intel_dp.c revision 232351777cd0fe2341f917d28bf130df2b44bf8a
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "drm_edid.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
39
40#define DP_RECEIVER_CAP_SIZE	0xf
41#define DP_LINK_STATUS_SIZE	6
42#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
43
44/**
45 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
46 * @intel_dp: DP struct
47 *
48 * If a CPU or PCH DP output is attached to an eDP panel, this function
49 * will return true, and false otherwise.
50 */
51static bool is_edp(struct intel_dp *intel_dp)
52{
53	return intel_dp->base.type == INTEL_OUTPUT_EDP;
54}
55
56/**
57 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
58 * @intel_dp: DP struct
59 *
60 * Returns true if the given DP struct corresponds to a PCH DP port attached
61 * to an eDP panel, false otherwise.  Helpful for determining whether we
62 * may need FDI resources for a given DP output or not.
63 */
64static bool is_pch_edp(struct intel_dp *intel_dp)
65{
66	return intel_dp->is_pch_edp;
67}
68
69/**
70 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
71 * @intel_dp: DP struct
72 *
73 * Returns true if the given DP struct corresponds to a CPU eDP port.
74 */
75static bool is_cpu_edp(struct intel_dp *intel_dp)
76{
77	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
78}
79
80static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
81{
82	return container_of(encoder, struct intel_dp, base.base);
83}
84
85static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
86{
87	return container_of(intel_attached_encoder(connector),
88			    struct intel_dp, base);
89}
90
91/**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96 * by intel_display.c.
97 */
98bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99{
100	struct intel_dp *intel_dp;
101
102	if (!encoder)
103		return false;
104
105	intel_dp = enc_to_intel_dp(encoder);
106
107	return is_pch_edp(intel_dp);
108}
109
110static void intel_dp_start_link_train(struct intel_dp *intel_dp);
111static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
112static void intel_dp_link_down(struct intel_dp *intel_dp);
113
114void
115intel_edp_link_config(struct intel_encoder *intel_encoder,
116		       int *lane_num, int *link_bw)
117{
118	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119
120	*lane_num = intel_dp->lane_count;
121	if (intel_dp->link_bw == DP_LINK_BW_1_62)
122		*link_bw = 162000;
123	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
124		*link_bw = 270000;
125}
126
127int
128intel_edp_target_clock(struct intel_encoder *intel_encoder,
129		       struct drm_display_mode *mode)
130{
131	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
132
133	if (intel_dp->panel_fixed_mode)
134		return intel_dp->panel_fixed_mode->clock;
135	else
136		return mode->clock;
137}
138
139static int
140intel_dp_max_lane_count(struct intel_dp *intel_dp)
141{
142	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143	switch (max_lane_count) {
144	case 1: case 2: case 4:
145		break;
146	default:
147		max_lane_count = 4;
148	}
149	return max_lane_count;
150}
151
152static int
153intel_dp_max_link_bw(struct intel_dp *intel_dp)
154{
155	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
156
157	switch (max_link_bw) {
158	case DP_LINK_BW_1_62:
159	case DP_LINK_BW_2_7:
160		break;
161	default:
162		max_link_bw = DP_LINK_BW_1_62;
163		break;
164	}
165	return max_link_bw;
166}
167
168static int
169intel_dp_link_clock(uint8_t link_bw)
170{
171	if (link_bw == DP_LINK_BW_2_7)
172		return 270000;
173	else
174		return 162000;
175}
176
177/*
178 * The units on the numbers in the next two are... bizarre.  Examples will
179 * make it clearer; this one parallels an example in the eDP spec.
180 *
181 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
182 *
183 *     270000 * 1 * 8 / 10 == 216000
184 *
185 * The actual data capacity of that configuration is 2.16Gbit/s, so the
186 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
187 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
188 * 119000.  At 18bpp that's 2142000 kilobits per second.
189 *
190 * Thus the strange-looking division by 10 in intel_dp_link_required, to
191 * get the result in decakilobits instead of kilobits.
192 */
193
194static int
195intel_dp_link_required(int pixel_clock, int bpp)
196{
197	return (pixel_clock * bpp + 9) / 10;
198}
199
200static int
201intel_dp_max_data_rate(int max_link_clock, int max_lanes)
202{
203	return (max_link_clock * max_lanes * 8) / 10;
204}
205
206static bool
207intel_dp_adjust_dithering(struct intel_dp *intel_dp,
208			  struct drm_display_mode *mode,
209			  bool adjust_mode)
210{
211	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
212	int max_lanes = intel_dp_max_lane_count(intel_dp);
213	int max_rate, mode_rate;
214
215	mode_rate = intel_dp_link_required(mode->clock, 24);
216	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
217
218	if (mode_rate > max_rate) {
219		mode_rate = intel_dp_link_required(mode->clock, 18);
220		if (mode_rate > max_rate)
221			return false;
222
223		if (adjust_mode)
224			mode->private_flags
225				|= INTEL_MODE_DP_FORCE_6BPC;
226
227		return true;
228	}
229
230	return true;
231}
232
233static int
234intel_dp_mode_valid(struct drm_connector *connector,
235		    struct drm_display_mode *mode)
236{
237	struct intel_dp *intel_dp = intel_attached_dp(connector);
238
239	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
240		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
241			return MODE_PANEL;
242
243		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
244			return MODE_PANEL;
245	}
246
247	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
248		return MODE_CLOCK_HIGH;
249
250	if (mode->clock < 10000)
251		return MODE_CLOCK_LOW;
252
253	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
254		return MODE_H_ILLEGAL;
255
256	return MODE_OK;
257}
258
259static uint32_t
260pack_aux(uint8_t *src, int src_bytes)
261{
262	int	i;
263	uint32_t v = 0;
264
265	if (src_bytes > 4)
266		src_bytes = 4;
267	for (i = 0; i < src_bytes; i++)
268		v |= ((uint32_t) src[i]) << ((3-i) * 8);
269	return v;
270}
271
272static void
273unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
274{
275	int i;
276	if (dst_bytes > 4)
277		dst_bytes = 4;
278	for (i = 0; i < dst_bytes; i++)
279		dst[i] = src >> ((3-i) * 8);
280}
281
282/* hrawclock is 1/4 the FSB frequency */
283static int
284intel_hrawclk(struct drm_device *dev)
285{
286	struct drm_i915_private *dev_priv = dev->dev_private;
287	uint32_t clkcfg;
288
289	clkcfg = I915_READ(CLKCFG);
290	switch (clkcfg & CLKCFG_FSB_MASK) {
291	case CLKCFG_FSB_400:
292		return 100;
293	case CLKCFG_FSB_533:
294		return 133;
295	case CLKCFG_FSB_667:
296		return 166;
297	case CLKCFG_FSB_800:
298		return 200;
299	case CLKCFG_FSB_1067:
300		return 266;
301	case CLKCFG_FSB_1333:
302		return 333;
303	/* these two are just a guess; one of them might be right */
304	case CLKCFG_FSB_1600:
305	case CLKCFG_FSB_1600_ALT:
306		return 400;
307	default:
308		return 133;
309	}
310}
311
312static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
313{
314	struct drm_device *dev = intel_dp->base.base.dev;
315	struct drm_i915_private *dev_priv = dev->dev_private;
316
317	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
318}
319
320static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
321{
322	struct drm_device *dev = intel_dp->base.base.dev;
323	struct drm_i915_private *dev_priv = dev->dev_private;
324
325	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
326}
327
328static void
329intel_dp_check_edp(struct intel_dp *intel_dp)
330{
331	struct drm_device *dev = intel_dp->base.base.dev;
332	struct drm_i915_private *dev_priv = dev->dev_private;
333
334	if (!is_edp(intel_dp))
335		return;
336	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
337		WARN(1, "eDP powered off while attempting aux channel communication.\n");
338		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
339			      I915_READ(PCH_PP_STATUS),
340			      I915_READ(PCH_PP_CONTROL));
341	}
342}
343
344static int
345intel_dp_aux_ch(struct intel_dp *intel_dp,
346		uint8_t *send, int send_bytes,
347		uint8_t *recv, int recv_size)
348{
349	uint32_t output_reg = intel_dp->output_reg;
350	struct drm_device *dev = intel_dp->base.base.dev;
351	struct drm_i915_private *dev_priv = dev->dev_private;
352	uint32_t ch_ctl = output_reg + 0x10;
353	uint32_t ch_data = ch_ctl + 4;
354	int i;
355	int recv_bytes;
356	uint32_t status;
357	uint32_t aux_clock_divider;
358	int try, precharge;
359
360	intel_dp_check_edp(intel_dp);
361	/* The clock divider is based off the hrawclk,
362	 * and would like to run at 2MHz. So, take the
363	 * hrawclk value and divide by 2 and use that
364	 *
365	 * Note that PCH attached eDP panels should use a 125MHz input
366	 * clock divider.
367	 */
368	if (is_cpu_edp(intel_dp)) {
369		if (IS_GEN6(dev) || IS_GEN7(dev))
370			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
371		else
372			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
373	} else if (HAS_PCH_SPLIT(dev))
374		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
375	else
376		aux_clock_divider = intel_hrawclk(dev) / 2;
377
378	if (IS_GEN6(dev))
379		precharge = 3;
380	else
381		precharge = 5;
382
383	/* Try to wait for any previous AUX channel activity */
384	for (try = 0; try < 3; try++) {
385		status = I915_READ(ch_ctl);
386		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
387			break;
388		msleep(1);
389	}
390
391	if (try == 3) {
392		WARN(1, "dp_aux_ch not started status 0x%08x\n",
393		     I915_READ(ch_ctl));
394		return -EBUSY;
395	}
396
397	/* Must try at least 3 times according to DP spec */
398	for (try = 0; try < 5; try++) {
399		/* Load the send data into the aux channel data registers */
400		for (i = 0; i < send_bytes; i += 4)
401			I915_WRITE(ch_data + i,
402				   pack_aux(send + i, send_bytes - i));
403
404		/* Send the command and wait for it to complete */
405		I915_WRITE(ch_ctl,
406			   DP_AUX_CH_CTL_SEND_BUSY |
407			   DP_AUX_CH_CTL_TIME_OUT_400us |
408			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
409			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
410			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
411			   DP_AUX_CH_CTL_DONE |
412			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
413			   DP_AUX_CH_CTL_RECEIVE_ERROR);
414		for (;;) {
415			status = I915_READ(ch_ctl);
416			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
417				break;
418			udelay(100);
419		}
420
421		/* Clear done status and any errors */
422		I915_WRITE(ch_ctl,
423			   status |
424			   DP_AUX_CH_CTL_DONE |
425			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
426			   DP_AUX_CH_CTL_RECEIVE_ERROR);
427
428		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
429			      DP_AUX_CH_CTL_RECEIVE_ERROR))
430			continue;
431		if (status & DP_AUX_CH_CTL_DONE)
432			break;
433	}
434
435	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
436		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
437		return -EBUSY;
438	}
439
440	/* Check for timeout or receive error.
441	 * Timeouts occur when the sink is not connected
442	 */
443	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
444		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
445		return -EIO;
446	}
447
448	/* Timeouts occur when the device isn't connected, so they're
449	 * "normal" -- don't fill the kernel log with these */
450	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
451		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
452		return -ETIMEDOUT;
453	}
454
455	/* Unload any bytes sent back from the other side */
456	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
457		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
458	if (recv_bytes > recv_size)
459		recv_bytes = recv_size;
460
461	for (i = 0; i < recv_bytes; i += 4)
462		unpack_aux(I915_READ(ch_data + i),
463			   recv + i, recv_bytes - i);
464
465	return recv_bytes;
466}
467
468/* Write data to the aux channel in native mode */
469static int
470intel_dp_aux_native_write(struct intel_dp *intel_dp,
471			  uint16_t address, uint8_t *send, int send_bytes)
472{
473	int ret;
474	uint8_t	msg[20];
475	int msg_bytes;
476	uint8_t	ack;
477
478	intel_dp_check_edp(intel_dp);
479	if (send_bytes > 16)
480		return -1;
481	msg[0] = AUX_NATIVE_WRITE << 4;
482	msg[1] = address >> 8;
483	msg[2] = address & 0xff;
484	msg[3] = send_bytes - 1;
485	memcpy(&msg[4], send, send_bytes);
486	msg_bytes = send_bytes + 4;
487	for (;;) {
488		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
489		if (ret < 0)
490			return ret;
491		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
492			break;
493		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
494			udelay(100);
495		else
496			return -EIO;
497	}
498	return send_bytes;
499}
500
501/* Write a single byte to the aux channel in native mode */
502static int
503intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
504			    uint16_t address, uint8_t byte)
505{
506	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
507}
508
509/* read bytes from a native aux channel */
510static int
511intel_dp_aux_native_read(struct intel_dp *intel_dp,
512			 uint16_t address, uint8_t *recv, int recv_bytes)
513{
514	uint8_t msg[4];
515	int msg_bytes;
516	uint8_t reply[20];
517	int reply_bytes;
518	uint8_t ack;
519	int ret;
520
521	intel_dp_check_edp(intel_dp);
522	msg[0] = AUX_NATIVE_READ << 4;
523	msg[1] = address >> 8;
524	msg[2] = address & 0xff;
525	msg[3] = recv_bytes - 1;
526
527	msg_bytes = 4;
528	reply_bytes = recv_bytes + 1;
529
530	for (;;) {
531		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
532				      reply, reply_bytes);
533		if (ret == 0)
534			return -EPROTO;
535		if (ret < 0)
536			return ret;
537		ack = reply[0];
538		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
539			memcpy(recv, reply + 1, ret - 1);
540			return ret - 1;
541		}
542		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
543			udelay(100);
544		else
545			return -EIO;
546	}
547}
548
549static int
550intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
551		    uint8_t write_byte, uint8_t *read_byte)
552{
553	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
554	struct intel_dp *intel_dp = container_of(adapter,
555						struct intel_dp,
556						adapter);
557	uint16_t address = algo_data->address;
558	uint8_t msg[5];
559	uint8_t reply[2];
560	unsigned retry;
561	int msg_bytes;
562	int reply_bytes;
563	int ret;
564
565	intel_dp_check_edp(intel_dp);
566	/* Set up the command byte */
567	if (mode & MODE_I2C_READ)
568		msg[0] = AUX_I2C_READ << 4;
569	else
570		msg[0] = AUX_I2C_WRITE << 4;
571
572	if (!(mode & MODE_I2C_STOP))
573		msg[0] |= AUX_I2C_MOT << 4;
574
575	msg[1] = address >> 8;
576	msg[2] = address;
577
578	switch (mode) {
579	case MODE_I2C_WRITE:
580		msg[3] = 0;
581		msg[4] = write_byte;
582		msg_bytes = 5;
583		reply_bytes = 1;
584		break;
585	case MODE_I2C_READ:
586		msg[3] = 0;
587		msg_bytes = 4;
588		reply_bytes = 2;
589		break;
590	default:
591		msg_bytes = 3;
592		reply_bytes = 1;
593		break;
594	}
595
596	for (retry = 0; retry < 5; retry++) {
597		ret = intel_dp_aux_ch(intel_dp,
598				      msg, msg_bytes,
599				      reply, reply_bytes);
600		if (ret < 0) {
601			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
602			return ret;
603		}
604
605		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
606		case AUX_NATIVE_REPLY_ACK:
607			/* I2C-over-AUX Reply field is only valid
608			 * when paired with AUX ACK.
609			 */
610			break;
611		case AUX_NATIVE_REPLY_NACK:
612			DRM_DEBUG_KMS("aux_ch native nack\n");
613			return -EREMOTEIO;
614		case AUX_NATIVE_REPLY_DEFER:
615			udelay(100);
616			continue;
617		default:
618			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
619				  reply[0]);
620			return -EREMOTEIO;
621		}
622
623		switch (reply[0] & AUX_I2C_REPLY_MASK) {
624		case AUX_I2C_REPLY_ACK:
625			if (mode == MODE_I2C_READ) {
626				*read_byte = reply[1];
627			}
628			return reply_bytes - 1;
629		case AUX_I2C_REPLY_NACK:
630			DRM_DEBUG_KMS("aux_i2c nack\n");
631			return -EREMOTEIO;
632		case AUX_I2C_REPLY_DEFER:
633			DRM_DEBUG_KMS("aux_i2c defer\n");
634			udelay(100);
635			break;
636		default:
637			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
638			return -EREMOTEIO;
639		}
640	}
641
642	DRM_ERROR("too many retries, giving up\n");
643	return -EREMOTEIO;
644}
645
646static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
647static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
648
649static int
650intel_dp_i2c_init(struct intel_dp *intel_dp,
651		  struct intel_connector *intel_connector, const char *name)
652{
653	int	ret;
654
655	DRM_DEBUG_KMS("i2c_init %s\n", name);
656	intel_dp->algo.running = false;
657	intel_dp->algo.address = 0;
658	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
659
660	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
661	intel_dp->adapter.owner = THIS_MODULE;
662	intel_dp->adapter.class = I2C_CLASS_DDC;
663	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
664	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
665	intel_dp->adapter.algo_data = &intel_dp->algo;
666	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
667
668	ironlake_edp_panel_vdd_on(intel_dp);
669	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
670	ironlake_edp_panel_vdd_off(intel_dp, false);
671	return ret;
672}
673
674static bool
675intel_dp_mode_fixup(struct drm_encoder *encoder,
676		    const struct drm_display_mode *mode,
677		    struct drm_display_mode *adjusted_mode)
678{
679	struct drm_device *dev = encoder->dev;
680	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
681	int lane_count, clock;
682	int max_lane_count = intel_dp_max_lane_count(intel_dp);
683	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
684	int bpp, mode_rate;
685	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
686
687	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
688		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
689		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
690					mode, adjusted_mode);
691	}
692
693	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
694		return false;
695
696	DRM_DEBUG_KMS("DP link computation with max lane count %i "
697		      "max bw %02x pixel clock %iKHz\n",
698		      max_lane_count, bws[max_clock], adjusted_mode->clock);
699
700	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
701		return false;
702
703	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
704	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
705
706	for (clock = 0; clock <= max_clock; clock++) {
707		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
708			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
709
710			if (mode_rate <= link_avail) {
711				intel_dp->link_bw = bws[clock];
712				intel_dp->lane_count = lane_count;
713				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
714				DRM_DEBUG_KMS("DP link bw %02x lane "
715						"count %d clock %d bpp %d\n",
716				       intel_dp->link_bw, intel_dp->lane_count,
717				       adjusted_mode->clock, bpp);
718				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
719					      mode_rate, link_avail);
720				return true;
721			}
722		}
723	}
724
725	return false;
726}
727
728struct intel_dp_m_n {
729	uint32_t	tu;
730	uint32_t	gmch_m;
731	uint32_t	gmch_n;
732	uint32_t	link_m;
733	uint32_t	link_n;
734};
735
736static void
737intel_reduce_ratio(uint32_t *num, uint32_t *den)
738{
739	while (*num > 0xffffff || *den > 0xffffff) {
740		*num >>= 1;
741		*den >>= 1;
742	}
743}
744
745static void
746intel_dp_compute_m_n(int bpp,
747		     int nlanes,
748		     int pixel_clock,
749		     int link_clock,
750		     struct intel_dp_m_n *m_n)
751{
752	m_n->tu = 64;
753	m_n->gmch_m = (pixel_clock * bpp) >> 3;
754	m_n->gmch_n = link_clock * nlanes;
755	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
756	m_n->link_m = pixel_clock;
757	m_n->link_n = link_clock;
758	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
759}
760
761void
762intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
763		 struct drm_display_mode *adjusted_mode)
764{
765	struct drm_device *dev = crtc->dev;
766	struct intel_encoder *encoder;
767	struct drm_i915_private *dev_priv = dev->dev_private;
768	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
769	int lane_count = 4;
770	struct intel_dp_m_n m_n;
771	int pipe = intel_crtc->pipe;
772
773	/*
774	 * Find the lane count in the intel_encoder private
775	 */
776	for_each_encoder_on_crtc(dev, crtc, encoder) {
777		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
778
779		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
780		    intel_dp->base.type == INTEL_OUTPUT_EDP)
781		{
782			lane_count = intel_dp->lane_count;
783			break;
784		}
785	}
786
787	/*
788	 * Compute the GMCH and Link ratios. The '3' here is
789	 * the number of bytes_per_pixel post-LUT, which we always
790	 * set up for 8-bits of R/G/B, or 3 bytes total.
791	 */
792	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
793			     mode->clock, adjusted_mode->clock, &m_n);
794
795	if (HAS_PCH_SPLIT(dev)) {
796		I915_WRITE(TRANSDATA_M1(pipe),
797			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
798			   m_n.gmch_m);
799		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
800		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
801		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
802	} else {
803		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
804			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
805			   m_n.gmch_m);
806		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
807		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
808		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
809	}
810}
811
812static void
813intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
814		  struct drm_display_mode *adjusted_mode)
815{
816	struct drm_device *dev = encoder->dev;
817	struct drm_i915_private *dev_priv = dev->dev_private;
818	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
819	struct drm_crtc *crtc = intel_dp->base.base.crtc;
820	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822	/*
823	 * There are four kinds of DP registers:
824	 *
825	 * 	IBX PCH
826	 * 	SNB CPU
827	 *	IVB CPU
828	 * 	CPT PCH
829	 *
830	 * IBX PCH and CPU are the same for almost everything,
831	 * except that the CPU DP PLL is configured in this
832	 * register
833	 *
834	 * CPT PCH is quite different, having many bits moved
835	 * to the TRANS_DP_CTL register instead. That
836	 * configuration happens (oddly) in ironlake_pch_enable
837	 */
838
839	/* Preserve the BIOS-computed detected bit. This is
840	 * supposed to be read-only.
841	 */
842	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843
844	/* Handle DP bits in common between all three register formats */
845	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
846
847	switch (intel_dp->lane_count) {
848	case 1:
849		intel_dp->DP |= DP_PORT_WIDTH_1;
850		break;
851	case 2:
852		intel_dp->DP |= DP_PORT_WIDTH_2;
853		break;
854	case 4:
855		intel_dp->DP |= DP_PORT_WIDTH_4;
856		break;
857	}
858	if (intel_dp->has_audio) {
859		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
860				 pipe_name(intel_crtc->pipe));
861		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
862		intel_write_eld(encoder, adjusted_mode);
863	}
864	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
865	intel_dp->link_configuration[0] = intel_dp->link_bw;
866	intel_dp->link_configuration[1] = intel_dp->lane_count;
867	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
868	/*
869	 * Check for DPCD version > 1.1 and enhanced framing support
870	 */
871	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
872	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
873		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
874	}
875
876	/* Split out the IBX/CPU vs CPT settings */
877
878	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
879		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
880			intel_dp->DP |= DP_SYNC_HS_HIGH;
881		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
882			intel_dp->DP |= DP_SYNC_VS_HIGH;
883		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
884
885		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
886			intel_dp->DP |= DP_ENHANCED_FRAMING;
887
888		intel_dp->DP |= intel_crtc->pipe << 29;
889
890		/* don't miss out required setting for eDP */
891		if (adjusted_mode->clock < 200000)
892			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
893		else
894			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
895	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
896		intel_dp->DP |= intel_dp->color_range;
897
898		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
899			intel_dp->DP |= DP_SYNC_HS_HIGH;
900		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
901			intel_dp->DP |= DP_SYNC_VS_HIGH;
902		intel_dp->DP |= DP_LINK_TRAIN_OFF;
903
904		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
905			intel_dp->DP |= DP_ENHANCED_FRAMING;
906
907		if (intel_crtc->pipe == 1)
908			intel_dp->DP |= DP_PIPEB_SELECT;
909
910		if (is_cpu_edp(intel_dp)) {
911			/* don't miss out required setting for eDP */
912			if (adjusted_mode->clock < 200000)
913				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
914			else
915				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
916		}
917	} else {
918		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
919	}
920}
921
922#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
923#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
924
925#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
926#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
927
928#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
929#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
930
931static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
932				       u32 mask,
933				       u32 value)
934{
935	struct drm_device *dev = intel_dp->base.base.dev;
936	struct drm_i915_private *dev_priv = dev->dev_private;
937
938	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
939		      mask, value,
940		      I915_READ(PCH_PP_STATUS),
941		      I915_READ(PCH_PP_CONTROL));
942
943	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
944		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
945			  I915_READ(PCH_PP_STATUS),
946			  I915_READ(PCH_PP_CONTROL));
947	}
948}
949
950static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
951{
952	DRM_DEBUG_KMS("Wait for panel power on\n");
953	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
954}
955
956static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
957{
958	DRM_DEBUG_KMS("Wait for panel power off time\n");
959	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
960}
961
962static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
963{
964	DRM_DEBUG_KMS("Wait for panel power cycle\n");
965	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
966}
967
968
969/* Read the current pp_control value, unlocking the register if it
970 * is locked
971 */
972
973static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
974{
975	u32	control = I915_READ(PCH_PP_CONTROL);
976
977	control &= ~PANEL_UNLOCK_MASK;
978	control |= PANEL_UNLOCK_REGS;
979	return control;
980}
981
982static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
983{
984	struct drm_device *dev = intel_dp->base.base.dev;
985	struct drm_i915_private *dev_priv = dev->dev_private;
986	u32 pp;
987
988	if (!is_edp(intel_dp))
989		return;
990	DRM_DEBUG_KMS("Turn eDP VDD on\n");
991
992	WARN(intel_dp->want_panel_vdd,
993	     "eDP VDD already requested on\n");
994
995	intel_dp->want_panel_vdd = true;
996
997	if (ironlake_edp_have_panel_vdd(intel_dp)) {
998		DRM_DEBUG_KMS("eDP VDD already on\n");
999		return;
1000	}
1001
1002	if (!ironlake_edp_have_panel_power(intel_dp))
1003		ironlake_wait_panel_power_cycle(intel_dp);
1004
1005	pp = ironlake_get_pp_control(dev_priv);
1006	pp |= EDP_FORCE_VDD;
1007	I915_WRITE(PCH_PP_CONTROL, pp);
1008	POSTING_READ(PCH_PP_CONTROL);
1009	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1010		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1011
1012	/*
1013	 * If the panel wasn't on, delay before accessing aux channel
1014	 */
1015	if (!ironlake_edp_have_panel_power(intel_dp)) {
1016		DRM_DEBUG_KMS("eDP was not running\n");
1017		msleep(intel_dp->panel_power_up_delay);
1018	}
1019}
1020
1021static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1022{
1023	struct drm_device *dev = intel_dp->base.base.dev;
1024	struct drm_i915_private *dev_priv = dev->dev_private;
1025	u32 pp;
1026
1027	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1028		pp = ironlake_get_pp_control(dev_priv);
1029		pp &= ~EDP_FORCE_VDD;
1030		I915_WRITE(PCH_PP_CONTROL, pp);
1031		POSTING_READ(PCH_PP_CONTROL);
1032
1033		/* Make sure sequencer is idle before allowing subsequent activity */
1034		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1035			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1036
1037		msleep(intel_dp->panel_power_down_delay);
1038	}
1039}
1040
1041static void ironlake_panel_vdd_work(struct work_struct *__work)
1042{
1043	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1044						 struct intel_dp, panel_vdd_work);
1045	struct drm_device *dev = intel_dp->base.base.dev;
1046
1047	mutex_lock(&dev->mode_config.mutex);
1048	ironlake_panel_vdd_off_sync(intel_dp);
1049	mutex_unlock(&dev->mode_config.mutex);
1050}
1051
1052static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1053{
1054	if (!is_edp(intel_dp))
1055		return;
1056
1057	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1058	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1059
1060	intel_dp->want_panel_vdd = false;
1061
1062	if (sync) {
1063		ironlake_panel_vdd_off_sync(intel_dp);
1064	} else {
1065		/*
1066		 * Queue the timer to fire a long
1067		 * time from now (relative to the power down delay)
1068		 * to keep the panel power up across a sequence of operations
1069		 */
1070		schedule_delayed_work(&intel_dp->panel_vdd_work,
1071				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1072	}
1073}
1074
1075static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1076{
1077	struct drm_device *dev = intel_dp->base.base.dev;
1078	struct drm_i915_private *dev_priv = dev->dev_private;
1079	u32 pp;
1080
1081	if (!is_edp(intel_dp))
1082		return;
1083
1084	DRM_DEBUG_KMS("Turn eDP power on\n");
1085
1086	if (ironlake_edp_have_panel_power(intel_dp)) {
1087		DRM_DEBUG_KMS("eDP power already on\n");
1088		return;
1089	}
1090
1091	ironlake_wait_panel_power_cycle(intel_dp);
1092
1093	pp = ironlake_get_pp_control(dev_priv);
1094	if (IS_GEN5(dev)) {
1095		/* ILK workaround: disable reset around power sequence */
1096		pp &= ~PANEL_POWER_RESET;
1097		I915_WRITE(PCH_PP_CONTROL, pp);
1098		POSTING_READ(PCH_PP_CONTROL);
1099	}
1100
1101	pp |= POWER_TARGET_ON;
1102	if (!IS_GEN5(dev))
1103		pp |= PANEL_POWER_RESET;
1104
1105	I915_WRITE(PCH_PP_CONTROL, pp);
1106	POSTING_READ(PCH_PP_CONTROL);
1107
1108	ironlake_wait_panel_on(intel_dp);
1109
1110	if (IS_GEN5(dev)) {
1111		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1112		I915_WRITE(PCH_PP_CONTROL, pp);
1113		POSTING_READ(PCH_PP_CONTROL);
1114	}
1115}
1116
1117static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1118{
1119	struct drm_device *dev = intel_dp->base.base.dev;
1120	struct drm_i915_private *dev_priv = dev->dev_private;
1121	u32 pp;
1122
1123	if (!is_edp(intel_dp))
1124		return;
1125
1126	DRM_DEBUG_KMS("Turn eDP power off\n");
1127
1128	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1129
1130	pp = ironlake_get_pp_control(dev_priv);
1131	/* We need to switch off panel power _and_ force vdd, for otherwise some
1132	 * panels get very unhappy and cease to work. */
1133	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1134	I915_WRITE(PCH_PP_CONTROL, pp);
1135	POSTING_READ(PCH_PP_CONTROL);
1136
1137	intel_dp->want_panel_vdd = false;
1138
1139	ironlake_wait_panel_off(intel_dp);
1140}
1141
1142static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1143{
1144	struct drm_device *dev = intel_dp->base.base.dev;
1145	struct drm_i915_private *dev_priv = dev->dev_private;
1146	u32 pp;
1147
1148	if (!is_edp(intel_dp))
1149		return;
1150
1151	DRM_DEBUG_KMS("\n");
1152	/*
1153	 * If we enable the backlight right away following a panel power
1154	 * on, we may see slight flicker as the panel syncs with the eDP
1155	 * link.  So delay a bit to make sure the image is solid before
1156	 * allowing it to appear.
1157	 */
1158	msleep(intel_dp->backlight_on_delay);
1159	pp = ironlake_get_pp_control(dev_priv);
1160	pp |= EDP_BLC_ENABLE;
1161	I915_WRITE(PCH_PP_CONTROL, pp);
1162	POSTING_READ(PCH_PP_CONTROL);
1163}
1164
1165static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1166{
1167	struct drm_device *dev = intel_dp->base.base.dev;
1168	struct drm_i915_private *dev_priv = dev->dev_private;
1169	u32 pp;
1170
1171	if (!is_edp(intel_dp))
1172		return;
1173
1174	DRM_DEBUG_KMS("\n");
1175	pp = ironlake_get_pp_control(dev_priv);
1176	pp &= ~EDP_BLC_ENABLE;
1177	I915_WRITE(PCH_PP_CONTROL, pp);
1178	POSTING_READ(PCH_PP_CONTROL);
1179	msleep(intel_dp->backlight_off_delay);
1180}
1181
1182static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1183{
1184	struct drm_device *dev = intel_dp->base.base.dev;
1185	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1186	struct drm_i915_private *dev_priv = dev->dev_private;
1187	u32 dpa_ctl;
1188
1189	assert_pipe_disabled(dev_priv,
1190			     to_intel_crtc(crtc)->pipe);
1191
1192	DRM_DEBUG_KMS("\n");
1193	dpa_ctl = I915_READ(DP_A);
1194	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1195	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1196
1197	/* We don't adjust intel_dp->DP while tearing down the link, to
1198	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1199	 * enable bits here to ensure that we don't enable too much. */
1200	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1201	intel_dp->DP |= DP_PLL_ENABLE;
1202	I915_WRITE(DP_A, intel_dp->DP);
1203	POSTING_READ(DP_A);
1204	udelay(200);
1205}
1206
1207static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1208{
1209	struct drm_device *dev = intel_dp->base.base.dev;
1210	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1211	struct drm_i915_private *dev_priv = dev->dev_private;
1212	u32 dpa_ctl;
1213
1214	assert_pipe_disabled(dev_priv,
1215			     to_intel_crtc(crtc)->pipe);
1216
1217	dpa_ctl = I915_READ(DP_A);
1218	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1219	     "dp pll off, should be on\n");
1220	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1221
1222	/* We can't rely on the value tracked for the DP register in
1223	 * intel_dp->DP because link_down must not change that (otherwise link
1224	 * re-training will fail. */
1225	dpa_ctl &= ~DP_PLL_ENABLE;
1226	I915_WRITE(DP_A, dpa_ctl);
1227	POSTING_READ(DP_A);
1228	udelay(200);
1229}
1230
1231/* If the sink supports it, try to set the power state appropriately */
1232static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1233{
1234	int ret, i;
1235
1236	/* Should have a valid DPCD by this point */
1237	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1238		return;
1239
1240	if (mode != DRM_MODE_DPMS_ON) {
1241		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1242						  DP_SET_POWER_D3);
1243		if (ret != 1)
1244			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1245	} else {
1246		/*
1247		 * When turning on, we need to retry for 1ms to give the sink
1248		 * time to wake up.
1249		 */
1250		for (i = 0; i < 3; i++) {
1251			ret = intel_dp_aux_native_write_1(intel_dp,
1252							  DP_SET_POWER,
1253							  DP_SET_POWER_D0);
1254			if (ret == 1)
1255				break;
1256			msleep(1);
1257		}
1258	}
1259}
1260
1261static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1262				  enum pipe *pipe)
1263{
1264	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1265	struct drm_device *dev = encoder->base.dev;
1266	struct drm_i915_private *dev_priv = dev->dev_private;
1267	u32 tmp = I915_READ(intel_dp->output_reg);
1268
1269	if (!(tmp & DP_PORT_EN))
1270		return false;
1271
1272	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1273		*pipe = PORT_TO_PIPE_CPT(tmp);
1274	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1275		*pipe = PORT_TO_PIPE(tmp);
1276	} else {
1277		u32 trans_sel;
1278		u32 trans_dp;
1279		int i;
1280
1281		switch (intel_dp->output_reg) {
1282		case PCH_DP_B:
1283			trans_sel = TRANS_DP_PORT_SEL_B;
1284			break;
1285		case PCH_DP_C:
1286			trans_sel = TRANS_DP_PORT_SEL_C;
1287			break;
1288		case PCH_DP_D:
1289			trans_sel = TRANS_DP_PORT_SEL_D;
1290			break;
1291		default:
1292			return true;
1293		}
1294
1295		for_each_pipe(i) {
1296			trans_dp = I915_READ(TRANS_DP_CTL(i));
1297			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1298				*pipe = i;
1299				return true;
1300			}
1301		}
1302	}
1303
1304	DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1305
1306	return true;
1307}
1308
1309static void intel_disable_dp(struct intel_encoder *encoder)
1310{
1311	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1312
1313	/* Make sure the panel is off before trying to change the mode. But also
1314	 * ensure that we have vdd while we switch off the panel. */
1315	ironlake_edp_panel_vdd_on(intel_dp);
1316	ironlake_edp_backlight_off(intel_dp);
1317	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1318	ironlake_edp_panel_off(intel_dp);
1319
1320	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1321	if (!is_cpu_edp(intel_dp))
1322		intel_dp_link_down(intel_dp);
1323}
1324
1325static void intel_post_disable_dp(struct intel_encoder *encoder)
1326{
1327	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1328
1329	if (is_cpu_edp(intel_dp)) {
1330		intel_dp_link_down(intel_dp);
1331		ironlake_edp_pll_off(intel_dp);
1332	}
1333}
1334
1335static void intel_enable_dp(struct intel_encoder *encoder)
1336{
1337	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1338	struct drm_device *dev = encoder->base.dev;
1339	struct drm_i915_private *dev_priv = dev->dev_private;
1340	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1341
1342	if (WARN_ON(dp_reg & DP_PORT_EN))
1343		return;
1344
1345	ironlake_edp_panel_vdd_on(intel_dp);
1346	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1347	intel_dp_start_link_train(intel_dp);
1348	ironlake_edp_panel_on(intel_dp);
1349	ironlake_edp_panel_vdd_off(intel_dp, true);
1350	intel_dp_complete_link_train(intel_dp);
1351	ironlake_edp_backlight_on(intel_dp);
1352}
1353
1354static void intel_pre_enable_dp(struct intel_encoder *encoder)
1355{
1356	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1357
1358	if (is_cpu_edp(intel_dp))
1359		ironlake_edp_pll_on(intel_dp);
1360}
1361
1362/*
1363 * Native read with retry for link status and receiver capability reads for
1364 * cases where the sink may still be asleep.
1365 */
1366static bool
1367intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1368			       uint8_t *recv, int recv_bytes)
1369{
1370	int ret, i;
1371
1372	/*
1373	 * Sinks are *supposed* to come up within 1ms from an off state,
1374	 * but we're also supposed to retry 3 times per the spec.
1375	 */
1376	for (i = 0; i < 3; i++) {
1377		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1378					       recv_bytes);
1379		if (ret == recv_bytes)
1380			return true;
1381		msleep(1);
1382	}
1383
1384	return false;
1385}
1386
1387/*
1388 * Fetch AUX CH registers 0x202 - 0x207 which contain
1389 * link status information
1390 */
1391static bool
1392intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1393{
1394	return intel_dp_aux_native_read_retry(intel_dp,
1395					      DP_LANE0_1_STATUS,
1396					      link_status,
1397					      DP_LINK_STATUS_SIZE);
1398}
1399
1400static uint8_t
1401intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1402		     int r)
1403{
1404	return link_status[r - DP_LANE0_1_STATUS];
1405}
1406
1407static uint8_t
1408intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1409				 int lane)
1410{
1411	int	    s = ((lane & 1) ?
1412			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1413			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1414	uint8_t l = adjust_request[lane>>1];
1415
1416	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1417}
1418
1419static uint8_t
1420intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1421				      int lane)
1422{
1423	int	    s = ((lane & 1) ?
1424			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1425			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1426	uint8_t l = adjust_request[lane>>1];
1427
1428	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1429}
1430
1431
1432#if 0
1433static char	*voltage_names[] = {
1434	"0.4V", "0.6V", "0.8V", "1.2V"
1435};
1436static char	*pre_emph_names[] = {
1437	"0dB", "3.5dB", "6dB", "9.5dB"
1438};
1439static char	*link_train_names[] = {
1440	"pattern 1", "pattern 2", "idle", "off"
1441};
1442#endif
1443
1444/*
1445 * These are source-specific values; current Intel hardware supports
1446 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1447 */
1448
1449static uint8_t
1450intel_dp_voltage_max(struct intel_dp *intel_dp)
1451{
1452	struct drm_device *dev = intel_dp->base.base.dev;
1453
1454	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1455		return DP_TRAIN_VOLTAGE_SWING_800;
1456	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1457		return DP_TRAIN_VOLTAGE_SWING_1200;
1458	else
1459		return DP_TRAIN_VOLTAGE_SWING_800;
1460}
1461
1462static uint8_t
1463intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1464{
1465	struct drm_device *dev = intel_dp->base.base.dev;
1466
1467	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1468		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469		case DP_TRAIN_VOLTAGE_SWING_400:
1470			return DP_TRAIN_PRE_EMPHASIS_6;
1471		case DP_TRAIN_VOLTAGE_SWING_600:
1472		case DP_TRAIN_VOLTAGE_SWING_800:
1473			return DP_TRAIN_PRE_EMPHASIS_3_5;
1474		default:
1475			return DP_TRAIN_PRE_EMPHASIS_0;
1476		}
1477	} else {
1478		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479		case DP_TRAIN_VOLTAGE_SWING_400:
1480			return DP_TRAIN_PRE_EMPHASIS_6;
1481		case DP_TRAIN_VOLTAGE_SWING_600:
1482			return DP_TRAIN_PRE_EMPHASIS_6;
1483		case DP_TRAIN_VOLTAGE_SWING_800:
1484			return DP_TRAIN_PRE_EMPHASIS_3_5;
1485		case DP_TRAIN_VOLTAGE_SWING_1200:
1486		default:
1487			return DP_TRAIN_PRE_EMPHASIS_0;
1488		}
1489	}
1490}
1491
1492static void
1493intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1494{
1495	uint8_t v = 0;
1496	uint8_t p = 0;
1497	int lane;
1498	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1499	uint8_t voltage_max;
1500	uint8_t preemph_max;
1501
1502	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1503		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1504		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1505
1506		if (this_v > v)
1507			v = this_v;
1508		if (this_p > p)
1509			p = this_p;
1510	}
1511
1512	voltage_max = intel_dp_voltage_max(intel_dp);
1513	if (v >= voltage_max)
1514		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1515
1516	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1517	if (p >= preemph_max)
1518		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1519
1520	for (lane = 0; lane < 4; lane++)
1521		intel_dp->train_set[lane] = v | p;
1522}
1523
1524static uint32_t
1525intel_dp_signal_levels(uint8_t train_set)
1526{
1527	uint32_t	signal_levels = 0;
1528
1529	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1530	case DP_TRAIN_VOLTAGE_SWING_400:
1531	default:
1532		signal_levels |= DP_VOLTAGE_0_4;
1533		break;
1534	case DP_TRAIN_VOLTAGE_SWING_600:
1535		signal_levels |= DP_VOLTAGE_0_6;
1536		break;
1537	case DP_TRAIN_VOLTAGE_SWING_800:
1538		signal_levels |= DP_VOLTAGE_0_8;
1539		break;
1540	case DP_TRAIN_VOLTAGE_SWING_1200:
1541		signal_levels |= DP_VOLTAGE_1_2;
1542		break;
1543	}
1544	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1545	case DP_TRAIN_PRE_EMPHASIS_0:
1546	default:
1547		signal_levels |= DP_PRE_EMPHASIS_0;
1548		break;
1549	case DP_TRAIN_PRE_EMPHASIS_3_5:
1550		signal_levels |= DP_PRE_EMPHASIS_3_5;
1551		break;
1552	case DP_TRAIN_PRE_EMPHASIS_6:
1553		signal_levels |= DP_PRE_EMPHASIS_6;
1554		break;
1555	case DP_TRAIN_PRE_EMPHASIS_9_5:
1556		signal_levels |= DP_PRE_EMPHASIS_9_5;
1557		break;
1558	}
1559	return signal_levels;
1560}
1561
1562/* Gen6's DP voltage swing and pre-emphasis control */
1563static uint32_t
1564intel_gen6_edp_signal_levels(uint8_t train_set)
1565{
1566	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1567					 DP_TRAIN_PRE_EMPHASIS_MASK);
1568	switch (signal_levels) {
1569	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1570	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1571		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1572	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1573		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1574	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1575	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1576		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1577	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1578	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1580	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1581	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1582		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1583	default:
1584		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1585			      "0x%x\n", signal_levels);
1586		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1587	}
1588}
1589
1590/* Gen7's DP voltage swing and pre-emphasis control */
1591static uint32_t
1592intel_gen7_edp_signal_levels(uint8_t train_set)
1593{
1594	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1595					 DP_TRAIN_PRE_EMPHASIS_MASK);
1596	switch (signal_levels) {
1597	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1598		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1599	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1601	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1602		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1603
1604	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1605		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1606	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1607		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1608
1609	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1610		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1611	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1612		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1613
1614	default:
1615		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1616			      "0x%x\n", signal_levels);
1617		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1618	}
1619}
1620
1621static uint8_t
1622intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1623		      int lane)
1624{
1625	int s = (lane & 1) * 4;
1626	uint8_t l = link_status[lane>>1];
1627
1628	return (l >> s) & 0xf;
1629}
1630
1631/* Check for clock recovery is done on all channels */
1632static bool
1633intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1634{
1635	int lane;
1636	uint8_t lane_status;
1637
1638	for (lane = 0; lane < lane_count; lane++) {
1639		lane_status = intel_get_lane_status(link_status, lane);
1640		if ((lane_status & DP_LANE_CR_DONE) == 0)
1641			return false;
1642	}
1643	return true;
1644}
1645
1646/* Check to see if channel eq is done on all channels */
1647#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1648			 DP_LANE_CHANNEL_EQ_DONE|\
1649			 DP_LANE_SYMBOL_LOCKED)
1650static bool
1651intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1652{
1653	uint8_t lane_align;
1654	uint8_t lane_status;
1655	int lane;
1656
1657	lane_align = intel_dp_link_status(link_status,
1658					  DP_LANE_ALIGN_STATUS_UPDATED);
1659	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1660		return false;
1661	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1662		lane_status = intel_get_lane_status(link_status, lane);
1663		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1664			return false;
1665	}
1666	return true;
1667}
1668
1669static bool
1670intel_dp_set_link_train(struct intel_dp *intel_dp,
1671			uint32_t dp_reg_value,
1672			uint8_t dp_train_pat)
1673{
1674	struct drm_device *dev = intel_dp->base.base.dev;
1675	struct drm_i915_private *dev_priv = dev->dev_private;
1676	int ret;
1677
1678	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1679		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1680
1681		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1682		case DP_TRAINING_PATTERN_DISABLE:
1683			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1684			break;
1685		case DP_TRAINING_PATTERN_1:
1686			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1687			break;
1688		case DP_TRAINING_PATTERN_2:
1689			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1690			break;
1691		case DP_TRAINING_PATTERN_3:
1692			DRM_ERROR("DP training pattern 3 not supported\n");
1693			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1694			break;
1695		}
1696
1697	} else {
1698		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1699
1700		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1701		case DP_TRAINING_PATTERN_DISABLE:
1702			dp_reg_value |= DP_LINK_TRAIN_OFF;
1703			break;
1704		case DP_TRAINING_PATTERN_1:
1705			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1706			break;
1707		case DP_TRAINING_PATTERN_2:
1708			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1709			break;
1710		case DP_TRAINING_PATTERN_3:
1711			DRM_ERROR("DP training pattern 3 not supported\n");
1712			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1713			break;
1714		}
1715	}
1716
1717	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1718	POSTING_READ(intel_dp->output_reg);
1719
1720	intel_dp_aux_native_write_1(intel_dp,
1721				    DP_TRAINING_PATTERN_SET,
1722				    dp_train_pat);
1723
1724	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1725	    DP_TRAINING_PATTERN_DISABLE) {
1726		ret = intel_dp_aux_native_write(intel_dp,
1727						DP_TRAINING_LANE0_SET,
1728						intel_dp->train_set,
1729						intel_dp->lane_count);
1730		if (ret != intel_dp->lane_count)
1731			return false;
1732	}
1733
1734	return true;
1735}
1736
1737/* Enable corresponding port and start training pattern 1 */
1738static void
1739intel_dp_start_link_train(struct intel_dp *intel_dp)
1740{
1741	struct drm_device *dev = intel_dp->base.base.dev;
1742	int i;
1743	uint8_t voltage;
1744	bool clock_recovery = false;
1745	int voltage_tries, loop_tries;
1746	uint32_t DP = intel_dp->DP;
1747
1748	/* Write the link configuration data */
1749	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1750				  intel_dp->link_configuration,
1751				  DP_LINK_CONFIGURATION_SIZE);
1752
1753	DP |= DP_PORT_EN;
1754
1755	memset(intel_dp->train_set, 0, 4);
1756	voltage = 0xff;
1757	voltage_tries = 0;
1758	loop_tries = 0;
1759	clock_recovery = false;
1760	for (;;) {
1761		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1762		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1763		uint32_t    signal_levels;
1764
1765
1766		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1767			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1768			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1769		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1770			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1771			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1772		} else {
1773			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1774			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1775			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1776		}
1777
1778		if (!intel_dp_set_link_train(intel_dp, DP,
1779					     DP_TRAINING_PATTERN_1 |
1780					     DP_LINK_SCRAMBLING_DISABLE))
1781			break;
1782		/* Set training pattern 1 */
1783
1784		udelay(100);
1785		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1786			DRM_ERROR("failed to get link status\n");
1787			break;
1788		}
1789
1790		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1791			DRM_DEBUG_KMS("clock recovery OK\n");
1792			clock_recovery = true;
1793			break;
1794		}
1795
1796		/* Check to see if we've tried the max voltage */
1797		for (i = 0; i < intel_dp->lane_count; i++)
1798			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1799				break;
1800		if (i == intel_dp->lane_count && voltage_tries == 5) {
1801			++loop_tries;
1802			if (loop_tries == 5) {
1803				DRM_DEBUG_KMS("too many full retries, give up\n");
1804				break;
1805			}
1806			memset(intel_dp->train_set, 0, 4);
1807			voltage_tries = 0;
1808			continue;
1809		}
1810
1811		/* Check to see if we've tried the same voltage 5 times */
1812		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1813			++voltage_tries;
1814			if (voltage_tries == 5) {
1815				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1816				break;
1817			}
1818		} else
1819			voltage_tries = 0;
1820		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1821
1822		/* Compute new intel_dp->train_set as requested by target */
1823		intel_get_adjust_train(intel_dp, link_status);
1824	}
1825
1826	intel_dp->DP = DP;
1827}
1828
1829static void
1830intel_dp_complete_link_train(struct intel_dp *intel_dp)
1831{
1832	struct drm_device *dev = intel_dp->base.base.dev;
1833	bool channel_eq = false;
1834	int tries, cr_tries;
1835	uint32_t DP = intel_dp->DP;
1836
1837	/* channel equalization */
1838	tries = 0;
1839	cr_tries = 0;
1840	channel_eq = false;
1841	for (;;) {
1842		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1843		uint32_t    signal_levels;
1844		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1845
1846		if (cr_tries > 5) {
1847			DRM_ERROR("failed to train DP, aborting\n");
1848			intel_dp_link_down(intel_dp);
1849			break;
1850		}
1851
1852		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1853			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1854			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1855		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1856			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1857			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1858		} else {
1859			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1860			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1861		}
1862
1863		/* channel eq pattern */
1864		if (!intel_dp_set_link_train(intel_dp, DP,
1865					     DP_TRAINING_PATTERN_2 |
1866					     DP_LINK_SCRAMBLING_DISABLE))
1867			break;
1868
1869		udelay(400);
1870		if (!intel_dp_get_link_status(intel_dp, link_status))
1871			break;
1872
1873		/* Make sure clock is still ok */
1874		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1875			intel_dp_start_link_train(intel_dp);
1876			cr_tries++;
1877			continue;
1878		}
1879
1880		if (intel_channel_eq_ok(intel_dp, link_status)) {
1881			channel_eq = true;
1882			break;
1883		}
1884
1885		/* Try 5 times, then try clock recovery if that fails */
1886		if (tries > 5) {
1887			intel_dp_link_down(intel_dp);
1888			intel_dp_start_link_train(intel_dp);
1889			tries = 0;
1890			cr_tries++;
1891			continue;
1892		}
1893
1894		/* Compute new intel_dp->train_set as requested by target */
1895		intel_get_adjust_train(intel_dp, link_status);
1896		++tries;
1897	}
1898
1899	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1900}
1901
1902static void
1903intel_dp_link_down(struct intel_dp *intel_dp)
1904{
1905	struct drm_device *dev = intel_dp->base.base.dev;
1906	struct drm_i915_private *dev_priv = dev->dev_private;
1907	uint32_t DP = intel_dp->DP;
1908
1909	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1910		return;
1911
1912	DRM_DEBUG_KMS("\n");
1913
1914	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1915		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1916		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1917	} else {
1918		DP &= ~DP_LINK_TRAIN_MASK;
1919		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1920	}
1921	POSTING_READ(intel_dp->output_reg);
1922
1923	msleep(17);
1924
1925	if (HAS_PCH_IBX(dev) &&
1926	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1927		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1928
1929		/* Hardware workaround: leaving our transcoder select
1930		 * set to transcoder B while it's off will prevent the
1931		 * corresponding HDMI output on transcoder A.
1932		 *
1933		 * Combine this with another hardware workaround:
1934		 * transcoder select bit can only be cleared while the
1935		 * port is enabled.
1936		 */
1937		DP &= ~DP_PIPEB_SELECT;
1938		I915_WRITE(intel_dp->output_reg, DP);
1939
1940		/* Changes to enable or select take place the vblank
1941		 * after being written.
1942		 */
1943		if (crtc == NULL) {
1944			/* We can arrive here never having been attached
1945			 * to a CRTC, for instance, due to inheriting
1946			 * random state from the BIOS.
1947			 *
1948			 * If the pipe is not running, play safe and
1949			 * wait for the clocks to stabilise before
1950			 * continuing.
1951			 */
1952			POSTING_READ(intel_dp->output_reg);
1953			msleep(50);
1954		} else
1955			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1956	}
1957
1958	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1959	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1960	POSTING_READ(intel_dp->output_reg);
1961	msleep(intel_dp->panel_power_down_delay);
1962}
1963
1964static bool
1965intel_dp_get_dpcd(struct intel_dp *intel_dp)
1966{
1967	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1968					   sizeof(intel_dp->dpcd)) == 0)
1969		return false; /* aux transfer failed */
1970
1971	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
1972		return false; /* DPCD not present */
1973
1974	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1975	      DP_DWN_STRM_PORT_PRESENT))
1976		return true; /* native DP sink */
1977
1978	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
1979		return true; /* no per-port downstream info */
1980
1981	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
1982					   intel_dp->downstream_ports,
1983					   DP_MAX_DOWNSTREAM_PORTS) == 0)
1984		return false; /* downstream port status fetch failed */
1985
1986	return true;
1987}
1988
1989static void
1990intel_dp_probe_oui(struct intel_dp *intel_dp)
1991{
1992	u8 buf[3];
1993
1994	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1995		return;
1996
1997	ironlake_edp_panel_vdd_on(intel_dp);
1998
1999	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2000		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2001			      buf[0], buf[1], buf[2]);
2002
2003	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2004		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2005			      buf[0], buf[1], buf[2]);
2006
2007	ironlake_edp_panel_vdd_off(intel_dp, false);
2008}
2009
2010static bool
2011intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2012{
2013	int ret;
2014
2015	ret = intel_dp_aux_native_read_retry(intel_dp,
2016					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2017					     sink_irq_vector, 1);
2018	if (!ret)
2019		return false;
2020
2021	return true;
2022}
2023
2024static void
2025intel_dp_handle_test_request(struct intel_dp *intel_dp)
2026{
2027	/* NAK by default */
2028	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2029}
2030
2031/*
2032 * According to DP spec
2033 * 5.1.2:
2034 *  1. Read DPCD
2035 *  2. Configure link according to Receiver Capabilities
2036 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2037 *  4. Check link status on receipt of hot-plug interrupt
2038 */
2039
2040static void
2041intel_dp_check_link_status(struct intel_dp *intel_dp)
2042{
2043	u8 sink_irq_vector;
2044	u8 link_status[DP_LINK_STATUS_SIZE];
2045
2046	if (!intel_dp->base.connectors_active)
2047		return;
2048
2049	if (WARN_ON(!intel_dp->base.base.crtc))
2050		return;
2051
2052	/* Try to read receiver status if the link appears to be up */
2053	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2054		intel_dp_link_down(intel_dp);
2055		return;
2056	}
2057
2058	/* Now read the DPCD to see if it's actually running */
2059	if (!intel_dp_get_dpcd(intel_dp)) {
2060		intel_dp_link_down(intel_dp);
2061		return;
2062	}
2063
2064	/* Try to read the source of the interrupt */
2065	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2066	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2067		/* Clear interrupt source */
2068		intel_dp_aux_native_write_1(intel_dp,
2069					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2070					    sink_irq_vector);
2071
2072		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2073			intel_dp_handle_test_request(intel_dp);
2074		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2075			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2076	}
2077
2078	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2079		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2080			      drm_get_encoder_name(&intel_dp->base.base));
2081		intel_dp_start_link_train(intel_dp);
2082		intel_dp_complete_link_train(intel_dp);
2083	}
2084}
2085
2086/* XXX this is probably wrong for multiple downstream ports */
2087static enum drm_connector_status
2088intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2089{
2090	uint8_t *dpcd = intel_dp->dpcd;
2091	bool hpd;
2092	uint8_t type;
2093
2094	if (!intel_dp_get_dpcd(intel_dp))
2095		return connector_status_disconnected;
2096
2097	/* if there's no downstream port, we're done */
2098	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2099		return connector_status_connected;
2100
2101	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2102	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2103	if (hpd) {
2104		uint8_t reg;
2105		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2106						    &reg, 1))
2107			return connector_status_unknown;
2108		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2109					      : connector_status_disconnected;
2110	}
2111
2112	/* If no HPD, poke DDC gently */
2113	if (drm_probe_ddc(&intel_dp->adapter))
2114		return connector_status_connected;
2115
2116	/* Well we tried, say unknown for unreliable port types */
2117	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2118	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2119		return connector_status_unknown;
2120
2121	/* Anything else is out of spec, warn and ignore */
2122	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2123	return connector_status_disconnected;
2124}
2125
2126static enum drm_connector_status
2127ironlake_dp_detect(struct intel_dp *intel_dp)
2128{
2129	enum drm_connector_status status;
2130
2131	/* Can't disconnect eDP, but you can close the lid... */
2132	if (is_edp(intel_dp)) {
2133		status = intel_panel_detect(intel_dp->base.base.dev);
2134		if (status == connector_status_unknown)
2135			status = connector_status_connected;
2136		return status;
2137	}
2138
2139	return intel_dp_detect_dpcd(intel_dp);
2140}
2141
2142static enum drm_connector_status
2143g4x_dp_detect(struct intel_dp *intel_dp)
2144{
2145	struct drm_device *dev = intel_dp->base.base.dev;
2146	struct drm_i915_private *dev_priv = dev->dev_private;
2147	uint32_t bit;
2148
2149	switch (intel_dp->output_reg) {
2150	case DP_B:
2151		bit = DPB_HOTPLUG_LIVE_STATUS;
2152		break;
2153	case DP_C:
2154		bit = DPC_HOTPLUG_LIVE_STATUS;
2155		break;
2156	case DP_D:
2157		bit = DPD_HOTPLUG_LIVE_STATUS;
2158		break;
2159	default:
2160		return connector_status_unknown;
2161	}
2162
2163	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2164		return connector_status_disconnected;
2165
2166	return intel_dp_detect_dpcd(intel_dp);
2167}
2168
2169static struct edid *
2170intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2171{
2172	struct intel_dp *intel_dp = intel_attached_dp(connector);
2173	struct edid	*edid;
2174	int size;
2175
2176	if (is_edp(intel_dp)) {
2177		if (!intel_dp->edid)
2178			return NULL;
2179
2180		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2181		edid = kmalloc(size, GFP_KERNEL);
2182		if (!edid)
2183			return NULL;
2184
2185		memcpy(edid, intel_dp->edid, size);
2186		return edid;
2187	}
2188
2189	edid = drm_get_edid(connector, adapter);
2190	return edid;
2191}
2192
2193static int
2194intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2195{
2196	struct intel_dp *intel_dp = intel_attached_dp(connector);
2197	int	ret;
2198
2199	if (is_edp(intel_dp)) {
2200		drm_mode_connector_update_edid_property(connector,
2201							intel_dp->edid);
2202		ret = drm_add_edid_modes(connector, intel_dp->edid);
2203		drm_edid_to_eld(connector,
2204				intel_dp->edid);
2205		return intel_dp->edid_mode_count;
2206	}
2207
2208	ret = intel_ddc_get_modes(connector, adapter);
2209	return ret;
2210}
2211
2212
2213/**
2214 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2215 *
2216 * \return true if DP port is connected.
2217 * \return false if DP port is disconnected.
2218 */
2219static enum drm_connector_status
2220intel_dp_detect(struct drm_connector *connector, bool force)
2221{
2222	struct intel_dp *intel_dp = intel_attached_dp(connector);
2223	struct drm_device *dev = intel_dp->base.base.dev;
2224	enum drm_connector_status status;
2225	struct edid *edid = NULL;
2226
2227	intel_dp->has_audio = false;
2228
2229	if (HAS_PCH_SPLIT(dev))
2230		status = ironlake_dp_detect(intel_dp);
2231	else
2232		status = g4x_dp_detect(intel_dp);
2233
2234	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2235		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2236		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2237		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2238
2239	if (status != connector_status_connected)
2240		return status;
2241
2242	intel_dp_probe_oui(intel_dp);
2243
2244	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2245		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2246	} else {
2247		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2248		if (edid) {
2249			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2250			kfree(edid);
2251		}
2252	}
2253
2254	return connector_status_connected;
2255}
2256
2257static int intel_dp_get_modes(struct drm_connector *connector)
2258{
2259	struct intel_dp *intel_dp = intel_attached_dp(connector);
2260	struct drm_device *dev = intel_dp->base.base.dev;
2261	struct drm_i915_private *dev_priv = dev->dev_private;
2262	int ret;
2263
2264	/* We should parse the EDID data and find out if it has an audio sink
2265	 */
2266
2267	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2268	if (ret) {
2269		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2270			struct drm_display_mode *newmode;
2271			list_for_each_entry(newmode, &connector->probed_modes,
2272					    head) {
2273				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2274					intel_dp->panel_fixed_mode =
2275						drm_mode_duplicate(dev, newmode);
2276					break;
2277				}
2278			}
2279		}
2280		return ret;
2281	}
2282
2283	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2284	if (is_edp(intel_dp)) {
2285		/* initialize panel mode from VBT if available for eDP */
2286		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2287			intel_dp->panel_fixed_mode =
2288				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2289			if (intel_dp->panel_fixed_mode) {
2290				intel_dp->panel_fixed_mode->type |=
2291					DRM_MODE_TYPE_PREFERRED;
2292			}
2293		}
2294		if (intel_dp->panel_fixed_mode) {
2295			struct drm_display_mode *mode;
2296			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2297			drm_mode_probed_add(connector, mode);
2298			return 1;
2299		}
2300	}
2301	return 0;
2302}
2303
2304static bool
2305intel_dp_detect_audio(struct drm_connector *connector)
2306{
2307	struct intel_dp *intel_dp = intel_attached_dp(connector);
2308	struct edid *edid;
2309	bool has_audio = false;
2310
2311	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2312	if (edid) {
2313		has_audio = drm_detect_monitor_audio(edid);
2314		kfree(edid);
2315	}
2316
2317	return has_audio;
2318}
2319
2320static int
2321intel_dp_set_property(struct drm_connector *connector,
2322		      struct drm_property *property,
2323		      uint64_t val)
2324{
2325	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2326	struct intel_dp *intel_dp = intel_attached_dp(connector);
2327	int ret;
2328
2329	ret = drm_connector_property_set_value(connector, property, val);
2330	if (ret)
2331		return ret;
2332
2333	if (property == dev_priv->force_audio_property) {
2334		int i = val;
2335		bool has_audio;
2336
2337		if (i == intel_dp->force_audio)
2338			return 0;
2339
2340		intel_dp->force_audio = i;
2341
2342		if (i == HDMI_AUDIO_AUTO)
2343			has_audio = intel_dp_detect_audio(connector);
2344		else
2345			has_audio = (i == HDMI_AUDIO_ON);
2346
2347		if (has_audio == intel_dp->has_audio)
2348			return 0;
2349
2350		intel_dp->has_audio = has_audio;
2351		goto done;
2352	}
2353
2354	if (property == dev_priv->broadcast_rgb_property) {
2355		if (val == !!intel_dp->color_range)
2356			return 0;
2357
2358		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2359		goto done;
2360	}
2361
2362	return -EINVAL;
2363
2364done:
2365	if (intel_dp->base.base.crtc) {
2366		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2367		intel_set_mode(crtc, &crtc->mode,
2368			       crtc->x, crtc->y, crtc->fb);
2369	}
2370
2371	return 0;
2372}
2373
2374static void
2375intel_dp_destroy(struct drm_connector *connector)
2376{
2377	struct drm_device *dev = connector->dev;
2378
2379	if (intel_dpd_is_edp(dev))
2380		intel_panel_destroy_backlight(dev);
2381
2382	drm_sysfs_connector_remove(connector);
2383	drm_connector_cleanup(connector);
2384	kfree(connector);
2385}
2386
2387static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2388{
2389	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2390
2391	i2c_del_adapter(&intel_dp->adapter);
2392	drm_encoder_cleanup(encoder);
2393	if (is_edp(intel_dp)) {
2394		kfree(intel_dp->edid);
2395		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2396		ironlake_panel_vdd_off_sync(intel_dp);
2397	}
2398	kfree(intel_dp);
2399}
2400
2401static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2402	.mode_fixup = intel_dp_mode_fixup,
2403	.mode_set = intel_dp_mode_set,
2404	.disable = intel_encoder_noop,
2405};
2406
2407static const struct drm_connector_funcs intel_dp_connector_funcs = {
2408	.dpms = intel_connector_dpms,
2409	.detect = intel_dp_detect,
2410	.fill_modes = drm_helper_probe_single_connector_modes,
2411	.set_property = intel_dp_set_property,
2412	.destroy = intel_dp_destroy,
2413};
2414
2415static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2416	.get_modes = intel_dp_get_modes,
2417	.mode_valid = intel_dp_mode_valid,
2418	.best_encoder = intel_best_encoder,
2419};
2420
2421static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2422	.destroy = intel_dp_encoder_destroy,
2423};
2424
2425static void
2426intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2427{
2428	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2429
2430	intel_dp_check_link_status(intel_dp);
2431}
2432
2433/* Return which DP Port should be selected for Transcoder DP control */
2434int
2435intel_trans_dp_port_sel(struct drm_crtc *crtc)
2436{
2437	struct drm_device *dev = crtc->dev;
2438	struct intel_encoder *encoder;
2439
2440	for_each_encoder_on_crtc(dev, crtc, encoder) {
2441		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2442
2443		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2444		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2445			return intel_dp->output_reg;
2446	}
2447
2448	return -1;
2449}
2450
2451/* check the VBT to see whether the eDP is on DP-D port */
2452bool intel_dpd_is_edp(struct drm_device *dev)
2453{
2454	struct drm_i915_private *dev_priv = dev->dev_private;
2455	struct child_device_config *p_child;
2456	int i;
2457
2458	if (!dev_priv->child_dev_num)
2459		return false;
2460
2461	for (i = 0; i < dev_priv->child_dev_num; i++) {
2462		p_child = dev_priv->child_dev + i;
2463
2464		if (p_child->dvo_port == PORT_IDPD &&
2465		    p_child->device_type == DEVICE_TYPE_eDP)
2466			return true;
2467	}
2468	return false;
2469}
2470
2471static void
2472intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2473{
2474	intel_attach_force_audio_property(connector);
2475	intel_attach_broadcast_rgb_property(connector);
2476}
2477
2478void
2479intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2480{
2481	struct drm_i915_private *dev_priv = dev->dev_private;
2482	struct drm_connector *connector;
2483	struct intel_dp *intel_dp;
2484	struct intel_encoder *intel_encoder;
2485	struct intel_connector *intel_connector;
2486	const char *name = NULL;
2487	int type;
2488
2489	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2490	if (!intel_dp)
2491		return;
2492
2493	intel_dp->output_reg = output_reg;
2494	intel_dp->port = port;
2495	/* Preserve the current hw state. */
2496	intel_dp->DP = I915_READ(intel_dp->output_reg);
2497
2498	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2499	if (!intel_connector) {
2500		kfree(intel_dp);
2501		return;
2502	}
2503	intel_encoder = &intel_dp->base;
2504
2505	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2506		if (intel_dpd_is_edp(dev))
2507			intel_dp->is_pch_edp = true;
2508
2509	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2510		type = DRM_MODE_CONNECTOR_eDP;
2511		intel_encoder->type = INTEL_OUTPUT_EDP;
2512	} else {
2513		type = DRM_MODE_CONNECTOR_DisplayPort;
2514		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2515	}
2516
2517	connector = &intel_connector->base;
2518	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2519	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2520
2521	connector->polled = DRM_CONNECTOR_POLL_HPD;
2522
2523	intel_encoder->cloneable = false;
2524
2525	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2526			  ironlake_panel_vdd_work);
2527
2528	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2529
2530	connector->interlace_allowed = true;
2531	connector->doublescan_allowed = 0;
2532
2533	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2534			 DRM_MODE_ENCODER_TMDS);
2535	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2536
2537	intel_connector_attach_encoder(intel_connector, intel_encoder);
2538	drm_sysfs_connector_add(connector);
2539
2540	intel_encoder->enable = intel_enable_dp;
2541	intel_encoder->pre_enable = intel_pre_enable_dp;
2542	intel_encoder->disable = intel_disable_dp;
2543	intel_encoder->post_disable = intel_post_disable_dp;
2544	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2545	intel_connector->get_hw_state = intel_connector_get_hw_state;
2546
2547	/* Set up the DDC bus. */
2548	switch (port) {
2549	case PORT_A:
2550		name = "DPDDC-A";
2551		break;
2552	case PORT_B:
2553		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2554		name = "DPDDC-B";
2555		break;
2556	case PORT_C:
2557		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2558		name = "DPDDC-C";
2559		break;
2560	case PORT_D:
2561		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2562		name = "DPDDC-D";
2563		break;
2564	default:
2565		WARN(1, "Invalid port %c\n", port_name(port));
2566		break;
2567	}
2568
2569	/* Cache some DPCD data in the eDP case */
2570	if (is_edp(intel_dp)) {
2571		struct edp_power_seq	cur, vbt;
2572		u32 pp_on, pp_off, pp_div;
2573
2574		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2575		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2576		pp_div = I915_READ(PCH_PP_DIVISOR);
2577
2578		if (!pp_on || !pp_off || !pp_div) {
2579			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2580			intel_dp_encoder_destroy(&intel_dp->base.base);
2581			intel_dp_destroy(&intel_connector->base);
2582			return;
2583		}
2584
2585		/* Pull timing values out of registers */
2586		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2587			PANEL_POWER_UP_DELAY_SHIFT;
2588
2589		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2590			PANEL_LIGHT_ON_DELAY_SHIFT;
2591
2592		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2593			PANEL_LIGHT_OFF_DELAY_SHIFT;
2594
2595		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2596			PANEL_POWER_DOWN_DELAY_SHIFT;
2597
2598		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2599			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2600
2601		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2602			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2603
2604		vbt = dev_priv->edp.pps;
2605
2606		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2607			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2608
2609#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2610
2611		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2612		intel_dp->backlight_on_delay = get_delay(t8);
2613		intel_dp->backlight_off_delay = get_delay(t9);
2614		intel_dp->panel_power_down_delay = get_delay(t10);
2615		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2616
2617		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2618			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2619			      intel_dp->panel_power_cycle_delay);
2620
2621		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2622			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2623	}
2624
2625	intel_dp_i2c_init(intel_dp, intel_connector, name);
2626
2627	if (is_edp(intel_dp)) {
2628		bool ret;
2629		struct edid *edid;
2630
2631		ironlake_edp_panel_vdd_on(intel_dp);
2632		ret = intel_dp_get_dpcd(intel_dp);
2633		ironlake_edp_panel_vdd_off(intel_dp, false);
2634
2635		if (ret) {
2636			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2637				dev_priv->no_aux_handshake =
2638					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2639					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2640		} else {
2641			/* if this fails, presume the device is a ghost */
2642			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2643			intel_dp_encoder_destroy(&intel_dp->base.base);
2644			intel_dp_destroy(&intel_connector->base);
2645			return;
2646		}
2647
2648		ironlake_edp_panel_vdd_on(intel_dp);
2649		edid = drm_get_edid(connector, &intel_dp->adapter);
2650		if (edid) {
2651			drm_mode_connector_update_edid_property(connector,
2652								edid);
2653			intel_dp->edid_mode_count =
2654				drm_add_edid_modes(connector, edid);
2655			drm_edid_to_eld(connector, edid);
2656			intel_dp->edid = edid;
2657		}
2658		ironlake_edp_panel_vdd_off(intel_dp, false);
2659	}
2660
2661	intel_encoder->hot_plug = intel_dp_hot_plug;
2662
2663	if (is_edp(intel_dp)) {
2664		dev_priv->int_edp_connector = connector;
2665		intel_panel_setup_backlight(dev);
2666	}
2667
2668	intel_dp_add_properties(intel_dp, connector);
2669
2670	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2671	 * 0xd.  Failure to do so will result in spurious interrupts being
2672	 * generated on the port when a cable is not attached.
2673	 */
2674	if (IS_G4X(dev) && !IS_GM45(dev)) {
2675		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2676		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2677	}
2678}
2679