423	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1424	if (!is_cpu_edp(intel_dp))
1425		intel_dp_link_down(intel_dp);
1426}
1427
1428static void intel_post_disable_dp(struct intel_encoder *encoder)
1429{
1430	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1431
1432	if (is_cpu_edp(intel_dp)) {
1433		intel_dp_link_down(intel_dp);
1434		ironlake_edp_pll_off(intel_dp);
1435	}
1436}
1437
1438static void intel_enable_dp(struct intel_encoder *encoder)
1439{
1440	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441	struct drm_device *dev = encoder->base.dev;
1442	struct drm_i915_private *dev_priv = dev->dev_private;
1443	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1444
1445	if (WARN_ON(dp_reg & DP_PORT_EN))
1446		return;
1447
1448	ironlake_edp_panel_vdd_on(intel_dp);
1449	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1450	intel_dp_start_link_train(intel_dp);
1451	ironlake_edp_panel_on(intel_dp);
1452	ironlake_edp_panel_vdd_off(intel_dp, true);
1453	intel_dp_complete_link_train(intel_dp);
1454	ironlake_edp_backlight_on(intel_dp);
1455}
1456
1457static void intel_pre_enable_dp(struct intel_encoder *encoder)
1458{
1459	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1460
1461	if (is_cpu_edp(intel_dp))
1462		ironlake_edp_pll_on(intel_dp);
1463}
1464
1465/*
1466 * Native read with retry for link status and receiver capability reads for
1467 * cases where the sink may still be asleep.
1468 */
1469static bool
1470intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1471			       uint8_t *recv, int recv_bytes)
1472{
1473	int ret, i;
1474
1475	/*
1476	 * Sinks are *supposed* to come up within 1ms from an off state,
1477	 * but we're also supposed to retry 3 times per the spec.
1478	 */
1479	for (i = 0; i < 3; i++) {
1480		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1481					       recv_bytes);
1482		if (ret == recv_bytes)
1483			return true;
1484		msleep(1);
1485	}
1486
1487	return false;
1488}
1489
1490/*
1491 * Fetch AUX CH registers 0x202 - 0x207 which contain
1492 * link status information
1493 */
1494static bool
1495intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1496{
1497	return intel_dp_aux_native_read_retry(intel_dp,
1498					      DP_LANE0_1_STATUS,
1499					      link_status,
1500					      DP_LINK_STATUS_SIZE);
1501}
1502
1503#if 0
1504static char	*voltage_names[] = {
1505	"0.4V", "0.6V", "0.8V", "1.2V"
1506};
1507static char	*pre_emph_names[] = {
1508	"0dB", "3.5dB", "6dB", "9.5dB"
1509};
1510static char	*link_train_names[] = {
1511	"pattern 1", "pattern 2", "idle", "off"
1512};
1513#endif
1514
1515/*
1516 * These are source-specific values; current Intel hardware supports
1517 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1518 */
1519
1520static uint8_t
1521intel_dp_voltage_max(struct intel_dp *intel_dp)
1522{
1523	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1524
1525	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1526		return DP_TRAIN_VOLTAGE_SWING_800;
1527	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1528		return DP_TRAIN_VOLTAGE_SWING_1200;
1529	else
1530		return DP_TRAIN_VOLTAGE_SWING_800;
1531}
1532
1533static uint8_t
1534intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1535{
1536	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1537
1538	if (IS_HASWELL(dev)) {
1539		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1540		case DP_TRAIN_VOLTAGE_SWING_400:
1541			return DP_TRAIN_PRE_EMPHASIS_9_5;
1542		case DP_TRAIN_VOLTAGE_SWING_600:
1543			return DP_TRAIN_PRE_EMPHASIS_6;
1544		case DP_TRAIN_VOLTAGE_SWING_800:
1545			return DP_TRAIN_PRE_EMPHASIS_3_5;
1546		case DP_TRAIN_VOLTAGE_SWING_1200:
1547		default:
1548			return DP_TRAIN_PRE_EMPHASIS_0;
1549		}
1550	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1551		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1552		case DP_TRAIN_VOLTAGE_SWING_400:
1553			return DP_TRAIN_PRE_EMPHASIS_6;
1554		case DP_TRAIN_VOLTAGE_SWING_600:
1555		case DP_TRAIN_VOLTAGE_SWING_800:
1556			return DP_TRAIN_PRE_EMPHASIS_3_5;
1557		default:
1558			return DP_TRAIN_PRE_EMPHASIS_0;
1559		}
1560	} else {
1561		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1562		case DP_TRAIN_VOLTAGE_SWING_400:
1563			return DP_TRAIN_PRE_EMPHASIS_6;
1564		case DP_TRAIN_VOLTAGE_SWING_600:
1565			return DP_TRAIN_PRE_EMPHASIS_6;
1566		case DP_TRAIN_VOLTAGE_SWING_800:
1567			return DP_TRAIN_PRE_EMPHASIS_3_5;
1568		case DP_TRAIN_VOLTAGE_SWING_1200:
1569		default:
1570			return DP_TRAIN_PRE_EMPHASIS_0;
1571		}
1572	}
1573}
1574
1575static void
1576intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1577{
1578	uint8_t v = 0;
1579	uint8_t p = 0;
1580	int lane;
1581	uint8_t voltage_max;
1582	uint8_t preemph_max;
1583
1584	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1585		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1586		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1587
1588		if (this_v > v)
1589			v = this_v;
1590		if (this_p > p)
1591			p = this_p;
1592	}
1593
1594	voltage_max = intel_dp_voltage_max(intel_dp);
1595	if (v >= voltage_max)
1596		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1597
1598	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1599	if (p >= preemph_max)
1600		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1601
1602	for (lane = 0; lane < 4; lane++)
1603		intel_dp->train_set[lane] = v | p;
1604}
1605
1606static uint32_t
1607intel_gen4_signal_levels(uint8_t train_set)
1608{
1609	uint32_t	signal_levels = 0;
1610
1611	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1612	case DP_TRAIN_VOLTAGE_SWING_400:
1613	default:
1614		signal_levels |= DP_VOLTAGE_0_4;
1615		break;
1616	case DP_TRAIN_VOLTAGE_SWING_600:
1617		signal_levels |= DP_VOLTAGE_0_6;
1618		break;
1619	case DP_TRAIN_VOLTAGE_SWING_800:
1620		signal_levels |= DP_VOLTAGE_0_8;
1621		break;
1622	case DP_TRAIN_VOLTAGE_SWING_1200:
1623		signal_levels |= DP_VOLTAGE_1_2;
1624		break;
1625	}
1626	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1627	case DP_TRAIN_PRE_EMPHASIS_0:
1628	default:
1629		signal_levels |= DP_PRE_EMPHASIS_0;
1630		break;
1631	case DP_TRAIN_PRE_EMPHASIS_3_5:
1632		signal_levels |= DP_PRE_EMPHASIS_3_5;
1633		break;
1634	case DP_TRAIN_PRE_EMPHASIS_6:
1635		signal_levels |= DP_PRE_EMPHASIS_6;
1636		break;
1637	case DP_TRAIN_PRE_EMPHASIS_9_5:
1638		signal_levels |= DP_PRE_EMPHASIS_9_5;
1639		break;
1640	}
1641	return signal_levels;
1642}
1643
1644/* Gen6's DP voltage swing and pre-emphasis control */
1645static uint32_t
1646intel_gen6_edp_signal_levels(uint8_t train_set)
1647{
1648	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1649					 DP_TRAIN_PRE_EMPHASIS_MASK);
1650	switch (signal_levels) {
1651	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1652	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1653		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1654	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1655		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1656	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1657	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1658		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1659	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1660	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1662	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1663	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1664		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1665	default:
1666		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1667			      "0x%x\n", signal_levels);
1668		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1669	}
1670}
1671
1672/* Gen7's DP voltage swing and pre-emphasis control */
1673static uint32_t
1674intel_gen7_edp_signal_levels(uint8_t train_set)
1675{
1676	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1677					 DP_TRAIN_PRE_EMPHASIS_MASK);
1678	switch (signal_levels) {
1679	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1680		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1681	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1682		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1683	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1684		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1685
1686	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1687		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1688	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1689		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1690
1691	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1692		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1693	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1694		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1695
1696	default:
1697		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1698			      "0x%x\n", signal_levels);
1699		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1700	}
1701}
1702
1703/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1704static uint32_t
1705intel_hsw_signal_levels(uint8_t train_set)
1706{
1707	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1708					 DP_TRAIN_PRE_EMPHASIS_MASK);
1709	switch (signal_levels) {
1710	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1711		return DDI_BUF_EMP_400MV_0DB_HSW;
1712	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1713		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1714	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1715		return DDI_BUF_EMP_400MV_6DB_HSW;
1716	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1717		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1718
1719	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1720		return DDI_BUF_EMP_600MV_0DB_HSW;
1721	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1722		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1723	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1724		return DDI_BUF_EMP_600MV_6DB_HSW;
1725
1726	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1727		return DDI_BUF_EMP_800MV_0DB_HSW;
1728	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1729		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1730	default:
1731		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1732			      "0x%x\n", signal_levels);
1733		return DDI_BUF_EMP_400MV_0DB_HSW;
1734	}
1735}
1736
1737/* Properly updates "DP" with the correct signal levels. */
1738static void
1739intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1740{
1741	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1742	struct drm_device *dev = intel_dig_port->base.base.dev;
1743	uint32_t signal_levels, mask;
1744	uint8_t train_set = intel_dp->train_set[0];
1745
1746	if (IS_HASWELL(dev)) {
1747		signal_levels = intel_hsw_signal_levels(train_set);
1748		mask = DDI_BUF_EMP_MASK;
1749	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1750		signal_levels = intel_gen7_edp_signal_levels(train_set);
1751		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1752	} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1753		signal_levels = intel_gen6_edp_signal_levels(train_set);
1754		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1755	} else {
1756		signal_levels = intel_gen4_signal_levels(train_set);
1757		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1758	}
1759
1760	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1761
1762	*DP = (*DP & ~mask) | signal_levels;
1763}
1764
1765static bool
1766intel_dp_set_link_train(struct intel_dp *intel_dp,
1767			uint32_t dp_reg_value,
1768			uint8_t dp_train_pat)
1769{
1770	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1771	struct drm_device *dev = intel_dig_port->base.base.dev;
1772	struct drm_i915_private *dev_priv = dev->dev_private;
1773	enum port port = intel_dig_port->port;
1774	int ret;
1775	uint32_t temp;
1776
1777	if (IS_HASWELL(dev)) {
1778		temp = I915_READ(DP_TP_CTL(port));
1779
1780		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1781			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1782		else
1783			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1784
1785		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1786		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1787		case DP_TRAINING_PATTERN_DISABLE:
1788
1789			if (port != PORT_A) {
1790				temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1791				I915_WRITE(DP_TP_CTL(port), temp);
1792
1793				if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1794					      DP_TP_STATUS_IDLE_DONE), 1))
1795					DRM_ERROR("Timed out waiting for DP idle patterns\n");
1796
1797				temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1798			}
1799
1800			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1801
1802			break;
1803		case DP_TRAINING_PATTERN_1:
1804			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1805			break;
1806		case DP_TRAINING_PATTERN_2:
1807			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1808			break;
1809		case DP_TRAINING_PATTERN_3:
1810			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1811			break;
1812		}
1813		I915_WRITE(DP_TP_CTL(port), temp);
1814
1815	} else if (HAS_PCH_CPT(dev) &&
1816		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1817		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1818
1819		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1820		case DP_TRAINING_PATTERN_DISABLE:
1821			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1822			break;
1823		case DP_TRAINING_PATTERN_1:
1824			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1825			break;
1826		case DP_TRAINING_PATTERN_2:
1827			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1828			break;
1829		case DP_TRAINING_PATTERN_3:
1830			DRM_ERROR("DP training pattern 3 not supported\n");
1831			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1832			break;
1833		}
1834
1835	} else {
1836		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1837
1838		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1839		case DP_TRAINING_PATTERN_DISABLE:
1840			dp_reg_value |= DP_LINK_TRAIN_OFF;
1841			break;
1842		case DP_TRAINING_PATTERN_1:
1843			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1844			break;
1845		case DP_TRAINING_PATTERN_2:
1846			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1847			break;
1848		case DP_TRAINING_PATTERN_3:
1849			DRM_ERROR("DP training pattern 3 not supported\n");
1850			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1851			break;
1852		}
1853	}
1854
1855	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1856	POSTING_READ(intel_dp->output_reg);
1857
1858	intel_dp_aux_native_write_1(intel_dp,
1859				    DP_TRAINING_PATTERN_SET,
1860				    dp_train_pat);
1861
1862	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1863	    DP_TRAINING_PATTERN_DISABLE) {
1864		ret = intel_dp_aux_native_write(intel_dp,
1865						DP_TRAINING_LANE0_SET,
1866						intel_dp->train_set,
1867						intel_dp->lane_count);
1868		if (ret != intel_dp->lane_count)
1869			return false;
1870	}
1871
1872	return true;
1873}
1874
1875/* Enable corresponding port and start training pattern 1 */
1876void
1877intel_dp_start_link_train(struct intel_dp *intel_dp)
1878{
1879	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1880	struct drm_device *dev = encoder->dev;
1881	int i;
1882	uint8_t voltage;
1883	bool clock_recovery = false;
1884	int voltage_tries, loop_tries;
1885	uint32_t DP = intel_dp->DP;
1886
1887	if (HAS_DDI(dev))
1888		intel_ddi_prepare_link_retrain(encoder);
1889
1890	/* Write the link configuration data */
1891	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1892				  intel_dp->link_configuration,
1893				  DP_LINK_CONFIGURATION_SIZE);
1894
1895	DP |= DP_PORT_EN;
1896
1897	memset(intel_dp->train_set, 0, 4);
1898	voltage = 0xff;
1899	voltage_tries = 0;
1900	loop_tries = 0;
1901	clock_recovery = false;
1902	for (;;) {
1903		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1904		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1905
1906		intel_dp_set_signal_levels(intel_dp, &DP);
1907
1908		/* Set training pattern 1 */
1909		if (!intel_dp_set_link_train(intel_dp, DP,
1910					     DP_TRAINING_PATTERN_1 |
1911					     DP_LINK_SCRAMBLING_DISABLE))
1912			break;
1913
1914		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1915		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1916			DRM_ERROR("failed to get link status\n");
1917			break;
1918		}
1919
1920		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1921			DRM_DEBUG_KMS("clock recovery OK\n");
1922			clock_recovery = true;
1923			break;
1924		}
1925
1926		/* Check to see if we've tried the max voltage */
1927		for (i = 0; i < intel_dp->lane_count; i++)
1928			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1929				break;
1930		if (i == intel_dp->lane_count && voltage_tries == 5) {
1931			++loop_tries;
1932			if (loop_tries == 5) {
1933				DRM_DEBUG_KMS("too many full retries, give up\n");
1934				break;
1935			}
1936			memset(intel_dp->train_set, 0, 4);
1937			voltage_tries = 0;
1938			continue;
1939		}
1940
1941		/* Check to see if we've tried the same voltage 5 times */
1942		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1943			++voltage_tries;
1944			if (voltage_tries == 5) {
1945				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1946				break;
1947			}
1948		} else
1949			voltage_tries = 0;
1950		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1951
1952		/* Compute new intel_dp->train_set as requested by target */
1953		intel_get_adjust_train(intel_dp, link_status);
1954	}
1955
1956	intel_dp->DP = DP;
1957}
1958
1959void
1960intel_dp_complete_link_train(struct intel_dp *intel_dp)
1961{
1962	bool channel_eq = false;
1963	int tries, cr_tries;
1964	uint32_t DP = intel_dp->DP;
1965
1966	/* channel equalization */
1967	tries = 0;
1968	cr_tries = 0;
1969	channel_eq = false;
1970	for (;;) {
1971		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1972
1973		if (cr_tries > 5) {
1974			DRM_ERROR("failed to train DP, aborting\n");
1975			intel_dp_link_down(intel_dp);
1976			break;
1977		}
1978
1979		intel_dp_set_signal_levels(intel_dp, &DP);
1980
1981		/* channel eq pattern */
1982		if (!intel_dp_set_link_train(intel_dp, DP,
1983					     DP_TRAINING_PATTERN_2 |
1984					     DP_LINK_SCRAMBLING_DISABLE))
1985			break;
1986
1987		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1988		if (!intel_dp_get_link_status(intel_dp, link_status))
1989			break;
1990
1991		/* Make sure clock is still ok */
1992		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1993			intel_dp_start_link_train(intel_dp);
1994			cr_tries++;
1995			continue;
1996		}
1997
1998		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1999			channel_eq = true;
2000			break;
2001		}
2002
2003		/* Try 5 times, then try clock recovery if that fails */
2004		if (tries > 5) {
2005			intel_dp_link_down(intel_dp);
2006			intel_dp_start_link_train(intel_dp);
2007			tries = 0;
2008			cr_tries++;
2009			continue;
2010		}
2011
2012		/* Compute new intel_dp->train_set as requested by target */
2013		intel_get_adjust_train(intel_dp, link_status);
2014		++tries;
2015	}
2016
2017	if (channel_eq)
2018		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2019
2020	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2021}
2022
2023static void
2024intel_dp_link_down(struct intel_dp *intel_dp)
2025{
2026	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2027	struct drm_device *dev = intel_dig_port->base.base.dev;
2028	struct drm_i915_private *dev_priv = dev->dev_private;
2029	struct intel_crtc *intel_crtc =
2030		to_intel_crtc(intel_dig_port->base.base.crtc);
2031	uint32_t DP = intel_dp->DP;
2032
2033	/*
2034	 * DDI code has a strict mode set sequence and we should try to respect
2035	 * it, otherwise we might hang the machine in many different ways. So we
2036	 * really should be disabling the port only on a complete crtc_disable
2037	 * sequence. This function is just called under two conditions on DDI
2038	 * code:
2039	 * - Link train failed while doing crtc_enable, and on this case we
2040	 *   really should respect the mode set sequence and wait for a
2041	 *   crtc_disable.
2042	 * - Someone turned the monitor off and intel_dp_check_link_status
2043	 *   called us. We don't need to disable the whole port on this case, so
2044	 *   when someone turns the monitor on again,
2045	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2046	 *   train.
2047	 */
2048	if (HAS_DDI(dev))
2049		return;
2050
2051	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2052		return;
2053
2054	DRM_DEBUG_KMS("\n");
2055
2056	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2057		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2058		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2059	} else {
2060		DP &= ~DP_LINK_TRAIN_MASK;
2061		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2062	}
2063	POSTING_READ(intel_dp->output_reg);
2064
2065	/* We don't really know why we're doing this */
2066	intel_wait_for_vblank(dev, intel_crtc->pipe);
2067
2068	if (HAS_PCH_IBX(dev) &&
2069	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2070		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2071
2072		/* Hardware workaround: leaving our transcoder select
2073		 * set to transcoder B while it's off will prevent the
2074		 * corresponding HDMI output on transcoder A.
2075		 *
2076		 * Combine this with another hardware workaround:
2077		 * transcoder select bit can only be cleared while the
2078		 * port is enabled.
2079		 */
2080		DP &= ~DP_PIPEB_SELECT;
2081		I915_WRITE(intel_dp->output_reg, DP);
2082
2083		/* Changes to enable or select take place the vblank
2084		 * after being written.
2085		 */
2086		if (WARN_ON(crtc == NULL)) {
2087			/* We should never try to disable a port without a crtc
2088			 * attached. For paranoia keep the code around for a
2089			 * bit. */
2090			POSTING_READ(intel_dp->output_reg);
2091			msleep(50);
2092		} else
2093			intel_wait_for_vblank(dev, intel_crtc->pipe);
2094	}
2095
2096	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2097	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2098	POSTING_READ(intel_dp->output_reg);
2099	msleep(intel_dp->panel_power_down_delay);
2100}
2101
2102static bool
2103intel_dp_get_dpcd(struct intel_dp *intel_dp)
2104{
2105	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2106
2107	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2108					   sizeof(intel_dp->dpcd)) == 0)
2109		return false; /* aux transfer failed */
2110
2111	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2112			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2113	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2114
2115	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2116		return false; /* DPCD not present */
2117
2118	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2119	      DP_DWN_STRM_PORT_PRESENT))
2120		return true; /* native DP sink */
2121
2122	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2123		return true; /* no per-port downstream info */
2124
2125	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2126					   intel_dp->downstream_ports,
2127					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2128		return false; /* downstream port status fetch failed */
2129
2130	return true;
2131}
2132
2133static void
2134intel_dp_probe_oui(struct intel_dp *intel_dp)
2135{
2136	u8 buf[3];
2137
2138	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2139		return;
2140
2141	ironlake_edp_panel_vdd_on(intel_dp);
2142
2143	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2144		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2145			      buf[0], buf[1], buf[2]);
2146
2147	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2148		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2149			      buf[0], buf[1], buf[2]);
2150
2151	ironlake_edp_panel_vdd_off(intel_dp, false);
2152}
2153
2154static bool
2155intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2156{
2157	int ret;
2158
2159	ret = intel_dp_aux_native_read_retry(intel_dp,
2160					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2161					     sink_irq_vector, 1);
2162	if (!ret)
2163		return false;
2164
2165	return true;
2166}
2167
2168static void
2169intel_dp_handle_test_request(struct intel_dp *intel_dp)
2170{
2171	/* NAK by default */
2172	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2173}
2174
2175/*
2176 * According to DP spec
2177 * 5.1.2:
2178 *  1. Read DPCD
2179 *  2. Configure link according to Receiver Capabilities
2180 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2181 *  4. Check link status on receipt of hot-plug interrupt
2182 */
2183
2184void
2185intel_dp_check_link_status(struct intel_dp *intel_dp)
2186{
2187	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2188	u8 sink_irq_vector;
2189	u8 link_status[DP_LINK_STATUS_SIZE];
2190
2191	if (!intel_encoder->connectors_active)
2192		return;
2193
2194	if (WARN_ON(!intel_encoder->base.crtc))
2195		return;
2196
2197	/* Try to read receiver status if the link appears to be up */
2198	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2199		intel_dp_link_down(intel_dp);
2200		return;
2201	}
2202
2203	/* Now read the DPCD to see if it's actually running */
2204	if (!intel_dp_get_dpcd(intel_dp)) {
2205		intel_dp_link_down(intel_dp);
2206		return;
2207	}
2208
2209	/* Try to read the source of the interrupt */
2210	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2211	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2212		/* Clear interrupt source */
2213		intel_dp_aux_native_write_1(intel_dp,
2214					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2215					    sink_irq_vector);
2216
2217		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2218			intel_dp_handle_test_request(intel_dp);
2219		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2220			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2221	}
2222
2223	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2224		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2225			      drm_get_encoder_name(&intel_encoder->base));
2226		intel_dp_start_link_train(intel_dp);
2227		intel_dp_complete_link_train(intel_dp);
2228	}
2229}
2230
2231/* XXX this is probably wrong for multiple downstream ports */
2232static enum drm_connector_status
2233intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2234{
2235	uint8_t *dpcd = intel_dp->dpcd;
2236	bool hpd;
2237	uint8_t type;
2238
2239	if (!intel_dp_get_dpcd(intel_dp))
2240		return connector_status_disconnected;
2241
2242	/* if there's no downstream port, we're done */
2243	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2244		return connector_status_connected;
2245
2246	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2247	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2248	if (hpd) {
2249		uint8_t reg;
2250		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2251						    &reg, 1))
2252			return connector_status_unknown;
2253		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2254					      : connector_status_disconnected;
2255	}
2256
2257	/* If no HPD, poke DDC gently */
2258	if (drm_probe_ddc(&intel_dp->adapter))
2259		return connector_status_connected;
2260
2261	/* Well we tried, say unknown for unreliable port types */
2262	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2263	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2264		return connector_status_unknown;
2265
2266	/* Anything else is out of spec, warn and ignore */
2267	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2268	return connector_status_disconnected;
2269}
2270
2271static enum drm_connector_status
2272ironlake_dp_detect(struct intel_dp *intel_dp)
2273{
2274	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2275	struct drm_i915_private *dev_priv = dev->dev_private;
2276	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2277	enum drm_connector_status status;
2278
2279	/* Can't disconnect eDP, but you can close the lid... */
2280	if (is_edp(intel_dp)) {
2281		status = intel_panel_detect(dev);
2282		if (status == connector_status_unknown)
2283			status = connector_status_connected;
2284		return status;
2285	}
2286
2287	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2288		return connector_status_disconnected;
2289
2290	return intel_dp_detect_dpcd(intel_dp);
2291}
2292
2293static enum drm_connector_status
2294g4x_dp_detect(struct intel_dp *intel_dp)
2295{
2296	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2297	struct drm_i915_private *dev_priv = dev->dev_private;
2298	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2299	uint32_t bit;
2300
2301	switch (intel_dig_port->port) {
2302	case PORT_B:
2303		bit = DPB_HOTPLUG_LIVE_STATUS;
2304		break;
2305	case PORT_C:
2306		bit = DPC_HOTPLUG_LIVE_STATUS;
2307		break;
2308	case PORT_D:
2309		bit = DPD_HOTPLUG_LIVE_STATUS;
2310		break;
2311	default:
2312		return connector_status_unknown;
2313	}
2314
2315	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2316		return connector_status_disconnected;
2317
2318	return intel_dp_detect_dpcd(intel_dp);
2319}
2320
2321static struct edid *
2322intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2323{
2324	struct intel_connector *intel_connector = to_intel_connector(connector);
2325
2326	/* use cached edid if we have one */
2327	if (intel_connector->edid) {
2328		struct edid *edid;
2329		int size;
2330
2331		/* invalid edid */
2332		if (IS_ERR(intel_connector->edid))
2333			return NULL;
2334
2335		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2336		edid = kmalloc(size, GFP_KERNEL);
2337		if (!edid)
2338			return NULL;
2339
2340		memcpy(edid, intel_connector->edid, size);
2341		return edid;
2342	}
2343
2344	return drm_get_edid(connector, adapter);
2345}
2346
2347static int
2348intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2349{
2350	struct intel_connector *intel_connector = to_intel_connector(connector);
2351
2352	/* use cached edid if we have one */
2353	if (intel_connector->edid) {
2354		/* invalid edid */
2355		if (IS_ERR(intel_connector->edid))
2356			return 0;
2357
2358		return intel_connector_update_modes(connector,
2359						    intel_connector->edid);
2360	}
2361
2362	return intel_ddc_get_modes(connector, adapter);
2363}
2364
2365static enum drm_connector_status
2366intel_dp_detect(struct drm_connector *connector, bool force)
2367{
2368	struct intel_dp *intel_dp = intel_attached_dp(connector);
2369	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2370	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2371	struct drm_device *dev = connector->dev;
2372	enum drm_connector_status status;
2373	struct edid *edid = NULL;
2374
2375	intel_dp->has_audio = false;
2376
2377	if (HAS_PCH_SPLIT(dev))
2378		status = ironlake_dp_detect(intel_dp);
2379	else
2380		status = g4x_dp_detect(intel_dp);
2381
2382	if (status != connector_status_connected)
2383		return status;
2384
2385	intel_dp_probe_oui(intel_dp);
2386
2387	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2388		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2389	} else {
2390		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2391		if (edid) {
2392			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2393			kfree(edid);
2394		}
2395	}
2396
2397	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2398		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2399	return connector_status_connected;
2400}
2401
2402static int intel_dp_get_modes(struct drm_connector *connector)
2403{
2404	struct intel_dp *intel_dp = intel_attached_dp(connector);
2405	struct intel_connector *intel_connector = to_intel_connector(connector);
2406	struct drm_device *dev = connector->dev;
2407	int ret;
2408
2409	/* We should parse the EDID data and find out if it has an audio sink
2410	 */
2411
2412	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2413	if (ret)
2414		return ret;
2415
2416	/* if eDP has no EDID, fall back to fixed mode */
2417	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2418		struct drm_display_mode *mode;
2419		mode = drm_mode_duplicate(dev,
2420					  intel_connector->panel.fixed_mode);
2421		if (mode) {
2422			drm_mode_probed_add(connector, mode);
2423			return 1;
2424		}
2425	}
2426	return 0;
2427}
2428
2429static bool
2430intel_dp_detect_audio(struct drm_connector *connector)
2431{
2432	struct intel_dp *intel_dp = intel_attached_dp(connector);
2433	struct edid *edid;
2434	bool has_audio = false;
2435
2436	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2437	if (edid) {
2438		has_audio = drm_detect_monitor_audio(edid);
2439		kfree(edid);
2440	}
2441
2442	return has_audio;
2443}
2444
2445static int
2446intel_dp_set_property(struct drm_connector *connector,
2447		      struct drm_property *property,
2448		      uint64_t val)
2449{
2450	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2451	struct intel_connector *intel_connector = to_intel_connector(connector);
2452	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2453	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2454	int ret;
2455
2456	ret = drm_object_property_set_value(&connector->base, property, val);
2457	if (ret)
2458		return ret;
2459
2460	if (property == dev_priv->force_audio_property) {
2461		int i = val;
2462		bool has_audio;
2463
2464		if (i == intel_dp->force_audio)
2465			return 0;
2466
2467		intel_dp->force_audio = i;
2468
2469		if (i == HDMI_AUDIO_AUTO)
2470			has_audio = intel_dp_detect_audio(connector);
2471		else
2472			has_audio = (i == HDMI_AUDIO_ON);
2473
2474		if (has_audio == intel_dp->has_audio)
2475			return 0;
2476
2477		intel_dp->has_audio = has_audio;
2478		goto done;
2479	}
2480
2481	if (property == dev_priv->broadcast_rgb_property) {
2482		switch (val) {
2483		case INTEL_BROADCAST_RGB_AUTO:
2484			intel_dp->color_range_auto = true;
2485			break;
2486		case INTEL_BROADCAST_RGB_FULL:
2487			intel_dp->color_range_auto = false;
2488			intel_dp->color_range = 0;
2489			break;
2490		case INTEL_BROADCAST_RGB_LIMITED:
2491			intel_dp->color_range_auto = false;
2492			intel_dp->color_range = DP_COLOR_RANGE_16_235;
2493			break;
2494		default:
2495			return -EINVAL;
2496		}
2497		goto done;
2498	}
2499
2500	if (is_edp(intel_dp) &&
2501	    property == connector->dev->mode_config.scaling_mode_property) {
2502		if (val == DRM_MODE_SCALE_NONE) {
2503			DRM_DEBUG_KMS("no scaling not supported\n");
2504			return -EINVAL;
2505		}
2506
2507		if (intel_connector->panel.fitting_mode == val) {
2508			/* the eDP scaling property is not changed */
2509			return 0;
2510		}
2511		intel_connector->panel.fitting_mode = val;
2512
2513		goto done;
2514	}
2515
2516	return -EINVAL;
2517
2518done:
2519	if (intel_encoder->base.crtc)
2520		intel_crtc_restore_mode(intel_encoder->base.crtc);
2521
2522	return 0;
2523}
2524
2525static void
2526intel_dp_destroy(struct drm_connector *connector)
2527{
2528	struct drm_device *dev = connector->dev;
2529	struct intel_dp *intel_dp = intel_attached_dp(connector);
2530	struct intel_connector *intel_connector = to_intel_connector(connector);
2531
2532	if (!IS_ERR_OR_NULL(intel_connector->edid))
2533		kfree(intel_connector->edid);
2534
2535	if (is_edp(intel_dp)) {
2536		intel_panel_destroy_backlight(dev);
2537		intel_panel_fini(&intel_connector->panel);
2538	}
2539
2540	drm_sysfs_connector_remove(connector);
2541	drm_connector_cleanup(connector);
2542	kfree(connector);
2543}
2544
2545void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2546{
2547	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2548	struct intel_dp *intel_dp = &intel_dig_port->dp;
2549
2550	i2c_del_adapter(&intel_dp->adapter);
2551	drm_encoder_cleanup(encoder);
2552	if (is_edp(intel_dp)) {
2553		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2554		ironlake_panel_vdd_off_sync(intel_dp);
2555	}
2556	kfree(intel_dig_port);
2557}
2558
2559static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2560	.mode_fixup = intel_dp_mode_fixup,
2561	.mode_set = intel_dp_mode_set,
2562	.disable = intel_encoder_noop,
2563};
2564
2565static const struct drm_connector_funcs intel_dp_connector_funcs = {
2566	.dpms = intel_connector_dpms,
2567	.detect = intel_dp_detect,
2568	.fill_modes = drm_helper_probe_single_connector_modes,
2569	.set_property = intel_dp_set_property,
2570	.destroy = intel_dp_destroy,
2571};
2572
2573static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2574	.get_modes = intel_dp_get_modes,
2575	.mode_valid = intel_dp_mode_valid,
2576	.best_encoder = intel_best_encoder,
2577};
2578
2579static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2580	.destroy = intel_dp_encoder_destroy,
2581};
2582
2583static void
2584intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2585{
2586	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2587
2588	intel_dp_check_link_status(intel_dp);
2589}
2590
2591/* Return which DP Port should be selected for Transcoder DP control */
2592int
2593intel_trans_dp_port_sel(struct drm_crtc *crtc)
2594{
2595	struct drm_device *dev = crtc->dev;
2596	struct intel_encoder *intel_encoder;
2597	struct intel_dp *intel_dp;
2598
2599	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2600		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2601
2602		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2603		    intel_encoder->type == INTEL_OUTPUT_EDP)
2604			return intel_dp->output_reg;
2605	}
2606
2607	return -1;
2608}
2609
2610/* check the VBT to see whether the eDP is on DP-D port */
2611bool intel_dpd_is_edp(struct drm_device *dev)
2612{
2613	struct drm_i915_private *dev_priv = dev->dev_private;
2614	struct child_device_config *p_child;
2615	int i;
2616
2617	if (!dev_priv->child_dev_num)
2618		return false;
2619
2620	for (i = 0; i < dev_priv->child_dev_num; i++) {
2621		p_child = dev_priv->child_dev + i;
2622
2623		if (p_child->dvo_port == PORT_IDPD &&
2624		    p_child->device_type == DEVICE_TYPE_eDP)
2625			return true;
2626	}
2627	return false;
2628}
2629
2630static void
2631intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2632{
2633	struct intel_connector *intel_connector = to_intel_connector(connector);
2634
2635	intel_attach_force_audio_property(connector);
2636	intel_attach_broadcast_rgb_property(connector);
2637	intel_dp->color_range_auto = true;
2638
2639	if (is_edp(intel_dp)) {
2640		drm_mode_create_scaling_mode_property(connector->dev);
2641		drm_object_attach_property(
2642			&connector->base,
2643			connector->dev->mode_config.scaling_mode_property,
2644			DRM_MODE_SCALE_ASPECT);
2645		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2646	}
2647}
2648
2649static void
2650intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2651				    struct intel_dp *intel_dp)
2652{
2653	struct drm_i915_private *dev_priv = dev->dev_private;
2654	struct edp_power_seq cur, vbt, spec, final;
2655	u32 pp_on, pp_off, pp_div, pp;
2656
2657	/* Workaround: Need to write PP_CONTROL with the unlock key as
2658	 * the very first thing. */
2659	pp = ironlake_get_pp_control(dev_priv);
2660	I915_WRITE(PCH_PP_CONTROL, pp);
2661
2662	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2663	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2664	pp_div = I915_READ(PCH_PP_DIVISOR);
2665
2666	/* Pull timing values out of registers */
2667	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2668		PANEL_POWER_UP_DELAY_SHIFT;
2669
2670	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2671		PANEL_LIGHT_ON_DELAY_SHIFT;
2672
2673	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2674		PANEL_LIGHT_OFF_DELAY_SHIFT;
2675
2676	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2677		PANEL_POWER_DOWN_DELAY_SHIFT;
2678
2679	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2680		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2681
2682	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2683		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2684
2685	vbt = dev_priv->edp.pps;
2686
2687	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2688	 * our hw here, which are all in 100usec. */
2689	spec.t1_t3 = 210 * 10;
2690	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2691	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2692	spec.t10 = 500 * 10;
2693	/* This one is special and actually in units of 100ms, but zero
2694	 * based in the hw (so we need to add 100 ms). But the sw vbt
2695	 * table multiplies it with 1000 to make it in units of 100usec,
2696	 * too. */
2697	spec.t11_t12 = (510 + 100) * 10;
2698
2699	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2700		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2701
2702	/* Use the max of the register settings and vbt. If both are
2703	 * unset, fall back to the spec limits. */
2704#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2705				       spec.field : \
2706				       max(cur.field, vbt.field))
2707	assign_final(t1_t3);
2708	assign_final(t8);
2709	assign_final(t9);
2710	assign_final(t10);
2711	assign_final(t11_t12);
2712#undef assign_final
2713
2714#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2715	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2716	intel_dp->backlight_on_delay = get_delay(t8);
2717	intel_dp->backlight_off_delay = get_delay(t9);
2718	intel_dp->panel_power_down_delay = get_delay(t10);
2719	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2720#undef get_delay
2721
2722	/* And finally store the new values in the power sequencer. */
2723	pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2724		(final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2725	pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2726		 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2727	/* Compute the divisor for the pp clock, simply match the Bspec
2728	 * formula. */
2729	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2730			<< PP_REFERENCE_DIVIDER_SHIFT;
2731	pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2732			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2733
2734	/* Haswell doesn't have any port selection bits for the panel
2735	 * power sequencer any more. */
2736	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2737		if (is_cpu_edp(intel_dp))
2738			pp_on |= PANEL_POWER_PORT_DP_A;
2739		else
2740			pp_on |= PANEL_POWER_PORT_DP_D;
2741	}
2742
2743	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2744	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2745	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2746
2747
2748	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2749		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2750		      intel_dp->panel_power_cycle_delay);
2751
2752	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2753		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2754
2755	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2756		      I915_READ(PCH_PP_ON_DELAYS),
2757		      I915_READ(PCH_PP_OFF_DELAYS),
2758		      I915_READ(PCH_PP_DIVISOR));
2759}
2760
2761void
2762intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2763			struct intel_connector *intel_connector)
2764{
2765	struct drm_connector *connector = &intel_connector->base;
2766	struct intel_dp *intel_dp = &intel_dig_port->dp;
2767	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2768	struct drm_device *dev = intel_encoder->base.dev;
2769	struct drm_i915_private *dev_priv = dev->dev_private;
2770	struct drm_display_mode *fixed_mode = NULL;
2771	enum port port = intel_dig_port->port;
2772	const char *name = NULL;
2773	int type;
2774
2775	/* Preserve the current hw state. */
2776	intel_dp->DP = I915_READ(intel_dp->output_reg);
2777	intel_dp->attached_connector = intel_connector;
2778
2779	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2780		if (intel_dpd_is_edp(dev))
2781			intel_dp->is_pch_edp = true;
2782
2783	/*
2784	 * FIXME : We need to initialize built-in panels before external panels.
2785	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2786	 */
2787	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2788		type = DRM_MODE_CONNECTOR_eDP;
2789		intel_encoder->type = INTEL_OUTPUT_EDP;
2790	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2791		type = DRM_MODE_CONNECTOR_eDP;
2792		intel_encoder->type = INTEL_OUTPUT_EDP;
2793	} else {
2794		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2795		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2796		 * rewrite it.
2797		 */
2798		type = DRM_MODE_CONNECTOR_DisplayPort;
2799	}
2800
2801	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2802	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2803
2804	connector->polled = DRM_CONNECTOR_POLL_HPD;
2805	connector->interlace_allowed = true;
2806	connector->doublescan_allowed = 0;
2807
2808	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2809			  ironlake_panel_vdd_work);
2810
2811	intel_connector_attach_encoder(intel_connector, intel_encoder);
2812	drm_sysfs_connector_add(connector);
2813
2814	if (HAS_DDI(dev))
2815		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2816	else
2817		intel_connector->get_hw_state = intel_connector_get_hw_state;
2818
2819
2820	/* Set up the DDC bus. */
2821	switch (port) {
2822	case PORT_A:
2823		name = "DPDDC-A";
2824		break;
2825	case PORT_B:
2826		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2827		name = "DPDDC-B";
2828		break;
2829	case PORT_C:
2830		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2831		name = "DPDDC-C";
2832		break;
2833	case PORT_D:
2834		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2835		name = "DPDDC-D";
2836		break;
2837	default:
2838		WARN(1, "Invalid port %c\n", port_name(port));
2839		break;
2840	}
2841
2842	if (is_edp(intel_dp))
2843		intel_dp_init_panel_power_sequencer(dev, intel_dp);
2844
2845	intel_dp_i2c_init(intel_dp, intel_connector, name);
2846
2847	/* Cache DPCD and EDID for edp. */
2848	if (is_edp(intel_dp)) {
2849		bool ret;
2850		struct drm_display_mode *scan;
2851		struct edid *edid;
2852
2853		ironlake_edp_panel_vdd_on(intel_dp);
2854		ret = intel_dp_get_dpcd(intel_dp);
2855		ironlake_edp_panel_vdd_off(intel_dp, false);
2856
2857		if (ret) {
2858			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2859				dev_priv->no_aux_handshake =
2860					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2861					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2862		} else {
2863			/* if this fails, presume the device is a ghost */
2864			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2865			intel_dp_encoder_destroy(&intel_encoder->base);
2866			intel_dp_destroy(connector);
2867			return;
2868		}
2869
2870		ironlake_edp_panel_vdd_on(intel_dp);
2871		edid = drm_get_edid(connector, &intel_dp->adapter);
2872		if (edid) {
2873			if (drm_add_edid_modes(connector, edid)) {
2874				drm_mode_connector_update_edid_property(connector, edid);
2875				drm_edid_to_eld(connector, edid);
2876			} else {
2877				kfree(edid);
2878				edid = ERR_PTR(-EINVAL);
2879			}
2880		} else {
2881			edid = ERR_PTR(-ENOENT);
2882		}
2883		intel_connector->edid = edid;
2884
2885		/* prefer fixed mode from EDID if available */
2886		list_for_each_entry(scan, &connector->probed_modes, head) {
2887			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2888				fixed_mode = drm_mode_duplicate(dev, scan);
2889				break;
2890			}
2891		}
2892
2893		/* fallback to VBT if available for eDP */
2894		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2895			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2896			if (fixed_mode)
2897				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2898		}
2899
2900		ironlake_edp_panel_vdd_off(intel_dp, false);
2901	}
2902
2903	if (is_edp(intel_dp)) {
2904		intel_panel_init(&intel_connector->panel, fixed_mode);
2905		intel_panel_setup_backlight(connector);
2906	}
2907
2908	intel_dp_add_properties(intel_dp, connector);
2909
2910	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2911	 * 0xd.  Failure to do so will result in spurious interrupts being
2912	 * generated on the port when a cable is not attached.
2913	 */
2914	if (IS_G4X(dev) && !IS_GM45(dev)) {
2915		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2916		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2917	}
2918}
2919
2920void
2921intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2922{
2923	struct intel_digital_port *intel_dig_port;
2924	struct intel_encoder *intel_encoder;
2925	struct drm_encoder *encoder;
2926	struct intel_connector *intel_connector;
2927
2928	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2929	if (!intel_dig_port)
2930		return;
2931
2932	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2933	if (!intel_connector) {
2934		kfree(intel_dig_port);
2935		return;
2936	}
2937
2938	intel_encoder = &intel_dig_port->base;
2939	encoder = &intel_encoder->base;
2940
2941	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2942			 DRM_MODE_ENCODER_TMDS);
2943	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2944
2945	intel_encoder->enable = intel_enable_dp;
2946	intel_encoder->pre_enable = intel_pre_enable_dp;
2947	intel_encoder->disable = intel_disable_dp;
2948	intel_encoder->post_disable = intel_post_disable_dp;
2949	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2950
2951	intel_dig_port->port = port;
2952	intel_dig_port->dp.output_reg = output_reg;
2953
2954	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2955	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2956	intel_encoder->cloneable = false;
2957	intel_encoder->hot_plug = intel_dp_hot_plug;
2958
2959	intel_dp_init_connector(intel_dig_port, intel_connector);
2960}
2961