intel_dp.c revision 1f70385510991992f3aef339982ca790faa52b06
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "drm_edid.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43/**
44 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45 * @intel_dp: DP struct
46 *
47 * If a CPU or PCH DP output is attached to an eDP panel, this function
48 * will return true, and false otherwise.
49 */
50static bool is_edp(struct intel_dp *intel_dp)
51{
52	return intel_dp->base.type == INTEL_OUTPUT_EDP;
53}
54
55/**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise.  Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63static bool is_pch_edp(struct intel_dp *intel_dp)
64{
65	return intel_dp->is_pch_edp;
66}
67
68/**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74static bool is_cpu_edp(struct intel_dp *intel_dp)
75{
76	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77}
78
79static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80{
81	return container_of(encoder, struct intel_dp, base.base);
82}
83
84static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85{
86	return container_of(intel_attached_encoder(connector),
87			    struct intel_dp, base);
88}
89
90/**
91 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92 * @encoder: DRM encoder
93 *
94 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
95 * by intel_display.c.
96 */
97bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98{
99	struct intel_dp *intel_dp;
100
101	if (!encoder)
102		return false;
103
104	intel_dp = enc_to_intel_dp(encoder);
105
106	return is_pch_edp(intel_dp);
107}
108
109static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113void
114intel_edp_link_config(struct intel_encoder *intel_encoder,
115		       int *lane_num, int *link_bw)
116{
117	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119	*lane_num = intel_dp->lane_count;
120	if (intel_dp->link_bw == DP_LINK_BW_1_62)
121		*link_bw = 162000;
122	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123		*link_bw = 270000;
124}
125
126int
127intel_edp_target_clock(struct intel_encoder *intel_encoder,
128		       struct drm_display_mode *mode)
129{
130	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132	if (intel_dp->panel_fixed_mode)
133		return intel_dp->panel_fixed_mode->clock;
134	else
135		return mode->clock;
136}
137
138static int
139intel_dp_max_lane_count(struct intel_dp *intel_dp)
140{
141	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142	switch (max_lane_count) {
143	case 1: case 2: case 4:
144		break;
145	default:
146		max_lane_count = 4;
147	}
148	return max_lane_count;
149}
150
151static int
152intel_dp_max_link_bw(struct intel_dp *intel_dp)
153{
154	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156	switch (max_link_bw) {
157	case DP_LINK_BW_1_62:
158	case DP_LINK_BW_2_7:
159		break;
160	default:
161		max_link_bw = DP_LINK_BW_1_62;
162		break;
163	}
164	return max_link_bw;
165}
166
167static int
168intel_dp_link_clock(uint8_t link_bw)
169{
170	if (link_bw == DP_LINK_BW_2_7)
171		return 270000;
172	else
173		return 162000;
174}
175
176/*
177 * The units on the numbers in the next two are... bizarre.  Examples will
178 * make it clearer; this one parallels an example in the eDP spec.
179 *
180 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181 *
182 *     270000 * 1 * 8 / 10 == 216000
183 *
184 * The actual data capacity of that configuration is 2.16Gbit/s, so the
185 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
186 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187 * 119000.  At 18bpp that's 2142000 kilobits per second.
188 *
189 * Thus the strange-looking division by 10 in intel_dp_link_required, to
190 * get the result in decakilobits instead of kilobits.
191 */
192
193static int
194intel_dp_link_required(int pixel_clock, int bpp)
195{
196	return (pixel_clock * bpp + 9) / 10;
197}
198
199static int
200intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201{
202	return (max_link_clock * max_lanes * 8) / 10;
203}
204
205static bool
206intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207			  struct drm_display_mode *mode,
208			  bool adjust_mode)
209{
210	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211	int max_lanes = intel_dp_max_lane_count(intel_dp);
212	int max_rate, mode_rate;
213
214	mode_rate = intel_dp_link_required(mode->clock, 24);
215	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217	if (mode_rate > max_rate) {
218		mode_rate = intel_dp_link_required(mode->clock, 18);
219		if (mode_rate > max_rate)
220			return false;
221
222		if (adjust_mode)
223			mode->private_flags
224				|= INTEL_MODE_DP_FORCE_6BPC;
225
226		return true;
227	}
228
229	return true;
230}
231
232static int
233intel_dp_mode_valid(struct drm_connector *connector,
234		    struct drm_display_mode *mode)
235{
236	struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240			return MODE_PANEL;
241
242		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243			return MODE_PANEL;
244	}
245
246	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247		return MODE_CLOCK_HIGH;
248
249	if (mode->clock < 10000)
250		return MODE_CLOCK_LOW;
251
252	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253		return MODE_H_ILLEGAL;
254
255	return MODE_OK;
256}
257
258static uint32_t
259pack_aux(uint8_t *src, int src_bytes)
260{
261	int	i;
262	uint32_t v = 0;
263
264	if (src_bytes > 4)
265		src_bytes = 4;
266	for (i = 0; i < src_bytes; i++)
267		v |= ((uint32_t) src[i]) << ((3-i) * 8);
268	return v;
269}
270
271static void
272unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273{
274	int i;
275	if (dst_bytes > 4)
276		dst_bytes = 4;
277	for (i = 0; i < dst_bytes; i++)
278		dst[i] = src >> ((3-i) * 8);
279}
280
281/* hrawclock is 1/4 the FSB frequency */
282static int
283intel_hrawclk(struct drm_device *dev)
284{
285	struct drm_i915_private *dev_priv = dev->dev_private;
286	uint32_t clkcfg;
287
288	clkcfg = I915_READ(CLKCFG);
289	switch (clkcfg & CLKCFG_FSB_MASK) {
290	case CLKCFG_FSB_400:
291		return 100;
292	case CLKCFG_FSB_533:
293		return 133;
294	case CLKCFG_FSB_667:
295		return 166;
296	case CLKCFG_FSB_800:
297		return 200;
298	case CLKCFG_FSB_1067:
299		return 266;
300	case CLKCFG_FSB_1333:
301		return 333;
302	/* these two are just a guess; one of them might be right */
303	case CLKCFG_FSB_1600:
304	case CLKCFG_FSB_1600_ALT:
305		return 400;
306	default:
307		return 133;
308	}
309}
310
311static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312{
313	struct drm_device *dev = intel_dp->base.base.dev;
314	struct drm_i915_private *dev_priv = dev->dev_private;
315
316	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317}
318
319static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp->base.base.dev;
322	struct drm_i915_private *dev_priv = dev->dev_private;
323
324	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325}
326
327static void
328intel_dp_check_edp(struct intel_dp *intel_dp)
329{
330	struct drm_device *dev = intel_dp->base.base.dev;
331	struct drm_i915_private *dev_priv = dev->dev_private;
332
333	if (!is_edp(intel_dp))
334		return;
335	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336		WARN(1, "eDP powered off while attempting aux channel communication.\n");
337		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338			      I915_READ(PCH_PP_STATUS),
339			      I915_READ(PCH_PP_CONTROL));
340	}
341}
342
343static int
344intel_dp_aux_ch(struct intel_dp *intel_dp,
345		uint8_t *send, int send_bytes,
346		uint8_t *recv, int recv_size)
347{
348	uint32_t output_reg = intel_dp->output_reg;
349	struct drm_device *dev = intel_dp->base.base.dev;
350	struct drm_i915_private *dev_priv = dev->dev_private;
351	uint32_t ch_ctl = output_reg + 0x10;
352	uint32_t ch_data = ch_ctl + 4;
353	int i;
354	int recv_bytes;
355	uint32_t status;
356	uint32_t aux_clock_divider;
357	int try, precharge;
358
359	intel_dp_check_edp(intel_dp);
360	/* The clock divider is based off the hrawclk,
361	 * and would like to run at 2MHz. So, take the
362	 * hrawclk value and divide by 2 and use that
363	 *
364	 * Note that PCH attached eDP panels should use a 125MHz input
365	 * clock divider.
366	 */
367	if (is_cpu_edp(intel_dp)) {
368		if (IS_GEN6(dev) || IS_GEN7(dev))
369			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370		else
371			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372	} else if (HAS_PCH_SPLIT(dev))
373		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374	else
375		aux_clock_divider = intel_hrawclk(dev) / 2;
376
377	if (IS_GEN6(dev))
378		precharge = 3;
379	else
380		precharge = 5;
381
382	/* Try to wait for any previous AUX channel activity */
383	for (try = 0; try < 3; try++) {
384		status = I915_READ(ch_ctl);
385		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386			break;
387		msleep(1);
388	}
389
390	if (try == 3) {
391		WARN(1, "dp_aux_ch not started status 0x%08x\n",
392		     I915_READ(ch_ctl));
393		return -EBUSY;
394	}
395
396	/* Must try at least 3 times according to DP spec */
397	for (try = 0; try < 5; try++) {
398		/* Load the send data into the aux channel data registers */
399		for (i = 0; i < send_bytes; i += 4)
400			I915_WRITE(ch_data + i,
401				   pack_aux(send + i, send_bytes - i));
402
403		/* Send the command and wait for it to complete */
404		I915_WRITE(ch_ctl,
405			   DP_AUX_CH_CTL_SEND_BUSY |
406			   DP_AUX_CH_CTL_TIME_OUT_400us |
407			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410			   DP_AUX_CH_CTL_DONE |
411			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
412			   DP_AUX_CH_CTL_RECEIVE_ERROR);
413		for (;;) {
414			status = I915_READ(ch_ctl);
415			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416				break;
417			udelay(100);
418		}
419
420		/* Clear done status and any errors */
421		I915_WRITE(ch_ctl,
422			   status |
423			   DP_AUX_CH_CTL_DONE |
424			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
425			   DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428			      DP_AUX_CH_CTL_RECEIVE_ERROR))
429			continue;
430		if (status & DP_AUX_CH_CTL_DONE)
431			break;
432	}
433
434	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436		return -EBUSY;
437	}
438
439	/* Check for timeout or receive error.
440	 * Timeouts occur when the sink is not connected
441	 */
442	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444		return -EIO;
445	}
446
447	/* Timeouts occur when the device isn't connected, so they're
448	 * "normal" -- don't fill the kernel log with these */
449	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451		return -ETIMEDOUT;
452	}
453
454	/* Unload any bytes sent back from the other side */
455	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457	if (recv_bytes > recv_size)
458		recv_bytes = recv_size;
459
460	for (i = 0; i < recv_bytes; i += 4)
461		unpack_aux(I915_READ(ch_data + i),
462			   recv + i, recv_bytes - i);
463
464	return recv_bytes;
465}
466
467/* Write data to the aux channel in native mode */
468static int
469intel_dp_aux_native_write(struct intel_dp *intel_dp,
470			  uint16_t address, uint8_t *send, int send_bytes)
471{
472	int ret;
473	uint8_t	msg[20];
474	int msg_bytes;
475	uint8_t	ack;
476
477	intel_dp_check_edp(intel_dp);
478	if (send_bytes > 16)
479		return -1;
480	msg[0] = AUX_NATIVE_WRITE << 4;
481	msg[1] = address >> 8;
482	msg[2] = address & 0xff;
483	msg[3] = send_bytes - 1;
484	memcpy(&msg[4], send, send_bytes);
485	msg_bytes = send_bytes + 4;
486	for (;;) {
487		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488		if (ret < 0)
489			return ret;
490		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491			break;
492		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493			udelay(100);
494		else
495			return -EIO;
496	}
497	return send_bytes;
498}
499
500/* Write a single byte to the aux channel in native mode */
501static int
502intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503			    uint16_t address, uint8_t byte)
504{
505	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506}
507
508/* read bytes from a native aux channel */
509static int
510intel_dp_aux_native_read(struct intel_dp *intel_dp,
511			 uint16_t address, uint8_t *recv, int recv_bytes)
512{
513	uint8_t msg[4];
514	int msg_bytes;
515	uint8_t reply[20];
516	int reply_bytes;
517	uint8_t ack;
518	int ret;
519
520	intel_dp_check_edp(intel_dp);
521	msg[0] = AUX_NATIVE_READ << 4;
522	msg[1] = address >> 8;
523	msg[2] = address & 0xff;
524	msg[3] = recv_bytes - 1;
525
526	msg_bytes = 4;
527	reply_bytes = recv_bytes + 1;
528
529	for (;;) {
530		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531				      reply, reply_bytes);
532		if (ret == 0)
533			return -EPROTO;
534		if (ret < 0)
535			return ret;
536		ack = reply[0];
537		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538			memcpy(recv, reply + 1, ret - 1);
539			return ret - 1;
540		}
541		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542			udelay(100);
543		else
544			return -EIO;
545	}
546}
547
548static int
549intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550		    uint8_t write_byte, uint8_t *read_byte)
551{
552	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553	struct intel_dp *intel_dp = container_of(adapter,
554						struct intel_dp,
555						adapter);
556	uint16_t address = algo_data->address;
557	uint8_t msg[5];
558	uint8_t reply[2];
559	unsigned retry;
560	int msg_bytes;
561	int reply_bytes;
562	int ret;
563
564	intel_dp_check_edp(intel_dp);
565	/* Set up the command byte */
566	if (mode & MODE_I2C_READ)
567		msg[0] = AUX_I2C_READ << 4;
568	else
569		msg[0] = AUX_I2C_WRITE << 4;
570
571	if (!(mode & MODE_I2C_STOP))
572		msg[0] |= AUX_I2C_MOT << 4;
573
574	msg[1] = address >> 8;
575	msg[2] = address;
576
577	switch (mode) {
578	case MODE_I2C_WRITE:
579		msg[3] = 0;
580		msg[4] = write_byte;
581		msg_bytes = 5;
582		reply_bytes = 1;
583		break;
584	case MODE_I2C_READ:
585		msg[3] = 0;
586		msg_bytes = 4;
587		reply_bytes = 2;
588		break;
589	default:
590		msg_bytes = 3;
591		reply_bytes = 1;
592		break;
593	}
594
595	for (retry = 0; retry < 5; retry++) {
596		ret = intel_dp_aux_ch(intel_dp,
597				      msg, msg_bytes,
598				      reply, reply_bytes);
599		if (ret < 0) {
600			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601			return ret;
602		}
603
604		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605		case AUX_NATIVE_REPLY_ACK:
606			/* I2C-over-AUX Reply field is only valid
607			 * when paired with AUX ACK.
608			 */
609			break;
610		case AUX_NATIVE_REPLY_NACK:
611			DRM_DEBUG_KMS("aux_ch native nack\n");
612			return -EREMOTEIO;
613		case AUX_NATIVE_REPLY_DEFER:
614			udelay(100);
615			continue;
616		default:
617			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618				  reply[0]);
619			return -EREMOTEIO;
620		}
621
622		switch (reply[0] & AUX_I2C_REPLY_MASK) {
623		case AUX_I2C_REPLY_ACK:
624			if (mode == MODE_I2C_READ) {
625				*read_byte = reply[1];
626			}
627			return reply_bytes - 1;
628		case AUX_I2C_REPLY_NACK:
629			DRM_DEBUG_KMS("aux_i2c nack\n");
630			return -EREMOTEIO;
631		case AUX_I2C_REPLY_DEFER:
632			DRM_DEBUG_KMS("aux_i2c defer\n");
633			udelay(100);
634			break;
635		default:
636			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637			return -EREMOTEIO;
638		}
639	}
640
641	DRM_ERROR("too many retries, giving up\n");
642	return -EREMOTEIO;
643}
644
645static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648static int
649intel_dp_i2c_init(struct intel_dp *intel_dp,
650		  struct intel_connector *intel_connector, const char *name)
651{
652	int	ret;
653
654	DRM_DEBUG_KMS("i2c_init %s\n", name);
655	intel_dp->algo.running = false;
656	intel_dp->algo.address = 0;
657	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660	intel_dp->adapter.owner = THIS_MODULE;
661	intel_dp->adapter.class = I2C_CLASS_DDC;
662	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664	intel_dp->adapter.algo_data = &intel_dp->algo;
665	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667	ironlake_edp_panel_vdd_on(intel_dp);
668	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669	ironlake_edp_panel_vdd_off(intel_dp, false);
670	return ret;
671}
672
673static bool
674intel_dp_mode_fixup(struct drm_encoder *encoder,
675		    const struct drm_display_mode *mode,
676		    struct drm_display_mode *adjusted_mode)
677{
678	struct drm_device *dev = encoder->dev;
679	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680	int lane_count, clock;
681	int max_lane_count = intel_dp_max_lane_count(intel_dp);
682	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683	int bpp, mode_rate;
684	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689					mode, adjusted_mode);
690	}
691
692	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693		return false;
694
695	DRM_DEBUG_KMS("DP link computation with max lane count %i "
696		      "max bw %02x pixel clock %iKHz\n",
697		      max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700		return false;
701
702	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705	for (clock = 0; clock <= max_clock; clock++) {
706		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709			if (mode_rate <= link_avail) {
710				intel_dp->link_bw = bws[clock];
711				intel_dp->lane_count = lane_count;
712				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713				DRM_DEBUG_KMS("DP link bw %02x lane "
714						"count %d clock %d bpp %d\n",
715				       intel_dp->link_bw, intel_dp->lane_count,
716				       adjusted_mode->clock, bpp);
717				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718					      mode_rate, link_avail);
719				return true;
720			}
721		}
722	}
723
724	return false;
725}
726
727struct intel_dp_m_n {
728	uint32_t	tu;
729	uint32_t	gmch_m;
730	uint32_t	gmch_n;
731	uint32_t	link_m;
732	uint32_t	link_n;
733};
734
735static void
736intel_reduce_ratio(uint32_t *num, uint32_t *den)
737{
738	while (*num > 0xffffff || *den > 0xffffff) {
739		*num >>= 1;
740		*den >>= 1;
741	}
742}
743
744static void
745intel_dp_compute_m_n(int bpp,
746		     int nlanes,
747		     int pixel_clock,
748		     int link_clock,
749		     struct intel_dp_m_n *m_n)
750{
751	m_n->tu = 64;
752	m_n->gmch_m = (pixel_clock * bpp) >> 3;
753	m_n->gmch_n = link_clock * nlanes;
754	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755	m_n->link_m = pixel_clock;
756	m_n->link_n = link_clock;
757	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758}
759
760void
761intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762		 struct drm_display_mode *adjusted_mode)
763{
764	struct drm_device *dev = crtc->dev;
765	struct intel_encoder *encoder;
766	struct drm_i915_private *dev_priv = dev->dev_private;
767	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768	int lane_count = 4;
769	struct intel_dp_m_n m_n;
770	int pipe = intel_crtc->pipe;
771
772	/*
773	 * Find the lane count in the intel_encoder private
774	 */
775	for_each_encoder_on_crtc(dev, crtc, encoder) {
776		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779		    intel_dp->base.type == INTEL_OUTPUT_EDP)
780		{
781			lane_count = intel_dp->lane_count;
782			break;
783		}
784	}
785
786	/*
787	 * Compute the GMCH and Link ratios. The '3' here is
788	 * the number of bytes_per_pixel post-LUT, which we always
789	 * set up for 8-bits of R/G/B, or 3 bytes total.
790	 */
791	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792			     mode->clock, adjusted_mode->clock, &m_n);
793
794	if (HAS_PCH_SPLIT(dev)) {
795		I915_WRITE(TRANSDATA_M1(pipe),
796			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797			   m_n.gmch_m);
798		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801	} else {
802		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804			   m_n.gmch_m);
805		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808	}
809}
810
811static void ironlake_edp_pll_on(struct drm_encoder *encoder);
812static void ironlake_edp_pll_off(struct drm_encoder *encoder);
813
814static void
815intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
816		  struct drm_display_mode *adjusted_mode)
817{
818	struct drm_device *dev = encoder->dev;
819	struct drm_i915_private *dev_priv = dev->dev_private;
820	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
821	struct drm_crtc *crtc = intel_dp->base.base.crtc;
822	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
823
824	/* Turn on the eDP PLL if needed */
825	if (is_edp(intel_dp)) {
826		if (!is_pch_edp(intel_dp))
827			ironlake_edp_pll_on(encoder);
828		else
829			ironlake_edp_pll_off(encoder);
830	}
831
832	/*
833	 * There are four kinds of DP registers:
834	 *
835	 * 	IBX PCH
836	 * 	SNB CPU
837	 *	IVB CPU
838	 * 	CPT PCH
839	 *
840	 * IBX PCH and CPU are the same for almost everything,
841	 * except that the CPU DP PLL is configured in this
842	 * register
843	 *
844	 * CPT PCH is quite different, having many bits moved
845	 * to the TRANS_DP_CTL register instead. That
846	 * configuration happens (oddly) in ironlake_pch_enable
847	 */
848
849	/* Preserve the BIOS-computed detected bit. This is
850	 * supposed to be read-only.
851	 */
852	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
853	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
854
855	/* Handle DP bits in common between all three register formats */
856
857	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
858
859	switch (intel_dp->lane_count) {
860	case 1:
861		intel_dp->DP |= DP_PORT_WIDTH_1;
862		break;
863	case 2:
864		intel_dp->DP |= DP_PORT_WIDTH_2;
865		break;
866	case 4:
867		intel_dp->DP |= DP_PORT_WIDTH_4;
868		break;
869	}
870	if (intel_dp->has_audio) {
871		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
872				 pipe_name(intel_crtc->pipe));
873		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
874		intel_write_eld(encoder, adjusted_mode);
875	}
876	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
877	intel_dp->link_configuration[0] = intel_dp->link_bw;
878	intel_dp->link_configuration[1] = intel_dp->lane_count;
879	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
880	/*
881	 * Check for DPCD version > 1.1 and enhanced framing support
882	 */
883	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
884	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
885		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
886	}
887
888	/* Split out the IBX/CPU vs CPT settings */
889
890	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
891		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
892			intel_dp->DP |= DP_SYNC_HS_HIGH;
893		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
894			intel_dp->DP |= DP_SYNC_VS_HIGH;
895		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
896
897		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
898			intel_dp->DP |= DP_ENHANCED_FRAMING;
899
900		intel_dp->DP |= intel_crtc->pipe << 29;
901
902		/* don't miss out required setting for eDP */
903		intel_dp->DP |= DP_PLL_ENABLE;
904		if (adjusted_mode->clock < 200000)
905			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
906		else
907			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
908	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
909		intel_dp->DP |= intel_dp->color_range;
910
911		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
912			intel_dp->DP |= DP_SYNC_HS_HIGH;
913		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
914			intel_dp->DP |= DP_SYNC_VS_HIGH;
915		intel_dp->DP |= DP_LINK_TRAIN_OFF;
916
917		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
918			intel_dp->DP |= DP_ENHANCED_FRAMING;
919
920		if (intel_crtc->pipe == 1)
921			intel_dp->DP |= DP_PIPEB_SELECT;
922
923		if (is_cpu_edp(intel_dp)) {
924			/* don't miss out required setting for eDP */
925			intel_dp->DP |= DP_PLL_ENABLE;
926			if (adjusted_mode->clock < 200000)
927				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
928			else
929				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
930		}
931	} else {
932		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
933	}
934}
935
936#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
937#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
938
939#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
940#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
941
942#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
943#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
944
945static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
946				       u32 mask,
947				       u32 value)
948{
949	struct drm_device *dev = intel_dp->base.base.dev;
950	struct drm_i915_private *dev_priv = dev->dev_private;
951
952	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
953		      mask, value,
954		      I915_READ(PCH_PP_STATUS),
955		      I915_READ(PCH_PP_CONTROL));
956
957	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
958		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
959			  I915_READ(PCH_PP_STATUS),
960			  I915_READ(PCH_PP_CONTROL));
961	}
962}
963
964static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
965{
966	DRM_DEBUG_KMS("Wait for panel power on\n");
967	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
968}
969
970static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
971{
972	DRM_DEBUG_KMS("Wait for panel power off time\n");
973	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
974}
975
976static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
977{
978	DRM_DEBUG_KMS("Wait for panel power cycle\n");
979	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
980}
981
982
983/* Read the current pp_control value, unlocking the register if it
984 * is locked
985 */
986
987static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
988{
989	u32	control = I915_READ(PCH_PP_CONTROL);
990
991	control &= ~PANEL_UNLOCK_MASK;
992	control |= PANEL_UNLOCK_REGS;
993	return control;
994}
995
996static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
997{
998	struct drm_device *dev = intel_dp->base.base.dev;
999	struct drm_i915_private *dev_priv = dev->dev_private;
1000	u32 pp;
1001
1002	if (!is_edp(intel_dp))
1003		return;
1004	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1005
1006	WARN(intel_dp->want_panel_vdd,
1007	     "eDP VDD already requested on\n");
1008
1009	intel_dp->want_panel_vdd = true;
1010
1011	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1012		DRM_DEBUG_KMS("eDP VDD already on\n");
1013		return;
1014	}
1015
1016	if (!ironlake_edp_have_panel_power(intel_dp))
1017		ironlake_wait_panel_power_cycle(intel_dp);
1018
1019	pp = ironlake_get_pp_control(dev_priv);
1020	pp |= EDP_FORCE_VDD;
1021	I915_WRITE(PCH_PP_CONTROL, pp);
1022	POSTING_READ(PCH_PP_CONTROL);
1023	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1024		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1025
1026	/*
1027	 * If the panel wasn't on, delay before accessing aux channel
1028	 */
1029	if (!ironlake_edp_have_panel_power(intel_dp)) {
1030		DRM_DEBUG_KMS("eDP was not running\n");
1031		msleep(intel_dp->panel_power_up_delay);
1032	}
1033}
1034
1035static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1036{
1037	struct drm_device *dev = intel_dp->base.base.dev;
1038	struct drm_i915_private *dev_priv = dev->dev_private;
1039	u32 pp;
1040
1041	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1042		pp = ironlake_get_pp_control(dev_priv);
1043		pp &= ~EDP_FORCE_VDD;
1044		I915_WRITE(PCH_PP_CONTROL, pp);
1045		POSTING_READ(PCH_PP_CONTROL);
1046
1047		/* Make sure sequencer is idle before allowing subsequent activity */
1048		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1049			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1050
1051		msleep(intel_dp->panel_power_down_delay);
1052	}
1053}
1054
1055static void ironlake_panel_vdd_work(struct work_struct *__work)
1056{
1057	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1058						 struct intel_dp, panel_vdd_work);
1059	struct drm_device *dev = intel_dp->base.base.dev;
1060
1061	mutex_lock(&dev->mode_config.mutex);
1062	ironlake_panel_vdd_off_sync(intel_dp);
1063	mutex_unlock(&dev->mode_config.mutex);
1064}
1065
1066static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1067{
1068	if (!is_edp(intel_dp))
1069		return;
1070
1071	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1072	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1073
1074	intel_dp->want_panel_vdd = false;
1075
1076	if (sync) {
1077		ironlake_panel_vdd_off_sync(intel_dp);
1078	} else {
1079		/*
1080		 * Queue the timer to fire a long
1081		 * time from now (relative to the power down delay)
1082		 * to keep the panel power up across a sequence of operations
1083		 */
1084		schedule_delayed_work(&intel_dp->panel_vdd_work,
1085				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1086	}
1087}
1088
1089static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1090{
1091	struct drm_device *dev = intel_dp->base.base.dev;
1092	struct drm_i915_private *dev_priv = dev->dev_private;
1093	u32 pp;
1094
1095	if (!is_edp(intel_dp))
1096		return;
1097
1098	DRM_DEBUG_KMS("Turn eDP power on\n");
1099
1100	if (ironlake_edp_have_panel_power(intel_dp)) {
1101		DRM_DEBUG_KMS("eDP power already on\n");
1102		return;
1103	}
1104
1105	ironlake_wait_panel_power_cycle(intel_dp);
1106
1107	pp = ironlake_get_pp_control(dev_priv);
1108	if (IS_GEN5(dev)) {
1109		/* ILK workaround: disable reset around power sequence */
1110		pp &= ~PANEL_POWER_RESET;
1111		I915_WRITE(PCH_PP_CONTROL, pp);
1112		POSTING_READ(PCH_PP_CONTROL);
1113	}
1114
1115	pp |= POWER_TARGET_ON;
1116	if (!IS_GEN5(dev))
1117		pp |= PANEL_POWER_RESET;
1118
1119	I915_WRITE(PCH_PP_CONTROL, pp);
1120	POSTING_READ(PCH_PP_CONTROL);
1121
1122	ironlake_wait_panel_on(intel_dp);
1123
1124	if (IS_GEN5(dev)) {
1125		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1126		I915_WRITE(PCH_PP_CONTROL, pp);
1127		POSTING_READ(PCH_PP_CONTROL);
1128	}
1129}
1130
1131static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1132{
1133	struct drm_device *dev = intel_dp->base.base.dev;
1134	struct drm_i915_private *dev_priv = dev->dev_private;
1135	u32 pp;
1136
1137	if (!is_edp(intel_dp))
1138		return;
1139
1140	DRM_DEBUG_KMS("Turn eDP power off\n");
1141
1142	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1143
1144	pp = ironlake_get_pp_control(dev_priv);
1145	/* We need to switch off panel power _and_ force vdd, for otherwise some
1146	 * panels get very unhappy and cease to work. */
1147	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1148	I915_WRITE(PCH_PP_CONTROL, pp);
1149	POSTING_READ(PCH_PP_CONTROL);
1150
1151	intel_dp->want_panel_vdd = false;
1152
1153	ironlake_wait_panel_off(intel_dp);
1154}
1155
1156static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1157{
1158	struct drm_device *dev = intel_dp->base.base.dev;
1159	struct drm_i915_private *dev_priv = dev->dev_private;
1160	u32 pp;
1161
1162	if (!is_edp(intel_dp))
1163		return;
1164
1165	DRM_DEBUG_KMS("\n");
1166	/*
1167	 * If we enable the backlight right away following a panel power
1168	 * on, we may see slight flicker as the panel syncs with the eDP
1169	 * link.  So delay a bit to make sure the image is solid before
1170	 * allowing it to appear.
1171	 */
1172	msleep(intel_dp->backlight_on_delay);
1173	pp = ironlake_get_pp_control(dev_priv);
1174	pp |= EDP_BLC_ENABLE;
1175	I915_WRITE(PCH_PP_CONTROL, pp);
1176	POSTING_READ(PCH_PP_CONTROL);
1177}
1178
1179static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1180{
1181	struct drm_device *dev = intel_dp->base.base.dev;
1182	struct drm_i915_private *dev_priv = dev->dev_private;
1183	u32 pp;
1184
1185	if (!is_edp(intel_dp))
1186		return;
1187
1188	DRM_DEBUG_KMS("\n");
1189	pp = ironlake_get_pp_control(dev_priv);
1190	pp &= ~EDP_BLC_ENABLE;
1191	I915_WRITE(PCH_PP_CONTROL, pp);
1192	POSTING_READ(PCH_PP_CONTROL);
1193	msleep(intel_dp->backlight_off_delay);
1194}
1195
1196static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1197{
1198	struct drm_device *dev = encoder->dev;
1199	struct drm_i915_private *dev_priv = dev->dev_private;
1200	u32 dpa_ctl;
1201
1202	DRM_DEBUG_KMS("\n");
1203	dpa_ctl = I915_READ(DP_A);
1204	dpa_ctl |= DP_PLL_ENABLE;
1205	I915_WRITE(DP_A, dpa_ctl);
1206	POSTING_READ(DP_A);
1207	udelay(200);
1208}
1209
1210static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1211{
1212	struct drm_device *dev = encoder->dev;
1213	struct drm_i915_private *dev_priv = dev->dev_private;
1214	u32 dpa_ctl;
1215
1216	dpa_ctl = I915_READ(DP_A);
1217	dpa_ctl &= ~DP_PLL_ENABLE;
1218	I915_WRITE(DP_A, dpa_ctl);
1219	POSTING_READ(DP_A);
1220	udelay(200);
1221}
1222
1223/* If the sink supports it, try to set the power state appropriately */
1224static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1225{
1226	int ret, i;
1227
1228	/* Should have a valid DPCD by this point */
1229	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1230		return;
1231
1232	if (mode != DRM_MODE_DPMS_ON) {
1233		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1234						  DP_SET_POWER_D3);
1235		if (ret != 1)
1236			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1237	} else {
1238		/*
1239		 * When turning on, we need to retry for 1ms to give the sink
1240		 * time to wake up.
1241		 */
1242		for (i = 0; i < 3; i++) {
1243			ret = intel_dp_aux_native_write_1(intel_dp,
1244							  DP_SET_POWER,
1245							  DP_SET_POWER_D0);
1246			if (ret == 1)
1247				break;
1248			msleep(1);
1249		}
1250	}
1251}
1252
1253static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1254				  enum pipe *pipe)
1255{
1256	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1257	struct drm_device *dev = encoder->base.dev;
1258	struct drm_i915_private *dev_priv = dev->dev_private;
1259	u32 tmp = I915_READ(intel_dp->output_reg);
1260
1261	if (!(tmp & DP_PORT_EN))
1262		return false;
1263
1264	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1265		*pipe = PORT_TO_PIPE_CPT(tmp);
1266	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1267		*pipe = PORT_TO_PIPE(tmp);
1268	} else {
1269		u32 trans_sel;
1270		u32 trans_dp;
1271		int i;
1272
1273		switch (intel_dp->output_reg) {
1274		case PCH_DP_B:
1275			trans_sel = TRANS_DP_PORT_SEL_B;
1276			break;
1277		case PCH_DP_C:
1278			trans_sel = TRANS_DP_PORT_SEL_C;
1279			break;
1280		case PCH_DP_D:
1281			trans_sel = TRANS_DP_PORT_SEL_D;
1282			break;
1283		default:
1284			return true;
1285		}
1286
1287		for_each_pipe(i) {
1288			trans_dp = I915_READ(TRANS_DP_CTL(i));
1289			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1290				*pipe = i;
1291				return true;
1292			}
1293		}
1294	}
1295
1296	DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1297
1298	return true;
1299}
1300
1301static void intel_disable_dp(struct intel_encoder *encoder)
1302{
1303	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1304
1305	/* Make sure the panel is off before trying to change the mode. But also
1306	 * ensure that we have vdd while we switch off the panel. */
1307	ironlake_edp_panel_vdd_on(intel_dp);
1308	ironlake_edp_backlight_off(intel_dp);
1309	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1310	ironlake_edp_panel_off(intel_dp);
1311	intel_dp_link_down(intel_dp);
1312}
1313
1314static void intel_enable_dp(struct intel_encoder *encoder)
1315{
1316	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1317	struct drm_device *dev = encoder->base.dev;
1318	struct drm_i915_private *dev_priv = dev->dev_private;
1319	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1320
1321	ironlake_edp_panel_vdd_on(intel_dp);
1322	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1323	if (!(dp_reg & DP_PORT_EN)) {
1324		intel_dp_start_link_train(intel_dp);
1325		ironlake_edp_panel_on(intel_dp);
1326		ironlake_edp_panel_vdd_off(intel_dp, true);
1327		intel_dp_complete_link_train(intel_dp);
1328	} else
1329		ironlake_edp_panel_vdd_off(intel_dp, false);
1330	ironlake_edp_backlight_on(intel_dp);
1331}
1332
1333static void
1334intel_dp_dpms(struct drm_connector *connector, int mode)
1335{
1336	struct intel_dp *intel_dp = intel_attached_dp(connector);
1337
1338	/* DP supports only 2 dpms states. */
1339	if (mode != DRM_MODE_DPMS_ON)
1340		mode = DRM_MODE_DPMS_OFF;
1341
1342	if (mode == connector->dpms)
1343		return;
1344
1345	connector->dpms = mode;
1346
1347	/* Only need to change hw state when actually enabled */
1348	if (!intel_dp->base.base.crtc) {
1349		intel_dp->base.connectors_active = false;
1350		return;
1351	}
1352
1353	if (mode != DRM_MODE_DPMS_ON) {
1354		intel_encoder_dpms(&intel_dp->base, mode);
1355
1356		if (is_cpu_edp(intel_dp))
1357			ironlake_edp_pll_off(&intel_dp->base.base);
1358	} else {
1359		if (is_cpu_edp(intel_dp))
1360			ironlake_edp_pll_on(&intel_dp->base.base);
1361
1362		intel_encoder_dpms(&intel_dp->base, mode);
1363	}
1364
1365	intel_connector_check_state(to_intel_connector(connector));
1366}
1367
1368/*
1369 * Native read with retry for link status and receiver capability reads for
1370 * cases where the sink may still be asleep.
1371 */
1372static bool
1373intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1374			       uint8_t *recv, int recv_bytes)
1375{
1376	int ret, i;
1377
1378	/*
1379	 * Sinks are *supposed* to come up within 1ms from an off state,
1380	 * but we're also supposed to retry 3 times per the spec.
1381	 */
1382	for (i = 0; i < 3; i++) {
1383		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1384					       recv_bytes);
1385		if (ret == recv_bytes)
1386			return true;
1387		msleep(1);
1388	}
1389
1390	return false;
1391}
1392
1393/*
1394 * Fetch AUX CH registers 0x202 - 0x207 which contain
1395 * link status information
1396 */
1397static bool
1398intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399{
1400	return intel_dp_aux_native_read_retry(intel_dp,
1401					      DP_LANE0_1_STATUS,
1402					      link_status,
1403					      DP_LINK_STATUS_SIZE);
1404}
1405
1406static uint8_t
1407intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1408		     int r)
1409{
1410	return link_status[r - DP_LANE0_1_STATUS];
1411}
1412
1413static uint8_t
1414intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1415				 int lane)
1416{
1417	int	    s = ((lane & 1) ?
1418			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1419			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1420	uint8_t l = adjust_request[lane>>1];
1421
1422	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1423}
1424
1425static uint8_t
1426intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1427				      int lane)
1428{
1429	int	    s = ((lane & 1) ?
1430			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1431			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1432	uint8_t l = adjust_request[lane>>1];
1433
1434	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1435}
1436
1437
1438#if 0
1439static char	*voltage_names[] = {
1440	"0.4V", "0.6V", "0.8V", "1.2V"
1441};
1442static char	*pre_emph_names[] = {
1443	"0dB", "3.5dB", "6dB", "9.5dB"
1444};
1445static char	*link_train_names[] = {
1446	"pattern 1", "pattern 2", "idle", "off"
1447};
1448#endif
1449
1450/*
1451 * These are source-specific values; current Intel hardware supports
1452 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1453 */
1454
1455static uint8_t
1456intel_dp_voltage_max(struct intel_dp *intel_dp)
1457{
1458	struct drm_device *dev = intel_dp->base.base.dev;
1459
1460	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1461		return DP_TRAIN_VOLTAGE_SWING_800;
1462	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1463		return DP_TRAIN_VOLTAGE_SWING_1200;
1464	else
1465		return DP_TRAIN_VOLTAGE_SWING_800;
1466}
1467
1468static uint8_t
1469intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1470{
1471	struct drm_device *dev = intel_dp->base.base.dev;
1472
1473	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1474		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1475		case DP_TRAIN_VOLTAGE_SWING_400:
1476			return DP_TRAIN_PRE_EMPHASIS_6;
1477		case DP_TRAIN_VOLTAGE_SWING_600:
1478		case DP_TRAIN_VOLTAGE_SWING_800:
1479			return DP_TRAIN_PRE_EMPHASIS_3_5;
1480		default:
1481			return DP_TRAIN_PRE_EMPHASIS_0;
1482		}
1483	} else {
1484		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1485		case DP_TRAIN_VOLTAGE_SWING_400:
1486			return DP_TRAIN_PRE_EMPHASIS_6;
1487		case DP_TRAIN_VOLTAGE_SWING_600:
1488			return DP_TRAIN_PRE_EMPHASIS_6;
1489		case DP_TRAIN_VOLTAGE_SWING_800:
1490			return DP_TRAIN_PRE_EMPHASIS_3_5;
1491		case DP_TRAIN_VOLTAGE_SWING_1200:
1492		default:
1493			return DP_TRAIN_PRE_EMPHASIS_0;
1494		}
1495	}
1496}
1497
1498static void
1499intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1500{
1501	uint8_t v = 0;
1502	uint8_t p = 0;
1503	int lane;
1504	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1505	uint8_t voltage_max;
1506	uint8_t preemph_max;
1507
1508	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1509		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1510		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1511
1512		if (this_v > v)
1513			v = this_v;
1514		if (this_p > p)
1515			p = this_p;
1516	}
1517
1518	voltage_max = intel_dp_voltage_max(intel_dp);
1519	if (v >= voltage_max)
1520		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1521
1522	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1523	if (p >= preemph_max)
1524		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1525
1526	for (lane = 0; lane < 4; lane++)
1527		intel_dp->train_set[lane] = v | p;
1528}
1529
1530static uint32_t
1531intel_dp_signal_levels(uint8_t train_set)
1532{
1533	uint32_t	signal_levels = 0;
1534
1535	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1536	case DP_TRAIN_VOLTAGE_SWING_400:
1537	default:
1538		signal_levels |= DP_VOLTAGE_0_4;
1539		break;
1540	case DP_TRAIN_VOLTAGE_SWING_600:
1541		signal_levels |= DP_VOLTAGE_0_6;
1542		break;
1543	case DP_TRAIN_VOLTAGE_SWING_800:
1544		signal_levels |= DP_VOLTAGE_0_8;
1545		break;
1546	case DP_TRAIN_VOLTAGE_SWING_1200:
1547		signal_levels |= DP_VOLTAGE_1_2;
1548		break;
1549	}
1550	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1551	case DP_TRAIN_PRE_EMPHASIS_0:
1552	default:
1553		signal_levels |= DP_PRE_EMPHASIS_0;
1554		break;
1555	case DP_TRAIN_PRE_EMPHASIS_3_5:
1556		signal_levels |= DP_PRE_EMPHASIS_3_5;
1557		break;
1558	case DP_TRAIN_PRE_EMPHASIS_6:
1559		signal_levels |= DP_PRE_EMPHASIS_6;
1560		break;
1561	case DP_TRAIN_PRE_EMPHASIS_9_5:
1562		signal_levels |= DP_PRE_EMPHASIS_9_5;
1563		break;
1564	}
1565	return signal_levels;
1566}
1567
1568/* Gen6's DP voltage swing and pre-emphasis control */
1569static uint32_t
1570intel_gen6_edp_signal_levels(uint8_t train_set)
1571{
1572	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1573					 DP_TRAIN_PRE_EMPHASIS_MASK);
1574	switch (signal_levels) {
1575	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1576	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1577		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1578	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1580	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1581	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1582		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1583	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1586	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1587	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1588		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1589	default:
1590		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1591			      "0x%x\n", signal_levels);
1592		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593	}
1594}
1595
1596/* Gen7's DP voltage swing and pre-emphasis control */
1597static uint32_t
1598intel_gen7_edp_signal_levels(uint8_t train_set)
1599{
1600	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1601					 DP_TRAIN_PRE_EMPHASIS_MASK);
1602	switch (signal_levels) {
1603	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1604		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1605	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1607	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1608		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1609
1610	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1611		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1612	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1613		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1614
1615	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1616		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1617	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1618		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1619
1620	default:
1621		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1622			      "0x%x\n", signal_levels);
1623		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1624	}
1625}
1626
1627static uint8_t
1628intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1629		      int lane)
1630{
1631	int s = (lane & 1) * 4;
1632	uint8_t l = link_status[lane>>1];
1633
1634	return (l >> s) & 0xf;
1635}
1636
1637/* Check for clock recovery is done on all channels */
1638static bool
1639intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1640{
1641	int lane;
1642	uint8_t lane_status;
1643
1644	for (lane = 0; lane < lane_count; lane++) {
1645		lane_status = intel_get_lane_status(link_status, lane);
1646		if ((lane_status & DP_LANE_CR_DONE) == 0)
1647			return false;
1648	}
1649	return true;
1650}
1651
1652/* Check to see if channel eq is done on all channels */
1653#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1654			 DP_LANE_CHANNEL_EQ_DONE|\
1655			 DP_LANE_SYMBOL_LOCKED)
1656static bool
1657intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1658{
1659	uint8_t lane_align;
1660	uint8_t lane_status;
1661	int lane;
1662
1663	lane_align = intel_dp_link_status(link_status,
1664					  DP_LANE_ALIGN_STATUS_UPDATED);
1665	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1666		return false;
1667	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1668		lane_status = intel_get_lane_status(link_status, lane);
1669		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1670			return false;
1671	}
1672	return true;
1673}
1674
1675static bool
1676intel_dp_set_link_train(struct intel_dp *intel_dp,
1677			uint32_t dp_reg_value,
1678			uint8_t dp_train_pat)
1679{
1680	struct drm_device *dev = intel_dp->base.base.dev;
1681	struct drm_i915_private *dev_priv = dev->dev_private;
1682	int ret;
1683
1684	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1685		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1686
1687		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1688		case DP_TRAINING_PATTERN_DISABLE:
1689			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1690			break;
1691		case DP_TRAINING_PATTERN_1:
1692			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1693			break;
1694		case DP_TRAINING_PATTERN_2:
1695			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1696			break;
1697		case DP_TRAINING_PATTERN_3:
1698			DRM_ERROR("DP training pattern 3 not supported\n");
1699			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1700			break;
1701		}
1702
1703	} else {
1704		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1705
1706		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1707		case DP_TRAINING_PATTERN_DISABLE:
1708			dp_reg_value |= DP_LINK_TRAIN_OFF;
1709			break;
1710		case DP_TRAINING_PATTERN_1:
1711			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1712			break;
1713		case DP_TRAINING_PATTERN_2:
1714			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1715			break;
1716		case DP_TRAINING_PATTERN_3:
1717			DRM_ERROR("DP training pattern 3 not supported\n");
1718			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1719			break;
1720		}
1721	}
1722
1723	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1724	POSTING_READ(intel_dp->output_reg);
1725
1726	intel_dp_aux_native_write_1(intel_dp,
1727				    DP_TRAINING_PATTERN_SET,
1728				    dp_train_pat);
1729
1730	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1731	    DP_TRAINING_PATTERN_DISABLE) {
1732		ret = intel_dp_aux_native_write(intel_dp,
1733						DP_TRAINING_LANE0_SET,
1734						intel_dp->train_set,
1735						intel_dp->lane_count);
1736		if (ret != intel_dp->lane_count)
1737			return false;
1738	}
1739
1740	return true;
1741}
1742
1743/* Enable corresponding port and start training pattern 1 */
1744static void
1745intel_dp_start_link_train(struct intel_dp *intel_dp)
1746{
1747	struct drm_device *dev = intel_dp->base.base.dev;
1748	struct drm_i915_private *dev_priv = dev->dev_private;
1749	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1750	int i;
1751	uint8_t voltage;
1752	bool clock_recovery = false;
1753	int voltage_tries, loop_tries;
1754	uint32_t DP = intel_dp->DP;
1755
1756	/*
1757	 * On CPT we have to enable the port in training pattern 1, which
1758	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1759	 * the port and wait for it to become active.
1760	 */
1761	if (!HAS_PCH_CPT(dev)) {
1762		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1763		POSTING_READ(intel_dp->output_reg);
1764		intel_wait_for_vblank(dev, intel_crtc->pipe);
1765	}
1766
1767	/* Write the link configuration data */
1768	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1769				  intel_dp->link_configuration,
1770				  DP_LINK_CONFIGURATION_SIZE);
1771
1772	DP |= DP_PORT_EN;
1773
1774	memset(intel_dp->train_set, 0, 4);
1775	voltage = 0xff;
1776	voltage_tries = 0;
1777	loop_tries = 0;
1778	clock_recovery = false;
1779	for (;;) {
1780		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1781		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1782		uint32_t    signal_levels;
1783
1784
1785		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1786			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1787			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1788		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1789			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1790			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1791		} else {
1792			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1793			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1794			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795		}
1796
1797		if (!intel_dp_set_link_train(intel_dp, DP,
1798					     DP_TRAINING_PATTERN_1 |
1799					     DP_LINK_SCRAMBLING_DISABLE))
1800			break;
1801		/* Set training pattern 1 */
1802
1803		udelay(100);
1804		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1805			DRM_ERROR("failed to get link status\n");
1806			break;
1807		}
1808
1809		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1810			DRM_DEBUG_KMS("clock recovery OK\n");
1811			clock_recovery = true;
1812			break;
1813		}
1814
1815		/* Check to see if we've tried the max voltage */
1816		for (i = 0; i < intel_dp->lane_count; i++)
1817			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1818				break;
1819		if (i == intel_dp->lane_count && voltage_tries == 5) {
1820			++loop_tries;
1821			if (loop_tries == 5) {
1822				DRM_DEBUG_KMS("too many full retries, give up\n");
1823				break;
1824			}
1825			memset(intel_dp->train_set, 0, 4);
1826			voltage_tries = 0;
1827			continue;
1828		}
1829
1830		/* Check to see if we've tried the same voltage 5 times */
1831		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1832			++voltage_tries;
1833			if (voltage_tries == 5) {
1834				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1835				break;
1836			}
1837		} else
1838			voltage_tries = 0;
1839		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1840
1841		/* Compute new intel_dp->train_set as requested by target */
1842		intel_get_adjust_train(intel_dp, link_status);
1843	}
1844
1845	intel_dp->DP = DP;
1846}
1847
1848static void
1849intel_dp_complete_link_train(struct intel_dp *intel_dp)
1850{
1851	struct drm_device *dev = intel_dp->base.base.dev;
1852	bool channel_eq = false;
1853	int tries, cr_tries;
1854	uint32_t DP = intel_dp->DP;
1855
1856	/* channel equalization */
1857	tries = 0;
1858	cr_tries = 0;
1859	channel_eq = false;
1860	for (;;) {
1861		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1862		uint32_t    signal_levels;
1863		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1864
1865		if (cr_tries > 5) {
1866			DRM_ERROR("failed to train DP, aborting\n");
1867			intel_dp_link_down(intel_dp);
1868			break;
1869		}
1870
1871		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1872			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1873			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1874		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1875			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1876			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1877		} else {
1878			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1879			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1880		}
1881
1882		/* channel eq pattern */
1883		if (!intel_dp_set_link_train(intel_dp, DP,
1884					     DP_TRAINING_PATTERN_2 |
1885					     DP_LINK_SCRAMBLING_DISABLE))
1886			break;
1887
1888		udelay(400);
1889		if (!intel_dp_get_link_status(intel_dp, link_status))
1890			break;
1891
1892		/* Make sure clock is still ok */
1893		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1894			intel_dp_start_link_train(intel_dp);
1895			cr_tries++;
1896			continue;
1897		}
1898
1899		if (intel_channel_eq_ok(intel_dp, link_status)) {
1900			channel_eq = true;
1901			break;
1902		}
1903
1904		/* Try 5 times, then try clock recovery if that fails */
1905		if (tries > 5) {
1906			intel_dp_link_down(intel_dp);
1907			intel_dp_start_link_train(intel_dp);
1908			tries = 0;
1909			cr_tries++;
1910			continue;
1911		}
1912
1913		/* Compute new intel_dp->train_set as requested by target */
1914		intel_get_adjust_train(intel_dp, link_status);
1915		++tries;
1916	}
1917
1918	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1919}
1920
1921static void
1922intel_dp_link_down(struct intel_dp *intel_dp)
1923{
1924	struct drm_device *dev = intel_dp->base.base.dev;
1925	struct drm_i915_private *dev_priv = dev->dev_private;
1926	uint32_t DP = intel_dp->DP;
1927
1928	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1929		return;
1930
1931	DRM_DEBUG_KMS("\n");
1932
1933	if (is_edp(intel_dp)) {
1934		DP &= ~DP_PLL_ENABLE;
1935		I915_WRITE(intel_dp->output_reg, DP);
1936		POSTING_READ(intel_dp->output_reg);
1937		udelay(100);
1938	}
1939
1940	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1941		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1942		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1943	} else {
1944		DP &= ~DP_LINK_TRAIN_MASK;
1945		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1946	}
1947	POSTING_READ(intel_dp->output_reg);
1948
1949	msleep(17);
1950
1951	if (is_edp(intel_dp)) {
1952		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1953			DP |= DP_LINK_TRAIN_OFF_CPT;
1954		else
1955			DP |= DP_LINK_TRAIN_OFF;
1956	}
1957
1958	if (HAS_PCH_IBX(dev) &&
1959	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1960		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1961
1962		/* Hardware workaround: leaving our transcoder select
1963		 * set to transcoder B while it's off will prevent the
1964		 * corresponding HDMI output on transcoder A.
1965		 *
1966		 * Combine this with another hardware workaround:
1967		 * transcoder select bit can only be cleared while the
1968		 * port is enabled.
1969		 */
1970		DP &= ~DP_PIPEB_SELECT;
1971		I915_WRITE(intel_dp->output_reg, DP);
1972
1973		/* Changes to enable or select take place the vblank
1974		 * after being written.
1975		 */
1976		if (crtc == NULL) {
1977			/* We can arrive here never having been attached
1978			 * to a CRTC, for instance, due to inheriting
1979			 * random state from the BIOS.
1980			 *
1981			 * If the pipe is not running, play safe and
1982			 * wait for the clocks to stabilise before
1983			 * continuing.
1984			 */
1985			POSTING_READ(intel_dp->output_reg);
1986			msleep(50);
1987		} else
1988			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1989	}
1990
1991	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1992	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1993	POSTING_READ(intel_dp->output_reg);
1994	msleep(intel_dp->panel_power_down_delay);
1995}
1996
1997static bool
1998intel_dp_get_dpcd(struct intel_dp *intel_dp)
1999{
2000	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2001					   sizeof(intel_dp->dpcd)) &&
2002	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
2003		return true;
2004	}
2005
2006	return false;
2007}
2008
2009static void
2010intel_dp_probe_oui(struct intel_dp *intel_dp)
2011{
2012	u8 buf[3];
2013
2014	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2015		return;
2016
2017	ironlake_edp_panel_vdd_on(intel_dp);
2018
2019	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2020		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2021			      buf[0], buf[1], buf[2]);
2022
2023	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2024		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2025			      buf[0], buf[1], buf[2]);
2026
2027	ironlake_edp_panel_vdd_off(intel_dp, false);
2028}
2029
2030static bool
2031intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2032{
2033	int ret;
2034
2035	ret = intel_dp_aux_native_read_retry(intel_dp,
2036					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2037					     sink_irq_vector, 1);
2038	if (!ret)
2039		return false;
2040
2041	return true;
2042}
2043
2044static void
2045intel_dp_handle_test_request(struct intel_dp *intel_dp)
2046{
2047	/* NAK by default */
2048	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2049}
2050
2051/*
2052 * According to DP spec
2053 * 5.1.2:
2054 *  1. Read DPCD
2055 *  2. Configure link according to Receiver Capabilities
2056 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2057 *  4. Check link status on receipt of hot-plug interrupt
2058 */
2059
2060static void
2061intel_dp_check_link_status(struct intel_dp *intel_dp)
2062{
2063	u8 sink_irq_vector;
2064	u8 link_status[DP_LINK_STATUS_SIZE];
2065
2066	if (!intel_dp->base.connectors_active)
2067		return;
2068
2069	if (WARN_ON(!intel_dp->base.base.crtc))
2070		return;
2071
2072	/* Try to read receiver status if the link appears to be up */
2073	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2074		intel_dp_link_down(intel_dp);
2075		return;
2076	}
2077
2078	/* Now read the DPCD to see if it's actually running */
2079	if (!intel_dp_get_dpcd(intel_dp)) {
2080		intel_dp_link_down(intel_dp);
2081		return;
2082	}
2083
2084	/* Try to read the source of the interrupt */
2085	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2086	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2087		/* Clear interrupt source */
2088		intel_dp_aux_native_write_1(intel_dp,
2089					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2090					    sink_irq_vector);
2091
2092		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2093			intel_dp_handle_test_request(intel_dp);
2094		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2095			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2096	}
2097
2098	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2099		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2100			      drm_get_encoder_name(&intel_dp->base.base));
2101		intel_dp_start_link_train(intel_dp);
2102		intel_dp_complete_link_train(intel_dp);
2103	}
2104}
2105
2106static enum drm_connector_status
2107intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2108{
2109	if (intel_dp_get_dpcd(intel_dp))
2110		return connector_status_connected;
2111	return connector_status_disconnected;
2112}
2113
2114static enum drm_connector_status
2115ironlake_dp_detect(struct intel_dp *intel_dp)
2116{
2117	enum drm_connector_status status;
2118
2119	/* Can't disconnect eDP, but you can close the lid... */
2120	if (is_edp(intel_dp)) {
2121		status = intel_panel_detect(intel_dp->base.base.dev);
2122		if (status == connector_status_unknown)
2123			status = connector_status_connected;
2124		return status;
2125	}
2126
2127	return intel_dp_detect_dpcd(intel_dp);
2128}
2129
2130static enum drm_connector_status
2131g4x_dp_detect(struct intel_dp *intel_dp)
2132{
2133	struct drm_device *dev = intel_dp->base.base.dev;
2134	struct drm_i915_private *dev_priv = dev->dev_private;
2135	uint32_t bit;
2136
2137	switch (intel_dp->output_reg) {
2138	case DP_B:
2139		bit = DPB_HOTPLUG_LIVE_STATUS;
2140		break;
2141	case DP_C:
2142		bit = DPC_HOTPLUG_LIVE_STATUS;
2143		break;
2144	case DP_D:
2145		bit = DPD_HOTPLUG_LIVE_STATUS;
2146		break;
2147	default:
2148		return connector_status_unknown;
2149	}
2150
2151	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2152		return connector_status_disconnected;
2153
2154	return intel_dp_detect_dpcd(intel_dp);
2155}
2156
2157static struct edid *
2158intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2159{
2160	struct intel_dp *intel_dp = intel_attached_dp(connector);
2161	struct edid	*edid;
2162	int size;
2163
2164	if (is_edp(intel_dp)) {
2165		if (!intel_dp->edid)
2166			return NULL;
2167
2168		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2169		edid = kmalloc(size, GFP_KERNEL);
2170		if (!edid)
2171			return NULL;
2172
2173		memcpy(edid, intel_dp->edid, size);
2174		return edid;
2175	}
2176
2177	edid = drm_get_edid(connector, adapter);
2178	return edid;
2179}
2180
2181static int
2182intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2183{
2184	struct intel_dp *intel_dp = intel_attached_dp(connector);
2185	int	ret;
2186
2187	if (is_edp(intel_dp)) {
2188		drm_mode_connector_update_edid_property(connector,
2189							intel_dp->edid);
2190		ret = drm_add_edid_modes(connector, intel_dp->edid);
2191		drm_edid_to_eld(connector,
2192				intel_dp->edid);
2193		connector->display_info.raw_edid = NULL;
2194		return intel_dp->edid_mode_count;
2195	}
2196
2197	ret = intel_ddc_get_modes(connector, adapter);
2198	return ret;
2199}
2200
2201
2202/**
2203 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2204 *
2205 * \return true if DP port is connected.
2206 * \return false if DP port is disconnected.
2207 */
2208static enum drm_connector_status
2209intel_dp_detect(struct drm_connector *connector, bool force)
2210{
2211	struct intel_dp *intel_dp = intel_attached_dp(connector);
2212	struct drm_device *dev = intel_dp->base.base.dev;
2213	enum drm_connector_status status;
2214	struct edid *edid = NULL;
2215
2216	intel_dp->has_audio = false;
2217
2218	if (HAS_PCH_SPLIT(dev))
2219		status = ironlake_dp_detect(intel_dp);
2220	else
2221		status = g4x_dp_detect(intel_dp);
2222
2223	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2224		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2225		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2226		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2227
2228	if (status != connector_status_connected)
2229		return status;
2230
2231	intel_dp_probe_oui(intel_dp);
2232
2233	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2234		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2235	} else {
2236		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2237		if (edid) {
2238			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2239			connector->display_info.raw_edid = NULL;
2240			kfree(edid);
2241		}
2242	}
2243
2244	return connector_status_connected;
2245}
2246
2247static int intel_dp_get_modes(struct drm_connector *connector)
2248{
2249	struct intel_dp *intel_dp = intel_attached_dp(connector);
2250	struct drm_device *dev = intel_dp->base.base.dev;
2251	struct drm_i915_private *dev_priv = dev->dev_private;
2252	int ret;
2253
2254	/* We should parse the EDID data and find out if it has an audio sink
2255	 */
2256
2257	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2258	if (ret) {
2259		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2260			struct drm_display_mode *newmode;
2261			list_for_each_entry(newmode, &connector->probed_modes,
2262					    head) {
2263				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2264					intel_dp->panel_fixed_mode =
2265						drm_mode_duplicate(dev, newmode);
2266					break;
2267				}
2268			}
2269		}
2270		return ret;
2271	}
2272
2273	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2274	if (is_edp(intel_dp)) {
2275		/* initialize panel mode from VBT if available for eDP */
2276		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2277			intel_dp->panel_fixed_mode =
2278				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2279			if (intel_dp->panel_fixed_mode) {
2280				intel_dp->panel_fixed_mode->type |=
2281					DRM_MODE_TYPE_PREFERRED;
2282			}
2283		}
2284		if (intel_dp->panel_fixed_mode) {
2285			struct drm_display_mode *mode;
2286			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2287			drm_mode_probed_add(connector, mode);
2288			return 1;
2289		}
2290	}
2291	return 0;
2292}
2293
2294static bool
2295intel_dp_detect_audio(struct drm_connector *connector)
2296{
2297	struct intel_dp *intel_dp = intel_attached_dp(connector);
2298	struct edid *edid;
2299	bool has_audio = false;
2300
2301	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2302	if (edid) {
2303		has_audio = drm_detect_monitor_audio(edid);
2304
2305		connector->display_info.raw_edid = NULL;
2306		kfree(edid);
2307	}
2308
2309	return has_audio;
2310}
2311
2312static int
2313intel_dp_set_property(struct drm_connector *connector,
2314		      struct drm_property *property,
2315		      uint64_t val)
2316{
2317	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2318	struct intel_dp *intel_dp = intel_attached_dp(connector);
2319	int ret;
2320
2321	ret = drm_connector_property_set_value(connector, property, val);
2322	if (ret)
2323		return ret;
2324
2325	if (property == dev_priv->force_audio_property) {
2326		int i = val;
2327		bool has_audio;
2328
2329		if (i == intel_dp->force_audio)
2330			return 0;
2331
2332		intel_dp->force_audio = i;
2333
2334		if (i == HDMI_AUDIO_AUTO)
2335			has_audio = intel_dp_detect_audio(connector);
2336		else
2337			has_audio = (i == HDMI_AUDIO_ON);
2338
2339		if (has_audio == intel_dp->has_audio)
2340			return 0;
2341
2342		intel_dp->has_audio = has_audio;
2343		goto done;
2344	}
2345
2346	if (property == dev_priv->broadcast_rgb_property) {
2347		if (val == !!intel_dp->color_range)
2348			return 0;
2349
2350		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2351		goto done;
2352	}
2353
2354	return -EINVAL;
2355
2356done:
2357	if (intel_dp->base.base.crtc) {
2358		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2359		intel_set_mode(crtc, &crtc->mode,
2360			       crtc->x, crtc->y, crtc->fb);
2361	}
2362
2363	return 0;
2364}
2365
2366static void
2367intel_dp_destroy(struct drm_connector *connector)
2368{
2369	struct drm_device *dev = connector->dev;
2370
2371	if (intel_dpd_is_edp(dev))
2372		intel_panel_destroy_backlight(dev);
2373
2374	drm_sysfs_connector_remove(connector);
2375	drm_connector_cleanup(connector);
2376	kfree(connector);
2377}
2378
2379static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2380{
2381	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2382
2383	i2c_del_adapter(&intel_dp->adapter);
2384	drm_encoder_cleanup(encoder);
2385	if (is_edp(intel_dp)) {
2386		kfree(intel_dp->edid);
2387		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2388		ironlake_panel_vdd_off_sync(intel_dp);
2389	}
2390	kfree(intel_dp);
2391}
2392
2393static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2394	.mode_fixup = intel_dp_mode_fixup,
2395	.mode_set = intel_dp_mode_set,
2396	.disable = intel_encoder_noop,
2397};
2398
2399static const struct drm_connector_funcs intel_dp_connector_funcs = {
2400	.dpms = intel_dp_dpms,
2401	.detect = intel_dp_detect,
2402	.fill_modes = drm_helper_probe_single_connector_modes,
2403	.set_property = intel_dp_set_property,
2404	.destroy = intel_dp_destroy,
2405};
2406
2407static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2408	.get_modes = intel_dp_get_modes,
2409	.mode_valid = intel_dp_mode_valid,
2410	.best_encoder = intel_best_encoder,
2411};
2412
2413static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2414	.destroy = intel_dp_encoder_destroy,
2415};
2416
2417static void
2418intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2419{
2420	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2421
2422	intel_dp_check_link_status(intel_dp);
2423}
2424
2425/* Return which DP Port should be selected for Transcoder DP control */
2426int
2427intel_trans_dp_port_sel(struct drm_crtc *crtc)
2428{
2429	struct drm_device *dev = crtc->dev;
2430	struct intel_encoder *encoder;
2431
2432	for_each_encoder_on_crtc(dev, crtc, encoder) {
2433		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2434
2435		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2436		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2437			return intel_dp->output_reg;
2438	}
2439
2440	return -1;
2441}
2442
2443/* check the VBT to see whether the eDP is on DP-D port */
2444bool intel_dpd_is_edp(struct drm_device *dev)
2445{
2446	struct drm_i915_private *dev_priv = dev->dev_private;
2447	struct child_device_config *p_child;
2448	int i;
2449
2450	if (!dev_priv->child_dev_num)
2451		return false;
2452
2453	for (i = 0; i < dev_priv->child_dev_num; i++) {
2454		p_child = dev_priv->child_dev + i;
2455
2456		if (p_child->dvo_port == PORT_IDPD &&
2457		    p_child->device_type == DEVICE_TYPE_eDP)
2458			return true;
2459	}
2460	return false;
2461}
2462
2463static void
2464intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2465{
2466	intel_attach_force_audio_property(connector);
2467	intel_attach_broadcast_rgb_property(connector);
2468}
2469
2470void
2471intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2472{
2473	struct drm_i915_private *dev_priv = dev->dev_private;
2474	struct drm_connector *connector;
2475	struct intel_dp *intel_dp;
2476	struct intel_encoder *intel_encoder;
2477	struct intel_connector *intel_connector;
2478	const char *name = NULL;
2479	int type;
2480
2481	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2482	if (!intel_dp)
2483		return;
2484
2485	intel_dp->output_reg = output_reg;
2486	intel_dp->port = port;
2487
2488	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2489	if (!intel_connector) {
2490		kfree(intel_dp);
2491		return;
2492	}
2493	intel_encoder = &intel_dp->base;
2494
2495	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2496		if (intel_dpd_is_edp(dev))
2497			intel_dp->is_pch_edp = true;
2498
2499	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2500		type = DRM_MODE_CONNECTOR_eDP;
2501		intel_encoder->type = INTEL_OUTPUT_EDP;
2502	} else {
2503		type = DRM_MODE_CONNECTOR_DisplayPort;
2504		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2505	}
2506
2507	connector = &intel_connector->base;
2508	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2509	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2510
2511	connector->polled = DRM_CONNECTOR_POLL_HPD;
2512
2513	intel_encoder->cloneable = false;
2514
2515	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2516			  ironlake_panel_vdd_work);
2517
2518	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2519
2520	connector->interlace_allowed = true;
2521	connector->doublescan_allowed = 0;
2522
2523	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2524			 DRM_MODE_ENCODER_TMDS);
2525	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2526
2527	intel_connector_attach_encoder(intel_connector, intel_encoder);
2528	drm_sysfs_connector_add(connector);
2529
2530	intel_encoder->enable = intel_enable_dp;
2531	intel_encoder->disable = intel_disable_dp;
2532	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2533	intel_connector->get_hw_state = intel_connector_get_hw_state;
2534
2535	/* Set up the DDC bus. */
2536	switch (port) {
2537	case PORT_A:
2538		name = "DPDDC-A";
2539		break;
2540	case PORT_B:
2541		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2542		name = "DPDDC-B";
2543		break;
2544	case PORT_C:
2545		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2546		name = "DPDDC-C";
2547		break;
2548	case PORT_D:
2549		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2550		name = "DPDDC-D";
2551		break;
2552	default:
2553		WARN(1, "Invalid port %c\n", port_name(port));
2554		break;
2555	}
2556
2557	intel_dp_i2c_init(intel_dp, intel_connector, name);
2558
2559	/* Cache some DPCD data in the eDP case */
2560	if (is_edp(intel_dp)) {
2561		bool ret;
2562		struct edp_power_seq	cur, vbt;
2563		u32 pp_on, pp_off, pp_div;
2564		struct edid *edid;
2565
2566		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2567		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2568		pp_div = I915_READ(PCH_PP_DIVISOR);
2569
2570		if (!pp_on || !pp_off || !pp_div) {
2571			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2572			intel_dp_encoder_destroy(&intel_dp->base.base);
2573			intel_dp_destroy(&intel_connector->base);
2574			return;
2575		}
2576
2577		/* Pull timing values out of registers */
2578		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2579			PANEL_POWER_UP_DELAY_SHIFT;
2580
2581		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2582			PANEL_LIGHT_ON_DELAY_SHIFT;
2583
2584		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2585			PANEL_LIGHT_OFF_DELAY_SHIFT;
2586
2587		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2588			PANEL_POWER_DOWN_DELAY_SHIFT;
2589
2590		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2591			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2592
2593		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2594			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2595
2596		vbt = dev_priv->edp.pps;
2597
2598		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2599			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2600
2601#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2602
2603		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2604		intel_dp->backlight_on_delay = get_delay(t8);
2605		intel_dp->backlight_off_delay = get_delay(t9);
2606		intel_dp->panel_power_down_delay = get_delay(t10);
2607		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2608
2609		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2610			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2611			      intel_dp->panel_power_cycle_delay);
2612
2613		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2614			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2615
2616		ironlake_edp_panel_vdd_on(intel_dp);
2617		ret = intel_dp_get_dpcd(intel_dp);
2618		ironlake_edp_panel_vdd_off(intel_dp, false);
2619
2620		if (ret) {
2621			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2622				dev_priv->no_aux_handshake =
2623					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2624					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2625		} else {
2626			/* if this fails, presume the device is a ghost */
2627			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2628			intel_dp_encoder_destroy(&intel_dp->base.base);
2629			intel_dp_destroy(&intel_connector->base);
2630			return;
2631		}
2632
2633		ironlake_edp_panel_vdd_on(intel_dp);
2634		edid = drm_get_edid(connector, &intel_dp->adapter);
2635		if (edid) {
2636			drm_mode_connector_update_edid_property(connector,
2637								edid);
2638			intel_dp->edid_mode_count =
2639				drm_add_edid_modes(connector, edid);
2640			drm_edid_to_eld(connector, edid);
2641			intel_dp->edid = edid;
2642		}
2643		ironlake_edp_panel_vdd_off(intel_dp, false);
2644	}
2645
2646	intel_encoder->hot_plug = intel_dp_hot_plug;
2647
2648	if (is_edp(intel_dp)) {
2649		dev_priv->int_edp_connector = connector;
2650		intel_panel_setup_backlight(dev);
2651	}
2652
2653	intel_dp_add_properties(intel_dp, connector);
2654
2655	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2656	 * 0xd.  Failure to do so will result in spurious interrupts being
2657	 * generated on the port when a cable is not attached.
2658	 */
2659	if (IS_G4X(dev) && !IS_GM45(dev)) {
2660		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2661		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2662	}
2663}
2664