intel_dp.c revision 1250d107cf9b82217a63520b0b76a947665537c2
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <linux/notifier.h>
32#include <linux/reboot.h>
33#include <drm/drmP.h>
34#include <drm/drm_crtc.h>
35#include <drm/drm_crtc_helper.h>
36#include <drm/drm_edid.h>
37#include "intel_drv.h"
38#include <drm/i915_drm.h>
39#include "i915_drv.h"
40
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43struct dp_link_dpll {
44	int link_bw;
45	struct dpll dpll;
46};
47
48static const struct dp_link_dpll gen4_dpll[] = {
49	{ DP_LINK_BW_1_62,
50		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51	{ DP_LINK_BW_2_7,
52		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53};
54
55static const struct dp_link_dpll pch_dpll[] = {
56	{ DP_LINK_BW_1_62,
57		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58	{ DP_LINK_BW_2_7,
59		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60};
61
62static const struct dp_link_dpll vlv_dpll[] = {
63	{ DP_LINK_BW_1_62,
64		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65	{ DP_LINK_BW_2_7,
66		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67};
68
69/*
70 * CHV supports eDP 1.4 that have  more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73static const struct dp_link_dpll chv_dpll[] = {
74	/*
75	 * CHV requires to program fractional division for m2.
76	 * m2 is stored in fixed point format using formula below
77	 * (m2_int << 22) | m2_fraction
78	 */
79	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
80		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
84		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85};
86
87/**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94static bool is_edp(struct intel_dp *intel_dp)
95{
96	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99}
100
101static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102{
103	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105	return intel_dig_port->base.base.dev;
106}
107
108static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109{
110	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111}
112
113static void intel_dp_link_down(struct intel_dp *intel_dp);
114static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117int
118intel_dp_max_link_bw(struct intel_dp *intel_dp)
119{
120	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121	struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123	switch (max_link_bw) {
124	case DP_LINK_BW_1_62:
125	case DP_LINK_BW_2_7:
126		break;
127	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129		     INTEL_INFO(dev)->gen >= 8) &&
130		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131			max_link_bw = DP_LINK_BW_5_4;
132		else
133			max_link_bw = DP_LINK_BW_2_7;
134		break;
135	default:
136		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137		     max_link_bw);
138		max_link_bw = DP_LINK_BW_1_62;
139		break;
140	}
141	return max_link_bw;
142}
143
144static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145{
146	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147	struct drm_device *dev = intel_dig_port->base.base.dev;
148	u8 source_max, sink_max;
149
150	source_max = 4;
151	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153		source_max = 2;
154
155	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157	return min(source_max, sink_max);
158}
159
160/*
161 * The units on the numbers in the next two are... bizarre.  Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 *     270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000.  At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177static int
178intel_dp_link_required(int pixel_clock, int bpp)
179{
180	return (pixel_clock * bpp + 9) / 10;
181}
182
183static int
184intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185{
186	return (max_link_clock * max_lanes * 8) / 10;
187}
188
189static enum drm_mode_status
190intel_dp_mode_valid(struct drm_connector *connector,
191		    struct drm_display_mode *mode)
192{
193	struct intel_dp *intel_dp = intel_attached_dp(connector);
194	struct intel_connector *intel_connector = to_intel_connector(connector);
195	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196	int target_clock = mode->clock;
197	int max_rate, mode_rate, max_lanes, max_link_clock;
198
199	if (is_edp(intel_dp) && fixed_mode) {
200		if (mode->hdisplay > fixed_mode->hdisplay)
201			return MODE_PANEL;
202
203		if (mode->vdisplay > fixed_mode->vdisplay)
204			return MODE_PANEL;
205
206		target_clock = fixed_mode->clock;
207	}
208
209	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210	max_lanes = intel_dp_max_lane_count(intel_dp);
211
212	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213	mode_rate = intel_dp_link_required(target_clock, 18);
214
215	if (mode_rate > max_rate)
216		return MODE_CLOCK_HIGH;
217
218	if (mode->clock < 10000)
219		return MODE_CLOCK_LOW;
220
221	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222		return MODE_H_ILLEGAL;
223
224	return MODE_OK;
225}
226
227static uint32_t
228pack_aux(uint8_t *src, int src_bytes)
229{
230	int	i;
231	uint32_t v = 0;
232
233	if (src_bytes > 4)
234		src_bytes = 4;
235	for (i = 0; i < src_bytes; i++)
236		v |= ((uint32_t) src[i]) << ((3-i) * 8);
237	return v;
238}
239
240static void
241unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242{
243	int i;
244	if (dst_bytes > 4)
245		dst_bytes = 4;
246	for (i = 0; i < dst_bytes; i++)
247		dst[i] = src >> ((3-i) * 8);
248}
249
250/* hrawclock is 1/4 the FSB frequency */
251static int
252intel_hrawclk(struct drm_device *dev)
253{
254	struct drm_i915_private *dev_priv = dev->dev_private;
255	uint32_t clkcfg;
256
257	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258	if (IS_VALLEYVIEW(dev))
259		return 200;
260
261	clkcfg = I915_READ(CLKCFG);
262	switch (clkcfg & CLKCFG_FSB_MASK) {
263	case CLKCFG_FSB_400:
264		return 100;
265	case CLKCFG_FSB_533:
266		return 133;
267	case CLKCFG_FSB_667:
268		return 166;
269	case CLKCFG_FSB_800:
270		return 200;
271	case CLKCFG_FSB_1067:
272		return 266;
273	case CLKCFG_FSB_1333:
274		return 333;
275	/* these two are just a guess; one of them might be right */
276	case CLKCFG_FSB_1600:
277	case CLKCFG_FSB_1600_ALT:
278		return 400;
279	default:
280		return 133;
281	}
282}
283
284static void
285intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286				    struct intel_dp *intel_dp,
287				    struct edp_power_seq *out);
288static void
289intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290					      struct intel_dp *intel_dp,
291					      struct edp_power_seq *out);
292
293static enum pipe
294vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295{
296	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298	struct drm_device *dev = intel_dig_port->base.base.dev;
299	struct drm_i915_private *dev_priv = dev->dev_private;
300	enum port port = intel_dig_port->port;
301	enum pipe pipe;
302
303	/* modeset should have pipe */
304	if (crtc)
305		return to_intel_crtc(crtc)->pipe;
306
307	/* init time, try to find a pipe with this port selected */
308	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310			PANEL_PORT_SELECT_MASK;
311		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312			return pipe;
313		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314			return pipe;
315	}
316
317	/* shrug */
318	return PIPE_A;
319}
320
321static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322{
323	struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325	if (HAS_PCH_SPLIT(dev))
326		return PCH_PP_CONTROL;
327	else
328		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329}
330
331static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332{
333	struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335	if (HAS_PCH_SPLIT(dev))
336		return PCH_PP_STATUS;
337	else
338		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339}
340
341/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342   This function only applicable when panel PM state is not to be tracked */
343static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344			      void *unused)
345{
346	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347						 edp_notifier);
348	struct drm_device *dev = intel_dp_to_dev(intel_dp);
349	struct drm_i915_private *dev_priv = dev->dev_private;
350	u32 pp_div;
351	u32 pp_ctrl_reg, pp_div_reg;
352	enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354	if (!is_edp(intel_dp) || code != SYS_RESTART)
355		return 0;
356
357	if (IS_VALLEYVIEW(dev)) {
358		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
360		pp_div = I915_READ(pp_div_reg);
361		pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363		/* 0x1F write to PP_DIV_REG sets max cycle delay */
364		I915_WRITE(pp_div_reg, pp_div | 0x1F);
365		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366		msleep(intel_dp->panel_power_cycle_delay);
367	}
368
369	return 0;
370}
371
372static bool edp_have_panel_power(struct intel_dp *intel_dp)
373{
374	struct drm_device *dev = intel_dp_to_dev(intel_dp);
375	struct drm_i915_private *dev_priv = dev->dev_private;
376
377	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378}
379
380static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381{
382	struct drm_device *dev = intel_dp_to_dev(intel_dp);
383	struct drm_i915_private *dev_priv = dev->dev_private;
384	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385	struct intel_encoder *intel_encoder = &intel_dig_port->base;
386	enum intel_display_power_domain power_domain;
387
388	power_domain = intel_display_port_power_domain(intel_encoder);
389	return intel_display_power_enabled(dev_priv, power_domain) &&
390	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391}
392
393static void
394intel_dp_check_edp(struct intel_dp *intel_dp)
395{
396	struct drm_device *dev = intel_dp_to_dev(intel_dp);
397	struct drm_i915_private *dev_priv = dev->dev_private;
398
399	if (!is_edp(intel_dp))
400		return;
401
402	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403		WARN(1, "eDP powered off while attempting aux channel communication.\n");
404		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405			      I915_READ(_pp_stat_reg(intel_dp)),
406			      I915_READ(_pp_ctrl_reg(intel_dp)));
407	}
408}
409
410static uint32_t
411intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412{
413	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414	struct drm_device *dev = intel_dig_port->base.base.dev;
415	struct drm_i915_private *dev_priv = dev->dev_private;
416	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417	uint32_t status;
418	bool done;
419
420#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421	if (has_aux_irq)
422		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423					  msecs_to_jiffies_timeout(10));
424	else
425		done = wait_for_atomic(C, 10) == 0;
426	if (!done)
427		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428			  has_aux_irq);
429#undef C
430
431	return status;
432}
433
434static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435{
436	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437	struct drm_device *dev = intel_dig_port->base.base.dev;
438
439	/*
440	 * The clock divider is based off the hrawclk, and would like to run at
441	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
442	 */
443	return index ? 0 : intel_hrawclk(dev) / 2;
444}
445
446static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447{
448	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449	struct drm_device *dev = intel_dig_port->base.base.dev;
450
451	if (index)
452		return 0;
453
454	if (intel_dig_port->port == PORT_A) {
455		if (IS_GEN6(dev) || IS_GEN7(dev))
456			return 200; /* SNB & IVB eDP input clock at 400Mhz */
457		else
458			return 225; /* eDP input clock at 450Mhz */
459	} else {
460		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461	}
462}
463
464static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465{
466	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467	struct drm_device *dev = intel_dig_port->base.base.dev;
468	struct drm_i915_private *dev_priv = dev->dev_private;
469
470	if (intel_dig_port->port == PORT_A) {
471		if (index)
472			return 0;
473		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475		/* Workaround for non-ULT HSW */
476		switch (index) {
477		case 0: return 63;
478		case 1: return 72;
479		default: return 0;
480		}
481	} else  {
482		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483	}
484}
485
486static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487{
488	return index ? 0 : 100;
489}
490
491static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492				      bool has_aux_irq,
493				      int send_bytes,
494				      uint32_t aux_clock_divider)
495{
496	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497	struct drm_device *dev = intel_dig_port->base.base.dev;
498	uint32_t precharge, timeout;
499
500	if (IS_GEN6(dev))
501		precharge = 3;
502	else
503		precharge = 5;
504
505	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507	else
508		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510	return DP_AUX_CH_CTL_SEND_BUSY |
511	       DP_AUX_CH_CTL_DONE |
512	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
514	       timeout |
515	       DP_AUX_CH_CTL_RECEIVE_ERROR |
516	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519}
520
521static int
522intel_dp_aux_ch(struct intel_dp *intel_dp,
523		uint8_t *send, int send_bytes,
524		uint8_t *recv, int recv_size)
525{
526	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527	struct drm_device *dev = intel_dig_port->base.base.dev;
528	struct drm_i915_private *dev_priv = dev->dev_private;
529	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530	uint32_t ch_data = ch_ctl + 4;
531	uint32_t aux_clock_divider;
532	int i, ret, recv_bytes;
533	uint32_t status;
534	int try, clock = 0;
535	bool has_aux_irq = HAS_AUX_IRQ(dev);
536	bool vdd;
537
538	vdd = _edp_panel_vdd_on(intel_dp);
539
540	/* dp aux is extremely sensitive to irq latency, hence request the
541	 * lowest possible wakeup latency and so prevent the cpu from going into
542	 * deep sleep states.
543	 */
544	pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546	intel_dp_check_edp(intel_dp);
547
548	intel_aux_display_runtime_get(dev_priv);
549
550	/* Try to wait for any previous AUX channel activity */
551	for (try = 0; try < 3; try++) {
552		status = I915_READ_NOTRACE(ch_ctl);
553		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554			break;
555		msleep(1);
556	}
557
558	if (try == 3) {
559		WARN(1, "dp_aux_ch not started status 0x%08x\n",
560		     I915_READ(ch_ctl));
561		ret = -EBUSY;
562		goto out;
563	}
564
565	/* Only 5 data registers! */
566	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567		ret = -E2BIG;
568		goto out;
569	}
570
571	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573							  has_aux_irq,
574							  send_bytes,
575							  aux_clock_divider);
576
577		/* Must try at least 3 times according to DP spec */
578		for (try = 0; try < 5; try++) {
579			/* Load the send data into the aux channel data registers */
580			for (i = 0; i < send_bytes; i += 4)
581				I915_WRITE(ch_data + i,
582					   pack_aux(send + i, send_bytes - i));
583
584			/* Send the command and wait for it to complete */
585			I915_WRITE(ch_ctl, send_ctl);
586
587			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589			/* Clear done status and any errors */
590			I915_WRITE(ch_ctl,
591				   status |
592				   DP_AUX_CH_CTL_DONE |
593				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
594				   DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597				      DP_AUX_CH_CTL_RECEIVE_ERROR))
598				continue;
599			if (status & DP_AUX_CH_CTL_DONE)
600				break;
601		}
602		if (status & DP_AUX_CH_CTL_DONE)
603			break;
604	}
605
606	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608		ret = -EBUSY;
609		goto out;
610	}
611
612	/* Check for timeout or receive error.
613	 * Timeouts occur when the sink is not connected
614	 */
615	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617		ret = -EIO;
618		goto out;
619	}
620
621	/* Timeouts occur when the device isn't connected, so they're
622	 * "normal" -- don't fill the kernel log with these */
623	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625		ret = -ETIMEDOUT;
626		goto out;
627	}
628
629	/* Unload any bytes sent back from the other side */
630	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632	if (recv_bytes > recv_size)
633		recv_bytes = recv_size;
634
635	for (i = 0; i < recv_bytes; i += 4)
636		unpack_aux(I915_READ(ch_data + i),
637			   recv + i, recv_bytes - i);
638
639	ret = recv_bytes;
640out:
641	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642	intel_aux_display_runtime_put(dev_priv);
643
644	if (vdd)
645		edp_panel_vdd_off(intel_dp, false);
646
647	return ret;
648}
649
650#define BARE_ADDRESS_SIZE	3
651#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
652static ssize_t
653intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654{
655	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656	uint8_t txbuf[20], rxbuf[20];
657	size_t txsize, rxsize;
658	int ret;
659
660	txbuf[0] = msg->request << 4;
661	txbuf[1] = msg->address >> 8;
662	txbuf[2] = msg->address & 0xff;
663	txbuf[3] = msg->size - 1;
664
665	switch (msg->request & ~DP_AUX_I2C_MOT) {
666	case DP_AUX_NATIVE_WRITE:
667	case DP_AUX_I2C_WRITE:
668		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669		rxsize = 1;
670
671		if (WARN_ON(txsize > 20))
672			return -E2BIG;
673
674		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677		if (ret > 0) {
678			msg->reply = rxbuf[0] >> 4;
679
680			/* Return payload size. */
681			ret = msg->size;
682		}
683		break;
684
685	case DP_AUX_NATIVE_READ:
686	case DP_AUX_I2C_READ:
687		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688		rxsize = msg->size + 1;
689
690		if (WARN_ON(rxsize > 20))
691			return -E2BIG;
692
693		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694		if (ret > 0) {
695			msg->reply = rxbuf[0] >> 4;
696			/*
697			 * Assume happy day, and copy the data. The caller is
698			 * expected to check msg->reply before touching it.
699			 *
700			 * Return payload size.
701			 */
702			ret--;
703			memcpy(msg->buffer, rxbuf + 1, ret);
704		}
705		break;
706
707	default:
708		ret = -EINVAL;
709		break;
710	}
711
712	return ret;
713}
714
715static void
716intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717{
718	struct drm_device *dev = intel_dp_to_dev(intel_dp);
719	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720	enum port port = intel_dig_port->port;
721	const char *name = NULL;
722	int ret;
723
724	switch (port) {
725	case PORT_A:
726		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727		name = "DPDDC-A";
728		break;
729	case PORT_B:
730		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731		name = "DPDDC-B";
732		break;
733	case PORT_C:
734		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735		name = "DPDDC-C";
736		break;
737	case PORT_D:
738		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739		name = "DPDDC-D";
740		break;
741	default:
742		BUG();
743	}
744
745	if (!HAS_DDI(dev))
746		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748	intel_dp->aux.name = name;
749	intel_dp->aux.dev = dev->dev;
750	intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753		      connector->base.kdev->kobj.name);
754
755	ret = drm_dp_aux_register(&intel_dp->aux);
756	if (ret < 0) {
757		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758			  name, ret);
759		return;
760	}
761
762	ret = sysfs_create_link(&connector->base.kdev->kobj,
763				&intel_dp->aux.ddc.dev.kobj,
764				intel_dp->aux.ddc.dev.kobj.name);
765	if (ret < 0) {
766		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767		drm_dp_aux_unregister(&intel_dp->aux);
768	}
769}
770
771static void
772intel_dp_connector_unregister(struct intel_connector *intel_connector)
773{
774	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776	if (!intel_connector->mst_port)
777		sysfs_remove_link(&intel_connector->base.kdev->kobj,
778				  intel_dp->aux.ddc.dev.kobj.name);
779	intel_connector_unregister(intel_connector);
780}
781
782static void
783hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784{
785	switch (link_bw) {
786	case DP_LINK_BW_1_62:
787		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788		break;
789	case DP_LINK_BW_2_7:
790		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791		break;
792	case DP_LINK_BW_5_4:
793		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794		break;
795	}
796}
797
798static void
799intel_dp_set_clock(struct intel_encoder *encoder,
800		   struct intel_crtc_config *pipe_config, int link_bw)
801{
802	struct drm_device *dev = encoder->base.dev;
803	const struct dp_link_dpll *divisor = NULL;
804	int i, count = 0;
805
806	if (IS_G4X(dev)) {
807		divisor = gen4_dpll;
808		count = ARRAY_SIZE(gen4_dpll);
809	} else if (HAS_PCH_SPLIT(dev)) {
810		divisor = pch_dpll;
811		count = ARRAY_SIZE(pch_dpll);
812	} else if (IS_CHERRYVIEW(dev)) {
813		divisor = chv_dpll;
814		count = ARRAY_SIZE(chv_dpll);
815	} else if (IS_VALLEYVIEW(dev)) {
816		divisor = vlv_dpll;
817		count = ARRAY_SIZE(vlv_dpll);
818	}
819
820	if (divisor && count) {
821		for (i = 0; i < count; i++) {
822			if (link_bw == divisor[i].link_bw) {
823				pipe_config->dpll = divisor[i].dpll;
824				pipe_config->clock_set = true;
825				break;
826			}
827		}
828	}
829}
830
831bool
832intel_dp_compute_config(struct intel_encoder *encoder,
833			struct intel_crtc_config *pipe_config)
834{
835	struct drm_device *dev = encoder->base.dev;
836	struct drm_i915_private *dev_priv = dev->dev_private;
837	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
838	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
839	enum port port = dp_to_dig_port(intel_dp)->port;
840	struct intel_crtc *intel_crtc = encoder->new_crtc;
841	struct intel_connector *intel_connector = intel_dp->attached_connector;
842	int lane_count, clock;
843	int min_lane_count = 1;
844	int max_lane_count = intel_dp_max_lane_count(intel_dp);
845	/* Conveniently, the link BW constants become indices with a shift...*/
846	int min_clock = 0;
847	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
848	int bpp, mode_rate;
849	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
850	int link_avail, link_clock;
851
852	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
853		pipe_config->has_pch_encoder = true;
854
855	pipe_config->has_dp_encoder = true;
856	pipe_config->has_drrs = false;
857	pipe_config->has_audio = intel_dp->has_audio;
858
859	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
860		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
861				       adjusted_mode);
862		if (!HAS_PCH_SPLIT(dev))
863			intel_gmch_panel_fitting(intel_crtc, pipe_config,
864						 intel_connector->panel.fitting_mode);
865		else
866			intel_pch_panel_fitting(intel_crtc, pipe_config,
867						intel_connector->panel.fitting_mode);
868	}
869
870	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
871		return false;
872
873	DRM_DEBUG_KMS("DP link computation with max lane count %i "
874		      "max bw %02x pixel clock %iKHz\n",
875		      max_lane_count, bws[max_clock],
876		      adjusted_mode->crtc_clock);
877
878	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
879	 * bpc in between. */
880	bpp = pipe_config->pipe_bpp;
881	if (is_edp(intel_dp)) {
882		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
883			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
884				      dev_priv->vbt.edp_bpp);
885			bpp = dev_priv->vbt.edp_bpp;
886		}
887
888		if (IS_BROADWELL(dev)) {
889			/* Yes, it's an ugly hack. */
890			min_lane_count = max_lane_count;
891			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
892				      min_lane_count);
893		} else if (dev_priv->vbt.edp_lanes) {
894			min_lane_count = min(dev_priv->vbt.edp_lanes,
895					     max_lane_count);
896			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
897				      min_lane_count);
898		}
899
900		if (dev_priv->vbt.edp_rate) {
901			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
902			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
903				      bws[min_clock]);
904		}
905	}
906
907	for (; bpp >= 6*3; bpp -= 2*3) {
908		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
909						   bpp);
910
911		for (clock = min_clock; clock <= max_clock; clock++) {
912			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
913				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
914				link_avail = intel_dp_max_data_rate(link_clock,
915								    lane_count);
916
917				if (mode_rate <= link_avail) {
918					goto found;
919				}
920			}
921		}
922	}
923
924	return false;
925
926found:
927	if (intel_dp->color_range_auto) {
928		/*
929		 * See:
930		 * CEA-861-E - 5.1 Default Encoding Parameters
931		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
932		 */
933		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
934			intel_dp->color_range = DP_COLOR_RANGE_16_235;
935		else
936			intel_dp->color_range = 0;
937	}
938
939	if (intel_dp->color_range)
940		pipe_config->limited_color_range = true;
941
942	intel_dp->link_bw = bws[clock];
943	intel_dp->lane_count = lane_count;
944	pipe_config->pipe_bpp = bpp;
945	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
946
947	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
948		      intel_dp->link_bw, intel_dp->lane_count,
949		      pipe_config->port_clock, bpp);
950	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
951		      mode_rate, link_avail);
952
953	intel_link_compute_m_n(bpp, lane_count,
954			       adjusted_mode->crtc_clock,
955			       pipe_config->port_clock,
956			       &pipe_config->dp_m_n);
957
958	if (intel_connector->panel.downclock_mode != NULL &&
959		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
960			pipe_config->has_drrs = true;
961			intel_link_compute_m_n(bpp, lane_count,
962				intel_connector->panel.downclock_mode->clock,
963				pipe_config->port_clock,
964				&pipe_config->dp_m2_n2);
965	}
966
967	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
968		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
969	else
970		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
971
972	return true;
973}
974
975static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
976{
977	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
978	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
979	struct drm_device *dev = crtc->base.dev;
980	struct drm_i915_private *dev_priv = dev->dev_private;
981	u32 dpa_ctl;
982
983	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
984	dpa_ctl = I915_READ(DP_A);
985	dpa_ctl &= ~DP_PLL_FREQ_MASK;
986
987	if (crtc->config.port_clock == 162000) {
988		/* For a long time we've carried around a ILK-DevA w/a for the
989		 * 160MHz clock. If we're really unlucky, it's still required.
990		 */
991		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
992		dpa_ctl |= DP_PLL_FREQ_160MHZ;
993		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
994	} else {
995		dpa_ctl |= DP_PLL_FREQ_270MHZ;
996		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
997	}
998
999	I915_WRITE(DP_A, dpa_ctl);
1000
1001	POSTING_READ(DP_A);
1002	udelay(500);
1003}
1004
1005static void intel_dp_prepare(struct intel_encoder *encoder)
1006{
1007	struct drm_device *dev = encoder->base.dev;
1008	struct drm_i915_private *dev_priv = dev->dev_private;
1009	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1010	enum port port = dp_to_dig_port(intel_dp)->port;
1011	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1012	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1013
1014	/*
1015	 * There are four kinds of DP registers:
1016	 *
1017	 * 	IBX PCH
1018	 * 	SNB CPU
1019	 *	IVB CPU
1020	 * 	CPT PCH
1021	 *
1022	 * IBX PCH and CPU are the same for almost everything,
1023	 * except that the CPU DP PLL is configured in this
1024	 * register
1025	 *
1026	 * CPT PCH is quite different, having many bits moved
1027	 * to the TRANS_DP_CTL register instead. That
1028	 * configuration happens (oddly) in ironlake_pch_enable
1029	 */
1030
1031	/* Preserve the BIOS-computed detected bit. This is
1032	 * supposed to be read-only.
1033	 */
1034	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1035
1036	/* Handle DP bits in common between all three register formats */
1037	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1038	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1039
1040	if (crtc->config.has_audio) {
1041		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1042				 pipe_name(crtc->pipe));
1043		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1044		intel_write_eld(&encoder->base, adjusted_mode);
1045	}
1046
1047	/* Split out the IBX/CPU vs CPT settings */
1048
1049	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1050		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1051			intel_dp->DP |= DP_SYNC_HS_HIGH;
1052		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1053			intel_dp->DP |= DP_SYNC_VS_HIGH;
1054		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1055
1056		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1057			intel_dp->DP |= DP_ENHANCED_FRAMING;
1058
1059		intel_dp->DP |= crtc->pipe << 29;
1060	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1061		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1062			intel_dp->DP |= intel_dp->color_range;
1063
1064		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1065			intel_dp->DP |= DP_SYNC_HS_HIGH;
1066		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1067			intel_dp->DP |= DP_SYNC_VS_HIGH;
1068		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1069
1070		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1071			intel_dp->DP |= DP_ENHANCED_FRAMING;
1072
1073		if (!IS_CHERRYVIEW(dev)) {
1074			if (crtc->pipe == 1)
1075				intel_dp->DP |= DP_PIPEB_SELECT;
1076		} else {
1077			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1078		}
1079	} else {
1080		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1081	}
1082}
1083
1084#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1085#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1086
1087#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1088#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1089
1090#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1091#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1092
1093static void wait_panel_status(struct intel_dp *intel_dp,
1094				       u32 mask,
1095				       u32 value)
1096{
1097	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1098	struct drm_i915_private *dev_priv = dev->dev_private;
1099	u32 pp_stat_reg, pp_ctrl_reg;
1100
1101	pp_stat_reg = _pp_stat_reg(intel_dp);
1102	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1103
1104	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1105			mask, value,
1106			I915_READ(pp_stat_reg),
1107			I915_READ(pp_ctrl_reg));
1108
1109	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1110		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1111				I915_READ(pp_stat_reg),
1112				I915_READ(pp_ctrl_reg));
1113	}
1114
1115	DRM_DEBUG_KMS("Wait complete\n");
1116}
1117
1118static void wait_panel_on(struct intel_dp *intel_dp)
1119{
1120	DRM_DEBUG_KMS("Wait for panel power on\n");
1121	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1122}
1123
1124static void wait_panel_off(struct intel_dp *intel_dp)
1125{
1126	DRM_DEBUG_KMS("Wait for panel power off time\n");
1127	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1128}
1129
1130static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1131{
1132	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1133
1134	/* When we disable the VDD override bit last we have to do the manual
1135	 * wait. */
1136	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1137				       intel_dp->panel_power_cycle_delay);
1138
1139	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1140}
1141
1142static void wait_backlight_on(struct intel_dp *intel_dp)
1143{
1144	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1145				       intel_dp->backlight_on_delay);
1146}
1147
1148static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1149{
1150	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1151				       intel_dp->backlight_off_delay);
1152}
1153
1154/* Read the current pp_control value, unlocking the register if it
1155 * is locked
1156 */
1157
1158static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1159{
1160	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1161	struct drm_i915_private *dev_priv = dev->dev_private;
1162	u32 control;
1163
1164	control = I915_READ(_pp_ctrl_reg(intel_dp));
1165	control &= ~PANEL_UNLOCK_MASK;
1166	control |= PANEL_UNLOCK_REGS;
1167	return control;
1168}
1169
1170static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1171{
1172	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1174	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1175	struct drm_i915_private *dev_priv = dev->dev_private;
1176	enum intel_display_power_domain power_domain;
1177	u32 pp;
1178	u32 pp_stat_reg, pp_ctrl_reg;
1179	bool need_to_disable = !intel_dp->want_panel_vdd;
1180
1181	if (!is_edp(intel_dp))
1182		return false;
1183
1184	intel_dp->want_panel_vdd = true;
1185
1186	if (edp_have_panel_vdd(intel_dp))
1187		return need_to_disable;
1188
1189	power_domain = intel_display_port_power_domain(intel_encoder);
1190	intel_display_power_get(dev_priv, power_domain);
1191
1192	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1193
1194	if (!edp_have_panel_power(intel_dp))
1195		wait_panel_power_cycle(intel_dp);
1196
1197	pp = ironlake_get_pp_control(intel_dp);
1198	pp |= EDP_FORCE_VDD;
1199
1200	pp_stat_reg = _pp_stat_reg(intel_dp);
1201	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1202
1203	I915_WRITE(pp_ctrl_reg, pp);
1204	POSTING_READ(pp_ctrl_reg);
1205	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1206			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1207	/*
1208	 * If the panel wasn't on, delay before accessing aux channel
1209	 */
1210	if (!edp_have_panel_power(intel_dp)) {
1211		DRM_DEBUG_KMS("eDP was not running\n");
1212		msleep(intel_dp->panel_power_up_delay);
1213	}
1214
1215	return need_to_disable;
1216}
1217
1218void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1219{
1220	if (is_edp(intel_dp)) {
1221		bool vdd = _edp_panel_vdd_on(intel_dp);
1222
1223		WARN(!vdd, "eDP VDD already requested on\n");
1224	}
1225}
1226
1227static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1228{
1229	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1230	struct drm_i915_private *dev_priv = dev->dev_private;
1231	u32 pp;
1232	u32 pp_stat_reg, pp_ctrl_reg;
1233
1234	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1235
1236	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1237		struct intel_digital_port *intel_dig_port =
1238						dp_to_dig_port(intel_dp);
1239		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1240		enum intel_display_power_domain power_domain;
1241
1242		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1243
1244		pp = ironlake_get_pp_control(intel_dp);
1245		pp &= ~EDP_FORCE_VDD;
1246
1247		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1248		pp_stat_reg = _pp_stat_reg(intel_dp);
1249
1250		I915_WRITE(pp_ctrl_reg, pp);
1251		POSTING_READ(pp_ctrl_reg);
1252
1253		/* Make sure sequencer is idle before allowing subsequent activity */
1254		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1255		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1256
1257		if ((pp & POWER_TARGET_ON) == 0)
1258			intel_dp->last_power_cycle = jiffies;
1259
1260		power_domain = intel_display_port_power_domain(intel_encoder);
1261		intel_display_power_put(dev_priv, power_domain);
1262	}
1263}
1264
1265static void edp_panel_vdd_work(struct work_struct *__work)
1266{
1267	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1268						 struct intel_dp, panel_vdd_work);
1269	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1270
1271	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1272	edp_panel_vdd_off_sync(intel_dp);
1273	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1274}
1275
1276static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1277{
1278	unsigned long delay;
1279
1280	/*
1281	 * Queue the timer to fire a long time from now (relative to the power
1282	 * down delay) to keep the panel power up across a sequence of
1283	 * operations.
1284	 */
1285	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1286	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1287}
1288
1289static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1290{
1291	if (!is_edp(intel_dp))
1292		return;
1293
1294	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1295
1296	intel_dp->want_panel_vdd = false;
1297
1298	if (sync)
1299		edp_panel_vdd_off_sync(intel_dp);
1300	else
1301		edp_panel_vdd_schedule_off(intel_dp);
1302}
1303
1304void intel_edp_panel_on(struct intel_dp *intel_dp)
1305{
1306	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1307	struct drm_i915_private *dev_priv = dev->dev_private;
1308	u32 pp;
1309	u32 pp_ctrl_reg;
1310
1311	if (!is_edp(intel_dp))
1312		return;
1313
1314	DRM_DEBUG_KMS("Turn eDP power on\n");
1315
1316	if (edp_have_panel_power(intel_dp)) {
1317		DRM_DEBUG_KMS("eDP power already on\n");
1318		return;
1319	}
1320
1321	wait_panel_power_cycle(intel_dp);
1322
1323	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1324	pp = ironlake_get_pp_control(intel_dp);
1325	if (IS_GEN5(dev)) {
1326		/* ILK workaround: disable reset around power sequence */
1327		pp &= ~PANEL_POWER_RESET;
1328		I915_WRITE(pp_ctrl_reg, pp);
1329		POSTING_READ(pp_ctrl_reg);
1330	}
1331
1332	pp |= POWER_TARGET_ON;
1333	if (!IS_GEN5(dev))
1334		pp |= PANEL_POWER_RESET;
1335
1336	I915_WRITE(pp_ctrl_reg, pp);
1337	POSTING_READ(pp_ctrl_reg);
1338
1339	wait_panel_on(intel_dp);
1340	intel_dp->last_power_on = jiffies;
1341
1342	if (IS_GEN5(dev)) {
1343		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1344		I915_WRITE(pp_ctrl_reg, pp);
1345		POSTING_READ(pp_ctrl_reg);
1346	}
1347}
1348
1349void intel_edp_panel_off(struct intel_dp *intel_dp)
1350{
1351	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1352	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1353	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1354	struct drm_i915_private *dev_priv = dev->dev_private;
1355	enum intel_display_power_domain power_domain;
1356	u32 pp;
1357	u32 pp_ctrl_reg;
1358
1359	if (!is_edp(intel_dp))
1360		return;
1361
1362	DRM_DEBUG_KMS("Turn eDP power off\n");
1363
1364	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1365
1366	pp = ironlake_get_pp_control(intel_dp);
1367	/* We need to switch off panel power _and_ force vdd, for otherwise some
1368	 * panels get very unhappy and cease to work. */
1369	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1370		EDP_BLC_ENABLE);
1371
1372	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1373
1374	intel_dp->want_panel_vdd = false;
1375
1376	I915_WRITE(pp_ctrl_reg, pp);
1377	POSTING_READ(pp_ctrl_reg);
1378
1379	intel_dp->last_power_cycle = jiffies;
1380	wait_panel_off(intel_dp);
1381
1382	/* We got a reference when we enabled the VDD. */
1383	power_domain = intel_display_port_power_domain(intel_encoder);
1384	intel_display_power_put(dev_priv, power_domain);
1385}
1386
1387/* Enable backlight in the panel power control. */
1388static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1389{
1390	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1391	struct drm_device *dev = intel_dig_port->base.base.dev;
1392	struct drm_i915_private *dev_priv = dev->dev_private;
1393	u32 pp;
1394	u32 pp_ctrl_reg;
1395
1396	/*
1397	 * If we enable the backlight right away following a panel power
1398	 * on, we may see slight flicker as the panel syncs with the eDP
1399	 * link.  So delay a bit to make sure the image is solid before
1400	 * allowing it to appear.
1401	 */
1402	wait_backlight_on(intel_dp);
1403	pp = ironlake_get_pp_control(intel_dp);
1404	pp |= EDP_BLC_ENABLE;
1405
1406	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1407
1408	I915_WRITE(pp_ctrl_reg, pp);
1409	POSTING_READ(pp_ctrl_reg);
1410}
1411
1412/* Enable backlight PWM and backlight PP control. */
1413void intel_edp_backlight_on(struct intel_dp *intel_dp)
1414{
1415	if (!is_edp(intel_dp))
1416		return;
1417
1418	DRM_DEBUG_KMS("\n");
1419
1420	intel_panel_enable_backlight(intel_dp->attached_connector);
1421	_intel_edp_backlight_on(intel_dp);
1422}
1423
1424/* Disable backlight in the panel power control. */
1425static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1426{
1427	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428	struct drm_i915_private *dev_priv = dev->dev_private;
1429	u32 pp;
1430	u32 pp_ctrl_reg;
1431
1432	pp = ironlake_get_pp_control(intel_dp);
1433	pp &= ~EDP_BLC_ENABLE;
1434
1435	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1436
1437	I915_WRITE(pp_ctrl_reg, pp);
1438	POSTING_READ(pp_ctrl_reg);
1439	intel_dp->last_backlight_off = jiffies;
1440
1441	edp_wait_backlight_off(intel_dp);
1442}
1443
1444/* Disable backlight PP control and backlight PWM. */
1445void intel_edp_backlight_off(struct intel_dp *intel_dp)
1446{
1447	if (!is_edp(intel_dp))
1448		return;
1449
1450	DRM_DEBUG_KMS("\n");
1451
1452	_intel_edp_backlight_off(intel_dp);
1453	intel_panel_disable_backlight(intel_dp->attached_connector);
1454}
1455
1456static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1457{
1458	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1459	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1460	struct drm_device *dev = crtc->dev;
1461	struct drm_i915_private *dev_priv = dev->dev_private;
1462	u32 dpa_ctl;
1463
1464	assert_pipe_disabled(dev_priv,
1465			     to_intel_crtc(crtc)->pipe);
1466
1467	DRM_DEBUG_KMS("\n");
1468	dpa_ctl = I915_READ(DP_A);
1469	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1470	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1471
1472	/* We don't adjust intel_dp->DP while tearing down the link, to
1473	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1474	 * enable bits here to ensure that we don't enable too much. */
1475	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1476	intel_dp->DP |= DP_PLL_ENABLE;
1477	I915_WRITE(DP_A, intel_dp->DP);
1478	POSTING_READ(DP_A);
1479	udelay(200);
1480}
1481
1482static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1483{
1484	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1485	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1486	struct drm_device *dev = crtc->dev;
1487	struct drm_i915_private *dev_priv = dev->dev_private;
1488	u32 dpa_ctl;
1489
1490	assert_pipe_disabled(dev_priv,
1491			     to_intel_crtc(crtc)->pipe);
1492
1493	dpa_ctl = I915_READ(DP_A);
1494	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1495	     "dp pll off, should be on\n");
1496	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1497
1498	/* We can't rely on the value tracked for the DP register in
1499	 * intel_dp->DP because link_down must not change that (otherwise link
1500	 * re-training will fail. */
1501	dpa_ctl &= ~DP_PLL_ENABLE;
1502	I915_WRITE(DP_A, dpa_ctl);
1503	POSTING_READ(DP_A);
1504	udelay(200);
1505}
1506
1507/* If the sink supports it, try to set the power state appropriately */
1508void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1509{
1510	int ret, i;
1511
1512	/* Should have a valid DPCD by this point */
1513	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1514		return;
1515
1516	if (mode != DRM_MODE_DPMS_ON) {
1517		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1518					 DP_SET_POWER_D3);
1519		if (ret != 1)
1520			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1521	} else {
1522		/*
1523		 * When turning on, we need to retry for 1ms to give the sink
1524		 * time to wake up.
1525		 */
1526		for (i = 0; i < 3; i++) {
1527			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1528						 DP_SET_POWER_D0);
1529			if (ret == 1)
1530				break;
1531			msleep(1);
1532		}
1533	}
1534}
1535
1536static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1537				  enum pipe *pipe)
1538{
1539	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1540	enum port port = dp_to_dig_port(intel_dp)->port;
1541	struct drm_device *dev = encoder->base.dev;
1542	struct drm_i915_private *dev_priv = dev->dev_private;
1543	enum intel_display_power_domain power_domain;
1544	u32 tmp;
1545
1546	power_domain = intel_display_port_power_domain(encoder);
1547	if (!intel_display_power_enabled(dev_priv, power_domain))
1548		return false;
1549
1550	tmp = I915_READ(intel_dp->output_reg);
1551
1552	if (!(tmp & DP_PORT_EN))
1553		return false;
1554
1555	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1556		*pipe = PORT_TO_PIPE_CPT(tmp);
1557	} else if (IS_CHERRYVIEW(dev)) {
1558		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1559	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1560		*pipe = PORT_TO_PIPE(tmp);
1561	} else {
1562		u32 trans_sel;
1563		u32 trans_dp;
1564		int i;
1565
1566		switch (intel_dp->output_reg) {
1567		case PCH_DP_B:
1568			trans_sel = TRANS_DP_PORT_SEL_B;
1569			break;
1570		case PCH_DP_C:
1571			trans_sel = TRANS_DP_PORT_SEL_C;
1572			break;
1573		case PCH_DP_D:
1574			trans_sel = TRANS_DP_PORT_SEL_D;
1575			break;
1576		default:
1577			return true;
1578		}
1579
1580		for_each_pipe(i) {
1581			trans_dp = I915_READ(TRANS_DP_CTL(i));
1582			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1583				*pipe = i;
1584				return true;
1585			}
1586		}
1587
1588		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1589			      intel_dp->output_reg);
1590	}
1591
1592	return true;
1593}
1594
1595static void intel_dp_get_config(struct intel_encoder *encoder,
1596				struct intel_crtc_config *pipe_config)
1597{
1598	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1599	u32 tmp, flags = 0;
1600	struct drm_device *dev = encoder->base.dev;
1601	struct drm_i915_private *dev_priv = dev->dev_private;
1602	enum port port = dp_to_dig_port(intel_dp)->port;
1603	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1604	int dotclock;
1605
1606	tmp = I915_READ(intel_dp->output_reg);
1607	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1608		pipe_config->has_audio = true;
1609
1610	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1611		if (tmp & DP_SYNC_HS_HIGH)
1612			flags |= DRM_MODE_FLAG_PHSYNC;
1613		else
1614			flags |= DRM_MODE_FLAG_NHSYNC;
1615
1616		if (tmp & DP_SYNC_VS_HIGH)
1617			flags |= DRM_MODE_FLAG_PVSYNC;
1618		else
1619			flags |= DRM_MODE_FLAG_NVSYNC;
1620	} else {
1621		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1622		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1623			flags |= DRM_MODE_FLAG_PHSYNC;
1624		else
1625			flags |= DRM_MODE_FLAG_NHSYNC;
1626
1627		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1628			flags |= DRM_MODE_FLAG_PVSYNC;
1629		else
1630			flags |= DRM_MODE_FLAG_NVSYNC;
1631	}
1632
1633	pipe_config->adjusted_mode.flags |= flags;
1634
1635	pipe_config->has_dp_encoder = true;
1636
1637	intel_dp_get_m_n(crtc, pipe_config);
1638
1639	if (port == PORT_A) {
1640		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1641			pipe_config->port_clock = 162000;
1642		else
1643			pipe_config->port_clock = 270000;
1644	}
1645
1646	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1647					    &pipe_config->dp_m_n);
1648
1649	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1650		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1651
1652	pipe_config->adjusted_mode.crtc_clock = dotclock;
1653
1654	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1655	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1656		/*
1657		 * This is a big fat ugly hack.
1658		 *
1659		 * Some machines in UEFI boot mode provide us a VBT that has 18
1660		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1661		 * unknown we fail to light up. Yet the same BIOS boots up with
1662		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1663		 * max, not what it tells us to use.
1664		 *
1665		 * Note: This will still be broken if the eDP panel is not lit
1666		 * up by the BIOS, and thus we can't get the mode at module
1667		 * load.
1668		 */
1669		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1670			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1671		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1672	}
1673}
1674
1675static bool is_edp_psr(struct intel_dp *intel_dp)
1676{
1677	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1678}
1679
1680static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1681{
1682	struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684	if (!HAS_PSR(dev))
1685		return false;
1686
1687	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1688}
1689
1690static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1691				    struct edp_vsc_psr *vsc_psr)
1692{
1693	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1694	struct drm_device *dev = dig_port->base.base.dev;
1695	struct drm_i915_private *dev_priv = dev->dev_private;
1696	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1697	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1698	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1699	uint32_t *data = (uint32_t *) vsc_psr;
1700	unsigned int i;
1701
1702	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1703	   the video DIP being updated before program video DIP data buffer
1704	   registers for DIP being updated. */
1705	I915_WRITE(ctl_reg, 0);
1706	POSTING_READ(ctl_reg);
1707
1708	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1709		if (i < sizeof(struct edp_vsc_psr))
1710			I915_WRITE(data_reg + i, *data++);
1711		else
1712			I915_WRITE(data_reg + i, 0);
1713	}
1714
1715	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1716	POSTING_READ(ctl_reg);
1717}
1718
1719static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1720{
1721	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1722	struct drm_i915_private *dev_priv = dev->dev_private;
1723	struct edp_vsc_psr psr_vsc;
1724
1725	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1726	memset(&psr_vsc, 0, sizeof(psr_vsc));
1727	psr_vsc.sdp_header.HB0 = 0;
1728	psr_vsc.sdp_header.HB1 = 0x7;
1729	psr_vsc.sdp_header.HB2 = 0x2;
1730	psr_vsc.sdp_header.HB3 = 0x8;
1731	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1732
1733	/* Avoid continuous PSR exit by masking memup and hpd */
1734	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1735		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1736}
1737
1738static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1739{
1740	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1741	struct drm_device *dev = dig_port->base.base.dev;
1742	struct drm_i915_private *dev_priv = dev->dev_private;
1743	uint32_t aux_clock_divider;
1744	int precharge = 0x3;
1745	int msg_size = 5;       /* Header(4) + Message(1) */
1746	bool only_standby = false;
1747
1748	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1749
1750	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1751		only_standby = true;
1752
1753	/* Enable PSR in sink */
1754	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1755		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1756				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1757	else
1758		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1759				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1760
1761	/* Setup AUX registers */
1762	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1763	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1764	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1765		   DP_AUX_CH_CTL_TIME_OUT_400us |
1766		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1767		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1768		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1769}
1770
1771static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1772{
1773	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1774	struct drm_device *dev = dig_port->base.base.dev;
1775	struct drm_i915_private *dev_priv = dev->dev_private;
1776	uint32_t max_sleep_time = 0x1f;
1777	uint32_t idle_frames = 1;
1778	uint32_t val = 0x0;
1779	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1780	bool only_standby = false;
1781
1782	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1783		only_standby = true;
1784
1785	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1786		val |= EDP_PSR_LINK_STANDBY;
1787		val |= EDP_PSR_TP2_TP3_TIME_0us;
1788		val |= EDP_PSR_TP1_TIME_0us;
1789		val |= EDP_PSR_SKIP_AUX_EXIT;
1790		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1791	} else
1792		val |= EDP_PSR_LINK_DISABLE;
1793
1794	I915_WRITE(EDP_PSR_CTL(dev), val |
1795		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1796		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1797		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1798		   EDP_PSR_ENABLE);
1799}
1800
1801static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1802{
1803	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1804	struct drm_device *dev = dig_port->base.base.dev;
1805	struct drm_i915_private *dev_priv = dev->dev_private;
1806	struct drm_crtc *crtc = dig_port->base.base.crtc;
1807	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1808
1809	lockdep_assert_held(&dev_priv->psr.lock);
1810	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1811	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1812
1813	dev_priv->psr.source_ok = false;
1814
1815	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1816		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1817		return false;
1818	}
1819
1820	if (!i915.enable_psr) {
1821		DRM_DEBUG_KMS("PSR disable by flag\n");
1822		return false;
1823	}
1824
1825	/* Below limitations aren't valid for Broadwell */
1826	if (IS_BROADWELL(dev))
1827		goto out;
1828
1829	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1830	    S3D_ENABLE) {
1831		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1832		return false;
1833	}
1834
1835	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1836		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1837		return false;
1838	}
1839
1840 out:
1841	dev_priv->psr.source_ok = true;
1842	return true;
1843}
1844
1845static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1846{
1847	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1848	struct drm_device *dev = intel_dig_port->base.base.dev;
1849	struct drm_i915_private *dev_priv = dev->dev_private;
1850
1851	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1852	WARN_ON(dev_priv->psr.active);
1853	lockdep_assert_held(&dev_priv->psr.lock);
1854
1855	/* Enable PSR on the panel */
1856	intel_edp_psr_enable_sink(intel_dp);
1857
1858	/* Enable PSR on the host */
1859	intel_edp_psr_enable_source(intel_dp);
1860
1861	dev_priv->psr.active = true;
1862}
1863
1864void intel_edp_psr_enable(struct intel_dp *intel_dp)
1865{
1866	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1867	struct drm_i915_private *dev_priv = dev->dev_private;
1868
1869	if (!HAS_PSR(dev)) {
1870		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1871		return;
1872	}
1873
1874	if (!is_edp_psr(intel_dp)) {
1875		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1876		return;
1877	}
1878
1879	mutex_lock(&dev_priv->psr.lock);
1880	if (dev_priv->psr.enabled) {
1881		DRM_DEBUG_KMS("PSR already in use\n");
1882		mutex_unlock(&dev_priv->psr.lock);
1883		return;
1884	}
1885
1886	dev_priv->psr.busy_frontbuffer_bits = 0;
1887
1888	/* Setup PSR once */
1889	intel_edp_psr_setup(intel_dp);
1890
1891	if (intel_edp_psr_match_conditions(intel_dp))
1892		dev_priv->psr.enabled = intel_dp;
1893	mutex_unlock(&dev_priv->psr.lock);
1894}
1895
1896void intel_edp_psr_disable(struct intel_dp *intel_dp)
1897{
1898	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1899	struct drm_i915_private *dev_priv = dev->dev_private;
1900
1901	mutex_lock(&dev_priv->psr.lock);
1902	if (!dev_priv->psr.enabled) {
1903		mutex_unlock(&dev_priv->psr.lock);
1904		return;
1905	}
1906
1907	if (dev_priv->psr.active) {
1908		I915_WRITE(EDP_PSR_CTL(dev),
1909			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1910
1911		/* Wait till PSR is idle */
1912		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1913			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1914			DRM_ERROR("Timed out waiting for PSR Idle State\n");
1915
1916		dev_priv->psr.active = false;
1917	} else {
1918		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1919	}
1920
1921	dev_priv->psr.enabled = NULL;
1922	mutex_unlock(&dev_priv->psr.lock);
1923
1924	cancel_delayed_work_sync(&dev_priv->psr.work);
1925}
1926
1927static void intel_edp_psr_work(struct work_struct *work)
1928{
1929	struct drm_i915_private *dev_priv =
1930		container_of(work, typeof(*dev_priv), psr.work.work);
1931	struct intel_dp *intel_dp = dev_priv->psr.enabled;
1932
1933	mutex_lock(&dev_priv->psr.lock);
1934	intel_dp = dev_priv->psr.enabled;
1935
1936	if (!intel_dp)
1937		goto unlock;
1938
1939	/*
1940	 * The delayed work can race with an invalidate hence we need to
1941	 * recheck. Since psr_flush first clears this and then reschedules we
1942	 * won't ever miss a flush when bailing out here.
1943	 */
1944	if (dev_priv->psr.busy_frontbuffer_bits)
1945		goto unlock;
1946
1947	intel_edp_psr_do_enable(intel_dp);
1948unlock:
1949	mutex_unlock(&dev_priv->psr.lock);
1950}
1951
1952static void intel_edp_psr_do_exit(struct drm_device *dev)
1953{
1954	struct drm_i915_private *dev_priv = dev->dev_private;
1955
1956	if (dev_priv->psr.active) {
1957		u32 val = I915_READ(EDP_PSR_CTL(dev));
1958
1959		WARN_ON(!(val & EDP_PSR_ENABLE));
1960
1961		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1962
1963		dev_priv->psr.active = false;
1964	}
1965
1966}
1967
1968void intel_edp_psr_invalidate(struct drm_device *dev,
1969			      unsigned frontbuffer_bits)
1970{
1971	struct drm_i915_private *dev_priv = dev->dev_private;
1972	struct drm_crtc *crtc;
1973	enum pipe pipe;
1974
1975	mutex_lock(&dev_priv->psr.lock);
1976	if (!dev_priv->psr.enabled) {
1977		mutex_unlock(&dev_priv->psr.lock);
1978		return;
1979	}
1980
1981	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1982	pipe = to_intel_crtc(crtc)->pipe;
1983
1984	intel_edp_psr_do_exit(dev);
1985
1986	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1987
1988	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1989	mutex_unlock(&dev_priv->psr.lock);
1990}
1991
1992void intel_edp_psr_flush(struct drm_device *dev,
1993			 unsigned frontbuffer_bits)
1994{
1995	struct drm_i915_private *dev_priv = dev->dev_private;
1996	struct drm_crtc *crtc;
1997	enum pipe pipe;
1998
1999	mutex_lock(&dev_priv->psr.lock);
2000	if (!dev_priv->psr.enabled) {
2001		mutex_unlock(&dev_priv->psr.lock);
2002		return;
2003	}
2004
2005	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2006	pipe = to_intel_crtc(crtc)->pipe;
2007	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2008
2009	/*
2010	 * On Haswell sprite plane updates don't result in a psr invalidating
2011	 * signal in the hardware. Which means we need to manually fake this in
2012	 * software for all flushes, not just when we've seen a preceding
2013	 * invalidation through frontbuffer rendering.
2014	 */
2015	if (IS_HASWELL(dev) &&
2016	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2017		intel_edp_psr_do_exit(dev);
2018
2019	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2020		schedule_delayed_work(&dev_priv->psr.work,
2021				      msecs_to_jiffies(100));
2022	mutex_unlock(&dev_priv->psr.lock);
2023}
2024
2025void intel_edp_psr_init(struct drm_device *dev)
2026{
2027	struct drm_i915_private *dev_priv = dev->dev_private;
2028
2029	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2030	mutex_init(&dev_priv->psr.lock);
2031}
2032
2033static void intel_disable_dp(struct intel_encoder *encoder)
2034{
2035	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2036	enum port port = dp_to_dig_port(intel_dp)->port;
2037	struct drm_device *dev = encoder->base.dev;
2038
2039	/* Make sure the panel is off before trying to change the mode. But also
2040	 * ensure that we have vdd while we switch off the panel. */
2041	intel_edp_panel_vdd_on(intel_dp);
2042	intel_edp_backlight_off(intel_dp);
2043	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2044	intel_edp_panel_off(intel_dp);
2045
2046	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2047	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2048		intel_dp_link_down(intel_dp);
2049}
2050
2051static void g4x_post_disable_dp(struct intel_encoder *encoder)
2052{
2053	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2054	enum port port = dp_to_dig_port(intel_dp)->port;
2055
2056	if (port != PORT_A)
2057		return;
2058
2059	intel_dp_link_down(intel_dp);
2060	ironlake_edp_pll_off(intel_dp);
2061}
2062
2063static void vlv_post_disable_dp(struct intel_encoder *encoder)
2064{
2065	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2066
2067	intel_dp_link_down(intel_dp);
2068}
2069
2070static void chv_post_disable_dp(struct intel_encoder *encoder)
2071{
2072	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2073	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2074	struct drm_device *dev = encoder->base.dev;
2075	struct drm_i915_private *dev_priv = dev->dev_private;
2076	struct intel_crtc *intel_crtc =
2077		to_intel_crtc(encoder->base.crtc);
2078	enum dpio_channel ch = vlv_dport_to_channel(dport);
2079	enum pipe pipe = intel_crtc->pipe;
2080	u32 val;
2081
2082	intel_dp_link_down(intel_dp);
2083
2084	mutex_lock(&dev_priv->dpio_lock);
2085
2086	/* Propagate soft reset to data lane reset */
2087	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2088	val |= CHV_PCS_REQ_SOFTRESET_EN;
2089	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2090
2091	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2092	val |= CHV_PCS_REQ_SOFTRESET_EN;
2093	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2094
2095	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2096	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2097	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2098
2099	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2100	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2101	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2102
2103	mutex_unlock(&dev_priv->dpio_lock);
2104}
2105
2106static void intel_enable_dp(struct intel_encoder *encoder)
2107{
2108	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2109	struct drm_device *dev = encoder->base.dev;
2110	struct drm_i915_private *dev_priv = dev->dev_private;
2111	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2112
2113	if (WARN_ON(dp_reg & DP_PORT_EN))
2114		return;
2115
2116	intel_edp_panel_vdd_on(intel_dp);
2117	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2118	intel_dp_start_link_train(intel_dp);
2119	intel_edp_panel_on(intel_dp);
2120	edp_panel_vdd_off(intel_dp, true);
2121	intel_dp_complete_link_train(intel_dp);
2122	intel_dp_stop_link_train(intel_dp);
2123}
2124
2125static void g4x_enable_dp(struct intel_encoder *encoder)
2126{
2127	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2128
2129	intel_enable_dp(encoder);
2130	intel_edp_backlight_on(intel_dp);
2131}
2132
2133static void vlv_enable_dp(struct intel_encoder *encoder)
2134{
2135	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2136
2137	intel_edp_backlight_on(intel_dp);
2138}
2139
2140static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2141{
2142	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2143	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2144
2145	intel_dp_prepare(encoder);
2146
2147	/* Only ilk+ has port A */
2148	if (dport->port == PORT_A) {
2149		ironlake_set_pll_cpu_edp(intel_dp);
2150		ironlake_edp_pll_on(intel_dp);
2151	}
2152}
2153
2154static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2155{
2156	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2157	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2158	struct drm_device *dev = encoder->base.dev;
2159	struct drm_i915_private *dev_priv = dev->dev_private;
2160	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2161	enum dpio_channel port = vlv_dport_to_channel(dport);
2162	int pipe = intel_crtc->pipe;
2163	struct edp_power_seq power_seq;
2164	u32 val;
2165
2166	mutex_lock(&dev_priv->dpio_lock);
2167
2168	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2169	val = 0;
2170	if (pipe)
2171		val |= (1<<21);
2172	else
2173		val &= ~(1<<21);
2174	val |= 0x001000c4;
2175	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2176	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2177	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2178
2179	mutex_unlock(&dev_priv->dpio_lock);
2180
2181	if (is_edp(intel_dp)) {
2182		/* init power sequencer on this pipe and port */
2183		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2184		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2185							      &power_seq);
2186	}
2187
2188	intel_enable_dp(encoder);
2189
2190	vlv_wait_port_ready(dev_priv, dport);
2191}
2192
2193static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2194{
2195	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2196	struct drm_device *dev = encoder->base.dev;
2197	struct drm_i915_private *dev_priv = dev->dev_private;
2198	struct intel_crtc *intel_crtc =
2199		to_intel_crtc(encoder->base.crtc);
2200	enum dpio_channel port = vlv_dport_to_channel(dport);
2201	int pipe = intel_crtc->pipe;
2202
2203	intel_dp_prepare(encoder);
2204
2205	/* Program Tx lane resets to default */
2206	mutex_lock(&dev_priv->dpio_lock);
2207	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2208			 DPIO_PCS_TX_LANE2_RESET |
2209			 DPIO_PCS_TX_LANE1_RESET);
2210	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2211			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2212			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2213			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2214				 DPIO_PCS_CLK_SOFT_RESET);
2215
2216	/* Fix up inter-pair skew failure */
2217	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2218	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2219	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2220	mutex_unlock(&dev_priv->dpio_lock);
2221}
2222
2223static void chv_pre_enable_dp(struct intel_encoder *encoder)
2224{
2225	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2226	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2227	struct drm_device *dev = encoder->base.dev;
2228	struct drm_i915_private *dev_priv = dev->dev_private;
2229	struct edp_power_seq power_seq;
2230	struct intel_crtc *intel_crtc =
2231		to_intel_crtc(encoder->base.crtc);
2232	enum dpio_channel ch = vlv_dport_to_channel(dport);
2233	int pipe = intel_crtc->pipe;
2234	int data, i;
2235	u32 val;
2236
2237	mutex_lock(&dev_priv->dpio_lock);
2238
2239	/* Deassert soft data lane reset*/
2240	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2241	val |= CHV_PCS_REQ_SOFTRESET_EN;
2242	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2243
2244	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2245	val |= CHV_PCS_REQ_SOFTRESET_EN;
2246	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2247
2248	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2249	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2250	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2251
2252	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2253	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2254	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2255
2256	/* Program Tx lane latency optimal setting*/
2257	for (i = 0; i < 4; i++) {
2258		/* Set the latency optimal bit */
2259		data = (i == 1) ? 0x0 : 0x6;
2260		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2261				data << DPIO_FRC_LATENCY_SHFIT);
2262
2263		/* Set the upar bit */
2264		data = (i == 1) ? 0x0 : 0x1;
2265		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2266				data << DPIO_UPAR_SHIFT);
2267	}
2268
2269	/* Data lane stagger programming */
2270	/* FIXME: Fix up value only after power analysis */
2271
2272	mutex_unlock(&dev_priv->dpio_lock);
2273
2274	if (is_edp(intel_dp)) {
2275		/* init power sequencer on this pipe and port */
2276		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2277		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2278							      &power_seq);
2279	}
2280
2281	intel_enable_dp(encoder);
2282
2283	vlv_wait_port_ready(dev_priv, dport);
2284}
2285
2286static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2287{
2288	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2289	struct drm_device *dev = encoder->base.dev;
2290	struct drm_i915_private *dev_priv = dev->dev_private;
2291	struct intel_crtc *intel_crtc =
2292		to_intel_crtc(encoder->base.crtc);
2293	enum dpio_channel ch = vlv_dport_to_channel(dport);
2294	enum pipe pipe = intel_crtc->pipe;
2295	u32 val;
2296
2297	intel_dp_prepare(encoder);
2298
2299	mutex_lock(&dev_priv->dpio_lock);
2300
2301	/* program left/right clock distribution */
2302	if (pipe != PIPE_B) {
2303		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2304		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2305		if (ch == DPIO_CH0)
2306			val |= CHV_BUFLEFTENA1_FORCE;
2307		if (ch == DPIO_CH1)
2308			val |= CHV_BUFRIGHTENA1_FORCE;
2309		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2310	} else {
2311		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2312		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2313		if (ch == DPIO_CH0)
2314			val |= CHV_BUFLEFTENA2_FORCE;
2315		if (ch == DPIO_CH1)
2316			val |= CHV_BUFRIGHTENA2_FORCE;
2317		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2318	}
2319
2320	/* program clock channel usage */
2321	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2322	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2323	if (pipe != PIPE_B)
2324		val &= ~CHV_PCS_USEDCLKCHANNEL;
2325	else
2326		val |= CHV_PCS_USEDCLKCHANNEL;
2327	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2328
2329	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2330	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2331	if (pipe != PIPE_B)
2332		val &= ~CHV_PCS_USEDCLKCHANNEL;
2333	else
2334		val |= CHV_PCS_USEDCLKCHANNEL;
2335	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2336
2337	/*
2338	 * This a a bit weird since generally CL
2339	 * matches the pipe, but here we need to
2340	 * pick the CL based on the port.
2341	 */
2342	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2343	if (pipe != PIPE_B)
2344		val &= ~CHV_CMN_USEDCLKCHANNEL;
2345	else
2346		val |= CHV_CMN_USEDCLKCHANNEL;
2347	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2348
2349	mutex_unlock(&dev_priv->dpio_lock);
2350}
2351
2352/*
2353 * Native read with retry for link status and receiver capability reads for
2354 * cases where the sink may still be asleep.
2355 *
2356 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2357 * supposed to retry 3 times per the spec.
2358 */
2359static ssize_t
2360intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2361			void *buffer, size_t size)
2362{
2363	ssize_t ret;
2364	int i;
2365
2366	for (i = 0; i < 3; i++) {
2367		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2368		if (ret == size)
2369			return ret;
2370		msleep(1);
2371	}
2372
2373	return ret;
2374}
2375
2376/*
2377 * Fetch AUX CH registers 0x202 - 0x207 which contain
2378 * link status information
2379 */
2380static bool
2381intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2382{
2383	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2384				       DP_LANE0_1_STATUS,
2385				       link_status,
2386				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2387}
2388
2389/* These are source-specific values. */
2390static uint8_t
2391intel_dp_voltage_max(struct intel_dp *intel_dp)
2392{
2393	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2394	enum port port = dp_to_dig_port(intel_dp)->port;
2395
2396	if (IS_VALLEYVIEW(dev))
2397		return DP_TRAIN_VOLTAGE_SWING_1200;
2398	else if (IS_GEN7(dev) && port == PORT_A)
2399		return DP_TRAIN_VOLTAGE_SWING_800;
2400	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2401		return DP_TRAIN_VOLTAGE_SWING_1200;
2402	else
2403		return DP_TRAIN_VOLTAGE_SWING_800;
2404}
2405
2406static uint8_t
2407intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2408{
2409	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2410	enum port port = dp_to_dig_port(intel_dp)->port;
2411
2412	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2413		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2414		case DP_TRAIN_VOLTAGE_SWING_400:
2415			return DP_TRAIN_PRE_EMPHASIS_9_5;
2416		case DP_TRAIN_VOLTAGE_SWING_600:
2417			return DP_TRAIN_PRE_EMPHASIS_6;
2418		case DP_TRAIN_VOLTAGE_SWING_800:
2419			return DP_TRAIN_PRE_EMPHASIS_3_5;
2420		case DP_TRAIN_VOLTAGE_SWING_1200:
2421		default:
2422			return DP_TRAIN_PRE_EMPHASIS_0;
2423		}
2424	} else if (IS_VALLEYVIEW(dev)) {
2425		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2426		case DP_TRAIN_VOLTAGE_SWING_400:
2427			return DP_TRAIN_PRE_EMPHASIS_9_5;
2428		case DP_TRAIN_VOLTAGE_SWING_600:
2429			return DP_TRAIN_PRE_EMPHASIS_6;
2430		case DP_TRAIN_VOLTAGE_SWING_800:
2431			return DP_TRAIN_PRE_EMPHASIS_3_5;
2432		case DP_TRAIN_VOLTAGE_SWING_1200:
2433		default:
2434			return DP_TRAIN_PRE_EMPHASIS_0;
2435		}
2436	} else if (IS_GEN7(dev) && port == PORT_A) {
2437		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2438		case DP_TRAIN_VOLTAGE_SWING_400:
2439			return DP_TRAIN_PRE_EMPHASIS_6;
2440		case DP_TRAIN_VOLTAGE_SWING_600:
2441		case DP_TRAIN_VOLTAGE_SWING_800:
2442			return DP_TRAIN_PRE_EMPHASIS_3_5;
2443		default:
2444			return DP_TRAIN_PRE_EMPHASIS_0;
2445		}
2446	} else {
2447		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2448		case DP_TRAIN_VOLTAGE_SWING_400:
2449			return DP_TRAIN_PRE_EMPHASIS_6;
2450		case DP_TRAIN_VOLTAGE_SWING_600:
2451			return DP_TRAIN_PRE_EMPHASIS_6;
2452		case DP_TRAIN_VOLTAGE_SWING_800:
2453			return DP_TRAIN_PRE_EMPHASIS_3_5;
2454		case DP_TRAIN_VOLTAGE_SWING_1200:
2455		default:
2456			return DP_TRAIN_PRE_EMPHASIS_0;
2457		}
2458	}
2459}
2460
2461static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2462{
2463	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2464	struct drm_i915_private *dev_priv = dev->dev_private;
2465	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2466	struct intel_crtc *intel_crtc =
2467		to_intel_crtc(dport->base.base.crtc);
2468	unsigned long demph_reg_value, preemph_reg_value,
2469		uniqtranscale_reg_value;
2470	uint8_t train_set = intel_dp->train_set[0];
2471	enum dpio_channel port = vlv_dport_to_channel(dport);
2472	int pipe = intel_crtc->pipe;
2473
2474	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2475	case DP_TRAIN_PRE_EMPHASIS_0:
2476		preemph_reg_value = 0x0004000;
2477		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2478		case DP_TRAIN_VOLTAGE_SWING_400:
2479			demph_reg_value = 0x2B405555;
2480			uniqtranscale_reg_value = 0x552AB83A;
2481			break;
2482		case DP_TRAIN_VOLTAGE_SWING_600:
2483			demph_reg_value = 0x2B404040;
2484			uniqtranscale_reg_value = 0x5548B83A;
2485			break;
2486		case DP_TRAIN_VOLTAGE_SWING_800:
2487			demph_reg_value = 0x2B245555;
2488			uniqtranscale_reg_value = 0x5560B83A;
2489			break;
2490		case DP_TRAIN_VOLTAGE_SWING_1200:
2491			demph_reg_value = 0x2B405555;
2492			uniqtranscale_reg_value = 0x5598DA3A;
2493			break;
2494		default:
2495			return 0;
2496		}
2497		break;
2498	case DP_TRAIN_PRE_EMPHASIS_3_5:
2499		preemph_reg_value = 0x0002000;
2500		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2501		case DP_TRAIN_VOLTAGE_SWING_400:
2502			demph_reg_value = 0x2B404040;
2503			uniqtranscale_reg_value = 0x5552B83A;
2504			break;
2505		case DP_TRAIN_VOLTAGE_SWING_600:
2506			demph_reg_value = 0x2B404848;
2507			uniqtranscale_reg_value = 0x5580B83A;
2508			break;
2509		case DP_TRAIN_VOLTAGE_SWING_800:
2510			demph_reg_value = 0x2B404040;
2511			uniqtranscale_reg_value = 0x55ADDA3A;
2512			break;
2513		default:
2514			return 0;
2515		}
2516		break;
2517	case DP_TRAIN_PRE_EMPHASIS_6:
2518		preemph_reg_value = 0x0000000;
2519		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2520		case DP_TRAIN_VOLTAGE_SWING_400:
2521			demph_reg_value = 0x2B305555;
2522			uniqtranscale_reg_value = 0x5570B83A;
2523			break;
2524		case DP_TRAIN_VOLTAGE_SWING_600:
2525			demph_reg_value = 0x2B2B4040;
2526			uniqtranscale_reg_value = 0x55ADDA3A;
2527			break;
2528		default:
2529			return 0;
2530		}
2531		break;
2532	case DP_TRAIN_PRE_EMPHASIS_9_5:
2533		preemph_reg_value = 0x0006000;
2534		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2535		case DP_TRAIN_VOLTAGE_SWING_400:
2536			demph_reg_value = 0x1B405555;
2537			uniqtranscale_reg_value = 0x55ADDA3A;
2538			break;
2539		default:
2540			return 0;
2541		}
2542		break;
2543	default:
2544		return 0;
2545	}
2546
2547	mutex_lock(&dev_priv->dpio_lock);
2548	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2549	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2550	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2551			 uniqtranscale_reg_value);
2552	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2553	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2554	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2555	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2556	mutex_unlock(&dev_priv->dpio_lock);
2557
2558	return 0;
2559}
2560
2561static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2562{
2563	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2564	struct drm_i915_private *dev_priv = dev->dev_private;
2565	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2566	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2567	u32 deemph_reg_value, margin_reg_value, val;
2568	uint8_t train_set = intel_dp->train_set[0];
2569	enum dpio_channel ch = vlv_dport_to_channel(dport);
2570	enum pipe pipe = intel_crtc->pipe;
2571	int i;
2572
2573	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2574	case DP_TRAIN_PRE_EMPHASIS_0:
2575		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2576		case DP_TRAIN_VOLTAGE_SWING_400:
2577			deemph_reg_value = 128;
2578			margin_reg_value = 52;
2579			break;
2580		case DP_TRAIN_VOLTAGE_SWING_600:
2581			deemph_reg_value = 128;
2582			margin_reg_value = 77;
2583			break;
2584		case DP_TRAIN_VOLTAGE_SWING_800:
2585			deemph_reg_value = 128;
2586			margin_reg_value = 102;
2587			break;
2588		case DP_TRAIN_VOLTAGE_SWING_1200:
2589			deemph_reg_value = 128;
2590			margin_reg_value = 154;
2591			/* FIXME extra to set for 1200 */
2592			break;
2593		default:
2594			return 0;
2595		}
2596		break;
2597	case DP_TRAIN_PRE_EMPHASIS_3_5:
2598		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2599		case DP_TRAIN_VOLTAGE_SWING_400:
2600			deemph_reg_value = 85;
2601			margin_reg_value = 78;
2602			break;
2603		case DP_TRAIN_VOLTAGE_SWING_600:
2604			deemph_reg_value = 85;
2605			margin_reg_value = 116;
2606			break;
2607		case DP_TRAIN_VOLTAGE_SWING_800:
2608			deemph_reg_value = 85;
2609			margin_reg_value = 154;
2610			break;
2611		default:
2612			return 0;
2613		}
2614		break;
2615	case DP_TRAIN_PRE_EMPHASIS_6:
2616		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2617		case DP_TRAIN_VOLTAGE_SWING_400:
2618			deemph_reg_value = 64;
2619			margin_reg_value = 104;
2620			break;
2621		case DP_TRAIN_VOLTAGE_SWING_600:
2622			deemph_reg_value = 64;
2623			margin_reg_value = 154;
2624			break;
2625		default:
2626			return 0;
2627		}
2628		break;
2629	case DP_TRAIN_PRE_EMPHASIS_9_5:
2630		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2631		case DP_TRAIN_VOLTAGE_SWING_400:
2632			deemph_reg_value = 43;
2633			margin_reg_value = 154;
2634			break;
2635		default:
2636			return 0;
2637		}
2638		break;
2639	default:
2640		return 0;
2641	}
2642
2643	mutex_lock(&dev_priv->dpio_lock);
2644
2645	/* Clear calc init */
2646	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2647	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2648	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2649
2650	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2651	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2652	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2653
2654	/* Program swing deemph */
2655	for (i = 0; i < 4; i++) {
2656		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2657		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2658		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2659		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2660	}
2661
2662	/* Program swing margin */
2663	for (i = 0; i < 4; i++) {
2664		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2665		val &= ~DPIO_SWING_MARGIN000_MASK;
2666		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2667		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2668	}
2669
2670	/* Disable unique transition scale */
2671	for (i = 0; i < 4; i++) {
2672		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2673		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2674		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2675	}
2676
2677	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2678			== DP_TRAIN_PRE_EMPHASIS_0) &&
2679		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2680			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2681
2682		/*
2683		 * The document said it needs to set bit 27 for ch0 and bit 26
2684		 * for ch1. Might be a typo in the doc.
2685		 * For now, for this unique transition scale selection, set bit
2686		 * 27 for ch0 and ch1.
2687		 */
2688		for (i = 0; i < 4; i++) {
2689			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2690			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2691			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2692		}
2693
2694		for (i = 0; i < 4; i++) {
2695			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2696			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2697			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2698			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2699		}
2700	}
2701
2702	/* Start swing calculation */
2703	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2704	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2705	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2706
2707	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2708	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2709	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2710
2711	/* LRC Bypass */
2712	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2713	val |= DPIO_LRC_BYPASS;
2714	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2715
2716	mutex_unlock(&dev_priv->dpio_lock);
2717
2718	return 0;
2719}
2720
2721static void
2722intel_get_adjust_train(struct intel_dp *intel_dp,
2723		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2724{
2725	uint8_t v = 0;
2726	uint8_t p = 0;
2727	int lane;
2728	uint8_t voltage_max;
2729	uint8_t preemph_max;
2730
2731	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2732		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2733		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2734
2735		if (this_v > v)
2736			v = this_v;
2737		if (this_p > p)
2738			p = this_p;
2739	}
2740
2741	voltage_max = intel_dp_voltage_max(intel_dp);
2742	if (v >= voltage_max)
2743		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2744
2745	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2746	if (p >= preemph_max)
2747		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2748
2749	for (lane = 0; lane < 4; lane++)
2750		intel_dp->train_set[lane] = v | p;
2751}
2752
2753static uint32_t
2754intel_gen4_signal_levels(uint8_t train_set)
2755{
2756	uint32_t	signal_levels = 0;
2757
2758	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2759	case DP_TRAIN_VOLTAGE_SWING_400:
2760	default:
2761		signal_levels |= DP_VOLTAGE_0_4;
2762		break;
2763	case DP_TRAIN_VOLTAGE_SWING_600:
2764		signal_levels |= DP_VOLTAGE_0_6;
2765		break;
2766	case DP_TRAIN_VOLTAGE_SWING_800:
2767		signal_levels |= DP_VOLTAGE_0_8;
2768		break;
2769	case DP_TRAIN_VOLTAGE_SWING_1200:
2770		signal_levels |= DP_VOLTAGE_1_2;
2771		break;
2772	}
2773	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2774	case DP_TRAIN_PRE_EMPHASIS_0:
2775	default:
2776		signal_levels |= DP_PRE_EMPHASIS_0;
2777		break;
2778	case DP_TRAIN_PRE_EMPHASIS_3_5:
2779		signal_levels |= DP_PRE_EMPHASIS_3_5;
2780		break;
2781	case DP_TRAIN_PRE_EMPHASIS_6:
2782		signal_levels |= DP_PRE_EMPHASIS_6;
2783		break;
2784	case DP_TRAIN_PRE_EMPHASIS_9_5:
2785		signal_levels |= DP_PRE_EMPHASIS_9_5;
2786		break;
2787	}
2788	return signal_levels;
2789}
2790
2791/* Gen6's DP voltage swing and pre-emphasis control */
2792static uint32_t
2793intel_gen6_edp_signal_levels(uint8_t train_set)
2794{
2795	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2796					 DP_TRAIN_PRE_EMPHASIS_MASK);
2797	switch (signal_levels) {
2798	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2799	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2800		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2801	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2802		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2803	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2804	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2805		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2806	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2807	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2808		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2809	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2810	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2811		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2812	default:
2813		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2814			      "0x%x\n", signal_levels);
2815		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2816	}
2817}
2818
2819/* Gen7's DP voltage swing and pre-emphasis control */
2820static uint32_t
2821intel_gen7_edp_signal_levels(uint8_t train_set)
2822{
2823	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2824					 DP_TRAIN_PRE_EMPHASIS_MASK);
2825	switch (signal_levels) {
2826	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2827		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2828	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2829		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2830	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2831		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2832
2833	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2834		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2835	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2836		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2837
2838	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2839		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2840	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2841		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2842
2843	default:
2844		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2845			      "0x%x\n", signal_levels);
2846		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2847	}
2848}
2849
2850/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2851static uint32_t
2852intel_hsw_signal_levels(uint8_t train_set)
2853{
2854	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2855					 DP_TRAIN_PRE_EMPHASIS_MASK);
2856	switch (signal_levels) {
2857	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2858		return DDI_BUF_EMP_400MV_0DB_HSW;
2859	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2860		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2861	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2862		return DDI_BUF_EMP_400MV_6DB_HSW;
2863	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2864		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2865
2866	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2867		return DDI_BUF_EMP_600MV_0DB_HSW;
2868	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2869		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2870	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2871		return DDI_BUF_EMP_600MV_6DB_HSW;
2872
2873	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2874		return DDI_BUF_EMP_800MV_0DB_HSW;
2875	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2876		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2877	default:
2878		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2879			      "0x%x\n", signal_levels);
2880		return DDI_BUF_EMP_400MV_0DB_HSW;
2881	}
2882}
2883
2884/* Properly updates "DP" with the correct signal levels. */
2885static void
2886intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2887{
2888	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2889	enum port port = intel_dig_port->port;
2890	struct drm_device *dev = intel_dig_port->base.base.dev;
2891	uint32_t signal_levels, mask;
2892	uint8_t train_set = intel_dp->train_set[0];
2893
2894	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2895		signal_levels = intel_hsw_signal_levels(train_set);
2896		mask = DDI_BUF_EMP_MASK;
2897	} else if (IS_CHERRYVIEW(dev)) {
2898		signal_levels = intel_chv_signal_levels(intel_dp);
2899		mask = 0;
2900	} else if (IS_VALLEYVIEW(dev)) {
2901		signal_levels = intel_vlv_signal_levels(intel_dp);
2902		mask = 0;
2903	} else if (IS_GEN7(dev) && port == PORT_A) {
2904		signal_levels = intel_gen7_edp_signal_levels(train_set);
2905		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2906	} else if (IS_GEN6(dev) && port == PORT_A) {
2907		signal_levels = intel_gen6_edp_signal_levels(train_set);
2908		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2909	} else {
2910		signal_levels = intel_gen4_signal_levels(train_set);
2911		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2912	}
2913
2914	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2915
2916	*DP = (*DP & ~mask) | signal_levels;
2917}
2918
2919static bool
2920intel_dp_set_link_train(struct intel_dp *intel_dp,
2921			uint32_t *DP,
2922			uint8_t dp_train_pat)
2923{
2924	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2925	struct drm_device *dev = intel_dig_port->base.base.dev;
2926	struct drm_i915_private *dev_priv = dev->dev_private;
2927	enum port port = intel_dig_port->port;
2928	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2929	int ret, len;
2930
2931	if (HAS_DDI(dev)) {
2932		uint32_t temp = I915_READ(DP_TP_CTL(port));
2933
2934		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2935			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2936		else
2937			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2938
2939		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2940		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2941		case DP_TRAINING_PATTERN_DISABLE:
2942			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2943
2944			break;
2945		case DP_TRAINING_PATTERN_1:
2946			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2947			break;
2948		case DP_TRAINING_PATTERN_2:
2949			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2950			break;
2951		case DP_TRAINING_PATTERN_3:
2952			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2953			break;
2954		}
2955		I915_WRITE(DP_TP_CTL(port), temp);
2956
2957	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2958		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2959
2960		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2961		case DP_TRAINING_PATTERN_DISABLE:
2962			*DP |= DP_LINK_TRAIN_OFF_CPT;
2963			break;
2964		case DP_TRAINING_PATTERN_1:
2965			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2966			break;
2967		case DP_TRAINING_PATTERN_2:
2968			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2969			break;
2970		case DP_TRAINING_PATTERN_3:
2971			DRM_ERROR("DP training pattern 3 not supported\n");
2972			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2973			break;
2974		}
2975
2976	} else {
2977		if (IS_CHERRYVIEW(dev))
2978			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
2979		else
2980			*DP &= ~DP_LINK_TRAIN_MASK;
2981
2982		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2983		case DP_TRAINING_PATTERN_DISABLE:
2984			*DP |= DP_LINK_TRAIN_OFF;
2985			break;
2986		case DP_TRAINING_PATTERN_1:
2987			*DP |= DP_LINK_TRAIN_PAT_1;
2988			break;
2989		case DP_TRAINING_PATTERN_2:
2990			*DP |= DP_LINK_TRAIN_PAT_2;
2991			break;
2992		case DP_TRAINING_PATTERN_3:
2993			if (IS_CHERRYVIEW(dev)) {
2994				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
2995			} else {
2996				DRM_ERROR("DP training pattern 3 not supported\n");
2997				*DP |= DP_LINK_TRAIN_PAT_2;
2998			}
2999			break;
3000		}
3001	}
3002
3003	I915_WRITE(intel_dp->output_reg, *DP);
3004	POSTING_READ(intel_dp->output_reg);
3005
3006	buf[0] = dp_train_pat;
3007	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3008	    DP_TRAINING_PATTERN_DISABLE) {
3009		/* don't write DP_TRAINING_LANEx_SET on disable */
3010		len = 1;
3011	} else {
3012		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3013		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3014		len = intel_dp->lane_count + 1;
3015	}
3016
3017	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3018				buf, len);
3019
3020	return ret == len;
3021}
3022
3023static bool
3024intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3025			uint8_t dp_train_pat)
3026{
3027	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3028	intel_dp_set_signal_levels(intel_dp, DP);
3029	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3030}
3031
3032static bool
3033intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3034			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
3035{
3036	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3037	struct drm_device *dev = intel_dig_port->base.base.dev;
3038	struct drm_i915_private *dev_priv = dev->dev_private;
3039	int ret;
3040
3041	intel_get_adjust_train(intel_dp, link_status);
3042	intel_dp_set_signal_levels(intel_dp, DP);
3043
3044	I915_WRITE(intel_dp->output_reg, *DP);
3045	POSTING_READ(intel_dp->output_reg);
3046
3047	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3048				intel_dp->train_set, intel_dp->lane_count);
3049
3050	return ret == intel_dp->lane_count;
3051}
3052
3053static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3054{
3055	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3056	struct drm_device *dev = intel_dig_port->base.base.dev;
3057	struct drm_i915_private *dev_priv = dev->dev_private;
3058	enum port port = intel_dig_port->port;
3059	uint32_t val;
3060
3061	if (!HAS_DDI(dev))
3062		return;
3063
3064	val = I915_READ(DP_TP_CTL(port));
3065	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3066	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3067	I915_WRITE(DP_TP_CTL(port), val);
3068
3069	/*
3070	 * On PORT_A we can have only eDP in SST mode. There the only reason
3071	 * we need to set idle transmission mode is to work around a HW issue
3072	 * where we enable the pipe while not in idle link-training mode.
3073	 * In this case there is requirement to wait for a minimum number of
3074	 * idle patterns to be sent.
3075	 */
3076	if (port == PORT_A)
3077		return;
3078
3079	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3080		     1))
3081		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3082}
3083
3084/* Enable corresponding port and start training pattern 1 */
3085void
3086intel_dp_start_link_train(struct intel_dp *intel_dp)
3087{
3088	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3089	struct drm_device *dev = encoder->dev;
3090	int i;
3091	uint8_t voltage;
3092	int voltage_tries, loop_tries;
3093	uint32_t DP = intel_dp->DP;
3094	uint8_t link_config[2];
3095
3096	if (HAS_DDI(dev))
3097		intel_ddi_prepare_link_retrain(encoder);
3098
3099	/* Write the link configuration data */
3100	link_config[0] = intel_dp->link_bw;
3101	link_config[1] = intel_dp->lane_count;
3102	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3103		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3104	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3105
3106	link_config[0] = 0;
3107	link_config[1] = DP_SET_ANSI_8B10B;
3108	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3109
3110	DP |= DP_PORT_EN;
3111
3112	/* clock recovery */
3113	if (!intel_dp_reset_link_train(intel_dp, &DP,
3114				       DP_TRAINING_PATTERN_1 |
3115				       DP_LINK_SCRAMBLING_DISABLE)) {
3116		DRM_ERROR("failed to enable link training\n");
3117		return;
3118	}
3119
3120	voltage = 0xff;
3121	voltage_tries = 0;
3122	loop_tries = 0;
3123	for (;;) {
3124		uint8_t link_status[DP_LINK_STATUS_SIZE];
3125
3126		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3127		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3128			DRM_ERROR("failed to get link status\n");
3129			break;
3130		}
3131
3132		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3133			DRM_DEBUG_KMS("clock recovery OK\n");
3134			break;
3135		}
3136
3137		/* Check to see if we've tried the max voltage */
3138		for (i = 0; i < intel_dp->lane_count; i++)
3139			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3140				break;
3141		if (i == intel_dp->lane_count) {
3142			++loop_tries;
3143			if (loop_tries == 5) {
3144				DRM_ERROR("too many full retries, give up\n");
3145				break;
3146			}
3147			intel_dp_reset_link_train(intel_dp, &DP,
3148						  DP_TRAINING_PATTERN_1 |
3149						  DP_LINK_SCRAMBLING_DISABLE);
3150			voltage_tries = 0;
3151			continue;
3152		}
3153
3154		/* Check to see if we've tried the same voltage 5 times */
3155		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3156			++voltage_tries;
3157			if (voltage_tries == 5) {
3158				DRM_ERROR("too many voltage retries, give up\n");
3159				break;
3160			}
3161		} else
3162			voltage_tries = 0;
3163		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3164
3165		/* Update training set as requested by target */
3166		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3167			DRM_ERROR("failed to update link training\n");
3168			break;
3169		}
3170	}
3171
3172	intel_dp->DP = DP;
3173}
3174
3175void
3176intel_dp_complete_link_train(struct intel_dp *intel_dp)
3177{
3178	bool channel_eq = false;
3179	int tries, cr_tries;
3180	uint32_t DP = intel_dp->DP;
3181	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3182
3183	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3184	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3185		training_pattern = DP_TRAINING_PATTERN_3;
3186
3187	/* channel equalization */
3188	if (!intel_dp_set_link_train(intel_dp, &DP,
3189				     training_pattern |
3190				     DP_LINK_SCRAMBLING_DISABLE)) {
3191		DRM_ERROR("failed to start channel equalization\n");
3192		return;
3193	}
3194
3195	tries = 0;
3196	cr_tries = 0;
3197	channel_eq = false;
3198	for (;;) {
3199		uint8_t link_status[DP_LINK_STATUS_SIZE];
3200
3201		if (cr_tries > 5) {
3202			DRM_ERROR("failed to train DP, aborting\n");
3203			break;
3204		}
3205
3206		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3207		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3208			DRM_ERROR("failed to get link status\n");
3209			break;
3210		}
3211
3212		/* Make sure clock is still ok */
3213		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3214			intel_dp_start_link_train(intel_dp);
3215			intel_dp_set_link_train(intel_dp, &DP,
3216						training_pattern |
3217						DP_LINK_SCRAMBLING_DISABLE);
3218			cr_tries++;
3219			continue;
3220		}
3221
3222		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3223			channel_eq = true;
3224			break;
3225		}
3226
3227		/* Try 5 times, then try clock recovery if that fails */
3228		if (tries > 5) {
3229			intel_dp_link_down(intel_dp);
3230			intel_dp_start_link_train(intel_dp);
3231			intel_dp_set_link_train(intel_dp, &DP,
3232						training_pattern |
3233						DP_LINK_SCRAMBLING_DISABLE);
3234			tries = 0;
3235			cr_tries++;
3236			continue;
3237		}
3238
3239		/* Update training set as requested by target */
3240		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3241			DRM_ERROR("failed to update link training\n");
3242			break;
3243		}
3244		++tries;
3245	}
3246
3247	intel_dp_set_idle_link_train(intel_dp);
3248
3249	intel_dp->DP = DP;
3250
3251	if (channel_eq)
3252		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3253
3254}
3255
3256void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3257{
3258	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3259				DP_TRAINING_PATTERN_DISABLE);
3260}
3261
3262static void
3263intel_dp_link_down(struct intel_dp *intel_dp)
3264{
3265	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3266	enum port port = intel_dig_port->port;
3267	struct drm_device *dev = intel_dig_port->base.base.dev;
3268	struct drm_i915_private *dev_priv = dev->dev_private;
3269	struct intel_crtc *intel_crtc =
3270		to_intel_crtc(intel_dig_port->base.base.crtc);
3271	uint32_t DP = intel_dp->DP;
3272
3273	if (WARN_ON(HAS_DDI(dev)))
3274		return;
3275
3276	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3277		return;
3278
3279	DRM_DEBUG_KMS("\n");
3280
3281	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3282		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3283		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3284	} else {
3285		if (IS_CHERRYVIEW(dev))
3286			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3287		else
3288			DP &= ~DP_LINK_TRAIN_MASK;
3289		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3290	}
3291	POSTING_READ(intel_dp->output_reg);
3292
3293	if (HAS_PCH_IBX(dev) &&
3294	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3295		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3296
3297		/* Hardware workaround: leaving our transcoder select
3298		 * set to transcoder B while it's off will prevent the
3299		 * corresponding HDMI output on transcoder A.
3300		 *
3301		 * Combine this with another hardware workaround:
3302		 * transcoder select bit can only be cleared while the
3303		 * port is enabled.
3304		 */
3305		DP &= ~DP_PIPEB_SELECT;
3306		I915_WRITE(intel_dp->output_reg, DP);
3307
3308		/* Changes to enable or select take place the vblank
3309		 * after being written.
3310		 */
3311		if (WARN_ON(crtc == NULL)) {
3312			/* We should never try to disable a port without a crtc
3313			 * attached. For paranoia keep the code around for a
3314			 * bit. */
3315			POSTING_READ(intel_dp->output_reg);
3316			msleep(50);
3317		} else
3318			intel_wait_for_vblank(dev, intel_crtc->pipe);
3319	}
3320
3321	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3322	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3323	POSTING_READ(intel_dp->output_reg);
3324	msleep(intel_dp->panel_power_down_delay);
3325}
3326
3327static bool
3328intel_dp_get_dpcd(struct intel_dp *intel_dp)
3329{
3330	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3331	struct drm_device *dev = dig_port->base.base.dev;
3332	struct drm_i915_private *dev_priv = dev->dev_private;
3333
3334	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3335
3336	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3337				    sizeof(intel_dp->dpcd)) < 0)
3338		return false; /* aux transfer failed */
3339
3340	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3341			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3342	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3343
3344	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3345		return false; /* DPCD not present */
3346
3347	/* Check if the panel supports PSR */
3348	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3349	if (is_edp(intel_dp)) {
3350		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3351					intel_dp->psr_dpcd,
3352					sizeof(intel_dp->psr_dpcd));
3353		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3354			dev_priv->psr.sink_support = true;
3355			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3356		}
3357	}
3358
3359	/* Training Pattern 3 support */
3360	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3361	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3362		intel_dp->use_tps3 = true;
3363		DRM_DEBUG_KMS("Displayport TPS3 supported");
3364	} else
3365		intel_dp->use_tps3 = false;
3366
3367	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3368	      DP_DWN_STRM_PORT_PRESENT))
3369		return true; /* native DP sink */
3370
3371	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3372		return true; /* no per-port downstream info */
3373
3374	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3375				    intel_dp->downstream_ports,
3376				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3377		return false; /* downstream port status fetch failed */
3378
3379	return true;
3380}
3381
3382static void
3383intel_dp_probe_oui(struct intel_dp *intel_dp)
3384{
3385	u8 buf[3];
3386
3387	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3388		return;
3389
3390	intel_edp_panel_vdd_on(intel_dp);
3391
3392	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3393		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3394			      buf[0], buf[1], buf[2]);
3395
3396	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3397		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3398			      buf[0], buf[1], buf[2]);
3399
3400	edp_panel_vdd_off(intel_dp, false);
3401}
3402
3403static bool
3404intel_dp_probe_mst(struct intel_dp *intel_dp)
3405{
3406	u8 buf[1];
3407
3408	if (!intel_dp->can_mst)
3409		return false;
3410
3411	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3412		return false;
3413
3414	_edp_panel_vdd_on(intel_dp);
3415	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3416		if (buf[0] & DP_MST_CAP) {
3417			DRM_DEBUG_KMS("Sink is MST capable\n");
3418			intel_dp->is_mst = true;
3419		} else {
3420			DRM_DEBUG_KMS("Sink is not MST capable\n");
3421			intel_dp->is_mst = false;
3422		}
3423	}
3424	edp_panel_vdd_off(intel_dp, false);
3425
3426	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3427	return intel_dp->is_mst;
3428}
3429
3430int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3431{
3432	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3433	struct drm_device *dev = intel_dig_port->base.base.dev;
3434	struct intel_crtc *intel_crtc =
3435		to_intel_crtc(intel_dig_port->base.base.crtc);
3436	u8 buf[1];
3437
3438	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3439		return -EAGAIN;
3440
3441	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3442		return -ENOTTY;
3443
3444	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3445			       DP_TEST_SINK_START) < 0)
3446		return -EAGAIN;
3447
3448	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3449	intel_wait_for_vblank(dev, intel_crtc->pipe);
3450	intel_wait_for_vblank(dev, intel_crtc->pipe);
3451
3452	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3453		return -EAGAIN;
3454
3455	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3456	return 0;
3457}
3458
3459static bool
3460intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3461{
3462	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3463				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3464				       sink_irq_vector, 1) == 1;
3465}
3466
3467static bool
3468intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3469{
3470	int ret;
3471
3472	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3473					     DP_SINK_COUNT_ESI,
3474					     sink_irq_vector, 14);
3475	if (ret != 14)
3476		return false;
3477
3478	return true;
3479}
3480
3481static void
3482intel_dp_handle_test_request(struct intel_dp *intel_dp)
3483{
3484	/* NAK by default */
3485	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3486}
3487
3488static int
3489intel_dp_check_mst_status(struct intel_dp *intel_dp)
3490{
3491	bool bret;
3492
3493	if (intel_dp->is_mst) {
3494		u8 esi[16] = { 0 };
3495		int ret = 0;
3496		int retry;
3497		bool handled;
3498		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3499go_again:
3500		if (bret == true) {
3501
3502			/* check link status - esi[10] = 0x200c */
3503			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3504				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3505				intel_dp_start_link_train(intel_dp);
3506				intel_dp_complete_link_train(intel_dp);
3507				intel_dp_stop_link_train(intel_dp);
3508			}
3509
3510			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3511			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3512
3513			if (handled) {
3514				for (retry = 0; retry < 3; retry++) {
3515					int wret;
3516					wret = drm_dp_dpcd_write(&intel_dp->aux,
3517								 DP_SINK_COUNT_ESI+1,
3518								 &esi[1], 3);
3519					if (wret == 3) {
3520						break;
3521					}
3522				}
3523
3524				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3525				if (bret == true) {
3526					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3527					goto go_again;
3528				}
3529			} else
3530				ret = 0;
3531
3532			return ret;
3533		} else {
3534			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3535			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3536			intel_dp->is_mst = false;
3537			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3538			/* send a hotplug event */
3539			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3540		}
3541	}
3542	return -EINVAL;
3543}
3544
3545/*
3546 * According to DP spec
3547 * 5.1.2:
3548 *  1. Read DPCD
3549 *  2. Configure link according to Receiver Capabilities
3550 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3551 *  4. Check link status on receipt of hot-plug interrupt
3552 */
3553void
3554intel_dp_check_link_status(struct intel_dp *intel_dp)
3555{
3556	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3557	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3558	u8 sink_irq_vector;
3559	u8 link_status[DP_LINK_STATUS_SIZE];
3560
3561	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3562
3563	if (!intel_encoder->connectors_active)
3564		return;
3565
3566	if (WARN_ON(!intel_encoder->base.crtc))
3567		return;
3568
3569	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3570		return;
3571
3572	/* Try to read receiver status if the link appears to be up */
3573	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3574		return;
3575	}
3576
3577	/* Now read the DPCD to see if it's actually running */
3578	if (!intel_dp_get_dpcd(intel_dp)) {
3579		return;
3580	}
3581
3582	/* Try to read the source of the interrupt */
3583	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3584	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3585		/* Clear interrupt source */
3586		drm_dp_dpcd_writeb(&intel_dp->aux,
3587				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3588				   sink_irq_vector);
3589
3590		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3591			intel_dp_handle_test_request(intel_dp);
3592		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3593			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3594	}
3595
3596	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3597		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3598			      intel_encoder->base.name);
3599		intel_dp_start_link_train(intel_dp);
3600		intel_dp_complete_link_train(intel_dp);
3601		intel_dp_stop_link_train(intel_dp);
3602	}
3603}
3604
3605/* XXX this is probably wrong for multiple downstream ports */
3606static enum drm_connector_status
3607intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3608{
3609	uint8_t *dpcd = intel_dp->dpcd;
3610	uint8_t type;
3611
3612	if (!intel_dp_get_dpcd(intel_dp))
3613		return connector_status_disconnected;
3614
3615	/* if there's no downstream port, we're done */
3616	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3617		return connector_status_connected;
3618
3619	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3620	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3621	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3622		uint8_t reg;
3623
3624		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3625					    &reg, 1) < 0)
3626			return connector_status_unknown;
3627
3628		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3629					      : connector_status_disconnected;
3630	}
3631
3632	/* If no HPD, poke DDC gently */
3633	if (drm_probe_ddc(&intel_dp->aux.ddc))
3634		return connector_status_connected;
3635
3636	/* Well we tried, say unknown for unreliable port types */
3637	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3638		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3639		if (type == DP_DS_PORT_TYPE_VGA ||
3640		    type == DP_DS_PORT_TYPE_NON_EDID)
3641			return connector_status_unknown;
3642	} else {
3643		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3644			DP_DWN_STRM_PORT_TYPE_MASK;
3645		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3646		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3647			return connector_status_unknown;
3648	}
3649
3650	/* Anything else is out of spec, warn and ignore */
3651	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3652	return connector_status_disconnected;
3653}
3654
3655static enum drm_connector_status
3656ironlake_dp_detect(struct intel_dp *intel_dp)
3657{
3658	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3659	struct drm_i915_private *dev_priv = dev->dev_private;
3660	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3661	enum drm_connector_status status;
3662
3663	/* Can't disconnect eDP, but you can close the lid... */
3664	if (is_edp(intel_dp)) {
3665		status = intel_panel_detect(dev);
3666		if (status == connector_status_unknown)
3667			status = connector_status_connected;
3668		return status;
3669	}
3670
3671	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3672		return connector_status_disconnected;
3673
3674	return intel_dp_detect_dpcd(intel_dp);
3675}
3676
3677static enum drm_connector_status
3678g4x_dp_detect(struct intel_dp *intel_dp)
3679{
3680	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3681	struct drm_i915_private *dev_priv = dev->dev_private;
3682	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3683	uint32_t bit;
3684
3685	/* Can't disconnect eDP, but you can close the lid... */
3686	if (is_edp(intel_dp)) {
3687		enum drm_connector_status status;
3688
3689		status = intel_panel_detect(dev);
3690		if (status == connector_status_unknown)
3691			status = connector_status_connected;
3692		return status;
3693	}
3694
3695	if (IS_VALLEYVIEW(dev)) {
3696		switch (intel_dig_port->port) {
3697		case PORT_B:
3698			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3699			break;
3700		case PORT_C:
3701			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3702			break;
3703		case PORT_D:
3704			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3705			break;
3706		default:
3707			return connector_status_unknown;
3708		}
3709	} else {
3710		switch (intel_dig_port->port) {
3711		case PORT_B:
3712			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3713			break;
3714		case PORT_C:
3715			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3716			break;
3717		case PORT_D:
3718			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3719			break;
3720		default:
3721			return connector_status_unknown;
3722		}
3723	}
3724
3725	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3726		return connector_status_disconnected;
3727
3728	return intel_dp_detect_dpcd(intel_dp);
3729}
3730
3731static struct edid *
3732intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3733{
3734	struct intel_connector *intel_connector = to_intel_connector(connector);
3735
3736	/* use cached edid if we have one */
3737	if (intel_connector->edid) {
3738		/* invalid edid */
3739		if (IS_ERR(intel_connector->edid))
3740			return NULL;
3741
3742		return drm_edid_duplicate(intel_connector->edid);
3743	}
3744
3745	return drm_get_edid(connector, adapter);
3746}
3747
3748static int
3749intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3750{
3751	struct intel_connector *intel_connector = to_intel_connector(connector);
3752
3753	/* use cached edid if we have one */
3754	if (intel_connector->edid) {
3755		/* invalid edid */
3756		if (IS_ERR(intel_connector->edid))
3757			return 0;
3758
3759		return intel_connector_update_modes(connector,
3760						    intel_connector->edid);
3761	}
3762
3763	return intel_ddc_get_modes(connector, adapter);
3764}
3765
3766static enum drm_connector_status
3767intel_dp_detect(struct drm_connector *connector, bool force)
3768{
3769	struct intel_dp *intel_dp = intel_attached_dp(connector);
3770	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3771	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3772	struct drm_device *dev = connector->dev;
3773	struct drm_i915_private *dev_priv = dev->dev_private;
3774	enum drm_connector_status status;
3775	enum intel_display_power_domain power_domain;
3776	struct edid *edid = NULL;
3777	bool ret;
3778
3779	power_domain = intel_display_port_power_domain(intel_encoder);
3780	intel_display_power_get(dev_priv, power_domain);
3781
3782	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3783		      connector->base.id, connector->name);
3784
3785	if (intel_dp->is_mst) {
3786		/* MST devices are disconnected from a monitor POV */
3787		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3788			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3789		status = connector_status_disconnected;
3790		goto out;
3791	}
3792
3793	intel_dp->has_audio = false;
3794
3795	if (HAS_PCH_SPLIT(dev))
3796		status = ironlake_dp_detect(intel_dp);
3797	else
3798		status = g4x_dp_detect(intel_dp);
3799
3800	if (status != connector_status_connected)
3801		goto out;
3802
3803	intel_dp_probe_oui(intel_dp);
3804
3805	ret = intel_dp_probe_mst(intel_dp);
3806	if (ret) {
3807		/* if we are in MST mode then this connector
3808		   won't appear connected or have anything with EDID on it */
3809		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3810			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3811		status = connector_status_disconnected;
3812		goto out;
3813	}
3814
3815	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3816		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3817	} else {
3818		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3819		if (edid) {
3820			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3821			kfree(edid);
3822		}
3823	}
3824
3825	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3826		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3827	status = connector_status_connected;
3828
3829out:
3830	intel_display_power_put(dev_priv, power_domain);
3831	return status;
3832}
3833
3834static int intel_dp_get_modes(struct drm_connector *connector)
3835{
3836	struct intel_dp *intel_dp = intel_attached_dp(connector);
3837	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3838	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3839	struct intel_connector *intel_connector = to_intel_connector(connector);
3840	struct drm_device *dev = connector->dev;
3841	struct drm_i915_private *dev_priv = dev->dev_private;
3842	enum intel_display_power_domain power_domain;
3843	int ret;
3844
3845	/* We should parse the EDID data and find out if it has an audio sink
3846	 */
3847
3848	power_domain = intel_display_port_power_domain(intel_encoder);
3849	intel_display_power_get(dev_priv, power_domain);
3850
3851	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3852	intel_display_power_put(dev_priv, power_domain);
3853	if (ret)
3854		return ret;
3855
3856	/* if eDP has no EDID, fall back to fixed mode */
3857	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3858		struct drm_display_mode *mode;
3859		mode = drm_mode_duplicate(dev,
3860					  intel_connector->panel.fixed_mode);
3861		if (mode) {
3862			drm_mode_probed_add(connector, mode);
3863			return 1;
3864		}
3865	}
3866	return 0;
3867}
3868
3869static bool
3870intel_dp_detect_audio(struct drm_connector *connector)
3871{
3872	struct intel_dp *intel_dp = intel_attached_dp(connector);
3873	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3874	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3875	struct drm_device *dev = connector->dev;
3876	struct drm_i915_private *dev_priv = dev->dev_private;
3877	enum intel_display_power_domain power_domain;
3878	struct edid *edid;
3879	bool has_audio = false;
3880
3881	power_domain = intel_display_port_power_domain(intel_encoder);
3882	intel_display_power_get(dev_priv, power_domain);
3883
3884	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3885	if (edid) {
3886		has_audio = drm_detect_monitor_audio(edid);
3887		kfree(edid);
3888	}
3889
3890	intel_display_power_put(dev_priv, power_domain);
3891
3892	return has_audio;
3893}
3894
3895static int
3896intel_dp_set_property(struct drm_connector *connector,
3897		      struct drm_property *property,
3898		      uint64_t val)
3899{
3900	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3901	struct intel_connector *intel_connector = to_intel_connector(connector);
3902	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3903	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3904	int ret;
3905
3906	ret = drm_object_property_set_value(&connector->base, property, val);
3907	if (ret)
3908		return ret;
3909
3910	if (property == dev_priv->force_audio_property) {
3911		int i = val;
3912		bool has_audio;
3913
3914		if (i == intel_dp->force_audio)
3915			return 0;
3916
3917		intel_dp->force_audio = i;
3918
3919		if (i == HDMI_AUDIO_AUTO)
3920			has_audio = intel_dp_detect_audio(connector);
3921		else
3922			has_audio = (i == HDMI_AUDIO_ON);
3923
3924		if (has_audio == intel_dp->has_audio)
3925			return 0;
3926
3927		intel_dp->has_audio = has_audio;
3928		goto done;
3929	}
3930
3931	if (property == dev_priv->broadcast_rgb_property) {
3932		bool old_auto = intel_dp->color_range_auto;
3933		uint32_t old_range = intel_dp->color_range;
3934
3935		switch (val) {
3936		case INTEL_BROADCAST_RGB_AUTO:
3937			intel_dp->color_range_auto = true;
3938			break;
3939		case INTEL_BROADCAST_RGB_FULL:
3940			intel_dp->color_range_auto = false;
3941			intel_dp->color_range = 0;
3942			break;
3943		case INTEL_BROADCAST_RGB_LIMITED:
3944			intel_dp->color_range_auto = false;
3945			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3946			break;
3947		default:
3948			return -EINVAL;
3949		}
3950
3951		if (old_auto == intel_dp->color_range_auto &&
3952		    old_range == intel_dp->color_range)
3953			return 0;
3954
3955		goto done;
3956	}
3957
3958	if (is_edp(intel_dp) &&
3959	    property == connector->dev->mode_config.scaling_mode_property) {
3960		if (val == DRM_MODE_SCALE_NONE) {
3961			DRM_DEBUG_KMS("no scaling not supported\n");
3962			return -EINVAL;
3963		}
3964
3965		if (intel_connector->panel.fitting_mode == val) {
3966			/* the eDP scaling property is not changed */
3967			return 0;
3968		}
3969		intel_connector->panel.fitting_mode = val;
3970
3971		goto done;
3972	}
3973
3974	return -EINVAL;
3975
3976done:
3977	if (intel_encoder->base.crtc)
3978		intel_crtc_restore_mode(intel_encoder->base.crtc);
3979
3980	return 0;
3981}
3982
3983static void
3984intel_dp_connector_destroy(struct drm_connector *connector)
3985{
3986	struct intel_connector *intel_connector = to_intel_connector(connector);
3987
3988	if (!IS_ERR_OR_NULL(intel_connector->edid))
3989		kfree(intel_connector->edid);
3990
3991	/* Can't call is_edp() since the encoder may have been destroyed
3992	 * already. */
3993	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3994		intel_panel_fini(&intel_connector->panel);
3995
3996	drm_connector_cleanup(connector);
3997	kfree(connector);
3998}
3999
4000void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4001{
4002	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4003	struct intel_dp *intel_dp = &intel_dig_port->dp;
4004	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4005
4006	drm_dp_aux_unregister(&intel_dp->aux);
4007	intel_dp_mst_encoder_cleanup(intel_dig_port);
4008	drm_encoder_cleanup(encoder);
4009	if (is_edp(intel_dp)) {
4010		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4011		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4012		edp_panel_vdd_off_sync(intel_dp);
4013		drm_modeset_unlock(&dev->mode_config.connection_mutex);
4014		if (intel_dp->edp_notifier.notifier_call) {
4015			unregister_reboot_notifier(&intel_dp->edp_notifier);
4016			intel_dp->edp_notifier.notifier_call = NULL;
4017		}
4018	}
4019	kfree(intel_dig_port);
4020}
4021
4022static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4023{
4024	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4025
4026	if (!is_edp(intel_dp))
4027		return;
4028
4029	edp_panel_vdd_off_sync(intel_dp);
4030}
4031
4032static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4033{
4034	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4035}
4036
4037static const struct drm_connector_funcs intel_dp_connector_funcs = {
4038	.dpms = intel_connector_dpms,
4039	.detect = intel_dp_detect,
4040	.fill_modes = drm_helper_probe_single_connector_modes,
4041	.set_property = intel_dp_set_property,
4042	.destroy = intel_dp_connector_destroy,
4043};
4044
4045static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4046	.get_modes = intel_dp_get_modes,
4047	.mode_valid = intel_dp_mode_valid,
4048	.best_encoder = intel_best_encoder,
4049};
4050
4051static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4052	.reset = intel_dp_encoder_reset,
4053	.destroy = intel_dp_encoder_destroy,
4054};
4055
4056void
4057intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4058{
4059	return;
4060}
4061
4062bool
4063intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4064{
4065	struct intel_dp *intel_dp = &intel_dig_port->dp;
4066	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4067	struct drm_device *dev = intel_dig_port->base.base.dev;
4068	struct drm_i915_private *dev_priv = dev->dev_private;
4069	enum intel_display_power_domain power_domain;
4070	bool ret = true;
4071
4072	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4073		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4074
4075	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4076		      port_name(intel_dig_port->port),
4077		      long_hpd ? "long" : "short");
4078
4079	power_domain = intel_display_port_power_domain(intel_encoder);
4080	intel_display_power_get(dev_priv, power_domain);
4081
4082	if (long_hpd) {
4083		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4084			goto mst_fail;
4085
4086		if (!intel_dp_get_dpcd(intel_dp)) {
4087			goto mst_fail;
4088		}
4089
4090		intel_dp_probe_oui(intel_dp);
4091
4092		if (!intel_dp_probe_mst(intel_dp))
4093			goto mst_fail;
4094
4095	} else {
4096		if (intel_dp->is_mst) {
4097			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4098				goto mst_fail;
4099		}
4100
4101		if (!intel_dp->is_mst) {
4102			/*
4103			 * we'll check the link status via the normal hot plug path later -
4104			 * but for short hpds we should check it now
4105			 */
4106			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4107			intel_dp_check_link_status(intel_dp);
4108			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4109		}
4110	}
4111	ret = false;
4112	goto put_power;
4113mst_fail:
4114	/* if we were in MST mode, and device is not there get out of MST mode */
4115	if (intel_dp->is_mst) {
4116		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4117		intel_dp->is_mst = false;
4118		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4119	}
4120put_power:
4121	intel_display_power_put(dev_priv, power_domain);
4122
4123	return ret;
4124}
4125
4126/* Return which DP Port should be selected for Transcoder DP control */
4127int
4128intel_trans_dp_port_sel(struct drm_crtc *crtc)
4129{
4130	struct drm_device *dev = crtc->dev;
4131	struct intel_encoder *intel_encoder;
4132	struct intel_dp *intel_dp;
4133
4134	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4135		intel_dp = enc_to_intel_dp(&intel_encoder->base);
4136
4137		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4138		    intel_encoder->type == INTEL_OUTPUT_EDP)
4139			return intel_dp->output_reg;
4140	}
4141
4142	return -1;
4143}
4144
4145/* check the VBT to see whether the eDP is on DP-D port */
4146bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4147{
4148	struct drm_i915_private *dev_priv = dev->dev_private;
4149	union child_device_config *p_child;
4150	int i;
4151	static const short port_mapping[] = {
4152		[PORT_B] = PORT_IDPB,
4153		[PORT_C] = PORT_IDPC,
4154		[PORT_D] = PORT_IDPD,
4155	};
4156
4157	if (port == PORT_A)
4158		return true;
4159
4160	if (!dev_priv->vbt.child_dev_num)
4161		return false;
4162
4163	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4164		p_child = dev_priv->vbt.child_dev + i;
4165
4166		if (p_child->common.dvo_port == port_mapping[port] &&
4167		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4168		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4169			return true;
4170	}
4171	return false;
4172}
4173
4174void
4175intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4176{
4177	struct intel_connector *intel_connector = to_intel_connector(connector);
4178
4179	intel_attach_force_audio_property(connector);
4180	intel_attach_broadcast_rgb_property(connector);
4181	intel_dp->color_range_auto = true;
4182
4183	if (is_edp(intel_dp)) {
4184		drm_mode_create_scaling_mode_property(connector->dev);
4185		drm_object_attach_property(
4186			&connector->base,
4187			connector->dev->mode_config.scaling_mode_property,
4188			DRM_MODE_SCALE_ASPECT);
4189		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4190	}
4191}
4192
4193static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4194{
4195	intel_dp->last_power_cycle = jiffies;
4196	intel_dp->last_power_on = jiffies;
4197	intel_dp->last_backlight_off = jiffies;
4198}
4199
4200static void
4201intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4202				    struct intel_dp *intel_dp,
4203				    struct edp_power_seq *out)
4204{
4205	struct drm_i915_private *dev_priv = dev->dev_private;
4206	struct edp_power_seq cur, vbt, spec, final;
4207	u32 pp_on, pp_off, pp_div, pp;
4208	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4209
4210	if (HAS_PCH_SPLIT(dev)) {
4211		pp_ctrl_reg = PCH_PP_CONTROL;
4212		pp_on_reg = PCH_PP_ON_DELAYS;
4213		pp_off_reg = PCH_PP_OFF_DELAYS;
4214		pp_div_reg = PCH_PP_DIVISOR;
4215	} else {
4216		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4217
4218		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4219		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4220		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4221		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4222	}
4223
4224	/* Workaround: Need to write PP_CONTROL with the unlock key as
4225	 * the very first thing. */
4226	pp = ironlake_get_pp_control(intel_dp);
4227	I915_WRITE(pp_ctrl_reg, pp);
4228
4229	pp_on = I915_READ(pp_on_reg);
4230	pp_off = I915_READ(pp_off_reg);
4231	pp_div = I915_READ(pp_div_reg);
4232
4233	/* Pull timing values out of registers */
4234	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4235		PANEL_POWER_UP_DELAY_SHIFT;
4236
4237	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4238		PANEL_LIGHT_ON_DELAY_SHIFT;
4239
4240	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4241		PANEL_LIGHT_OFF_DELAY_SHIFT;
4242
4243	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4244		PANEL_POWER_DOWN_DELAY_SHIFT;
4245
4246	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4247		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4248
4249	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4250		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4251
4252	vbt = dev_priv->vbt.edp_pps;
4253
4254	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4255	 * our hw here, which are all in 100usec. */
4256	spec.t1_t3 = 210 * 10;
4257	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4258	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4259	spec.t10 = 500 * 10;
4260	/* This one is special and actually in units of 100ms, but zero
4261	 * based in the hw (so we need to add 100 ms). But the sw vbt
4262	 * table multiplies it with 1000 to make it in units of 100usec,
4263	 * too. */
4264	spec.t11_t12 = (510 + 100) * 10;
4265
4266	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4267		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4268
4269	/* Use the max of the register settings and vbt. If both are
4270	 * unset, fall back to the spec limits. */
4271#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4272				       spec.field : \
4273				       max(cur.field, vbt.field))
4274	assign_final(t1_t3);
4275	assign_final(t8);
4276	assign_final(t9);
4277	assign_final(t10);
4278	assign_final(t11_t12);
4279#undef assign_final
4280
4281#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4282	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4283	intel_dp->backlight_on_delay = get_delay(t8);
4284	intel_dp->backlight_off_delay = get_delay(t9);
4285	intel_dp->panel_power_down_delay = get_delay(t10);
4286	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4287#undef get_delay
4288
4289	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4290		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4291		      intel_dp->panel_power_cycle_delay);
4292
4293	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4294		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4295
4296	if (out)
4297		*out = final;
4298}
4299
4300static void
4301intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4302					      struct intel_dp *intel_dp,
4303					      struct edp_power_seq *seq)
4304{
4305	struct drm_i915_private *dev_priv = dev->dev_private;
4306	u32 pp_on, pp_off, pp_div, port_sel = 0;
4307	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4308	int pp_on_reg, pp_off_reg, pp_div_reg;
4309
4310	if (HAS_PCH_SPLIT(dev)) {
4311		pp_on_reg = PCH_PP_ON_DELAYS;
4312		pp_off_reg = PCH_PP_OFF_DELAYS;
4313		pp_div_reg = PCH_PP_DIVISOR;
4314	} else {
4315		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4316
4317		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4318		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4319		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4320	}
4321
4322	/*
4323	 * And finally store the new values in the power sequencer. The
4324	 * backlight delays are set to 1 because we do manual waits on them. For
4325	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4326	 * we'll end up waiting for the backlight off delay twice: once when we
4327	 * do the manual sleep, and once when we disable the panel and wait for
4328	 * the PP_STATUS bit to become zero.
4329	 */
4330	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4331		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4332	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4333		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4334	/* Compute the divisor for the pp clock, simply match the Bspec
4335	 * formula. */
4336	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4337	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4338			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4339
4340	/* Haswell doesn't have any port selection bits for the panel
4341	 * power sequencer any more. */
4342	if (IS_VALLEYVIEW(dev)) {
4343		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4344			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4345		else
4346			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4347	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4348		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4349			port_sel = PANEL_PORT_SELECT_DPA;
4350		else
4351			port_sel = PANEL_PORT_SELECT_DPD;
4352	}
4353
4354	pp_on |= port_sel;
4355
4356	I915_WRITE(pp_on_reg, pp_on);
4357	I915_WRITE(pp_off_reg, pp_off);
4358	I915_WRITE(pp_div_reg, pp_div);
4359
4360	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4361		      I915_READ(pp_on_reg),
4362		      I915_READ(pp_off_reg),
4363		      I915_READ(pp_div_reg));
4364}
4365
4366void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4367{
4368	struct drm_i915_private *dev_priv = dev->dev_private;
4369	struct intel_encoder *encoder;
4370	struct intel_dp *intel_dp = NULL;
4371	struct intel_crtc_config *config = NULL;
4372	struct intel_crtc *intel_crtc = NULL;
4373	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4374	u32 reg, val;
4375	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4376
4377	if (refresh_rate <= 0) {
4378		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4379		return;
4380	}
4381
4382	if (intel_connector == NULL) {
4383		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4384		return;
4385	}
4386
4387	/*
4388	 * FIXME: This needs proper synchronization with psr state. But really
4389	 * hard to tell without seeing the user of this function of this code.
4390	 * Check locking and ordering once that lands.
4391	 */
4392	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4393		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4394		return;
4395	}
4396
4397	encoder = intel_attached_encoder(&intel_connector->base);
4398	intel_dp = enc_to_intel_dp(&encoder->base);
4399	intel_crtc = encoder->new_crtc;
4400
4401	if (!intel_crtc) {
4402		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4403		return;
4404	}
4405
4406	config = &intel_crtc->config;
4407
4408	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4409		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4410		return;
4411	}
4412
4413	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4414		index = DRRS_LOW_RR;
4415
4416	if (index == intel_dp->drrs_state.refresh_rate_type) {
4417		DRM_DEBUG_KMS(
4418			"DRRS requested for previously set RR...ignoring\n");
4419		return;
4420	}
4421
4422	if (!intel_crtc->active) {
4423		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4424		return;
4425	}
4426
4427	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4428		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4429		val = I915_READ(reg);
4430		if (index > DRRS_HIGH_RR) {
4431			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4432			intel_dp_set_m_n(intel_crtc);
4433		} else {
4434			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4435		}
4436		I915_WRITE(reg, val);
4437	}
4438
4439	/*
4440	 * mutex taken to ensure that there is no race between differnt
4441	 * drrs calls trying to update refresh rate. This scenario may occur
4442	 * in future when idleness detection based DRRS in kernel and
4443	 * possible calls from user space to set differnt RR are made.
4444	 */
4445
4446	mutex_lock(&intel_dp->drrs_state.mutex);
4447
4448	intel_dp->drrs_state.refresh_rate_type = index;
4449
4450	mutex_unlock(&intel_dp->drrs_state.mutex);
4451
4452	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4453}
4454
4455static struct drm_display_mode *
4456intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4457			struct intel_connector *intel_connector,
4458			struct drm_display_mode *fixed_mode)
4459{
4460	struct drm_connector *connector = &intel_connector->base;
4461	struct intel_dp *intel_dp = &intel_dig_port->dp;
4462	struct drm_device *dev = intel_dig_port->base.base.dev;
4463	struct drm_i915_private *dev_priv = dev->dev_private;
4464	struct drm_display_mode *downclock_mode = NULL;
4465
4466	if (INTEL_INFO(dev)->gen <= 6) {
4467		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4468		return NULL;
4469	}
4470
4471	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4472		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4473		return NULL;
4474	}
4475
4476	downclock_mode = intel_find_panel_downclock
4477					(dev, fixed_mode, connector);
4478
4479	if (!downclock_mode) {
4480		DRM_DEBUG_KMS("DRRS not supported\n");
4481		return NULL;
4482	}
4483
4484	dev_priv->drrs.connector = intel_connector;
4485
4486	mutex_init(&intel_dp->drrs_state.mutex);
4487
4488	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4489
4490	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4491	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4492	return downclock_mode;
4493}
4494
4495void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4496{
4497	struct drm_device *dev = intel_encoder->base.dev;
4498	struct drm_i915_private *dev_priv = dev->dev_private;
4499	struct intel_dp *intel_dp;
4500	enum intel_display_power_domain power_domain;
4501
4502	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503		return;
4504
4505	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4506	if (!edp_have_panel_vdd(intel_dp))
4507		return;
4508	/*
4509	 * The VDD bit needs a power domain reference, so if the bit is
4510	 * already enabled when we boot or resume, grab this reference and
4511	 * schedule a vdd off, so we don't hold on to the reference
4512	 * indefinitely.
4513	 */
4514	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4515	power_domain = intel_display_port_power_domain(intel_encoder);
4516	intel_display_power_get(dev_priv, power_domain);
4517
4518	edp_panel_vdd_schedule_off(intel_dp);
4519}
4520
4521static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4522				     struct intel_connector *intel_connector,
4523				     struct edp_power_seq *power_seq)
4524{
4525	struct drm_connector *connector = &intel_connector->base;
4526	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4527	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4528	struct drm_device *dev = intel_encoder->base.dev;
4529	struct drm_i915_private *dev_priv = dev->dev_private;
4530	struct drm_display_mode *fixed_mode = NULL;
4531	struct drm_display_mode *downclock_mode = NULL;
4532	bool has_dpcd;
4533	struct drm_display_mode *scan;
4534	struct edid *edid;
4535
4536	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4537
4538	if (!is_edp(intel_dp))
4539		return true;
4540
4541	intel_edp_panel_vdd_sanitize(intel_encoder);
4542
4543	/* Cache DPCD and EDID for edp. */
4544	intel_edp_panel_vdd_on(intel_dp);
4545	has_dpcd = intel_dp_get_dpcd(intel_dp);
4546	edp_panel_vdd_off(intel_dp, false);
4547
4548	if (has_dpcd) {
4549		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4550			dev_priv->no_aux_handshake =
4551				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4552				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4553	} else {
4554		/* if this fails, presume the device is a ghost */
4555		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4556		return false;
4557	}
4558
4559	/* We now know it's not a ghost, init power sequence regs. */
4560	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4561
4562	mutex_lock(&dev->mode_config.mutex);
4563	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4564	if (edid) {
4565		if (drm_add_edid_modes(connector, edid)) {
4566			drm_mode_connector_update_edid_property(connector,
4567								edid);
4568			drm_edid_to_eld(connector, edid);
4569		} else {
4570			kfree(edid);
4571			edid = ERR_PTR(-EINVAL);
4572		}
4573	} else {
4574		edid = ERR_PTR(-ENOENT);
4575	}
4576	intel_connector->edid = edid;
4577
4578	/* prefer fixed mode from EDID if available */
4579	list_for_each_entry(scan, &connector->probed_modes, head) {
4580		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4581			fixed_mode = drm_mode_duplicate(dev, scan);
4582			downclock_mode = intel_dp_drrs_init(
4583						intel_dig_port,
4584						intel_connector, fixed_mode);
4585			break;
4586		}
4587	}
4588
4589	/* fallback to VBT if available for eDP */
4590	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4591		fixed_mode = drm_mode_duplicate(dev,
4592					dev_priv->vbt.lfp_lvds_vbt_mode);
4593		if (fixed_mode)
4594			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4595	}
4596	mutex_unlock(&dev->mode_config.mutex);
4597
4598	if (IS_VALLEYVIEW(dev)) {
4599		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4600		register_reboot_notifier(&intel_dp->edp_notifier);
4601	}
4602
4603	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4604	intel_panel_setup_backlight(connector);
4605
4606	return true;
4607}
4608
4609bool
4610intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4611			struct intel_connector *intel_connector)
4612{
4613	struct drm_connector *connector = &intel_connector->base;
4614	struct intel_dp *intel_dp = &intel_dig_port->dp;
4615	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4616	struct drm_device *dev = intel_encoder->base.dev;
4617	struct drm_i915_private *dev_priv = dev->dev_private;
4618	enum port port = intel_dig_port->port;
4619	struct edp_power_seq power_seq = { 0 };
4620	int type;
4621
4622	/* intel_dp vfuncs */
4623	if (IS_VALLEYVIEW(dev))
4624		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4625	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4626		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4627	else if (HAS_PCH_SPLIT(dev))
4628		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4629	else
4630		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4631
4632	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4633
4634	/* Preserve the current hw state. */
4635	intel_dp->DP = I915_READ(intel_dp->output_reg);
4636	intel_dp->attached_connector = intel_connector;
4637
4638	if (intel_dp_is_edp(dev, port))
4639		type = DRM_MODE_CONNECTOR_eDP;
4640	else
4641		type = DRM_MODE_CONNECTOR_DisplayPort;
4642
4643	/*
4644	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4645	 * for DP the encoder type can be set by the caller to
4646	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4647	 */
4648	if (type == DRM_MODE_CONNECTOR_eDP)
4649		intel_encoder->type = INTEL_OUTPUT_EDP;
4650
4651	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4652			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4653			port_name(port));
4654
4655	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4656	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4657
4658	connector->interlace_allowed = true;
4659	connector->doublescan_allowed = 0;
4660
4661	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4662			  edp_panel_vdd_work);
4663
4664	intel_connector_attach_encoder(intel_connector, intel_encoder);
4665	drm_connector_register(connector);
4666
4667	if (HAS_DDI(dev))
4668		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4669	else
4670		intel_connector->get_hw_state = intel_connector_get_hw_state;
4671	intel_connector->unregister = intel_dp_connector_unregister;
4672
4673	/* Set up the hotplug pin. */
4674	switch (port) {
4675	case PORT_A:
4676		intel_encoder->hpd_pin = HPD_PORT_A;
4677		break;
4678	case PORT_B:
4679		intel_encoder->hpd_pin = HPD_PORT_B;
4680		break;
4681	case PORT_C:
4682		intel_encoder->hpd_pin = HPD_PORT_C;
4683		break;
4684	case PORT_D:
4685		intel_encoder->hpd_pin = HPD_PORT_D;
4686		break;
4687	default:
4688		BUG();
4689	}
4690
4691	if (is_edp(intel_dp)) {
4692		intel_dp_init_panel_power_timestamps(intel_dp);
4693		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4694	}
4695
4696	intel_dp_aux_init(intel_dp, intel_connector);
4697
4698	/* init MST on ports that can support it */
4699	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4700		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4701			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4702		}
4703	}
4704
4705	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4706		drm_dp_aux_unregister(&intel_dp->aux);
4707		if (is_edp(intel_dp)) {
4708			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4709			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4710			edp_panel_vdd_off_sync(intel_dp);
4711			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4712		}
4713		drm_connector_unregister(connector);
4714		drm_connector_cleanup(connector);
4715		return false;
4716	}
4717
4718	intel_dp_add_properties(intel_dp, connector);
4719
4720	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4721	 * 0xd.  Failure to do so will result in spurious interrupts being
4722	 * generated on the port when a cable is not attached.
4723	 */
4724	if (IS_G4X(dev) && !IS_GM45(dev)) {
4725		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4726		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4727	}
4728
4729	return true;
4730}
4731
4732void
4733intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4734{
4735	struct drm_i915_private *dev_priv = dev->dev_private;
4736	struct intel_digital_port *intel_dig_port;
4737	struct intel_encoder *intel_encoder;
4738	struct drm_encoder *encoder;
4739	struct intel_connector *intel_connector;
4740
4741	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4742	if (!intel_dig_port)
4743		return;
4744
4745	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4746	if (!intel_connector) {
4747		kfree(intel_dig_port);
4748		return;
4749	}
4750
4751	intel_encoder = &intel_dig_port->base;
4752	encoder = &intel_encoder->base;
4753
4754	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4755			 DRM_MODE_ENCODER_TMDS);
4756
4757	intel_encoder->compute_config = intel_dp_compute_config;
4758	intel_encoder->disable = intel_disable_dp;
4759	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4760	intel_encoder->get_config = intel_dp_get_config;
4761	intel_encoder->suspend = intel_dp_encoder_suspend;
4762	if (IS_CHERRYVIEW(dev)) {
4763		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4764		intel_encoder->pre_enable = chv_pre_enable_dp;
4765		intel_encoder->enable = vlv_enable_dp;
4766		intel_encoder->post_disable = chv_post_disable_dp;
4767	} else if (IS_VALLEYVIEW(dev)) {
4768		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4769		intel_encoder->pre_enable = vlv_pre_enable_dp;
4770		intel_encoder->enable = vlv_enable_dp;
4771		intel_encoder->post_disable = vlv_post_disable_dp;
4772	} else {
4773		intel_encoder->pre_enable = g4x_pre_enable_dp;
4774		intel_encoder->enable = g4x_enable_dp;
4775		intel_encoder->post_disable = g4x_post_disable_dp;
4776	}
4777
4778	intel_dig_port->port = port;
4779	intel_dig_port->dp.output_reg = output_reg;
4780
4781	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4782	if (IS_CHERRYVIEW(dev)) {
4783		if (port == PORT_D)
4784			intel_encoder->crtc_mask = 1 << 2;
4785		else
4786			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4787	} else {
4788		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4789	}
4790	intel_encoder->cloneable = 0;
4791	intel_encoder->hot_plug = intel_dp_hot_plug;
4792
4793	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4794	dev_priv->hpd_irq_port[port] = intel_dig_port;
4795
4796	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4797		drm_encoder_cleanup(encoder);
4798		kfree(intel_dig_port);
4799		kfree(intel_connector);
4800	}
4801}
4802
4803void intel_dp_mst_suspend(struct drm_device *dev)
4804{
4805	struct drm_i915_private *dev_priv = dev->dev_private;
4806	int i;
4807
4808	/* disable MST */
4809	for (i = 0; i < I915_MAX_PORTS; i++) {
4810		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4811		if (!intel_dig_port)
4812			continue;
4813
4814		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4815			if (!intel_dig_port->dp.can_mst)
4816				continue;
4817			if (intel_dig_port->dp.is_mst)
4818				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4819		}
4820	}
4821}
4822
4823void intel_dp_mst_resume(struct drm_device *dev)
4824{
4825	struct drm_i915_private *dev_priv = dev->dev_private;
4826	int i;
4827
4828	for (i = 0; i < I915_MAX_PORTS; i++) {
4829		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4830		if (!intel_dig_port)
4831			continue;
4832		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4833			int ret;
4834
4835			if (!intel_dig_port->dp.can_mst)
4836				continue;
4837
4838			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4839			if (ret != 0) {
4840				intel_dp_check_mst_status(&intel_dig_port->dp);
4841			}
4842		}
4843	}
4844}
4845