intel_dp.c revision 1a2eb4604b85c5efb343da8a4dcf41288fcfca85
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "intel_drv.h"
36#include "i915_drm.h"
37#include "i915_drv.h"
38#include "drm_dp_helper.h"
39
40#define DP_RECEIVER_CAP_SIZE	0xf
41#define DP_LINK_STATUS_SIZE	6
42#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
43
44#define DP_LINK_CONFIGURATION_SIZE	9
45
46struct intel_dp {
47	struct intel_encoder base;
48	uint32_t output_reg;
49	uint32_t DP;
50	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51	bool has_audio;
52	int force_audio;
53	uint32_t color_range;
54	int dpms_mode;
55	uint8_t link_bw;
56	uint8_t lane_count;
57	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58	struct i2c_adapter adapter;
59	struct i2c_algo_dp_aux_data algo;
60	bool is_pch_edp;
61	uint8_t	train_set[4];
62	int panel_power_up_delay;
63	int panel_power_down_delay;
64	int panel_power_cycle_delay;
65	int backlight_on_delay;
66	int backlight_off_delay;
67	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68	struct delayed_work panel_vdd_work;
69	bool want_panel_vdd;
70};
71
72/**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
75 *
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
78 */
79static bool is_edp(struct intel_dp *intel_dp)
80{
81	return intel_dp->base.type == INTEL_OUTPUT_EDP;
82}
83
84/**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
87 *
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise.  Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
91 */
92static bool is_pch_edp(struct intel_dp *intel_dp)
93{
94	return intel_dp->is_pch_edp;
95}
96
97/**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
100 *
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
102 */
103static bool is_cpu_edp(struct intel_dp *intel_dp)
104{
105	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106}
107
108static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109{
110	return container_of(encoder, struct intel_dp, base.base);
111}
112
113static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114{
115	return container_of(intel_attached_encoder(connector),
116			    struct intel_dp, base);
117}
118
119/**
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
122 *
123 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124 * by intel_display.c.
125 */
126bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127{
128	struct intel_dp *intel_dp;
129
130	if (!encoder)
131		return false;
132
133	intel_dp = enc_to_intel_dp(encoder);
134
135	return is_pch_edp(intel_dp);
136}
137
138static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142void
143intel_edp_link_config(struct intel_encoder *intel_encoder,
144		       int *lane_num, int *link_bw)
145{
146	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148	*lane_num = intel_dp->lane_count;
149	if (intel_dp->link_bw == DP_LINK_BW_1_62)
150		*link_bw = 162000;
151	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152		*link_bw = 270000;
153}
154
155static int
156intel_dp_max_lane_count(struct intel_dp *intel_dp)
157{
158	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159	switch (max_lane_count) {
160	case 1: case 2: case 4:
161		break;
162	default:
163		max_lane_count = 4;
164	}
165	return max_lane_count;
166}
167
168static int
169intel_dp_max_link_bw(struct intel_dp *intel_dp)
170{
171	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173	switch (max_link_bw) {
174	case DP_LINK_BW_1_62:
175	case DP_LINK_BW_2_7:
176		break;
177	default:
178		max_link_bw = DP_LINK_BW_1_62;
179		break;
180	}
181	return max_link_bw;
182}
183
184static int
185intel_dp_link_clock(uint8_t link_bw)
186{
187	if (link_bw == DP_LINK_BW_2_7)
188		return 270000;
189	else
190		return 162000;
191}
192
193/*
194 * The units on the numbers in the next two are... bizarre.  Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
196 *
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198 *
199 *     270000 * 1 * 8 / 10 == 216000
200 *
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000.  At 18bpp that's 2142000 kilobits per second.
205 *
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
208 */
209
210static int
211intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
212{
213	struct drm_crtc *crtc = intel_dp->base.base.crtc;
214	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215	int bpp = 24;
216
217	if (intel_crtc)
218		bpp = intel_crtc->bpp;
219
220	return (pixel_clock * bpp + 9) / 10;
221}
222
223static int
224intel_dp_max_data_rate(int max_link_clock, int max_lanes)
225{
226	return (max_link_clock * max_lanes * 8) / 10;
227}
228
229static int
230intel_dp_mode_valid(struct drm_connector *connector,
231		    struct drm_display_mode *mode)
232{
233	struct intel_dp *intel_dp = intel_attached_dp(connector);
234	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
235	int max_lanes = intel_dp_max_lane_count(intel_dp);
236
237	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
238		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
239			return MODE_PANEL;
240
241		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
242			return MODE_PANEL;
243	}
244
245	if (intel_dp_link_required(intel_dp, mode->clock)
246	    > intel_dp_max_data_rate(max_link_clock, max_lanes))
247		return MODE_CLOCK_HIGH;
248
249	if (mode->clock < 10000)
250		return MODE_CLOCK_LOW;
251
252	return MODE_OK;
253}
254
255static uint32_t
256pack_aux(uint8_t *src, int src_bytes)
257{
258	int	i;
259	uint32_t v = 0;
260
261	if (src_bytes > 4)
262		src_bytes = 4;
263	for (i = 0; i < src_bytes; i++)
264		v |= ((uint32_t) src[i]) << ((3-i) * 8);
265	return v;
266}
267
268static void
269unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270{
271	int i;
272	if (dst_bytes > 4)
273		dst_bytes = 4;
274	for (i = 0; i < dst_bytes; i++)
275		dst[i] = src >> ((3-i) * 8);
276}
277
278/* hrawclock is 1/4 the FSB frequency */
279static int
280intel_hrawclk(struct drm_device *dev)
281{
282	struct drm_i915_private *dev_priv = dev->dev_private;
283	uint32_t clkcfg;
284
285	clkcfg = I915_READ(CLKCFG);
286	switch (clkcfg & CLKCFG_FSB_MASK) {
287	case CLKCFG_FSB_400:
288		return 100;
289	case CLKCFG_FSB_533:
290		return 133;
291	case CLKCFG_FSB_667:
292		return 166;
293	case CLKCFG_FSB_800:
294		return 200;
295	case CLKCFG_FSB_1067:
296		return 266;
297	case CLKCFG_FSB_1333:
298		return 333;
299	/* these two are just a guess; one of them might be right */
300	case CLKCFG_FSB_1600:
301	case CLKCFG_FSB_1600_ALT:
302		return 400;
303	default:
304		return 133;
305	}
306}
307
308static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
309{
310	struct drm_device *dev = intel_dp->base.base.dev;
311	struct drm_i915_private *dev_priv = dev->dev_private;
312
313	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
314}
315
316static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
317{
318	struct drm_device *dev = intel_dp->base.base.dev;
319	struct drm_i915_private *dev_priv = dev->dev_private;
320
321	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
322}
323
324static void
325intel_dp_check_edp(struct intel_dp *intel_dp)
326{
327	struct drm_device *dev = intel_dp->base.base.dev;
328	struct drm_i915_private *dev_priv = dev->dev_private;
329
330	if (!is_edp(intel_dp))
331		return;
332	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
333		WARN(1, "eDP powered off while attempting aux channel communication.\n");
334		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
335			      I915_READ(PCH_PP_STATUS),
336			      I915_READ(PCH_PP_CONTROL));
337	}
338}
339
340static int
341intel_dp_aux_ch(struct intel_dp *intel_dp,
342		uint8_t *send, int send_bytes,
343		uint8_t *recv, int recv_size)
344{
345	uint32_t output_reg = intel_dp->output_reg;
346	struct drm_device *dev = intel_dp->base.base.dev;
347	struct drm_i915_private *dev_priv = dev->dev_private;
348	uint32_t ch_ctl = output_reg + 0x10;
349	uint32_t ch_data = ch_ctl + 4;
350	int i;
351	int recv_bytes;
352	uint32_t status;
353	uint32_t aux_clock_divider;
354	int try, precharge;
355
356	intel_dp_check_edp(intel_dp);
357	/* The clock divider is based off the hrawclk,
358	 * and would like to run at 2MHz. So, take the
359	 * hrawclk value and divide by 2 and use that
360	 *
361	 * Note that PCH attached eDP panels should use a 125MHz input
362	 * clock divider.
363	 */
364	if (is_cpu_edp(intel_dp)) {
365		if (IS_GEN6(dev) || IS_GEN7(dev))
366			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
367		else
368			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
369	} else if (HAS_PCH_SPLIT(dev))
370		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
371	else
372		aux_clock_divider = intel_hrawclk(dev) / 2;
373
374	if (IS_GEN6(dev))
375		precharge = 3;
376	else
377		precharge = 5;
378
379	/* Try to wait for any previous AUX channel activity */
380	for (try = 0; try < 3; try++) {
381		status = I915_READ(ch_ctl);
382		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
383			break;
384		msleep(1);
385	}
386
387	if (try == 3) {
388		WARN(1, "dp_aux_ch not started status 0x%08x\n",
389		     I915_READ(ch_ctl));
390		return -EBUSY;
391	}
392
393	/* Must try at least 3 times according to DP spec */
394	for (try = 0; try < 5; try++) {
395		/* Load the send data into the aux channel data registers */
396		for (i = 0; i < send_bytes; i += 4)
397			I915_WRITE(ch_data + i,
398				   pack_aux(send + i, send_bytes - i));
399
400		/* Send the command and wait for it to complete */
401		I915_WRITE(ch_ctl,
402			   DP_AUX_CH_CTL_SEND_BUSY |
403			   DP_AUX_CH_CTL_TIME_OUT_400us |
404			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
405			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
406			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
407			   DP_AUX_CH_CTL_DONE |
408			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
409			   DP_AUX_CH_CTL_RECEIVE_ERROR);
410		for (;;) {
411			status = I915_READ(ch_ctl);
412			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
413				break;
414			udelay(100);
415		}
416
417		/* Clear done status and any errors */
418		I915_WRITE(ch_ctl,
419			   status |
420			   DP_AUX_CH_CTL_DONE |
421			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
422			   DP_AUX_CH_CTL_RECEIVE_ERROR);
423		if (status & DP_AUX_CH_CTL_DONE)
424			break;
425	}
426
427	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
428		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
429		return -EBUSY;
430	}
431
432	/* Check for timeout or receive error.
433	 * Timeouts occur when the sink is not connected
434	 */
435	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
436		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
437		return -EIO;
438	}
439
440	/* Timeouts occur when the device isn't connected, so they're
441	 * "normal" -- don't fill the kernel log with these */
442	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
443		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
444		return -ETIMEDOUT;
445	}
446
447	/* Unload any bytes sent back from the other side */
448	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
449		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
450	if (recv_bytes > recv_size)
451		recv_bytes = recv_size;
452
453	for (i = 0; i < recv_bytes; i += 4)
454		unpack_aux(I915_READ(ch_data + i),
455			   recv + i, recv_bytes - i);
456
457	return recv_bytes;
458}
459
460/* Write data to the aux channel in native mode */
461static int
462intel_dp_aux_native_write(struct intel_dp *intel_dp,
463			  uint16_t address, uint8_t *send, int send_bytes)
464{
465	int ret;
466	uint8_t	msg[20];
467	int msg_bytes;
468	uint8_t	ack;
469
470	intel_dp_check_edp(intel_dp);
471	if (send_bytes > 16)
472		return -1;
473	msg[0] = AUX_NATIVE_WRITE << 4;
474	msg[1] = address >> 8;
475	msg[2] = address & 0xff;
476	msg[3] = send_bytes - 1;
477	memcpy(&msg[4], send, send_bytes);
478	msg_bytes = send_bytes + 4;
479	for (;;) {
480		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
481		if (ret < 0)
482			return ret;
483		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484			break;
485		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486			udelay(100);
487		else
488			return -EIO;
489	}
490	return send_bytes;
491}
492
493/* Write a single byte to the aux channel in native mode */
494static int
495intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
496			    uint16_t address, uint8_t byte)
497{
498	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
499}
500
501/* read bytes from a native aux channel */
502static int
503intel_dp_aux_native_read(struct intel_dp *intel_dp,
504			 uint16_t address, uint8_t *recv, int recv_bytes)
505{
506	uint8_t msg[4];
507	int msg_bytes;
508	uint8_t reply[20];
509	int reply_bytes;
510	uint8_t ack;
511	int ret;
512
513	intel_dp_check_edp(intel_dp);
514	msg[0] = AUX_NATIVE_READ << 4;
515	msg[1] = address >> 8;
516	msg[2] = address & 0xff;
517	msg[3] = recv_bytes - 1;
518
519	msg_bytes = 4;
520	reply_bytes = recv_bytes + 1;
521
522	for (;;) {
523		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
524				      reply, reply_bytes);
525		if (ret == 0)
526			return -EPROTO;
527		if (ret < 0)
528			return ret;
529		ack = reply[0];
530		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531			memcpy(recv, reply + 1, ret - 1);
532			return ret - 1;
533		}
534		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535			udelay(100);
536		else
537			return -EIO;
538	}
539}
540
541static int
542intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543		    uint8_t write_byte, uint8_t *read_byte)
544{
545	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
546	struct intel_dp *intel_dp = container_of(adapter,
547						struct intel_dp,
548						adapter);
549	uint16_t address = algo_data->address;
550	uint8_t msg[5];
551	uint8_t reply[2];
552	unsigned retry;
553	int msg_bytes;
554	int reply_bytes;
555	int ret;
556
557	intel_dp_check_edp(intel_dp);
558	/* Set up the command byte */
559	if (mode & MODE_I2C_READ)
560		msg[0] = AUX_I2C_READ << 4;
561	else
562		msg[0] = AUX_I2C_WRITE << 4;
563
564	if (!(mode & MODE_I2C_STOP))
565		msg[0] |= AUX_I2C_MOT << 4;
566
567	msg[1] = address >> 8;
568	msg[2] = address;
569
570	switch (mode) {
571	case MODE_I2C_WRITE:
572		msg[3] = 0;
573		msg[4] = write_byte;
574		msg_bytes = 5;
575		reply_bytes = 1;
576		break;
577	case MODE_I2C_READ:
578		msg[3] = 0;
579		msg_bytes = 4;
580		reply_bytes = 2;
581		break;
582	default:
583		msg_bytes = 3;
584		reply_bytes = 1;
585		break;
586	}
587
588	for (retry = 0; retry < 5; retry++) {
589		ret = intel_dp_aux_ch(intel_dp,
590				      msg, msg_bytes,
591				      reply, reply_bytes);
592		if (ret < 0) {
593			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
594			return ret;
595		}
596
597		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598		case AUX_NATIVE_REPLY_ACK:
599			/* I2C-over-AUX Reply field is only valid
600			 * when paired with AUX ACK.
601			 */
602			break;
603		case AUX_NATIVE_REPLY_NACK:
604			DRM_DEBUG_KMS("aux_ch native nack\n");
605			return -EREMOTEIO;
606		case AUX_NATIVE_REPLY_DEFER:
607			udelay(100);
608			continue;
609		default:
610			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611				  reply[0]);
612			return -EREMOTEIO;
613		}
614
615		switch (reply[0] & AUX_I2C_REPLY_MASK) {
616		case AUX_I2C_REPLY_ACK:
617			if (mode == MODE_I2C_READ) {
618				*read_byte = reply[1];
619			}
620			return reply_bytes - 1;
621		case AUX_I2C_REPLY_NACK:
622			DRM_DEBUG_KMS("aux_i2c nack\n");
623			return -EREMOTEIO;
624		case AUX_I2C_REPLY_DEFER:
625			DRM_DEBUG_KMS("aux_i2c defer\n");
626			udelay(100);
627			break;
628		default:
629			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
630			return -EREMOTEIO;
631		}
632	}
633
634	DRM_ERROR("too many retries, giving up\n");
635	return -EREMOTEIO;
636}
637
638static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
639static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
640
641static int
642intel_dp_i2c_init(struct intel_dp *intel_dp,
643		  struct intel_connector *intel_connector, const char *name)
644{
645	int	ret;
646
647	DRM_DEBUG_KMS("i2c_init %s\n", name);
648	intel_dp->algo.running = false;
649	intel_dp->algo.address = 0;
650	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
651
652	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
653	intel_dp->adapter.owner = THIS_MODULE;
654	intel_dp->adapter.class = I2C_CLASS_DDC;
655	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
656	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
657	intel_dp->adapter.algo_data = &intel_dp->algo;
658	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
659
660	ironlake_edp_panel_vdd_on(intel_dp);
661	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
662	ironlake_edp_panel_vdd_off(intel_dp, false);
663	return ret;
664}
665
666static bool
667intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
668		    struct drm_display_mode *adjusted_mode)
669{
670	struct drm_device *dev = encoder->dev;
671	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
672	int lane_count, clock;
673	int max_lane_count = intel_dp_max_lane_count(intel_dp);
674	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
675	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
676
677	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
678		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
679		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
680					mode, adjusted_mode);
681		/*
682		 * the mode->clock is used to calculate the Data&Link M/N
683		 * of the pipe. For the eDP the fixed clock should be used.
684		 */
685		mode->clock = intel_dp->panel_fixed_mode->clock;
686	}
687
688	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
689		for (clock = 0; clock <= max_clock; clock++) {
690			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
691
692			if (intel_dp_link_required(intel_dp, mode->clock)
693					<= link_avail) {
694				intel_dp->link_bw = bws[clock];
695				intel_dp->lane_count = lane_count;
696				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
697				DRM_DEBUG_KMS("Display port link bw %02x lane "
698						"count %d clock %d\n",
699				       intel_dp->link_bw, intel_dp->lane_count,
700				       adjusted_mode->clock);
701				return true;
702			}
703		}
704	}
705
706	return false;
707}
708
709struct intel_dp_m_n {
710	uint32_t	tu;
711	uint32_t	gmch_m;
712	uint32_t	gmch_n;
713	uint32_t	link_m;
714	uint32_t	link_n;
715};
716
717static void
718intel_reduce_ratio(uint32_t *num, uint32_t *den)
719{
720	while (*num > 0xffffff || *den > 0xffffff) {
721		*num >>= 1;
722		*den >>= 1;
723	}
724}
725
726static void
727intel_dp_compute_m_n(int bpp,
728		     int nlanes,
729		     int pixel_clock,
730		     int link_clock,
731		     struct intel_dp_m_n *m_n)
732{
733	m_n->tu = 64;
734	m_n->gmch_m = (pixel_clock * bpp) >> 3;
735	m_n->gmch_n = link_clock * nlanes;
736	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
737	m_n->link_m = pixel_clock;
738	m_n->link_n = link_clock;
739	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
740}
741
742void
743intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
744		 struct drm_display_mode *adjusted_mode)
745{
746	struct drm_device *dev = crtc->dev;
747	struct drm_mode_config *mode_config = &dev->mode_config;
748	struct drm_encoder *encoder;
749	struct drm_i915_private *dev_priv = dev->dev_private;
750	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751	int lane_count = 4;
752	struct intel_dp_m_n m_n;
753	int pipe = intel_crtc->pipe;
754
755	/*
756	 * Find the lane count in the intel_encoder private
757	 */
758	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
759		struct intel_dp *intel_dp;
760
761		if (encoder->crtc != crtc)
762			continue;
763
764		intel_dp = enc_to_intel_dp(encoder);
765		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
766		    intel_dp->base.type == INTEL_OUTPUT_EDP)
767		{
768			lane_count = intel_dp->lane_count;
769			break;
770		}
771	}
772
773	/*
774	 * Compute the GMCH and Link ratios. The '3' here is
775	 * the number of bytes_per_pixel post-LUT, which we always
776	 * set up for 8-bits of R/G/B, or 3 bytes total.
777	 */
778	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
779			     mode->clock, adjusted_mode->clock, &m_n);
780
781	if (HAS_PCH_SPLIT(dev)) {
782		I915_WRITE(TRANSDATA_M1(pipe),
783			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
784			   m_n.gmch_m);
785		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
786		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
787		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
788	} else {
789		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
790			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
791			   m_n.gmch_m);
792		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
793		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
794		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
795	}
796}
797
798static void ironlake_edp_pll_on(struct drm_encoder *encoder);
799static void ironlake_edp_pll_off(struct drm_encoder *encoder);
800
801static void
802intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
803		  struct drm_display_mode *adjusted_mode)
804{
805	struct drm_device *dev = encoder->dev;
806	struct drm_i915_private *dev_priv = dev->dev_private;
807	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
808	struct drm_crtc *crtc = intel_dp->base.base.crtc;
809	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
810
811	/* Turn on the eDP PLL if needed */
812	if (is_edp(intel_dp)) {
813		if (!is_pch_edp(intel_dp))
814			ironlake_edp_pll_on(encoder);
815		else
816			ironlake_edp_pll_off(encoder);
817	}
818
819	/*
820	 * There are four kinds of DP registers:
821	 *
822	 * 	IBX PCH
823	 * 	SNB CPU
824	 *	IVB CPU
825	 * 	CPT PCH
826	 *
827	 * IBX PCH and CPU are the same for almost everything,
828	 * except that the CPU DP PLL is configured in this
829	 * register
830	 *
831	 * CPT PCH is quite different, having many bits moved
832	 * to the TRANS_DP_CTL register instead. That
833	 * configuration happens (oddly) in ironlake_pch_enable
834	 */
835
836	/* Preserve the BIOS-computed detected bit. This is
837	 * supposed to be read-only.
838	 */
839	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
840	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
841
842	/* Handle DP bits in common between all three register formats */
843
844	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
845
846	switch (intel_dp->lane_count) {
847	case 1:
848		intel_dp->DP |= DP_PORT_WIDTH_1;
849		break;
850	case 2:
851		intel_dp->DP |= DP_PORT_WIDTH_2;
852		break;
853	case 4:
854		intel_dp->DP |= DP_PORT_WIDTH_4;
855		break;
856	}
857	if (intel_dp->has_audio) {
858		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859				 pipe_name(intel_crtc->pipe));
860		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861		intel_write_eld(encoder, adjusted_mode);
862	}
863	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
864	intel_dp->link_configuration[0] = intel_dp->link_bw;
865	intel_dp->link_configuration[1] = intel_dp->lane_count;
866	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
867	/*
868	 * Check for DPCD version > 1.1 and enhanced framing support
869	 */
870	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
871	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
872		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
873	}
874
875	/* Split out the IBX/CPU vs CPT settings */
876
877	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
878		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879			intel_dp->DP |= DP_SYNC_HS_HIGH;
880		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881			intel_dp->DP |= DP_SYNC_VS_HIGH;
882		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
883
884		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885			intel_dp->DP |= DP_ENHANCED_FRAMING;
886
887		intel_dp->DP |= intel_crtc->pipe << 29;
888
889		/* don't miss out required setting for eDP */
890		intel_dp->DP |= DP_PLL_ENABLE;
891		if (adjusted_mode->clock < 200000)
892			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
893		else
894			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
895	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
896		intel_dp->DP |= intel_dp->color_range;
897
898		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
899			intel_dp->DP |= DP_SYNC_HS_HIGH;
900		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
901			intel_dp->DP |= DP_SYNC_VS_HIGH;
902		intel_dp->DP |= DP_LINK_TRAIN_OFF;
903
904		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
905			intel_dp->DP |= DP_ENHANCED_FRAMING;
906
907		if (intel_crtc->pipe == 1)
908			intel_dp->DP |= DP_PIPEB_SELECT;
909
910		if (is_cpu_edp(intel_dp)) {
911			/* don't miss out required setting for eDP */
912			intel_dp->DP |= DP_PLL_ENABLE;
913			if (adjusted_mode->clock < 200000)
914				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
915			else
916				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
917		}
918	} else {
919		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
920	}
921}
922
923#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
924#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
925
926#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
927#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
928
929#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
930#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
931
932static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
933				       u32 mask,
934				       u32 value)
935{
936	struct drm_device *dev = intel_dp->base.base.dev;
937	struct drm_i915_private *dev_priv = dev->dev_private;
938
939	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
940		      mask, value,
941		      I915_READ(PCH_PP_STATUS),
942		      I915_READ(PCH_PP_CONTROL));
943
944	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
945		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
946			  I915_READ(PCH_PP_STATUS),
947			  I915_READ(PCH_PP_CONTROL));
948	}
949}
950
951static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
952{
953	DRM_DEBUG_KMS("Wait for panel power on\n");
954	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
955}
956
957static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
958{
959	DRM_DEBUG_KMS("Wait for panel power off time\n");
960	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
961}
962
963static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
964{
965	DRM_DEBUG_KMS("Wait for panel power cycle\n");
966	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
967}
968
969
970/* Read the current pp_control value, unlocking the register if it
971 * is locked
972 */
973
974static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
975{
976	u32	control = I915_READ(PCH_PP_CONTROL);
977
978	control &= ~PANEL_UNLOCK_MASK;
979	control |= PANEL_UNLOCK_REGS;
980	return control;
981}
982
983static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
984{
985	struct drm_device *dev = intel_dp->base.base.dev;
986	struct drm_i915_private *dev_priv = dev->dev_private;
987	u32 pp;
988
989	if (!is_edp(intel_dp))
990		return;
991	DRM_DEBUG_KMS("Turn eDP VDD on\n");
992
993	WARN(intel_dp->want_panel_vdd,
994	     "eDP VDD already requested on\n");
995
996	intel_dp->want_panel_vdd = true;
997
998	if (ironlake_edp_have_panel_vdd(intel_dp)) {
999		DRM_DEBUG_KMS("eDP VDD already on\n");
1000		return;
1001	}
1002
1003	if (!ironlake_edp_have_panel_power(intel_dp))
1004		ironlake_wait_panel_power_cycle(intel_dp);
1005
1006	pp = ironlake_get_pp_control(dev_priv);
1007	pp |= EDP_FORCE_VDD;
1008	I915_WRITE(PCH_PP_CONTROL, pp);
1009	POSTING_READ(PCH_PP_CONTROL);
1010	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1011		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1012
1013	/*
1014	 * If the panel wasn't on, delay before accessing aux channel
1015	 */
1016	if (!ironlake_edp_have_panel_power(intel_dp)) {
1017		DRM_DEBUG_KMS("eDP was not running\n");
1018		msleep(intel_dp->panel_power_up_delay);
1019	}
1020}
1021
1022static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1023{
1024	struct drm_device *dev = intel_dp->base.base.dev;
1025	struct drm_i915_private *dev_priv = dev->dev_private;
1026	u32 pp;
1027
1028	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1029		pp = ironlake_get_pp_control(dev_priv);
1030		pp &= ~EDP_FORCE_VDD;
1031		I915_WRITE(PCH_PP_CONTROL, pp);
1032		POSTING_READ(PCH_PP_CONTROL);
1033
1034		/* Make sure sequencer is idle before allowing subsequent activity */
1035		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1036			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1037
1038		msleep(intel_dp->panel_power_down_delay);
1039	}
1040}
1041
1042static void ironlake_panel_vdd_work(struct work_struct *__work)
1043{
1044	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1045						 struct intel_dp, panel_vdd_work);
1046	struct drm_device *dev = intel_dp->base.base.dev;
1047
1048	mutex_lock(&dev->mode_config.mutex);
1049	ironlake_panel_vdd_off_sync(intel_dp);
1050	mutex_unlock(&dev->mode_config.mutex);
1051}
1052
1053static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1054{
1055	if (!is_edp(intel_dp))
1056		return;
1057
1058	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1059	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1060
1061	intel_dp->want_panel_vdd = false;
1062
1063	if (sync) {
1064		ironlake_panel_vdd_off_sync(intel_dp);
1065	} else {
1066		/*
1067		 * Queue the timer to fire a long
1068		 * time from now (relative to the power down delay)
1069		 * to keep the panel power up across a sequence of operations
1070		 */
1071		schedule_delayed_work(&intel_dp->panel_vdd_work,
1072				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1073	}
1074}
1075
1076static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1077{
1078	struct drm_device *dev = intel_dp->base.base.dev;
1079	struct drm_i915_private *dev_priv = dev->dev_private;
1080	u32 pp;
1081
1082	if (!is_edp(intel_dp))
1083		return;
1084
1085	DRM_DEBUG_KMS("Turn eDP power on\n");
1086
1087	if (ironlake_edp_have_panel_power(intel_dp)) {
1088		DRM_DEBUG_KMS("eDP power already on\n");
1089		return;
1090	}
1091
1092	ironlake_wait_panel_power_cycle(intel_dp);
1093
1094	pp = ironlake_get_pp_control(dev_priv);
1095	if (IS_GEN5(dev)) {
1096		/* ILK workaround: disable reset around power sequence */
1097		pp &= ~PANEL_POWER_RESET;
1098		I915_WRITE(PCH_PP_CONTROL, pp);
1099		POSTING_READ(PCH_PP_CONTROL);
1100	}
1101
1102	pp |= POWER_TARGET_ON;
1103	if (!IS_GEN5(dev))
1104		pp |= PANEL_POWER_RESET;
1105
1106	I915_WRITE(PCH_PP_CONTROL, pp);
1107	POSTING_READ(PCH_PP_CONTROL);
1108
1109	ironlake_wait_panel_on(intel_dp);
1110
1111	if (IS_GEN5(dev)) {
1112		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1113		I915_WRITE(PCH_PP_CONTROL, pp);
1114		POSTING_READ(PCH_PP_CONTROL);
1115	}
1116}
1117
1118static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1119{
1120	struct drm_device *dev = intel_dp->base.base.dev;
1121	struct drm_i915_private *dev_priv = dev->dev_private;
1122	u32 pp;
1123
1124	if (!is_edp(intel_dp))
1125		return;
1126
1127	DRM_DEBUG_KMS("Turn eDP power off\n");
1128
1129	WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1130
1131	pp = ironlake_get_pp_control(dev_priv);
1132	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1133	I915_WRITE(PCH_PP_CONTROL, pp);
1134	POSTING_READ(PCH_PP_CONTROL);
1135
1136	ironlake_wait_panel_off(intel_dp);
1137}
1138
1139static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1140{
1141	struct drm_device *dev = intel_dp->base.base.dev;
1142	struct drm_i915_private *dev_priv = dev->dev_private;
1143	u32 pp;
1144
1145	if (!is_edp(intel_dp))
1146		return;
1147
1148	DRM_DEBUG_KMS("\n");
1149	/*
1150	 * If we enable the backlight right away following a panel power
1151	 * on, we may see slight flicker as the panel syncs with the eDP
1152	 * link.  So delay a bit to make sure the image is solid before
1153	 * allowing it to appear.
1154	 */
1155	msleep(intel_dp->backlight_on_delay);
1156	pp = ironlake_get_pp_control(dev_priv);
1157	pp |= EDP_BLC_ENABLE;
1158	I915_WRITE(PCH_PP_CONTROL, pp);
1159	POSTING_READ(PCH_PP_CONTROL);
1160}
1161
1162static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1163{
1164	struct drm_device *dev = intel_dp->base.base.dev;
1165	struct drm_i915_private *dev_priv = dev->dev_private;
1166	u32 pp;
1167
1168	if (!is_edp(intel_dp))
1169		return;
1170
1171	DRM_DEBUG_KMS("\n");
1172	pp = ironlake_get_pp_control(dev_priv);
1173	pp &= ~EDP_BLC_ENABLE;
1174	I915_WRITE(PCH_PP_CONTROL, pp);
1175	POSTING_READ(PCH_PP_CONTROL);
1176	msleep(intel_dp->backlight_off_delay);
1177}
1178
1179static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1180{
1181	struct drm_device *dev = encoder->dev;
1182	struct drm_i915_private *dev_priv = dev->dev_private;
1183	u32 dpa_ctl;
1184
1185	DRM_DEBUG_KMS("\n");
1186	dpa_ctl = I915_READ(DP_A);
1187	dpa_ctl |= DP_PLL_ENABLE;
1188	I915_WRITE(DP_A, dpa_ctl);
1189	POSTING_READ(DP_A);
1190	udelay(200);
1191}
1192
1193static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1194{
1195	struct drm_device *dev = encoder->dev;
1196	struct drm_i915_private *dev_priv = dev->dev_private;
1197	u32 dpa_ctl;
1198
1199	dpa_ctl = I915_READ(DP_A);
1200	dpa_ctl &= ~DP_PLL_ENABLE;
1201	I915_WRITE(DP_A, dpa_ctl);
1202	POSTING_READ(DP_A);
1203	udelay(200);
1204}
1205
1206/* If the sink supports it, try to set the power state appropriately */
1207static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1208{
1209	int ret, i;
1210
1211	/* Should have a valid DPCD by this point */
1212	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1213		return;
1214
1215	if (mode != DRM_MODE_DPMS_ON) {
1216		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1217						  DP_SET_POWER_D3);
1218		if (ret != 1)
1219			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1220	} else {
1221		/*
1222		 * When turning on, we need to retry for 1ms to give the sink
1223		 * time to wake up.
1224		 */
1225		for (i = 0; i < 3; i++) {
1226			ret = intel_dp_aux_native_write_1(intel_dp,
1227							  DP_SET_POWER,
1228							  DP_SET_POWER_D0);
1229			if (ret == 1)
1230				break;
1231			msleep(1);
1232		}
1233	}
1234}
1235
1236static void intel_dp_prepare(struct drm_encoder *encoder)
1237{
1238	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1239
1240	ironlake_edp_backlight_off(intel_dp);
1241	ironlake_edp_panel_off(intel_dp);
1242
1243	/* Wake up the sink first */
1244	ironlake_edp_panel_vdd_on(intel_dp);
1245	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1246	intel_dp_link_down(intel_dp);
1247	ironlake_edp_panel_vdd_off(intel_dp, false);
1248
1249	/* Make sure the panel is off before trying to
1250	 * change the mode
1251	 */
1252}
1253
1254static void intel_dp_commit(struct drm_encoder *encoder)
1255{
1256	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1257	struct drm_device *dev = encoder->dev;
1258	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1259
1260	ironlake_edp_panel_vdd_on(intel_dp);
1261	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1262	intel_dp_start_link_train(intel_dp);
1263	ironlake_edp_panel_on(intel_dp);
1264	ironlake_edp_panel_vdd_off(intel_dp, true);
1265	intel_dp_complete_link_train(intel_dp);
1266	ironlake_edp_backlight_on(intel_dp);
1267
1268	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1269
1270	if (HAS_PCH_CPT(dev))
1271		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1272}
1273
1274static void
1275intel_dp_dpms(struct drm_encoder *encoder, int mode)
1276{
1277	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1278	struct drm_device *dev = encoder->dev;
1279	struct drm_i915_private *dev_priv = dev->dev_private;
1280	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1281
1282	if (mode != DRM_MODE_DPMS_ON) {
1283		ironlake_edp_backlight_off(intel_dp);
1284		ironlake_edp_panel_off(intel_dp);
1285
1286		ironlake_edp_panel_vdd_on(intel_dp);
1287		intel_dp_sink_dpms(intel_dp, mode);
1288		intel_dp_link_down(intel_dp);
1289		ironlake_edp_panel_vdd_off(intel_dp, false);
1290
1291		if (is_cpu_edp(intel_dp))
1292			ironlake_edp_pll_off(encoder);
1293	} else {
1294		if (is_cpu_edp(intel_dp))
1295			ironlake_edp_pll_on(encoder);
1296
1297		ironlake_edp_panel_vdd_on(intel_dp);
1298		intel_dp_sink_dpms(intel_dp, mode);
1299		if (!(dp_reg & DP_PORT_EN)) {
1300			intel_dp_start_link_train(intel_dp);
1301			ironlake_edp_panel_on(intel_dp);
1302			ironlake_edp_panel_vdd_off(intel_dp, true);
1303			intel_dp_complete_link_train(intel_dp);
1304		} else
1305			ironlake_edp_panel_vdd_off(intel_dp, false);
1306		ironlake_edp_backlight_on(intel_dp);
1307	}
1308	intel_dp->dpms_mode = mode;
1309}
1310
1311/*
1312 * Native read with retry for link status and receiver capability reads for
1313 * cases where the sink may still be asleep.
1314 */
1315static bool
1316intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1317			       uint8_t *recv, int recv_bytes)
1318{
1319	int ret, i;
1320
1321	/*
1322	 * Sinks are *supposed* to come up within 1ms from an off state,
1323	 * but we're also supposed to retry 3 times per the spec.
1324	 */
1325	for (i = 0; i < 3; i++) {
1326		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1327					       recv_bytes);
1328		if (ret == recv_bytes)
1329			return true;
1330		msleep(1);
1331	}
1332
1333	return false;
1334}
1335
1336/*
1337 * Fetch AUX CH registers 0x202 - 0x207 which contain
1338 * link status information
1339 */
1340static bool
1341intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1342{
1343	return intel_dp_aux_native_read_retry(intel_dp,
1344					      DP_LANE0_1_STATUS,
1345					      link_status,
1346					      DP_LINK_STATUS_SIZE);
1347}
1348
1349static uint8_t
1350intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1351		     int r)
1352{
1353	return link_status[r - DP_LANE0_1_STATUS];
1354}
1355
1356static uint8_t
1357intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1358				 int lane)
1359{
1360	int	    s = ((lane & 1) ?
1361			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1362			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1363	uint8_t l = adjust_request[lane>>1];
1364
1365	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1366}
1367
1368static uint8_t
1369intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1370				      int lane)
1371{
1372	int	    s = ((lane & 1) ?
1373			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1374			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1375	uint8_t l = adjust_request[lane>>1];
1376
1377	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1378}
1379
1380
1381#if 0
1382static char	*voltage_names[] = {
1383	"0.4V", "0.6V", "0.8V", "1.2V"
1384};
1385static char	*pre_emph_names[] = {
1386	"0dB", "3.5dB", "6dB", "9.5dB"
1387};
1388static char	*link_train_names[] = {
1389	"pattern 1", "pattern 2", "idle", "off"
1390};
1391#endif
1392
1393/*
1394 * These are source-specific values; current Intel hardware supports
1395 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1396 */
1397
1398static uint8_t
1399intel_dp_voltage_max(struct intel_dp *intel_dp)
1400{
1401	struct drm_device *dev = intel_dp->base.base.dev;
1402
1403	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1404		return DP_TRAIN_VOLTAGE_SWING_800;
1405	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1406		return DP_TRAIN_VOLTAGE_SWING_1200;
1407	else
1408		return DP_TRAIN_VOLTAGE_SWING_800;
1409}
1410
1411static uint8_t
1412intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1413{
1414	struct drm_device *dev = intel_dp->base.base.dev;
1415
1416	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1417		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1418		case DP_TRAIN_VOLTAGE_SWING_400:
1419			return DP_TRAIN_PRE_EMPHASIS_6;
1420		case DP_TRAIN_VOLTAGE_SWING_600:
1421		case DP_TRAIN_VOLTAGE_SWING_800:
1422			return DP_TRAIN_PRE_EMPHASIS_3_5;
1423		default:
1424			return DP_TRAIN_PRE_EMPHASIS_0;
1425		}
1426	} else {
1427		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1428		case DP_TRAIN_VOLTAGE_SWING_400:
1429			return DP_TRAIN_PRE_EMPHASIS_6;
1430		case DP_TRAIN_VOLTAGE_SWING_600:
1431			return DP_TRAIN_PRE_EMPHASIS_6;
1432		case DP_TRAIN_VOLTAGE_SWING_800:
1433			return DP_TRAIN_PRE_EMPHASIS_3_5;
1434		case DP_TRAIN_VOLTAGE_SWING_1200:
1435		default:
1436			return DP_TRAIN_PRE_EMPHASIS_0;
1437		}
1438	}
1439}
1440
1441static void
1442intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1443{
1444	uint8_t v = 0;
1445	uint8_t p = 0;
1446	int lane;
1447	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1448	uint8_t voltage_max;
1449	uint8_t preemph_max;
1450
1451	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1452		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1453		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1454
1455		if (this_v > v)
1456			v = this_v;
1457		if (this_p > p)
1458			p = this_p;
1459	}
1460
1461	voltage_max = intel_dp_voltage_max(intel_dp);
1462	if (v >= voltage_max)
1463		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1464
1465	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1466	if (p >= preemph_max)
1467		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1468
1469	for (lane = 0; lane < 4; lane++)
1470		intel_dp->train_set[lane] = v | p;
1471}
1472
1473static uint32_t
1474intel_dp_signal_levels(uint8_t train_set)
1475{
1476	uint32_t	signal_levels = 0;
1477
1478	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479	case DP_TRAIN_VOLTAGE_SWING_400:
1480	default:
1481		signal_levels |= DP_VOLTAGE_0_4;
1482		break;
1483	case DP_TRAIN_VOLTAGE_SWING_600:
1484		signal_levels |= DP_VOLTAGE_0_6;
1485		break;
1486	case DP_TRAIN_VOLTAGE_SWING_800:
1487		signal_levels |= DP_VOLTAGE_0_8;
1488		break;
1489	case DP_TRAIN_VOLTAGE_SWING_1200:
1490		signal_levels |= DP_VOLTAGE_1_2;
1491		break;
1492	}
1493	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1494	case DP_TRAIN_PRE_EMPHASIS_0:
1495	default:
1496		signal_levels |= DP_PRE_EMPHASIS_0;
1497		break;
1498	case DP_TRAIN_PRE_EMPHASIS_3_5:
1499		signal_levels |= DP_PRE_EMPHASIS_3_5;
1500		break;
1501	case DP_TRAIN_PRE_EMPHASIS_6:
1502		signal_levels |= DP_PRE_EMPHASIS_6;
1503		break;
1504	case DP_TRAIN_PRE_EMPHASIS_9_5:
1505		signal_levels |= DP_PRE_EMPHASIS_9_5;
1506		break;
1507	}
1508	return signal_levels;
1509}
1510
1511/* Gen6's DP voltage swing and pre-emphasis control */
1512static uint32_t
1513intel_gen6_edp_signal_levels(uint8_t train_set)
1514{
1515	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1516					 DP_TRAIN_PRE_EMPHASIS_MASK);
1517	switch (signal_levels) {
1518	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1519	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1520		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1521	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1522		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1523	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1524	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1525		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1526	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1527	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1528		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1529	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1530	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1531		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1532	default:
1533		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1534			      "0x%x\n", signal_levels);
1535		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1536	}
1537}
1538
1539/* Gen7's DP voltage swing and pre-emphasis control */
1540static uint32_t
1541intel_gen7_edp_signal_levels(uint8_t train_set)
1542{
1543	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1544					 DP_TRAIN_PRE_EMPHASIS_MASK);
1545	switch (signal_levels) {
1546	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1547		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1548	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1549		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1550	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1551		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1552
1553	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1554		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1555	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1556		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1557
1558	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1559		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1560	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1561		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1562
1563	default:
1564		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1565			      "0x%x\n", signal_levels);
1566		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1567	}
1568}
1569
1570static uint8_t
1571intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1572		      int lane)
1573{
1574	int s = (lane & 1) * 4;
1575	uint8_t l = link_status[lane>>1];
1576
1577	return (l >> s) & 0xf;
1578}
1579
1580/* Check for clock recovery is done on all channels */
1581static bool
1582intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1583{
1584	int lane;
1585	uint8_t lane_status;
1586
1587	for (lane = 0; lane < lane_count; lane++) {
1588		lane_status = intel_get_lane_status(link_status, lane);
1589		if ((lane_status & DP_LANE_CR_DONE) == 0)
1590			return false;
1591	}
1592	return true;
1593}
1594
1595/* Check to see if channel eq is done on all channels */
1596#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1597			 DP_LANE_CHANNEL_EQ_DONE|\
1598			 DP_LANE_SYMBOL_LOCKED)
1599static bool
1600intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1601{
1602	uint8_t lane_align;
1603	uint8_t lane_status;
1604	int lane;
1605
1606	lane_align = intel_dp_link_status(link_status,
1607					  DP_LANE_ALIGN_STATUS_UPDATED);
1608	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1609		return false;
1610	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1611		lane_status = intel_get_lane_status(link_status, lane);
1612		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1613			return false;
1614	}
1615	return true;
1616}
1617
1618static bool
1619intel_dp_set_link_train(struct intel_dp *intel_dp,
1620			uint32_t dp_reg_value,
1621			uint8_t dp_train_pat)
1622{
1623	struct drm_device *dev = intel_dp->base.base.dev;
1624	struct drm_i915_private *dev_priv = dev->dev_private;
1625	int ret;
1626
1627	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1628	POSTING_READ(intel_dp->output_reg);
1629
1630	intel_dp_aux_native_write_1(intel_dp,
1631				    DP_TRAINING_PATTERN_SET,
1632				    dp_train_pat);
1633
1634	ret = intel_dp_aux_native_write(intel_dp,
1635					DP_TRAINING_LANE0_SET,
1636					intel_dp->train_set,
1637					intel_dp->lane_count);
1638	if (ret != intel_dp->lane_count)
1639		return false;
1640
1641	return true;
1642}
1643
1644/* Enable corresponding port and start training pattern 1 */
1645static void
1646intel_dp_start_link_train(struct intel_dp *intel_dp)
1647{
1648	struct drm_device *dev = intel_dp->base.base.dev;
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1651	int i;
1652	uint8_t voltage;
1653	bool clock_recovery = false;
1654	int voltage_tries, loop_tries;
1655	u32 reg;
1656	uint32_t DP = intel_dp->DP;
1657
1658	/*
1659	 * On CPT we have to enable the port in training pattern 1, which
1660	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1661	 * the port and wait for it to become active.
1662	 */
1663	if (!HAS_PCH_CPT(dev)) {
1664		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1665		POSTING_READ(intel_dp->output_reg);
1666		intel_wait_for_vblank(dev, intel_crtc->pipe);
1667	}
1668
1669	/* Write the link configuration data */
1670	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1671				  intel_dp->link_configuration,
1672				  DP_LINK_CONFIGURATION_SIZE);
1673
1674	DP |= DP_PORT_EN;
1675
1676	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1677		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1678	else
1679		DP &= ~DP_LINK_TRAIN_MASK;
1680	memset(intel_dp->train_set, 0, 4);
1681	voltage = 0xff;
1682	voltage_tries = 0;
1683	loop_tries = 0;
1684	clock_recovery = false;
1685	for (;;) {
1686		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1687		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1688		uint32_t    signal_levels;
1689
1690
1691		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1692			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1693			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1694		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1695			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1696			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1697		} else {
1698			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1699			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1700			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1701		}
1702
1703		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1704			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1705		else
1706			reg = DP | DP_LINK_TRAIN_PAT_1;
1707
1708		if (!intel_dp_set_link_train(intel_dp, reg,
1709					     DP_TRAINING_PATTERN_1 |
1710					     DP_LINK_SCRAMBLING_DISABLE))
1711			break;
1712		/* Set training pattern 1 */
1713
1714		udelay(100);
1715		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1716			DRM_ERROR("failed to get link status\n");
1717			break;
1718		}
1719
1720		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1721			DRM_DEBUG_KMS("clock recovery OK\n");
1722			clock_recovery = true;
1723			break;
1724		}
1725
1726		/* Check to see if we've tried the max voltage */
1727		for (i = 0; i < intel_dp->lane_count; i++)
1728			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1729				break;
1730		if (i == intel_dp->lane_count) {
1731			++loop_tries;
1732			if (loop_tries == 5) {
1733				DRM_DEBUG_KMS("too many full retries, give up\n");
1734				break;
1735			}
1736			memset(intel_dp->train_set, 0, 4);
1737			voltage_tries = 0;
1738			continue;
1739		}
1740
1741		/* Check to see if we've tried the same voltage 5 times */
1742		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1743			++voltage_tries;
1744			if (voltage_tries == 5) {
1745				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1746				break;
1747			}
1748		} else
1749			voltage_tries = 0;
1750		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1751
1752		/* Compute new intel_dp->train_set as requested by target */
1753		intel_get_adjust_train(intel_dp, link_status);
1754	}
1755
1756	intel_dp->DP = DP;
1757}
1758
1759static void
1760intel_dp_complete_link_train(struct intel_dp *intel_dp)
1761{
1762	struct drm_device *dev = intel_dp->base.base.dev;
1763	struct drm_i915_private *dev_priv = dev->dev_private;
1764	bool channel_eq = false;
1765	int tries, cr_tries;
1766	u32 reg;
1767	uint32_t DP = intel_dp->DP;
1768
1769	/* channel equalization */
1770	tries = 0;
1771	cr_tries = 0;
1772	channel_eq = false;
1773	for (;;) {
1774		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1775		uint32_t    signal_levels;
1776		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1777
1778		if (cr_tries > 5) {
1779			DRM_ERROR("failed to train DP, aborting\n");
1780			intel_dp_link_down(intel_dp);
1781			break;
1782		}
1783
1784		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1785			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1786			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1787		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1788			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1789			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1790		} else {
1791			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1792			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1793		}
1794
1795		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1796			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1797		else
1798			reg = DP | DP_LINK_TRAIN_PAT_2;
1799
1800		/* channel eq pattern */
1801		if (!intel_dp_set_link_train(intel_dp, reg,
1802					     DP_TRAINING_PATTERN_2 |
1803					     DP_LINK_SCRAMBLING_DISABLE))
1804			break;
1805
1806		udelay(400);
1807		if (!intel_dp_get_link_status(intel_dp, link_status))
1808			break;
1809
1810		/* Make sure clock is still ok */
1811		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1812			intel_dp_start_link_train(intel_dp);
1813			cr_tries++;
1814			continue;
1815		}
1816
1817		if (intel_channel_eq_ok(intel_dp, link_status)) {
1818			channel_eq = true;
1819			break;
1820		}
1821
1822		/* Try 5 times, then try clock recovery if that fails */
1823		if (tries > 5) {
1824			intel_dp_link_down(intel_dp);
1825			intel_dp_start_link_train(intel_dp);
1826			tries = 0;
1827			cr_tries++;
1828			continue;
1829		}
1830
1831		/* Compute new intel_dp->train_set as requested by target */
1832		intel_get_adjust_train(intel_dp, link_status);
1833		++tries;
1834	}
1835
1836	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1837		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1838	else
1839		reg = DP | DP_LINK_TRAIN_OFF;
1840
1841	I915_WRITE(intel_dp->output_reg, reg);
1842	POSTING_READ(intel_dp->output_reg);
1843	intel_dp_aux_native_write_1(intel_dp,
1844				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1845}
1846
1847static void
1848intel_dp_link_down(struct intel_dp *intel_dp)
1849{
1850	struct drm_device *dev = intel_dp->base.base.dev;
1851	struct drm_i915_private *dev_priv = dev->dev_private;
1852	uint32_t DP = intel_dp->DP;
1853
1854	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1855		return;
1856
1857	DRM_DEBUG_KMS("\n");
1858
1859	if (is_edp(intel_dp)) {
1860		DP &= ~DP_PLL_ENABLE;
1861		I915_WRITE(intel_dp->output_reg, DP);
1862		POSTING_READ(intel_dp->output_reg);
1863		udelay(100);
1864	}
1865
1866	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1867		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1868		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1869	} else {
1870		DP &= ~DP_LINK_TRAIN_MASK;
1871		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1872	}
1873	POSTING_READ(intel_dp->output_reg);
1874
1875	msleep(17);
1876
1877	if (is_edp(intel_dp)) {
1878		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1879			DP |= DP_LINK_TRAIN_OFF_CPT;
1880		else
1881			DP |= DP_LINK_TRAIN_OFF;
1882	}
1883
1884	if (!HAS_PCH_CPT(dev) &&
1885	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1886		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1887
1888		/* Hardware workaround: leaving our transcoder select
1889		 * set to transcoder B while it's off will prevent the
1890		 * corresponding HDMI output on transcoder A.
1891		 *
1892		 * Combine this with another hardware workaround:
1893		 * transcoder select bit can only be cleared while the
1894		 * port is enabled.
1895		 */
1896		DP &= ~DP_PIPEB_SELECT;
1897		I915_WRITE(intel_dp->output_reg, DP);
1898
1899		/* Changes to enable or select take place the vblank
1900		 * after being written.
1901		 */
1902		if (crtc == NULL) {
1903			/* We can arrive here never having been attached
1904			 * to a CRTC, for instance, due to inheriting
1905			 * random state from the BIOS.
1906			 *
1907			 * If the pipe is not running, play safe and
1908			 * wait for the clocks to stabilise before
1909			 * continuing.
1910			 */
1911			POSTING_READ(intel_dp->output_reg);
1912			msleep(50);
1913		} else
1914			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1915	}
1916
1917	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1918	POSTING_READ(intel_dp->output_reg);
1919	msleep(intel_dp->panel_power_down_delay);
1920}
1921
1922static bool
1923intel_dp_get_dpcd(struct intel_dp *intel_dp)
1924{
1925	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1926					   sizeof(intel_dp->dpcd)) &&
1927	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1928		return true;
1929	}
1930
1931	return false;
1932}
1933
1934static bool
1935intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1936{
1937	int ret;
1938
1939	ret = intel_dp_aux_native_read_retry(intel_dp,
1940					     DP_DEVICE_SERVICE_IRQ_VECTOR,
1941					     sink_irq_vector, 1);
1942	if (!ret)
1943		return false;
1944
1945	return true;
1946}
1947
1948static void
1949intel_dp_handle_test_request(struct intel_dp *intel_dp)
1950{
1951	/* NAK by default */
1952	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1953}
1954
1955/*
1956 * According to DP spec
1957 * 5.1.2:
1958 *  1. Read DPCD
1959 *  2. Configure link according to Receiver Capabilities
1960 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1961 *  4. Check link status on receipt of hot-plug interrupt
1962 */
1963
1964static void
1965intel_dp_check_link_status(struct intel_dp *intel_dp)
1966{
1967	u8 sink_irq_vector;
1968	u8 link_status[DP_LINK_STATUS_SIZE];
1969
1970	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1971		return;
1972
1973	if (!intel_dp->base.base.crtc)
1974		return;
1975
1976	/* Try to read receiver status if the link appears to be up */
1977	if (!intel_dp_get_link_status(intel_dp, link_status)) {
1978		intel_dp_link_down(intel_dp);
1979		return;
1980	}
1981
1982	/* Now read the DPCD to see if it's actually running */
1983	if (!intel_dp_get_dpcd(intel_dp)) {
1984		intel_dp_link_down(intel_dp);
1985		return;
1986	}
1987
1988	/* Try to read the source of the interrupt */
1989	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1990	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1991		/* Clear interrupt source */
1992		intel_dp_aux_native_write_1(intel_dp,
1993					    DP_DEVICE_SERVICE_IRQ_VECTOR,
1994					    sink_irq_vector);
1995
1996		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1997			intel_dp_handle_test_request(intel_dp);
1998		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1999			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2000	}
2001
2002	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2003		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2004			      drm_get_encoder_name(&intel_dp->base.base));
2005		intel_dp_start_link_train(intel_dp);
2006		intel_dp_complete_link_train(intel_dp);
2007	}
2008}
2009
2010static enum drm_connector_status
2011intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2012{
2013	if (intel_dp_get_dpcd(intel_dp))
2014		return connector_status_connected;
2015	return connector_status_disconnected;
2016}
2017
2018static enum drm_connector_status
2019ironlake_dp_detect(struct intel_dp *intel_dp)
2020{
2021	enum drm_connector_status status;
2022
2023	/* Can't disconnect eDP, but you can close the lid... */
2024	if (is_edp(intel_dp)) {
2025		status = intel_panel_detect(intel_dp->base.base.dev);
2026		if (status == connector_status_unknown)
2027			status = connector_status_connected;
2028		return status;
2029	}
2030
2031	return intel_dp_detect_dpcd(intel_dp);
2032}
2033
2034static enum drm_connector_status
2035g4x_dp_detect(struct intel_dp *intel_dp)
2036{
2037	struct drm_device *dev = intel_dp->base.base.dev;
2038	struct drm_i915_private *dev_priv = dev->dev_private;
2039	uint32_t temp, bit;
2040
2041	switch (intel_dp->output_reg) {
2042	case DP_B:
2043		bit = DPB_HOTPLUG_INT_STATUS;
2044		break;
2045	case DP_C:
2046		bit = DPC_HOTPLUG_INT_STATUS;
2047		break;
2048	case DP_D:
2049		bit = DPD_HOTPLUG_INT_STATUS;
2050		break;
2051	default:
2052		return connector_status_unknown;
2053	}
2054
2055	temp = I915_READ(PORT_HOTPLUG_STAT);
2056
2057	if ((temp & bit) == 0)
2058		return connector_status_disconnected;
2059
2060	return intel_dp_detect_dpcd(intel_dp);
2061}
2062
2063static struct edid *
2064intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2065{
2066	struct intel_dp *intel_dp = intel_attached_dp(connector);
2067	struct edid	*edid;
2068
2069	ironlake_edp_panel_vdd_on(intel_dp);
2070	edid = drm_get_edid(connector, adapter);
2071	ironlake_edp_panel_vdd_off(intel_dp, false);
2072	return edid;
2073}
2074
2075static int
2076intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2077{
2078	struct intel_dp *intel_dp = intel_attached_dp(connector);
2079	int	ret;
2080
2081	ironlake_edp_panel_vdd_on(intel_dp);
2082	ret = intel_ddc_get_modes(connector, adapter);
2083	ironlake_edp_panel_vdd_off(intel_dp, false);
2084	return ret;
2085}
2086
2087
2088/**
2089 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2090 *
2091 * \return true if DP port is connected.
2092 * \return false if DP port is disconnected.
2093 */
2094static enum drm_connector_status
2095intel_dp_detect(struct drm_connector *connector, bool force)
2096{
2097	struct intel_dp *intel_dp = intel_attached_dp(connector);
2098	struct drm_device *dev = intel_dp->base.base.dev;
2099	enum drm_connector_status status;
2100	struct edid *edid = NULL;
2101
2102	intel_dp->has_audio = false;
2103
2104	if (HAS_PCH_SPLIT(dev))
2105		status = ironlake_dp_detect(intel_dp);
2106	else
2107		status = g4x_dp_detect(intel_dp);
2108
2109	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2110		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2111		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2112		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2113
2114	if (status != connector_status_connected)
2115		return status;
2116
2117	if (intel_dp->force_audio) {
2118		intel_dp->has_audio = intel_dp->force_audio > 0;
2119	} else {
2120		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2121		if (edid) {
2122			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2123			connector->display_info.raw_edid = NULL;
2124			kfree(edid);
2125		}
2126	}
2127
2128	return connector_status_connected;
2129}
2130
2131static int intel_dp_get_modes(struct drm_connector *connector)
2132{
2133	struct intel_dp *intel_dp = intel_attached_dp(connector);
2134	struct drm_device *dev = intel_dp->base.base.dev;
2135	struct drm_i915_private *dev_priv = dev->dev_private;
2136	int ret;
2137
2138	/* We should parse the EDID data and find out if it has an audio sink
2139	 */
2140
2141	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2142	if (ret) {
2143		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2144			struct drm_display_mode *newmode;
2145			list_for_each_entry(newmode, &connector->probed_modes,
2146					    head) {
2147				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2148					intel_dp->panel_fixed_mode =
2149						drm_mode_duplicate(dev, newmode);
2150					break;
2151				}
2152			}
2153		}
2154		return ret;
2155	}
2156
2157	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2158	if (is_edp(intel_dp)) {
2159		/* initialize panel mode from VBT if available for eDP */
2160		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2161			intel_dp->panel_fixed_mode =
2162				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2163			if (intel_dp->panel_fixed_mode) {
2164				intel_dp->panel_fixed_mode->type |=
2165					DRM_MODE_TYPE_PREFERRED;
2166			}
2167		}
2168		if (intel_dp->panel_fixed_mode) {
2169			struct drm_display_mode *mode;
2170			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2171			drm_mode_probed_add(connector, mode);
2172			return 1;
2173		}
2174	}
2175	return 0;
2176}
2177
2178static bool
2179intel_dp_detect_audio(struct drm_connector *connector)
2180{
2181	struct intel_dp *intel_dp = intel_attached_dp(connector);
2182	struct edid *edid;
2183	bool has_audio = false;
2184
2185	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2186	if (edid) {
2187		has_audio = drm_detect_monitor_audio(edid);
2188
2189		connector->display_info.raw_edid = NULL;
2190		kfree(edid);
2191	}
2192
2193	return has_audio;
2194}
2195
2196static int
2197intel_dp_set_property(struct drm_connector *connector,
2198		      struct drm_property *property,
2199		      uint64_t val)
2200{
2201	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2202	struct intel_dp *intel_dp = intel_attached_dp(connector);
2203	int ret;
2204
2205	ret = drm_connector_property_set_value(connector, property, val);
2206	if (ret)
2207		return ret;
2208
2209	if (property == dev_priv->force_audio_property) {
2210		int i = val;
2211		bool has_audio;
2212
2213		if (i == intel_dp->force_audio)
2214			return 0;
2215
2216		intel_dp->force_audio = i;
2217
2218		if (i == 0)
2219			has_audio = intel_dp_detect_audio(connector);
2220		else
2221			has_audio = i > 0;
2222
2223		if (has_audio == intel_dp->has_audio)
2224			return 0;
2225
2226		intel_dp->has_audio = has_audio;
2227		goto done;
2228	}
2229
2230	if (property == dev_priv->broadcast_rgb_property) {
2231		if (val == !!intel_dp->color_range)
2232			return 0;
2233
2234		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2235		goto done;
2236	}
2237
2238	return -EINVAL;
2239
2240done:
2241	if (intel_dp->base.base.crtc) {
2242		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2243		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2244					 crtc->x, crtc->y,
2245					 crtc->fb);
2246	}
2247
2248	return 0;
2249}
2250
2251static void
2252intel_dp_destroy(struct drm_connector *connector)
2253{
2254	struct drm_device *dev = connector->dev;
2255
2256	if (intel_dpd_is_edp(dev))
2257		intel_panel_destroy_backlight(dev);
2258
2259	drm_sysfs_connector_remove(connector);
2260	drm_connector_cleanup(connector);
2261	kfree(connector);
2262}
2263
2264static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2265{
2266	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2267
2268	i2c_del_adapter(&intel_dp->adapter);
2269	drm_encoder_cleanup(encoder);
2270	if (is_edp(intel_dp)) {
2271		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2272		ironlake_panel_vdd_off_sync(intel_dp);
2273	}
2274	kfree(intel_dp);
2275}
2276
2277static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2278	.dpms = intel_dp_dpms,
2279	.mode_fixup = intel_dp_mode_fixup,
2280	.prepare = intel_dp_prepare,
2281	.mode_set = intel_dp_mode_set,
2282	.commit = intel_dp_commit,
2283};
2284
2285static const struct drm_connector_funcs intel_dp_connector_funcs = {
2286	.dpms = drm_helper_connector_dpms,
2287	.detect = intel_dp_detect,
2288	.fill_modes = drm_helper_probe_single_connector_modes,
2289	.set_property = intel_dp_set_property,
2290	.destroy = intel_dp_destroy,
2291};
2292
2293static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2294	.get_modes = intel_dp_get_modes,
2295	.mode_valid = intel_dp_mode_valid,
2296	.best_encoder = intel_best_encoder,
2297};
2298
2299static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2300	.destroy = intel_dp_encoder_destroy,
2301};
2302
2303static void
2304intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2305{
2306	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2307
2308	intel_dp_check_link_status(intel_dp);
2309}
2310
2311/* Return which DP Port should be selected for Transcoder DP control */
2312int
2313intel_trans_dp_port_sel(struct drm_crtc *crtc)
2314{
2315	struct drm_device *dev = crtc->dev;
2316	struct drm_mode_config *mode_config = &dev->mode_config;
2317	struct drm_encoder *encoder;
2318
2319	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2320		struct intel_dp *intel_dp;
2321
2322		if (encoder->crtc != crtc)
2323			continue;
2324
2325		intel_dp = enc_to_intel_dp(encoder);
2326		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2327		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2328			return intel_dp->output_reg;
2329	}
2330
2331	return -1;
2332}
2333
2334/* check the VBT to see whether the eDP is on DP-D port */
2335bool intel_dpd_is_edp(struct drm_device *dev)
2336{
2337	struct drm_i915_private *dev_priv = dev->dev_private;
2338	struct child_device_config *p_child;
2339	int i;
2340
2341	if (!dev_priv->child_dev_num)
2342		return false;
2343
2344	for (i = 0; i < dev_priv->child_dev_num; i++) {
2345		p_child = dev_priv->child_dev + i;
2346
2347		if (p_child->dvo_port == PORT_IDPD &&
2348		    p_child->device_type == DEVICE_TYPE_eDP)
2349			return true;
2350	}
2351	return false;
2352}
2353
2354static void
2355intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2356{
2357	intel_attach_force_audio_property(connector);
2358	intel_attach_broadcast_rgb_property(connector);
2359}
2360
2361void
2362intel_dp_init(struct drm_device *dev, int output_reg)
2363{
2364	struct drm_i915_private *dev_priv = dev->dev_private;
2365	struct drm_connector *connector;
2366	struct intel_dp *intel_dp;
2367	struct intel_encoder *intel_encoder;
2368	struct intel_connector *intel_connector;
2369	const char *name = NULL;
2370	int type;
2371
2372	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2373	if (!intel_dp)
2374		return;
2375
2376	intel_dp->output_reg = output_reg;
2377	intel_dp->dpms_mode = -1;
2378
2379	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2380	if (!intel_connector) {
2381		kfree(intel_dp);
2382		return;
2383	}
2384	intel_encoder = &intel_dp->base;
2385
2386	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2387		if (intel_dpd_is_edp(dev))
2388			intel_dp->is_pch_edp = true;
2389
2390	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2391		type = DRM_MODE_CONNECTOR_eDP;
2392		intel_encoder->type = INTEL_OUTPUT_EDP;
2393	} else {
2394		type = DRM_MODE_CONNECTOR_DisplayPort;
2395		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2396	}
2397
2398	connector = &intel_connector->base;
2399	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2400	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2401
2402	connector->polled = DRM_CONNECTOR_POLL_HPD;
2403
2404	if (output_reg == DP_B || output_reg == PCH_DP_B)
2405		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2406	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2407		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2408	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2409		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2410
2411	if (is_edp(intel_dp)) {
2412		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2413		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2414				  ironlake_panel_vdd_work);
2415	}
2416
2417	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2418	connector->interlace_allowed = true;
2419	connector->doublescan_allowed = 0;
2420
2421	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2422			 DRM_MODE_ENCODER_TMDS);
2423	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2424
2425	intel_connector_attach_encoder(intel_connector, intel_encoder);
2426	drm_sysfs_connector_add(connector);
2427
2428	/* Set up the DDC bus. */
2429	switch (output_reg) {
2430		case DP_A:
2431			name = "DPDDC-A";
2432			break;
2433		case DP_B:
2434		case PCH_DP_B:
2435			dev_priv->hotplug_supported_mask |=
2436				HDMIB_HOTPLUG_INT_STATUS;
2437			name = "DPDDC-B";
2438			break;
2439		case DP_C:
2440		case PCH_DP_C:
2441			dev_priv->hotplug_supported_mask |=
2442				HDMIC_HOTPLUG_INT_STATUS;
2443			name = "DPDDC-C";
2444			break;
2445		case DP_D:
2446		case PCH_DP_D:
2447			dev_priv->hotplug_supported_mask |=
2448				HDMID_HOTPLUG_INT_STATUS;
2449			name = "DPDDC-D";
2450			break;
2451	}
2452
2453	/* Cache some DPCD data in the eDP case */
2454	if (is_edp(intel_dp)) {
2455		bool ret;
2456		struct edp_power_seq	cur, vbt;
2457		u32 pp_on, pp_off, pp_div;
2458
2459		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2460		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2461		pp_div = I915_READ(PCH_PP_DIVISOR);
2462
2463		/* Pull timing values out of registers */
2464		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2465			PANEL_POWER_UP_DELAY_SHIFT;
2466
2467		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2468			PANEL_LIGHT_ON_DELAY_SHIFT;
2469
2470		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2471			PANEL_LIGHT_OFF_DELAY_SHIFT;
2472
2473		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2474			PANEL_POWER_DOWN_DELAY_SHIFT;
2475
2476		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2477			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2478
2479		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2480			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2481
2482		vbt = dev_priv->edp.pps;
2483
2484		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2485			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2486
2487#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2488
2489		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2490		intel_dp->backlight_on_delay = get_delay(t8);
2491		intel_dp->backlight_off_delay = get_delay(t9);
2492		intel_dp->panel_power_down_delay = get_delay(t10);
2493		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2494
2495		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2496			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2497			      intel_dp->panel_power_cycle_delay);
2498
2499		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2500			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2501
2502		ironlake_edp_panel_vdd_on(intel_dp);
2503		ret = intel_dp_get_dpcd(intel_dp);
2504		ironlake_edp_panel_vdd_off(intel_dp, false);
2505
2506		if (ret) {
2507			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2508				dev_priv->no_aux_handshake =
2509					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2510					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2511		} else {
2512			/* if this fails, presume the device is a ghost */
2513			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2514			intel_dp_encoder_destroy(&intel_dp->base.base);
2515			intel_dp_destroy(&intel_connector->base);
2516			return;
2517		}
2518	}
2519
2520	intel_dp_i2c_init(intel_dp, intel_connector, name);
2521
2522	intel_encoder->hot_plug = intel_dp_hot_plug;
2523
2524	if (is_edp(intel_dp)) {
2525		dev_priv->int_edp_connector = connector;
2526		intel_panel_setup_backlight(dev);
2527	}
2528
2529	intel_dp_add_properties(intel_dp, connector);
2530
2531	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2532	 * 0xd.  Failure to do so will result in spurious interrupts being
2533	 * generated on the port when a cable is not attached.
2534	 */
2535	if (IS_G4X(dev) && !IS_GM45(dev)) {
2536		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2537		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2538	}
2539}
2540