intel_dp.c revision 23ba9373ef0dc535b013a872fa565b326b93612d
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <linux/notifier.h>
32#include <linux/reboot.h>
33#include <drm/drmP.h>
34#include <drm/drm_crtc.h>
35#include <drm/drm_crtc_helper.h>
36#include <drm/drm_edid.h>
37#include "intel_drv.h"
38#include <drm/i915_drm.h>
39#include "i915_drv.h"
40
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43struct dp_link_dpll {
44	int link_bw;
45	struct dpll dpll;
46};
47
48static const struct dp_link_dpll gen4_dpll[] = {
49	{ DP_LINK_BW_1_62,
50		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51	{ DP_LINK_BW_2_7,
52		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53};
54
55static const struct dp_link_dpll pch_dpll[] = {
56	{ DP_LINK_BW_1_62,
57		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58	{ DP_LINK_BW_2_7,
59		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60};
61
62static const struct dp_link_dpll vlv_dpll[] = {
63	{ DP_LINK_BW_1_62,
64		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65	{ DP_LINK_BW_2_7,
66		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67};
68
69/*
70 * CHV supports eDP 1.4 that have  more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73static const struct dp_link_dpll chv_dpll[] = {
74	/*
75	 * CHV requires to program fractional division for m2.
76	 * m2 is stored in fixed point format using formula below
77	 * (m2_int << 22) | m2_fraction
78	 */
79	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
80		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
84		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85};
86
87/**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94static bool is_edp(struct intel_dp *intel_dp)
95{
96	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99}
100
101static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102{
103	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105	return intel_dig_port->base.base.dev;
106}
107
108static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109{
110	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111}
112
113static void intel_dp_link_down(struct intel_dp *intel_dp);
114static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117int
118intel_dp_max_link_bw(struct intel_dp *intel_dp)
119{
120	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121	struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123	switch (max_link_bw) {
124	case DP_LINK_BW_1_62:
125	case DP_LINK_BW_2_7:
126		break;
127	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129		     INTEL_INFO(dev)->gen >= 8) &&
130		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131			max_link_bw = DP_LINK_BW_5_4;
132		else
133			max_link_bw = DP_LINK_BW_2_7;
134		break;
135	default:
136		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137		     max_link_bw);
138		max_link_bw = DP_LINK_BW_1_62;
139		break;
140	}
141	return max_link_bw;
142}
143
144static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145{
146	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147	struct drm_device *dev = intel_dig_port->base.base.dev;
148	u8 source_max, sink_max;
149
150	source_max = 4;
151	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153		source_max = 2;
154
155	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157	return min(source_max, sink_max);
158}
159
160/*
161 * The units on the numbers in the next two are... bizarre.  Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 *     270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000.  At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177static int
178intel_dp_link_required(int pixel_clock, int bpp)
179{
180	return (pixel_clock * bpp + 9) / 10;
181}
182
183static int
184intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185{
186	return (max_link_clock * max_lanes * 8) / 10;
187}
188
189static enum drm_mode_status
190intel_dp_mode_valid(struct drm_connector *connector,
191		    struct drm_display_mode *mode)
192{
193	struct intel_dp *intel_dp = intel_attached_dp(connector);
194	struct intel_connector *intel_connector = to_intel_connector(connector);
195	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196	int target_clock = mode->clock;
197	int max_rate, mode_rate, max_lanes, max_link_clock;
198
199	if (is_edp(intel_dp) && fixed_mode) {
200		if (mode->hdisplay > fixed_mode->hdisplay)
201			return MODE_PANEL;
202
203		if (mode->vdisplay > fixed_mode->vdisplay)
204			return MODE_PANEL;
205
206		target_clock = fixed_mode->clock;
207	}
208
209	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210	max_lanes = intel_dp_max_lane_count(intel_dp);
211
212	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213	mode_rate = intel_dp_link_required(target_clock, 18);
214
215	if (mode_rate > max_rate)
216		return MODE_CLOCK_HIGH;
217
218	if (mode->clock < 10000)
219		return MODE_CLOCK_LOW;
220
221	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222		return MODE_H_ILLEGAL;
223
224	return MODE_OK;
225}
226
227static uint32_t
228pack_aux(uint8_t *src, int src_bytes)
229{
230	int	i;
231	uint32_t v = 0;
232
233	if (src_bytes > 4)
234		src_bytes = 4;
235	for (i = 0; i < src_bytes; i++)
236		v |= ((uint32_t) src[i]) << ((3-i) * 8);
237	return v;
238}
239
240static void
241unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242{
243	int i;
244	if (dst_bytes > 4)
245		dst_bytes = 4;
246	for (i = 0; i < dst_bytes; i++)
247		dst[i] = src >> ((3-i) * 8);
248}
249
250/* hrawclock is 1/4 the FSB frequency */
251static int
252intel_hrawclk(struct drm_device *dev)
253{
254	struct drm_i915_private *dev_priv = dev->dev_private;
255	uint32_t clkcfg;
256
257	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258	if (IS_VALLEYVIEW(dev))
259		return 200;
260
261	clkcfg = I915_READ(CLKCFG);
262	switch (clkcfg & CLKCFG_FSB_MASK) {
263	case CLKCFG_FSB_400:
264		return 100;
265	case CLKCFG_FSB_533:
266		return 133;
267	case CLKCFG_FSB_667:
268		return 166;
269	case CLKCFG_FSB_800:
270		return 200;
271	case CLKCFG_FSB_1067:
272		return 266;
273	case CLKCFG_FSB_1333:
274		return 333;
275	/* these two are just a guess; one of them might be right */
276	case CLKCFG_FSB_1600:
277	case CLKCFG_FSB_1600_ALT:
278		return 400;
279	default:
280		return 133;
281	}
282}
283
284static void
285intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286				    struct intel_dp *intel_dp,
287				    struct edp_power_seq *out);
288static void
289intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290					      struct intel_dp *intel_dp,
291					      struct edp_power_seq *out);
292
293static enum pipe
294vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295{
296	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298	struct drm_device *dev = intel_dig_port->base.base.dev;
299	struct drm_i915_private *dev_priv = dev->dev_private;
300	enum port port = intel_dig_port->port;
301	enum pipe pipe;
302
303	/* modeset should have pipe */
304	if (crtc)
305		return to_intel_crtc(crtc)->pipe;
306
307	/* init time, try to find a pipe with this port selected */
308	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310			PANEL_PORT_SELECT_MASK;
311		if (port_sel == PANEL_PORT_SELECT_VLV(port))
312			return pipe;
313	}
314
315	/* shrug */
316	return PIPE_A;
317}
318
319static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323	if (HAS_PCH_SPLIT(dev))
324		return PCH_PP_CONTROL;
325	else
326		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327}
328
329static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330{
331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333	if (HAS_PCH_SPLIT(dev))
334		return PCH_PP_STATUS;
335	else
336		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337}
338
339/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
340   This function only applicable when panel PM state is not to be tracked */
341static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342			      void *unused)
343{
344	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345						 edp_notifier);
346	struct drm_device *dev = intel_dp_to_dev(intel_dp);
347	struct drm_i915_private *dev_priv = dev->dev_private;
348	u32 pp_div;
349	u32 pp_ctrl_reg, pp_div_reg;
350	enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352	if (!is_edp(intel_dp) || code != SYS_RESTART)
353		return 0;
354
355	if (IS_VALLEYVIEW(dev)) {
356		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
358		pp_div = I915_READ(pp_div_reg);
359		pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361		/* 0x1F write to PP_DIV_REG sets max cycle delay */
362		I915_WRITE(pp_div_reg, pp_div | 0x1F);
363		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364		msleep(intel_dp->panel_power_cycle_delay);
365	}
366
367	return 0;
368}
369
370static bool edp_have_panel_power(struct intel_dp *intel_dp)
371{
372	struct drm_device *dev = intel_dp_to_dev(intel_dp);
373	struct drm_i915_private *dev_priv = dev->dev_private;
374
375	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
376}
377
378static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
379{
380	struct drm_device *dev = intel_dp_to_dev(intel_dp);
381	struct drm_i915_private *dev_priv = dev->dev_private;
382	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383	struct intel_encoder *intel_encoder = &intel_dig_port->base;
384	enum intel_display_power_domain power_domain;
385
386	power_domain = intel_display_port_power_domain(intel_encoder);
387	return intel_display_power_enabled(dev_priv, power_domain) &&
388	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
389}
390
391static void
392intel_dp_check_edp(struct intel_dp *intel_dp)
393{
394	struct drm_device *dev = intel_dp_to_dev(intel_dp);
395	struct drm_i915_private *dev_priv = dev->dev_private;
396
397	if (!is_edp(intel_dp))
398		return;
399
400	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
401		WARN(1, "eDP powered off while attempting aux channel communication.\n");
402		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
403			      I915_READ(_pp_stat_reg(intel_dp)),
404			      I915_READ(_pp_ctrl_reg(intel_dp)));
405	}
406}
407
408static uint32_t
409intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
410{
411	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412	struct drm_device *dev = intel_dig_port->base.base.dev;
413	struct drm_i915_private *dev_priv = dev->dev_private;
414	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
415	uint32_t status;
416	bool done;
417
418#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
419	if (has_aux_irq)
420		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
421					  msecs_to_jiffies_timeout(10));
422	else
423		done = wait_for_atomic(C, 10) == 0;
424	if (!done)
425		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
426			  has_aux_irq);
427#undef C
428
429	return status;
430}
431
432static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433{
434	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435	struct drm_device *dev = intel_dig_port->base.base.dev;
436
437	/*
438	 * The clock divider is based off the hrawclk, and would like to run at
439	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
440	 */
441	return index ? 0 : intel_hrawclk(dev) / 2;
442}
443
444static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
445{
446	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447	struct drm_device *dev = intel_dig_port->base.base.dev;
448
449	if (index)
450		return 0;
451
452	if (intel_dig_port->port == PORT_A) {
453		if (IS_GEN6(dev) || IS_GEN7(dev))
454			return 200; /* SNB & IVB eDP input clock at 400Mhz */
455		else
456			return 225; /* eDP input clock at 450Mhz */
457	} else {
458		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
459	}
460}
461
462static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
463{
464	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465	struct drm_device *dev = intel_dig_port->base.base.dev;
466	struct drm_i915_private *dev_priv = dev->dev_private;
467
468	if (intel_dig_port->port == PORT_A) {
469		if (index)
470			return 0;
471		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
472	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
473		/* Workaround for non-ULT HSW */
474		switch (index) {
475		case 0: return 63;
476		case 1: return 72;
477		default: return 0;
478		}
479	} else  {
480		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
481	}
482}
483
484static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
485{
486	return index ? 0 : 100;
487}
488
489static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
490				      bool has_aux_irq,
491				      int send_bytes,
492				      uint32_t aux_clock_divider)
493{
494	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495	struct drm_device *dev = intel_dig_port->base.base.dev;
496	uint32_t precharge, timeout;
497
498	if (IS_GEN6(dev))
499		precharge = 3;
500	else
501		precharge = 5;
502
503	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
504		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
505	else
506		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
507
508	return DP_AUX_CH_CTL_SEND_BUSY |
509	       DP_AUX_CH_CTL_DONE |
510	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
511	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
512	       timeout |
513	       DP_AUX_CH_CTL_RECEIVE_ERROR |
514	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
515	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
516	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
517}
518
519static int
520intel_dp_aux_ch(struct intel_dp *intel_dp,
521		uint8_t *send, int send_bytes,
522		uint8_t *recv, int recv_size)
523{
524	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
525	struct drm_device *dev = intel_dig_port->base.base.dev;
526	struct drm_i915_private *dev_priv = dev->dev_private;
527	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
528	uint32_t ch_data = ch_ctl + 4;
529	uint32_t aux_clock_divider;
530	int i, ret, recv_bytes;
531	uint32_t status;
532	int try, clock = 0;
533	bool has_aux_irq = HAS_AUX_IRQ(dev);
534	bool vdd;
535
536	/*
537	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
538	 * In such cases we want to leave VDD enabled and it's up to upper layers
539	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
540	 * ourselves.
541	 */
542	vdd = edp_panel_vdd_on(intel_dp);
543
544	/* dp aux is extremely sensitive to irq latency, hence request the
545	 * lowest possible wakeup latency and so prevent the cpu from going into
546	 * deep sleep states.
547	 */
548	pm_qos_update_request(&dev_priv->pm_qos, 0);
549
550	intel_dp_check_edp(intel_dp);
551
552	intel_aux_display_runtime_get(dev_priv);
553
554	/* Try to wait for any previous AUX channel activity */
555	for (try = 0; try < 3; try++) {
556		status = I915_READ_NOTRACE(ch_ctl);
557		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
558			break;
559		msleep(1);
560	}
561
562	if (try == 3) {
563		WARN(1, "dp_aux_ch not started status 0x%08x\n",
564		     I915_READ(ch_ctl));
565		ret = -EBUSY;
566		goto out;
567	}
568
569	/* Only 5 data registers! */
570	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
571		ret = -E2BIG;
572		goto out;
573	}
574
575	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
576		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
577							  has_aux_irq,
578							  send_bytes,
579							  aux_clock_divider);
580
581		/* Must try at least 3 times according to DP spec */
582		for (try = 0; try < 5; try++) {
583			/* Load the send data into the aux channel data registers */
584			for (i = 0; i < send_bytes; i += 4)
585				I915_WRITE(ch_data + i,
586					   pack_aux(send + i, send_bytes - i));
587
588			/* Send the command and wait for it to complete */
589			I915_WRITE(ch_ctl, send_ctl);
590
591			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
592
593			/* Clear done status and any errors */
594			I915_WRITE(ch_ctl,
595				   status |
596				   DP_AUX_CH_CTL_DONE |
597				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
598				   DP_AUX_CH_CTL_RECEIVE_ERROR);
599
600			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
601				      DP_AUX_CH_CTL_RECEIVE_ERROR))
602				continue;
603			if (status & DP_AUX_CH_CTL_DONE)
604				break;
605		}
606		if (status & DP_AUX_CH_CTL_DONE)
607			break;
608	}
609
610	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
611		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
612		ret = -EBUSY;
613		goto out;
614	}
615
616	/* Check for timeout or receive error.
617	 * Timeouts occur when the sink is not connected
618	 */
619	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
620		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
621		ret = -EIO;
622		goto out;
623	}
624
625	/* Timeouts occur when the device isn't connected, so they're
626	 * "normal" -- don't fill the kernel log with these */
627	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
628		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
629		ret = -ETIMEDOUT;
630		goto out;
631	}
632
633	/* Unload any bytes sent back from the other side */
634	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
635		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
636	if (recv_bytes > recv_size)
637		recv_bytes = recv_size;
638
639	for (i = 0; i < recv_bytes; i += 4)
640		unpack_aux(I915_READ(ch_data + i),
641			   recv + i, recv_bytes - i);
642
643	ret = recv_bytes;
644out:
645	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
646	intel_aux_display_runtime_put(dev_priv);
647
648	if (vdd)
649		edp_panel_vdd_off(intel_dp, false);
650
651	return ret;
652}
653
654#define BARE_ADDRESS_SIZE	3
655#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
656static ssize_t
657intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
658{
659	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
660	uint8_t txbuf[20], rxbuf[20];
661	size_t txsize, rxsize;
662	int ret;
663
664	txbuf[0] = msg->request << 4;
665	txbuf[1] = msg->address >> 8;
666	txbuf[2] = msg->address & 0xff;
667	txbuf[3] = msg->size - 1;
668
669	switch (msg->request & ~DP_AUX_I2C_MOT) {
670	case DP_AUX_NATIVE_WRITE:
671	case DP_AUX_I2C_WRITE:
672		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
673		rxsize = 1;
674
675		if (WARN_ON(txsize > 20))
676			return -E2BIG;
677
678		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
679
680		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
681		if (ret > 0) {
682			msg->reply = rxbuf[0] >> 4;
683
684			/* Return payload size. */
685			ret = msg->size;
686		}
687		break;
688
689	case DP_AUX_NATIVE_READ:
690	case DP_AUX_I2C_READ:
691		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
692		rxsize = msg->size + 1;
693
694		if (WARN_ON(rxsize > 20))
695			return -E2BIG;
696
697		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
698		if (ret > 0) {
699			msg->reply = rxbuf[0] >> 4;
700			/*
701			 * Assume happy day, and copy the data. The caller is
702			 * expected to check msg->reply before touching it.
703			 *
704			 * Return payload size.
705			 */
706			ret--;
707			memcpy(msg->buffer, rxbuf + 1, ret);
708		}
709		break;
710
711	default:
712		ret = -EINVAL;
713		break;
714	}
715
716	return ret;
717}
718
719static void
720intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
721{
722	struct drm_device *dev = intel_dp_to_dev(intel_dp);
723	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724	enum port port = intel_dig_port->port;
725	const char *name = NULL;
726	int ret;
727
728	switch (port) {
729	case PORT_A:
730		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
731		name = "DPDDC-A";
732		break;
733	case PORT_B:
734		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
735		name = "DPDDC-B";
736		break;
737	case PORT_C:
738		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
739		name = "DPDDC-C";
740		break;
741	case PORT_D:
742		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
743		name = "DPDDC-D";
744		break;
745	default:
746		BUG();
747	}
748
749	if (!HAS_DDI(dev))
750		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
751
752	intel_dp->aux.name = name;
753	intel_dp->aux.dev = dev->dev;
754	intel_dp->aux.transfer = intel_dp_aux_transfer;
755
756	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
757		      connector->base.kdev->kobj.name);
758
759	ret = drm_dp_aux_register(&intel_dp->aux);
760	if (ret < 0) {
761		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
762			  name, ret);
763		return;
764	}
765
766	ret = sysfs_create_link(&connector->base.kdev->kobj,
767				&intel_dp->aux.ddc.dev.kobj,
768				intel_dp->aux.ddc.dev.kobj.name);
769	if (ret < 0) {
770		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
771		drm_dp_aux_unregister(&intel_dp->aux);
772	}
773}
774
775static void
776intel_dp_connector_unregister(struct intel_connector *intel_connector)
777{
778	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
779
780	if (!intel_connector->mst_port)
781		sysfs_remove_link(&intel_connector->base.kdev->kobj,
782				  intel_dp->aux.ddc.dev.kobj.name);
783	intel_connector_unregister(intel_connector);
784}
785
786static void
787hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
788{
789	switch (link_bw) {
790	case DP_LINK_BW_1_62:
791		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
792		break;
793	case DP_LINK_BW_2_7:
794		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
795		break;
796	case DP_LINK_BW_5_4:
797		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
798		break;
799	}
800}
801
802static void
803intel_dp_set_clock(struct intel_encoder *encoder,
804		   struct intel_crtc_config *pipe_config, int link_bw)
805{
806	struct drm_device *dev = encoder->base.dev;
807	const struct dp_link_dpll *divisor = NULL;
808	int i, count = 0;
809
810	if (IS_G4X(dev)) {
811		divisor = gen4_dpll;
812		count = ARRAY_SIZE(gen4_dpll);
813	} else if (HAS_PCH_SPLIT(dev)) {
814		divisor = pch_dpll;
815		count = ARRAY_SIZE(pch_dpll);
816	} else if (IS_CHERRYVIEW(dev)) {
817		divisor = chv_dpll;
818		count = ARRAY_SIZE(chv_dpll);
819	} else if (IS_VALLEYVIEW(dev)) {
820		divisor = vlv_dpll;
821		count = ARRAY_SIZE(vlv_dpll);
822	}
823
824	if (divisor && count) {
825		for (i = 0; i < count; i++) {
826			if (link_bw == divisor[i].link_bw) {
827				pipe_config->dpll = divisor[i].dpll;
828				pipe_config->clock_set = true;
829				break;
830			}
831		}
832	}
833}
834
835bool
836intel_dp_compute_config(struct intel_encoder *encoder,
837			struct intel_crtc_config *pipe_config)
838{
839	struct drm_device *dev = encoder->base.dev;
840	struct drm_i915_private *dev_priv = dev->dev_private;
841	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
842	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
843	enum port port = dp_to_dig_port(intel_dp)->port;
844	struct intel_crtc *intel_crtc = encoder->new_crtc;
845	struct intel_connector *intel_connector = intel_dp->attached_connector;
846	int lane_count, clock;
847	int min_lane_count = 1;
848	int max_lane_count = intel_dp_max_lane_count(intel_dp);
849	/* Conveniently, the link BW constants become indices with a shift...*/
850	int min_clock = 0;
851	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
852	int bpp, mode_rate;
853	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
854	int link_avail, link_clock;
855
856	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
857		pipe_config->has_pch_encoder = true;
858
859	pipe_config->has_dp_encoder = true;
860	pipe_config->has_drrs = false;
861	pipe_config->has_audio = intel_dp->has_audio;
862
863	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
864		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
865				       adjusted_mode);
866		if (!HAS_PCH_SPLIT(dev))
867			intel_gmch_panel_fitting(intel_crtc, pipe_config,
868						 intel_connector->panel.fitting_mode);
869		else
870			intel_pch_panel_fitting(intel_crtc, pipe_config,
871						intel_connector->panel.fitting_mode);
872	}
873
874	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
875		return false;
876
877	DRM_DEBUG_KMS("DP link computation with max lane count %i "
878		      "max bw %02x pixel clock %iKHz\n",
879		      max_lane_count, bws[max_clock],
880		      adjusted_mode->crtc_clock);
881
882	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
883	 * bpc in between. */
884	bpp = pipe_config->pipe_bpp;
885	if (is_edp(intel_dp)) {
886		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
887			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
888				      dev_priv->vbt.edp_bpp);
889			bpp = dev_priv->vbt.edp_bpp;
890		}
891
892		if (IS_BROADWELL(dev)) {
893			/* Yes, it's an ugly hack. */
894			min_lane_count = max_lane_count;
895			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
896				      min_lane_count);
897		} else if (dev_priv->vbt.edp_lanes) {
898			min_lane_count = min(dev_priv->vbt.edp_lanes,
899					     max_lane_count);
900			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
901				      min_lane_count);
902		}
903
904		if (dev_priv->vbt.edp_rate) {
905			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
906			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
907				      bws[min_clock]);
908		}
909	}
910
911	for (; bpp >= 6*3; bpp -= 2*3) {
912		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
913						   bpp);
914
915		for (clock = min_clock; clock <= max_clock; clock++) {
916			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
917				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
918				link_avail = intel_dp_max_data_rate(link_clock,
919								    lane_count);
920
921				if (mode_rate <= link_avail) {
922					goto found;
923				}
924			}
925		}
926	}
927
928	return false;
929
930found:
931	if (intel_dp->color_range_auto) {
932		/*
933		 * See:
934		 * CEA-861-E - 5.1 Default Encoding Parameters
935		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
936		 */
937		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
938			intel_dp->color_range = DP_COLOR_RANGE_16_235;
939		else
940			intel_dp->color_range = 0;
941	}
942
943	if (intel_dp->color_range)
944		pipe_config->limited_color_range = true;
945
946	intel_dp->link_bw = bws[clock];
947	intel_dp->lane_count = lane_count;
948	pipe_config->pipe_bpp = bpp;
949	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
950
951	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
952		      intel_dp->link_bw, intel_dp->lane_count,
953		      pipe_config->port_clock, bpp);
954	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
955		      mode_rate, link_avail);
956
957	intel_link_compute_m_n(bpp, lane_count,
958			       adjusted_mode->crtc_clock,
959			       pipe_config->port_clock,
960			       &pipe_config->dp_m_n);
961
962	if (intel_connector->panel.downclock_mode != NULL &&
963		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
964			pipe_config->has_drrs = true;
965			intel_link_compute_m_n(bpp, lane_count,
966				intel_connector->panel.downclock_mode->clock,
967				pipe_config->port_clock,
968				&pipe_config->dp_m2_n2);
969	}
970
971	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
972		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
973	else
974		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
975
976	return true;
977}
978
979static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
980{
981	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
982	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
983	struct drm_device *dev = crtc->base.dev;
984	struct drm_i915_private *dev_priv = dev->dev_private;
985	u32 dpa_ctl;
986
987	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
988	dpa_ctl = I915_READ(DP_A);
989	dpa_ctl &= ~DP_PLL_FREQ_MASK;
990
991	if (crtc->config.port_clock == 162000) {
992		/* For a long time we've carried around a ILK-DevA w/a for the
993		 * 160MHz clock. If we're really unlucky, it's still required.
994		 */
995		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
996		dpa_ctl |= DP_PLL_FREQ_160MHZ;
997		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
998	} else {
999		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1000		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1001	}
1002
1003	I915_WRITE(DP_A, dpa_ctl);
1004
1005	POSTING_READ(DP_A);
1006	udelay(500);
1007}
1008
1009static void intel_dp_prepare(struct intel_encoder *encoder)
1010{
1011	struct drm_device *dev = encoder->base.dev;
1012	struct drm_i915_private *dev_priv = dev->dev_private;
1013	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1014	enum port port = dp_to_dig_port(intel_dp)->port;
1015	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1016	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1017
1018	/*
1019	 * There are four kinds of DP registers:
1020	 *
1021	 * 	IBX PCH
1022	 * 	SNB CPU
1023	 *	IVB CPU
1024	 * 	CPT PCH
1025	 *
1026	 * IBX PCH and CPU are the same for almost everything,
1027	 * except that the CPU DP PLL is configured in this
1028	 * register
1029	 *
1030	 * CPT PCH is quite different, having many bits moved
1031	 * to the TRANS_DP_CTL register instead. That
1032	 * configuration happens (oddly) in ironlake_pch_enable
1033	 */
1034
1035	/* Preserve the BIOS-computed detected bit. This is
1036	 * supposed to be read-only.
1037	 */
1038	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1039
1040	/* Handle DP bits in common between all three register formats */
1041	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1042	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1043
1044	if (crtc->config.has_audio) {
1045		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1046				 pipe_name(crtc->pipe));
1047		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1048		intel_write_eld(&encoder->base, adjusted_mode);
1049	}
1050
1051	/* Split out the IBX/CPU vs CPT settings */
1052
1053	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1054		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1055			intel_dp->DP |= DP_SYNC_HS_HIGH;
1056		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1057			intel_dp->DP |= DP_SYNC_VS_HIGH;
1058		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
1060		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1061			intel_dp->DP |= DP_ENHANCED_FRAMING;
1062
1063		intel_dp->DP |= crtc->pipe << 29;
1064	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1065		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1066			intel_dp->DP |= intel_dp->color_range;
1067
1068		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1069			intel_dp->DP |= DP_SYNC_HS_HIGH;
1070		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1071			intel_dp->DP |= DP_SYNC_VS_HIGH;
1072		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1073
1074		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1075			intel_dp->DP |= DP_ENHANCED_FRAMING;
1076
1077		if (!IS_CHERRYVIEW(dev)) {
1078			if (crtc->pipe == 1)
1079				intel_dp->DP |= DP_PIPEB_SELECT;
1080		} else {
1081			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1082		}
1083	} else {
1084		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1085	}
1086}
1087
1088#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1089#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1090
1091#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1092#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1093
1094#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1095#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1096
1097static void wait_panel_status(struct intel_dp *intel_dp,
1098				       u32 mask,
1099				       u32 value)
1100{
1101	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1102	struct drm_i915_private *dev_priv = dev->dev_private;
1103	u32 pp_stat_reg, pp_ctrl_reg;
1104
1105	pp_stat_reg = _pp_stat_reg(intel_dp);
1106	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1109			mask, value,
1110			I915_READ(pp_stat_reg),
1111			I915_READ(pp_ctrl_reg));
1112
1113	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1114		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1115				I915_READ(pp_stat_reg),
1116				I915_READ(pp_ctrl_reg));
1117	}
1118
1119	DRM_DEBUG_KMS("Wait complete\n");
1120}
1121
1122static void wait_panel_on(struct intel_dp *intel_dp)
1123{
1124	DRM_DEBUG_KMS("Wait for panel power on\n");
1125	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1126}
1127
1128static void wait_panel_off(struct intel_dp *intel_dp)
1129{
1130	DRM_DEBUG_KMS("Wait for panel power off time\n");
1131	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1132}
1133
1134static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1135{
1136	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1137
1138	/* When we disable the VDD override bit last we have to do the manual
1139	 * wait. */
1140	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1141				       intel_dp->panel_power_cycle_delay);
1142
1143	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1144}
1145
1146static void wait_backlight_on(struct intel_dp *intel_dp)
1147{
1148	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1149				       intel_dp->backlight_on_delay);
1150}
1151
1152static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1153{
1154	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1155				       intel_dp->backlight_off_delay);
1156}
1157
1158/* Read the current pp_control value, unlocking the register if it
1159 * is locked
1160 */
1161
1162static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1163{
1164	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165	struct drm_i915_private *dev_priv = dev->dev_private;
1166	u32 control;
1167
1168	control = I915_READ(_pp_ctrl_reg(intel_dp));
1169	control &= ~PANEL_UNLOCK_MASK;
1170	control |= PANEL_UNLOCK_REGS;
1171	return control;
1172}
1173
1174static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1175{
1176	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1179	struct drm_i915_private *dev_priv = dev->dev_private;
1180	enum intel_display_power_domain power_domain;
1181	u32 pp;
1182	u32 pp_stat_reg, pp_ctrl_reg;
1183	bool need_to_disable = !intel_dp->want_panel_vdd;
1184
1185	if (!is_edp(intel_dp))
1186		return false;
1187
1188	intel_dp->want_panel_vdd = true;
1189
1190	if (edp_have_panel_vdd(intel_dp))
1191		return need_to_disable;
1192
1193	power_domain = intel_display_port_power_domain(intel_encoder);
1194	intel_display_power_get(dev_priv, power_domain);
1195
1196	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1197
1198	if (!edp_have_panel_power(intel_dp))
1199		wait_panel_power_cycle(intel_dp);
1200
1201	pp = ironlake_get_pp_control(intel_dp);
1202	pp |= EDP_FORCE_VDD;
1203
1204	pp_stat_reg = _pp_stat_reg(intel_dp);
1205	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206
1207	I915_WRITE(pp_ctrl_reg, pp);
1208	POSTING_READ(pp_ctrl_reg);
1209	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1210			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1211	/*
1212	 * If the panel wasn't on, delay before accessing aux channel
1213	 */
1214	if (!edp_have_panel_power(intel_dp)) {
1215		DRM_DEBUG_KMS("eDP was not running\n");
1216		msleep(intel_dp->panel_power_up_delay);
1217	}
1218
1219	return need_to_disable;
1220}
1221
1222void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1223{
1224	bool vdd;
1225
1226	if (!is_edp(intel_dp))
1227		return;
1228
1229	vdd = edp_panel_vdd_on(intel_dp);
1230
1231	WARN(!vdd, "eDP VDD already requested on\n");
1232}
1233
1234static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1235{
1236	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1237	struct drm_i915_private *dev_priv = dev->dev_private;
1238	struct intel_digital_port *intel_dig_port =
1239		dp_to_dig_port(intel_dp);
1240	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1241	enum intel_display_power_domain power_domain;
1242	u32 pp;
1243	u32 pp_stat_reg, pp_ctrl_reg;
1244
1245	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1246
1247	WARN_ON(intel_dp->want_panel_vdd);
1248
1249	if (!edp_have_panel_vdd(intel_dp))
1250		return;
1251
1252	DRM_DEBUG_KMS("Turning eDP VDD off\n");
1253
1254	pp = ironlake_get_pp_control(intel_dp);
1255	pp &= ~EDP_FORCE_VDD;
1256
1257	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258	pp_stat_reg = _pp_stat_reg(intel_dp);
1259
1260	I915_WRITE(pp_ctrl_reg, pp);
1261	POSTING_READ(pp_ctrl_reg);
1262
1263	/* Make sure sequencer is idle before allowing subsequent activity */
1264	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1265	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1266
1267	if ((pp & POWER_TARGET_ON) == 0)
1268		intel_dp->last_power_cycle = jiffies;
1269
1270	power_domain = intel_display_port_power_domain(intel_encoder);
1271	intel_display_power_put(dev_priv, power_domain);
1272}
1273
1274static void edp_panel_vdd_work(struct work_struct *__work)
1275{
1276	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1277						 struct intel_dp, panel_vdd_work);
1278	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279
1280	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1281	if (!intel_dp->want_panel_vdd)
1282		edp_panel_vdd_off_sync(intel_dp);
1283	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1284}
1285
1286static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1287{
1288	unsigned long delay;
1289
1290	/*
1291	 * Queue the timer to fire a long time from now (relative to the power
1292	 * down delay) to keep the panel power up across a sequence of
1293	 * operations.
1294	 */
1295	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1296	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1297}
1298
1299static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1300{
1301	if (!is_edp(intel_dp))
1302		return;
1303
1304	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1305
1306	intel_dp->want_panel_vdd = false;
1307
1308	if (sync)
1309		edp_panel_vdd_off_sync(intel_dp);
1310	else
1311		edp_panel_vdd_schedule_off(intel_dp);
1312}
1313
1314static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1315{
1316	edp_panel_vdd_off(intel_dp, sync);
1317}
1318
1319void intel_edp_panel_on(struct intel_dp *intel_dp)
1320{
1321	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322	struct drm_i915_private *dev_priv = dev->dev_private;
1323	u32 pp;
1324	u32 pp_ctrl_reg;
1325
1326	if (!is_edp(intel_dp))
1327		return;
1328
1329	DRM_DEBUG_KMS("Turn eDP power on\n");
1330
1331	if (edp_have_panel_power(intel_dp)) {
1332		DRM_DEBUG_KMS("eDP power already on\n");
1333		return;
1334	}
1335
1336	wait_panel_power_cycle(intel_dp);
1337
1338	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1339	pp = ironlake_get_pp_control(intel_dp);
1340	if (IS_GEN5(dev)) {
1341		/* ILK workaround: disable reset around power sequence */
1342		pp &= ~PANEL_POWER_RESET;
1343		I915_WRITE(pp_ctrl_reg, pp);
1344		POSTING_READ(pp_ctrl_reg);
1345	}
1346
1347	pp |= POWER_TARGET_ON;
1348	if (!IS_GEN5(dev))
1349		pp |= PANEL_POWER_RESET;
1350
1351	I915_WRITE(pp_ctrl_reg, pp);
1352	POSTING_READ(pp_ctrl_reg);
1353
1354	wait_panel_on(intel_dp);
1355	intel_dp->last_power_on = jiffies;
1356
1357	if (IS_GEN5(dev)) {
1358		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1359		I915_WRITE(pp_ctrl_reg, pp);
1360		POSTING_READ(pp_ctrl_reg);
1361	}
1362}
1363
1364void intel_edp_panel_off(struct intel_dp *intel_dp)
1365{
1366	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1367	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1368	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1369	struct drm_i915_private *dev_priv = dev->dev_private;
1370	enum intel_display_power_domain power_domain;
1371	u32 pp;
1372	u32 pp_ctrl_reg;
1373
1374	if (!is_edp(intel_dp))
1375		return;
1376
1377	DRM_DEBUG_KMS("Turn eDP power off\n");
1378
1379	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1380
1381	pp = ironlake_get_pp_control(intel_dp);
1382	/* We need to switch off panel power _and_ force vdd, for otherwise some
1383	 * panels get very unhappy and cease to work. */
1384	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1385		EDP_BLC_ENABLE);
1386
1387	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389	intel_dp->want_panel_vdd = false;
1390
1391	I915_WRITE(pp_ctrl_reg, pp);
1392	POSTING_READ(pp_ctrl_reg);
1393
1394	intel_dp->last_power_cycle = jiffies;
1395	wait_panel_off(intel_dp);
1396
1397	/* We got a reference when we enabled the VDD. */
1398	power_domain = intel_display_port_power_domain(intel_encoder);
1399	intel_display_power_put(dev_priv, power_domain);
1400}
1401
1402/* Enable backlight in the panel power control. */
1403static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1404{
1405	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1406	struct drm_device *dev = intel_dig_port->base.base.dev;
1407	struct drm_i915_private *dev_priv = dev->dev_private;
1408	u32 pp;
1409	u32 pp_ctrl_reg;
1410
1411	/*
1412	 * If we enable the backlight right away following a panel power
1413	 * on, we may see slight flicker as the panel syncs with the eDP
1414	 * link.  So delay a bit to make sure the image is solid before
1415	 * allowing it to appear.
1416	 */
1417	wait_backlight_on(intel_dp);
1418	pp = ironlake_get_pp_control(intel_dp);
1419	pp |= EDP_BLC_ENABLE;
1420
1421	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423	I915_WRITE(pp_ctrl_reg, pp);
1424	POSTING_READ(pp_ctrl_reg);
1425}
1426
1427/* Enable backlight PWM and backlight PP control. */
1428void intel_edp_backlight_on(struct intel_dp *intel_dp)
1429{
1430	if (!is_edp(intel_dp))
1431		return;
1432
1433	DRM_DEBUG_KMS("\n");
1434
1435	intel_panel_enable_backlight(intel_dp->attached_connector);
1436	_intel_edp_backlight_on(intel_dp);
1437}
1438
1439/* Disable backlight in the panel power control. */
1440static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1441{
1442	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443	struct drm_i915_private *dev_priv = dev->dev_private;
1444	u32 pp;
1445	u32 pp_ctrl_reg;
1446
1447	pp = ironlake_get_pp_control(intel_dp);
1448	pp &= ~EDP_BLC_ENABLE;
1449
1450	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1451
1452	I915_WRITE(pp_ctrl_reg, pp);
1453	POSTING_READ(pp_ctrl_reg);
1454	intel_dp->last_backlight_off = jiffies;
1455
1456	edp_wait_backlight_off(intel_dp);
1457}
1458
1459/* Disable backlight PP control and backlight PWM. */
1460void intel_edp_backlight_off(struct intel_dp *intel_dp)
1461{
1462	if (!is_edp(intel_dp))
1463		return;
1464
1465	DRM_DEBUG_KMS("\n");
1466
1467	_intel_edp_backlight_off(intel_dp);
1468	intel_panel_disable_backlight(intel_dp->attached_connector);
1469}
1470
1471/*
1472 * Hook for controlling the panel power control backlight through the bl_power
1473 * sysfs attribute. Take care to handle multiple calls.
1474 */
1475static void intel_edp_backlight_power(struct intel_connector *connector,
1476				      bool enable)
1477{
1478	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1479	bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1480
1481	if (is_enabled == enable)
1482		return;
1483
1484	DRM_DEBUG_KMS("panel power control backlight %s\n",
1485		      enable ? "enable" : "disable");
1486
1487	if (enable)
1488		_intel_edp_backlight_on(intel_dp);
1489	else
1490		_intel_edp_backlight_off(intel_dp);
1491}
1492
1493static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1494{
1495	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1497	struct drm_device *dev = crtc->dev;
1498	struct drm_i915_private *dev_priv = dev->dev_private;
1499	u32 dpa_ctl;
1500
1501	assert_pipe_disabled(dev_priv,
1502			     to_intel_crtc(crtc)->pipe);
1503
1504	DRM_DEBUG_KMS("\n");
1505	dpa_ctl = I915_READ(DP_A);
1506	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1507	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1508
1509	/* We don't adjust intel_dp->DP while tearing down the link, to
1510	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1511	 * enable bits here to ensure that we don't enable too much. */
1512	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1513	intel_dp->DP |= DP_PLL_ENABLE;
1514	I915_WRITE(DP_A, intel_dp->DP);
1515	POSTING_READ(DP_A);
1516	udelay(200);
1517}
1518
1519static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1520{
1521	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1522	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1523	struct drm_device *dev = crtc->dev;
1524	struct drm_i915_private *dev_priv = dev->dev_private;
1525	u32 dpa_ctl;
1526
1527	assert_pipe_disabled(dev_priv,
1528			     to_intel_crtc(crtc)->pipe);
1529
1530	dpa_ctl = I915_READ(DP_A);
1531	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1532	     "dp pll off, should be on\n");
1533	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1534
1535	/* We can't rely on the value tracked for the DP register in
1536	 * intel_dp->DP because link_down must not change that (otherwise link
1537	 * re-training will fail. */
1538	dpa_ctl &= ~DP_PLL_ENABLE;
1539	I915_WRITE(DP_A, dpa_ctl);
1540	POSTING_READ(DP_A);
1541	udelay(200);
1542}
1543
1544/* If the sink supports it, try to set the power state appropriately */
1545void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1546{
1547	int ret, i;
1548
1549	/* Should have a valid DPCD by this point */
1550	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1551		return;
1552
1553	if (mode != DRM_MODE_DPMS_ON) {
1554		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1555					 DP_SET_POWER_D3);
1556		if (ret != 1)
1557			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1558	} else {
1559		/*
1560		 * When turning on, we need to retry for 1ms to give the sink
1561		 * time to wake up.
1562		 */
1563		for (i = 0; i < 3; i++) {
1564			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1565						 DP_SET_POWER_D0);
1566			if (ret == 1)
1567				break;
1568			msleep(1);
1569		}
1570	}
1571}
1572
1573static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1574				  enum pipe *pipe)
1575{
1576	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1577	enum port port = dp_to_dig_port(intel_dp)->port;
1578	struct drm_device *dev = encoder->base.dev;
1579	struct drm_i915_private *dev_priv = dev->dev_private;
1580	enum intel_display_power_domain power_domain;
1581	u32 tmp;
1582
1583	power_domain = intel_display_port_power_domain(encoder);
1584	if (!intel_display_power_enabled(dev_priv, power_domain))
1585		return false;
1586
1587	tmp = I915_READ(intel_dp->output_reg);
1588
1589	if (!(tmp & DP_PORT_EN))
1590		return false;
1591
1592	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1593		*pipe = PORT_TO_PIPE_CPT(tmp);
1594	} else if (IS_CHERRYVIEW(dev)) {
1595		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1596	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1597		*pipe = PORT_TO_PIPE(tmp);
1598	} else {
1599		u32 trans_sel;
1600		u32 trans_dp;
1601		int i;
1602
1603		switch (intel_dp->output_reg) {
1604		case PCH_DP_B:
1605			trans_sel = TRANS_DP_PORT_SEL_B;
1606			break;
1607		case PCH_DP_C:
1608			trans_sel = TRANS_DP_PORT_SEL_C;
1609			break;
1610		case PCH_DP_D:
1611			trans_sel = TRANS_DP_PORT_SEL_D;
1612			break;
1613		default:
1614			return true;
1615		}
1616
1617		for_each_pipe(dev_priv, i) {
1618			trans_dp = I915_READ(TRANS_DP_CTL(i));
1619			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1620				*pipe = i;
1621				return true;
1622			}
1623		}
1624
1625		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1626			      intel_dp->output_reg);
1627	}
1628
1629	return true;
1630}
1631
1632static void intel_dp_get_config(struct intel_encoder *encoder,
1633				struct intel_crtc_config *pipe_config)
1634{
1635	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1636	u32 tmp, flags = 0;
1637	struct drm_device *dev = encoder->base.dev;
1638	struct drm_i915_private *dev_priv = dev->dev_private;
1639	enum port port = dp_to_dig_port(intel_dp)->port;
1640	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1641	int dotclock;
1642
1643	tmp = I915_READ(intel_dp->output_reg);
1644	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1645		pipe_config->has_audio = true;
1646
1647	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1648		if (tmp & DP_SYNC_HS_HIGH)
1649			flags |= DRM_MODE_FLAG_PHSYNC;
1650		else
1651			flags |= DRM_MODE_FLAG_NHSYNC;
1652
1653		if (tmp & DP_SYNC_VS_HIGH)
1654			flags |= DRM_MODE_FLAG_PVSYNC;
1655		else
1656			flags |= DRM_MODE_FLAG_NVSYNC;
1657	} else {
1658		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1659		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1660			flags |= DRM_MODE_FLAG_PHSYNC;
1661		else
1662			flags |= DRM_MODE_FLAG_NHSYNC;
1663
1664		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1665			flags |= DRM_MODE_FLAG_PVSYNC;
1666		else
1667			flags |= DRM_MODE_FLAG_NVSYNC;
1668	}
1669
1670	pipe_config->adjusted_mode.flags |= flags;
1671
1672	pipe_config->has_dp_encoder = true;
1673
1674	intel_dp_get_m_n(crtc, pipe_config);
1675
1676	if (port == PORT_A) {
1677		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1678			pipe_config->port_clock = 162000;
1679		else
1680			pipe_config->port_clock = 270000;
1681	}
1682
1683	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1684					    &pipe_config->dp_m_n);
1685
1686	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1687		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1688
1689	pipe_config->adjusted_mode.crtc_clock = dotclock;
1690
1691	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1692	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1693		/*
1694		 * This is a big fat ugly hack.
1695		 *
1696		 * Some machines in UEFI boot mode provide us a VBT that has 18
1697		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1698		 * unknown we fail to light up. Yet the same BIOS boots up with
1699		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1700		 * max, not what it tells us to use.
1701		 *
1702		 * Note: This will still be broken if the eDP panel is not lit
1703		 * up by the BIOS, and thus we can't get the mode at module
1704		 * load.
1705		 */
1706		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1707			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1708		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1709	}
1710}
1711
1712static bool is_edp_psr(struct intel_dp *intel_dp)
1713{
1714	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1715}
1716
1717static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1718{
1719	struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721	if (!HAS_PSR(dev))
1722		return false;
1723
1724	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1725}
1726
1727static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1728				    struct edp_vsc_psr *vsc_psr)
1729{
1730	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1731	struct drm_device *dev = dig_port->base.base.dev;
1732	struct drm_i915_private *dev_priv = dev->dev_private;
1733	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1734	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1735	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1736	uint32_t *data = (uint32_t *) vsc_psr;
1737	unsigned int i;
1738
1739	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1740	   the video DIP being updated before program video DIP data buffer
1741	   registers for DIP being updated. */
1742	I915_WRITE(ctl_reg, 0);
1743	POSTING_READ(ctl_reg);
1744
1745	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1746		if (i < sizeof(struct edp_vsc_psr))
1747			I915_WRITE(data_reg + i, *data++);
1748		else
1749			I915_WRITE(data_reg + i, 0);
1750	}
1751
1752	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1753	POSTING_READ(ctl_reg);
1754}
1755
1756static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1757{
1758	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1759	struct drm_i915_private *dev_priv = dev->dev_private;
1760	struct edp_vsc_psr psr_vsc;
1761
1762	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1763	memset(&psr_vsc, 0, sizeof(psr_vsc));
1764	psr_vsc.sdp_header.HB0 = 0;
1765	psr_vsc.sdp_header.HB1 = 0x7;
1766	psr_vsc.sdp_header.HB2 = 0x2;
1767	psr_vsc.sdp_header.HB3 = 0x8;
1768	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1769
1770	/* Avoid continuous PSR exit by masking memup and hpd */
1771	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1772		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1773}
1774
1775static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1776{
1777	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1778	struct drm_device *dev = dig_port->base.base.dev;
1779	struct drm_i915_private *dev_priv = dev->dev_private;
1780	uint32_t aux_clock_divider;
1781	int precharge = 0x3;
1782	int msg_size = 5;       /* Header(4) + Message(1) */
1783	bool only_standby = false;
1784
1785	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1786
1787	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1788		only_standby = true;
1789
1790	/* Enable PSR in sink */
1791	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1792		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1793				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1794	else
1795		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1796				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1797
1798	/* Setup AUX registers */
1799	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1800	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1801	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1802		   DP_AUX_CH_CTL_TIME_OUT_400us |
1803		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1804		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1805		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1806}
1807
1808static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1809{
1810	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1811	struct drm_device *dev = dig_port->base.base.dev;
1812	struct drm_i915_private *dev_priv = dev->dev_private;
1813	uint32_t max_sleep_time = 0x1f;
1814	uint32_t idle_frames = 1;
1815	uint32_t val = 0x0;
1816	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1817	bool only_standby = false;
1818
1819	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1820		only_standby = true;
1821
1822	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1823		val |= EDP_PSR_LINK_STANDBY;
1824		val |= EDP_PSR_TP2_TP3_TIME_0us;
1825		val |= EDP_PSR_TP1_TIME_0us;
1826		val |= EDP_PSR_SKIP_AUX_EXIT;
1827		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1828	} else
1829		val |= EDP_PSR_LINK_DISABLE;
1830
1831	I915_WRITE(EDP_PSR_CTL(dev), val |
1832		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1833		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1834		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1835		   EDP_PSR_ENABLE);
1836}
1837
1838static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1839{
1840	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1841	struct drm_device *dev = dig_port->base.base.dev;
1842	struct drm_i915_private *dev_priv = dev->dev_private;
1843	struct drm_crtc *crtc = dig_port->base.base.crtc;
1844	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1845
1846	lockdep_assert_held(&dev_priv->psr.lock);
1847	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1848	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1849
1850	dev_priv->psr.source_ok = false;
1851
1852	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1853		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1854		return false;
1855	}
1856
1857	if (!i915.enable_psr) {
1858		DRM_DEBUG_KMS("PSR disable by flag\n");
1859		return false;
1860	}
1861
1862	/* Below limitations aren't valid for Broadwell */
1863	if (IS_BROADWELL(dev))
1864		goto out;
1865
1866	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1867	    S3D_ENABLE) {
1868		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1869		return false;
1870	}
1871
1872	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1873		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1874		return false;
1875	}
1876
1877 out:
1878	dev_priv->psr.source_ok = true;
1879	return true;
1880}
1881
1882static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1883{
1884	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1885	struct drm_device *dev = intel_dig_port->base.base.dev;
1886	struct drm_i915_private *dev_priv = dev->dev_private;
1887
1888	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1889	WARN_ON(dev_priv->psr.active);
1890	lockdep_assert_held(&dev_priv->psr.lock);
1891
1892	/* Enable PSR on the panel */
1893	intel_edp_psr_enable_sink(intel_dp);
1894
1895	/* Enable PSR on the host */
1896	intel_edp_psr_enable_source(intel_dp);
1897
1898	dev_priv->psr.active = true;
1899}
1900
1901void intel_edp_psr_enable(struct intel_dp *intel_dp)
1902{
1903	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1904	struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906	if (!HAS_PSR(dev)) {
1907		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1908		return;
1909	}
1910
1911	if (!is_edp_psr(intel_dp)) {
1912		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1913		return;
1914	}
1915
1916	mutex_lock(&dev_priv->psr.lock);
1917	if (dev_priv->psr.enabled) {
1918		DRM_DEBUG_KMS("PSR already in use\n");
1919		mutex_unlock(&dev_priv->psr.lock);
1920		return;
1921	}
1922
1923	dev_priv->psr.busy_frontbuffer_bits = 0;
1924
1925	/* Setup PSR once */
1926	intel_edp_psr_setup(intel_dp);
1927
1928	if (intel_edp_psr_match_conditions(intel_dp))
1929		dev_priv->psr.enabled = intel_dp;
1930	mutex_unlock(&dev_priv->psr.lock);
1931}
1932
1933void intel_edp_psr_disable(struct intel_dp *intel_dp)
1934{
1935	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1936	struct drm_i915_private *dev_priv = dev->dev_private;
1937
1938	mutex_lock(&dev_priv->psr.lock);
1939	if (!dev_priv->psr.enabled) {
1940		mutex_unlock(&dev_priv->psr.lock);
1941		return;
1942	}
1943
1944	if (dev_priv->psr.active) {
1945		I915_WRITE(EDP_PSR_CTL(dev),
1946			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1947
1948		/* Wait till PSR is idle */
1949		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1950			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1951			DRM_ERROR("Timed out waiting for PSR Idle State\n");
1952
1953		dev_priv->psr.active = false;
1954	} else {
1955		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1956	}
1957
1958	dev_priv->psr.enabled = NULL;
1959	mutex_unlock(&dev_priv->psr.lock);
1960
1961	cancel_delayed_work_sync(&dev_priv->psr.work);
1962}
1963
1964static void intel_edp_psr_work(struct work_struct *work)
1965{
1966	struct drm_i915_private *dev_priv =
1967		container_of(work, typeof(*dev_priv), psr.work.work);
1968	struct intel_dp *intel_dp = dev_priv->psr.enabled;
1969
1970	mutex_lock(&dev_priv->psr.lock);
1971	intel_dp = dev_priv->psr.enabled;
1972
1973	if (!intel_dp)
1974		goto unlock;
1975
1976	/*
1977	 * The delayed work can race with an invalidate hence we need to
1978	 * recheck. Since psr_flush first clears this and then reschedules we
1979	 * won't ever miss a flush when bailing out here.
1980	 */
1981	if (dev_priv->psr.busy_frontbuffer_bits)
1982		goto unlock;
1983
1984	intel_edp_psr_do_enable(intel_dp);
1985unlock:
1986	mutex_unlock(&dev_priv->psr.lock);
1987}
1988
1989static void intel_edp_psr_do_exit(struct drm_device *dev)
1990{
1991	struct drm_i915_private *dev_priv = dev->dev_private;
1992
1993	if (dev_priv->psr.active) {
1994		u32 val = I915_READ(EDP_PSR_CTL(dev));
1995
1996		WARN_ON(!(val & EDP_PSR_ENABLE));
1997
1998		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1999
2000		dev_priv->psr.active = false;
2001	}
2002
2003}
2004
2005void intel_edp_psr_invalidate(struct drm_device *dev,
2006			      unsigned frontbuffer_bits)
2007{
2008	struct drm_i915_private *dev_priv = dev->dev_private;
2009	struct drm_crtc *crtc;
2010	enum pipe pipe;
2011
2012	mutex_lock(&dev_priv->psr.lock);
2013	if (!dev_priv->psr.enabled) {
2014		mutex_unlock(&dev_priv->psr.lock);
2015		return;
2016	}
2017
2018	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2019	pipe = to_intel_crtc(crtc)->pipe;
2020
2021	intel_edp_psr_do_exit(dev);
2022
2023	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2024
2025	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2026	mutex_unlock(&dev_priv->psr.lock);
2027}
2028
2029void intel_edp_psr_flush(struct drm_device *dev,
2030			 unsigned frontbuffer_bits)
2031{
2032	struct drm_i915_private *dev_priv = dev->dev_private;
2033	struct drm_crtc *crtc;
2034	enum pipe pipe;
2035
2036	mutex_lock(&dev_priv->psr.lock);
2037	if (!dev_priv->psr.enabled) {
2038		mutex_unlock(&dev_priv->psr.lock);
2039		return;
2040	}
2041
2042	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2043	pipe = to_intel_crtc(crtc)->pipe;
2044	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2045
2046	/*
2047	 * On Haswell sprite plane updates don't result in a psr invalidating
2048	 * signal in the hardware. Which means we need to manually fake this in
2049	 * software for all flushes, not just when we've seen a preceding
2050	 * invalidation through frontbuffer rendering.
2051	 */
2052	if (IS_HASWELL(dev) &&
2053	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2054		intel_edp_psr_do_exit(dev);
2055
2056	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2057		schedule_delayed_work(&dev_priv->psr.work,
2058				      msecs_to_jiffies(100));
2059	mutex_unlock(&dev_priv->psr.lock);
2060}
2061
2062void intel_edp_psr_init(struct drm_device *dev)
2063{
2064	struct drm_i915_private *dev_priv = dev->dev_private;
2065
2066	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2067	mutex_init(&dev_priv->psr.lock);
2068}
2069
2070static void intel_disable_dp(struct intel_encoder *encoder)
2071{
2072	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2073	enum port port = dp_to_dig_port(intel_dp)->port;
2074	struct drm_device *dev = encoder->base.dev;
2075
2076	/* Make sure the panel is off before trying to change the mode. But also
2077	 * ensure that we have vdd while we switch off the panel. */
2078	intel_edp_panel_vdd_on(intel_dp);
2079	intel_edp_backlight_off(intel_dp);
2080	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2081	intel_edp_panel_off(intel_dp);
2082
2083	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2084	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2085		intel_dp_link_down(intel_dp);
2086}
2087
2088static void g4x_post_disable_dp(struct intel_encoder *encoder)
2089{
2090	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2091	enum port port = dp_to_dig_port(intel_dp)->port;
2092
2093	if (port != PORT_A)
2094		return;
2095
2096	intel_dp_link_down(intel_dp);
2097	ironlake_edp_pll_off(intel_dp);
2098}
2099
2100static void vlv_post_disable_dp(struct intel_encoder *encoder)
2101{
2102	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103
2104	intel_dp_link_down(intel_dp);
2105}
2106
2107static void chv_post_disable_dp(struct intel_encoder *encoder)
2108{
2109	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2110	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2111	struct drm_device *dev = encoder->base.dev;
2112	struct drm_i915_private *dev_priv = dev->dev_private;
2113	struct intel_crtc *intel_crtc =
2114		to_intel_crtc(encoder->base.crtc);
2115	enum dpio_channel ch = vlv_dport_to_channel(dport);
2116	enum pipe pipe = intel_crtc->pipe;
2117	u32 val;
2118
2119	intel_dp_link_down(intel_dp);
2120
2121	mutex_lock(&dev_priv->dpio_lock);
2122
2123	/* Propagate soft reset to data lane reset */
2124	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2125	val |= CHV_PCS_REQ_SOFTRESET_EN;
2126	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2127
2128	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2129	val |= CHV_PCS_REQ_SOFTRESET_EN;
2130	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2131
2132	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2133	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2134	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2135
2136	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2137	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2138	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2139
2140	mutex_unlock(&dev_priv->dpio_lock);
2141}
2142
2143static void intel_enable_dp(struct intel_encoder *encoder)
2144{
2145	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2146	struct drm_device *dev = encoder->base.dev;
2147	struct drm_i915_private *dev_priv = dev->dev_private;
2148	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2149
2150	if (WARN_ON(dp_reg & DP_PORT_EN))
2151		return;
2152
2153	intel_edp_panel_vdd_on(intel_dp);
2154	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2155	intel_dp_start_link_train(intel_dp);
2156	intel_edp_panel_on(intel_dp);
2157	intel_edp_panel_vdd_off(intel_dp, true);
2158	intel_dp_complete_link_train(intel_dp);
2159	intel_dp_stop_link_train(intel_dp);
2160}
2161
2162static void g4x_enable_dp(struct intel_encoder *encoder)
2163{
2164	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2165
2166	intel_enable_dp(encoder);
2167	intel_edp_backlight_on(intel_dp);
2168}
2169
2170static void vlv_enable_dp(struct intel_encoder *encoder)
2171{
2172	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2173
2174	intel_edp_backlight_on(intel_dp);
2175}
2176
2177static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2178{
2179	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2180	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2181
2182	intel_dp_prepare(encoder);
2183
2184	/* Only ilk+ has port A */
2185	if (dport->port == PORT_A) {
2186		ironlake_set_pll_cpu_edp(intel_dp);
2187		ironlake_edp_pll_on(intel_dp);
2188	}
2189}
2190
2191static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2192{
2193	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2194	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2195	struct drm_device *dev = encoder->base.dev;
2196	struct drm_i915_private *dev_priv = dev->dev_private;
2197	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2198	enum dpio_channel port = vlv_dport_to_channel(dport);
2199	int pipe = intel_crtc->pipe;
2200	struct edp_power_seq power_seq;
2201	u32 val;
2202
2203	mutex_lock(&dev_priv->dpio_lock);
2204
2205	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2206	val = 0;
2207	if (pipe)
2208		val |= (1<<21);
2209	else
2210		val &= ~(1<<21);
2211	val |= 0x001000c4;
2212	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2213	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2214	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2215
2216	mutex_unlock(&dev_priv->dpio_lock);
2217
2218	if (is_edp(intel_dp)) {
2219		/* init power sequencer on this pipe and port */
2220		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2221		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2222							      &power_seq);
2223	}
2224
2225	intel_enable_dp(encoder);
2226
2227	vlv_wait_port_ready(dev_priv, dport);
2228}
2229
2230static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2231{
2232	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2233	struct drm_device *dev = encoder->base.dev;
2234	struct drm_i915_private *dev_priv = dev->dev_private;
2235	struct intel_crtc *intel_crtc =
2236		to_intel_crtc(encoder->base.crtc);
2237	enum dpio_channel port = vlv_dport_to_channel(dport);
2238	int pipe = intel_crtc->pipe;
2239
2240	intel_dp_prepare(encoder);
2241
2242	/* Program Tx lane resets to default */
2243	mutex_lock(&dev_priv->dpio_lock);
2244	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2245			 DPIO_PCS_TX_LANE2_RESET |
2246			 DPIO_PCS_TX_LANE1_RESET);
2247	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2248			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2249			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2250			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2251				 DPIO_PCS_CLK_SOFT_RESET);
2252
2253	/* Fix up inter-pair skew failure */
2254	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2255	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2256	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2257	mutex_unlock(&dev_priv->dpio_lock);
2258}
2259
2260static void chv_pre_enable_dp(struct intel_encoder *encoder)
2261{
2262	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2263	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2264	struct drm_device *dev = encoder->base.dev;
2265	struct drm_i915_private *dev_priv = dev->dev_private;
2266	struct edp_power_seq power_seq;
2267	struct intel_crtc *intel_crtc =
2268		to_intel_crtc(encoder->base.crtc);
2269	enum dpio_channel ch = vlv_dport_to_channel(dport);
2270	int pipe = intel_crtc->pipe;
2271	int data, i;
2272	u32 val;
2273
2274	mutex_lock(&dev_priv->dpio_lock);
2275
2276	/* Deassert soft data lane reset*/
2277	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2278	val |= CHV_PCS_REQ_SOFTRESET_EN;
2279	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2280
2281	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2282	val |= CHV_PCS_REQ_SOFTRESET_EN;
2283	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2284
2285	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2286	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2287	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2288
2289	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2290	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2291	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2292
2293	/* Program Tx lane latency optimal setting*/
2294	for (i = 0; i < 4; i++) {
2295		/* Set the latency optimal bit */
2296		data = (i == 1) ? 0x0 : 0x6;
2297		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2298				data << DPIO_FRC_LATENCY_SHFIT);
2299
2300		/* Set the upar bit */
2301		data = (i == 1) ? 0x0 : 0x1;
2302		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2303				data << DPIO_UPAR_SHIFT);
2304	}
2305
2306	/* Data lane stagger programming */
2307	/* FIXME: Fix up value only after power analysis */
2308
2309	mutex_unlock(&dev_priv->dpio_lock);
2310
2311	if (is_edp(intel_dp)) {
2312		/* init power sequencer on this pipe and port */
2313		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2314		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2315							      &power_seq);
2316	}
2317
2318	intel_enable_dp(encoder);
2319
2320	vlv_wait_port_ready(dev_priv, dport);
2321}
2322
2323static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2324{
2325	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2326	struct drm_device *dev = encoder->base.dev;
2327	struct drm_i915_private *dev_priv = dev->dev_private;
2328	struct intel_crtc *intel_crtc =
2329		to_intel_crtc(encoder->base.crtc);
2330	enum dpio_channel ch = vlv_dport_to_channel(dport);
2331	enum pipe pipe = intel_crtc->pipe;
2332	u32 val;
2333
2334	intel_dp_prepare(encoder);
2335
2336	mutex_lock(&dev_priv->dpio_lock);
2337
2338	/* program left/right clock distribution */
2339	if (pipe != PIPE_B) {
2340		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2341		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2342		if (ch == DPIO_CH0)
2343			val |= CHV_BUFLEFTENA1_FORCE;
2344		if (ch == DPIO_CH1)
2345			val |= CHV_BUFRIGHTENA1_FORCE;
2346		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2347	} else {
2348		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2349		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2350		if (ch == DPIO_CH0)
2351			val |= CHV_BUFLEFTENA2_FORCE;
2352		if (ch == DPIO_CH1)
2353			val |= CHV_BUFRIGHTENA2_FORCE;
2354		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2355	}
2356
2357	/* program clock channel usage */
2358	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2359	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2360	if (pipe != PIPE_B)
2361		val &= ~CHV_PCS_USEDCLKCHANNEL;
2362	else
2363		val |= CHV_PCS_USEDCLKCHANNEL;
2364	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2365
2366	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2367	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2368	if (pipe != PIPE_B)
2369		val &= ~CHV_PCS_USEDCLKCHANNEL;
2370	else
2371		val |= CHV_PCS_USEDCLKCHANNEL;
2372	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2373
2374	/*
2375	 * This a a bit weird since generally CL
2376	 * matches the pipe, but here we need to
2377	 * pick the CL based on the port.
2378	 */
2379	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2380	if (pipe != PIPE_B)
2381		val &= ~CHV_CMN_USEDCLKCHANNEL;
2382	else
2383		val |= CHV_CMN_USEDCLKCHANNEL;
2384	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2385
2386	mutex_unlock(&dev_priv->dpio_lock);
2387}
2388
2389/*
2390 * Native read with retry for link status and receiver capability reads for
2391 * cases where the sink may still be asleep.
2392 *
2393 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2394 * supposed to retry 3 times per the spec.
2395 */
2396static ssize_t
2397intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2398			void *buffer, size_t size)
2399{
2400	ssize_t ret;
2401	int i;
2402
2403	for (i = 0; i < 3; i++) {
2404		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2405		if (ret == size)
2406			return ret;
2407		msleep(1);
2408	}
2409
2410	return ret;
2411}
2412
2413/*
2414 * Fetch AUX CH registers 0x202 - 0x207 which contain
2415 * link status information
2416 */
2417static bool
2418intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2419{
2420	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2421				       DP_LANE0_1_STATUS,
2422				       link_status,
2423				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2424}
2425
2426/* These are source-specific values. */
2427static uint8_t
2428intel_dp_voltage_max(struct intel_dp *intel_dp)
2429{
2430	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2431	enum port port = dp_to_dig_port(intel_dp)->port;
2432
2433	if (IS_VALLEYVIEW(dev))
2434		return DP_TRAIN_VOLTAGE_SWING_1200;
2435	else if (IS_GEN7(dev) && port == PORT_A)
2436		return DP_TRAIN_VOLTAGE_SWING_800;
2437	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2438		return DP_TRAIN_VOLTAGE_SWING_1200;
2439	else
2440		return DP_TRAIN_VOLTAGE_SWING_800;
2441}
2442
2443static uint8_t
2444intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2445{
2446	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2447	enum port port = dp_to_dig_port(intel_dp)->port;
2448
2449	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2450		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2451		case DP_TRAIN_VOLTAGE_SWING_400:
2452			return DP_TRAIN_PRE_EMPHASIS_9_5;
2453		case DP_TRAIN_VOLTAGE_SWING_600:
2454			return DP_TRAIN_PRE_EMPHASIS_6;
2455		case DP_TRAIN_VOLTAGE_SWING_800:
2456			return DP_TRAIN_PRE_EMPHASIS_3_5;
2457		case DP_TRAIN_VOLTAGE_SWING_1200:
2458		default:
2459			return DP_TRAIN_PRE_EMPHASIS_0;
2460		}
2461	} else if (IS_VALLEYVIEW(dev)) {
2462		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2463		case DP_TRAIN_VOLTAGE_SWING_400:
2464			return DP_TRAIN_PRE_EMPHASIS_9_5;
2465		case DP_TRAIN_VOLTAGE_SWING_600:
2466			return DP_TRAIN_PRE_EMPHASIS_6;
2467		case DP_TRAIN_VOLTAGE_SWING_800:
2468			return DP_TRAIN_PRE_EMPHASIS_3_5;
2469		case DP_TRAIN_VOLTAGE_SWING_1200:
2470		default:
2471			return DP_TRAIN_PRE_EMPHASIS_0;
2472		}
2473	} else if (IS_GEN7(dev) && port == PORT_A) {
2474		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2475		case DP_TRAIN_VOLTAGE_SWING_400:
2476			return DP_TRAIN_PRE_EMPHASIS_6;
2477		case DP_TRAIN_VOLTAGE_SWING_600:
2478		case DP_TRAIN_VOLTAGE_SWING_800:
2479			return DP_TRAIN_PRE_EMPHASIS_3_5;
2480		default:
2481			return DP_TRAIN_PRE_EMPHASIS_0;
2482		}
2483	} else {
2484		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2485		case DP_TRAIN_VOLTAGE_SWING_400:
2486			return DP_TRAIN_PRE_EMPHASIS_6;
2487		case DP_TRAIN_VOLTAGE_SWING_600:
2488			return DP_TRAIN_PRE_EMPHASIS_6;
2489		case DP_TRAIN_VOLTAGE_SWING_800:
2490			return DP_TRAIN_PRE_EMPHASIS_3_5;
2491		case DP_TRAIN_VOLTAGE_SWING_1200:
2492		default:
2493			return DP_TRAIN_PRE_EMPHASIS_0;
2494		}
2495	}
2496}
2497
2498static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2499{
2500	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2501	struct drm_i915_private *dev_priv = dev->dev_private;
2502	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2503	struct intel_crtc *intel_crtc =
2504		to_intel_crtc(dport->base.base.crtc);
2505	unsigned long demph_reg_value, preemph_reg_value,
2506		uniqtranscale_reg_value;
2507	uint8_t train_set = intel_dp->train_set[0];
2508	enum dpio_channel port = vlv_dport_to_channel(dport);
2509	int pipe = intel_crtc->pipe;
2510
2511	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2512	case DP_TRAIN_PRE_EMPHASIS_0:
2513		preemph_reg_value = 0x0004000;
2514		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2515		case DP_TRAIN_VOLTAGE_SWING_400:
2516			demph_reg_value = 0x2B405555;
2517			uniqtranscale_reg_value = 0x552AB83A;
2518			break;
2519		case DP_TRAIN_VOLTAGE_SWING_600:
2520			demph_reg_value = 0x2B404040;
2521			uniqtranscale_reg_value = 0x5548B83A;
2522			break;
2523		case DP_TRAIN_VOLTAGE_SWING_800:
2524			demph_reg_value = 0x2B245555;
2525			uniqtranscale_reg_value = 0x5560B83A;
2526			break;
2527		case DP_TRAIN_VOLTAGE_SWING_1200:
2528			demph_reg_value = 0x2B405555;
2529			uniqtranscale_reg_value = 0x5598DA3A;
2530			break;
2531		default:
2532			return 0;
2533		}
2534		break;
2535	case DP_TRAIN_PRE_EMPHASIS_3_5:
2536		preemph_reg_value = 0x0002000;
2537		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2538		case DP_TRAIN_VOLTAGE_SWING_400:
2539			demph_reg_value = 0x2B404040;
2540			uniqtranscale_reg_value = 0x5552B83A;
2541			break;
2542		case DP_TRAIN_VOLTAGE_SWING_600:
2543			demph_reg_value = 0x2B404848;
2544			uniqtranscale_reg_value = 0x5580B83A;
2545			break;
2546		case DP_TRAIN_VOLTAGE_SWING_800:
2547			demph_reg_value = 0x2B404040;
2548			uniqtranscale_reg_value = 0x55ADDA3A;
2549			break;
2550		default:
2551			return 0;
2552		}
2553		break;
2554	case DP_TRAIN_PRE_EMPHASIS_6:
2555		preemph_reg_value = 0x0000000;
2556		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2557		case DP_TRAIN_VOLTAGE_SWING_400:
2558			demph_reg_value = 0x2B305555;
2559			uniqtranscale_reg_value = 0x5570B83A;
2560			break;
2561		case DP_TRAIN_VOLTAGE_SWING_600:
2562			demph_reg_value = 0x2B2B4040;
2563			uniqtranscale_reg_value = 0x55ADDA3A;
2564			break;
2565		default:
2566			return 0;
2567		}
2568		break;
2569	case DP_TRAIN_PRE_EMPHASIS_9_5:
2570		preemph_reg_value = 0x0006000;
2571		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2572		case DP_TRAIN_VOLTAGE_SWING_400:
2573			demph_reg_value = 0x1B405555;
2574			uniqtranscale_reg_value = 0x55ADDA3A;
2575			break;
2576		default:
2577			return 0;
2578		}
2579		break;
2580	default:
2581		return 0;
2582	}
2583
2584	mutex_lock(&dev_priv->dpio_lock);
2585	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2586	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2587	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2588			 uniqtranscale_reg_value);
2589	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2590	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2591	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2592	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2593	mutex_unlock(&dev_priv->dpio_lock);
2594
2595	return 0;
2596}
2597
2598static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2599{
2600	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2601	struct drm_i915_private *dev_priv = dev->dev_private;
2602	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2603	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2604	u32 deemph_reg_value, margin_reg_value, val;
2605	uint8_t train_set = intel_dp->train_set[0];
2606	enum dpio_channel ch = vlv_dport_to_channel(dport);
2607	enum pipe pipe = intel_crtc->pipe;
2608	int i;
2609
2610	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2611	case DP_TRAIN_PRE_EMPHASIS_0:
2612		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2613		case DP_TRAIN_VOLTAGE_SWING_400:
2614			deemph_reg_value = 128;
2615			margin_reg_value = 52;
2616			break;
2617		case DP_TRAIN_VOLTAGE_SWING_600:
2618			deemph_reg_value = 128;
2619			margin_reg_value = 77;
2620			break;
2621		case DP_TRAIN_VOLTAGE_SWING_800:
2622			deemph_reg_value = 128;
2623			margin_reg_value = 102;
2624			break;
2625		case DP_TRAIN_VOLTAGE_SWING_1200:
2626			deemph_reg_value = 128;
2627			margin_reg_value = 154;
2628			/* FIXME extra to set for 1200 */
2629			break;
2630		default:
2631			return 0;
2632		}
2633		break;
2634	case DP_TRAIN_PRE_EMPHASIS_3_5:
2635		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2636		case DP_TRAIN_VOLTAGE_SWING_400:
2637			deemph_reg_value = 85;
2638			margin_reg_value = 78;
2639			break;
2640		case DP_TRAIN_VOLTAGE_SWING_600:
2641			deemph_reg_value = 85;
2642			margin_reg_value = 116;
2643			break;
2644		case DP_TRAIN_VOLTAGE_SWING_800:
2645			deemph_reg_value = 85;
2646			margin_reg_value = 154;
2647			break;
2648		default:
2649			return 0;
2650		}
2651		break;
2652	case DP_TRAIN_PRE_EMPHASIS_6:
2653		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2654		case DP_TRAIN_VOLTAGE_SWING_400:
2655			deemph_reg_value = 64;
2656			margin_reg_value = 104;
2657			break;
2658		case DP_TRAIN_VOLTAGE_SWING_600:
2659			deemph_reg_value = 64;
2660			margin_reg_value = 154;
2661			break;
2662		default:
2663			return 0;
2664		}
2665		break;
2666	case DP_TRAIN_PRE_EMPHASIS_9_5:
2667		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2668		case DP_TRAIN_VOLTAGE_SWING_400:
2669			deemph_reg_value = 43;
2670			margin_reg_value = 154;
2671			break;
2672		default:
2673			return 0;
2674		}
2675		break;
2676	default:
2677		return 0;
2678	}
2679
2680	mutex_lock(&dev_priv->dpio_lock);
2681
2682	/* Clear calc init */
2683	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2684	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2685	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2686
2687	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2688	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2689	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2690
2691	/* Program swing deemph */
2692	for (i = 0; i < 4; i++) {
2693		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2694		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2695		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2696		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2697	}
2698
2699	/* Program swing margin */
2700	for (i = 0; i < 4; i++) {
2701		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2702		val &= ~DPIO_SWING_MARGIN000_MASK;
2703		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2704		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2705	}
2706
2707	/* Disable unique transition scale */
2708	for (i = 0; i < 4; i++) {
2709		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2710		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2711		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2712	}
2713
2714	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2715			== DP_TRAIN_PRE_EMPHASIS_0) &&
2716		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2717			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2718
2719		/*
2720		 * The document said it needs to set bit 27 for ch0 and bit 26
2721		 * for ch1. Might be a typo in the doc.
2722		 * For now, for this unique transition scale selection, set bit
2723		 * 27 for ch0 and ch1.
2724		 */
2725		for (i = 0; i < 4; i++) {
2726			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2727			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2728			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2729		}
2730
2731		for (i = 0; i < 4; i++) {
2732			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2733			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2734			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2735			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2736		}
2737	}
2738
2739	/* Start swing calculation */
2740	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2741	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2742	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2743
2744	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2745	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2746	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2747
2748	/* LRC Bypass */
2749	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2750	val |= DPIO_LRC_BYPASS;
2751	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2752
2753	mutex_unlock(&dev_priv->dpio_lock);
2754
2755	return 0;
2756}
2757
2758static void
2759intel_get_adjust_train(struct intel_dp *intel_dp,
2760		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2761{
2762	uint8_t v = 0;
2763	uint8_t p = 0;
2764	int lane;
2765	uint8_t voltage_max;
2766	uint8_t preemph_max;
2767
2768	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2769		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2770		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2771
2772		if (this_v > v)
2773			v = this_v;
2774		if (this_p > p)
2775			p = this_p;
2776	}
2777
2778	voltage_max = intel_dp_voltage_max(intel_dp);
2779	if (v >= voltage_max)
2780		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2781
2782	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2783	if (p >= preemph_max)
2784		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2785
2786	for (lane = 0; lane < 4; lane++)
2787		intel_dp->train_set[lane] = v | p;
2788}
2789
2790static uint32_t
2791intel_gen4_signal_levels(uint8_t train_set)
2792{
2793	uint32_t	signal_levels = 0;
2794
2795	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2796	case DP_TRAIN_VOLTAGE_SWING_400:
2797	default:
2798		signal_levels |= DP_VOLTAGE_0_4;
2799		break;
2800	case DP_TRAIN_VOLTAGE_SWING_600:
2801		signal_levels |= DP_VOLTAGE_0_6;
2802		break;
2803	case DP_TRAIN_VOLTAGE_SWING_800:
2804		signal_levels |= DP_VOLTAGE_0_8;
2805		break;
2806	case DP_TRAIN_VOLTAGE_SWING_1200:
2807		signal_levels |= DP_VOLTAGE_1_2;
2808		break;
2809	}
2810	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2811	case DP_TRAIN_PRE_EMPHASIS_0:
2812	default:
2813		signal_levels |= DP_PRE_EMPHASIS_0;
2814		break;
2815	case DP_TRAIN_PRE_EMPHASIS_3_5:
2816		signal_levels |= DP_PRE_EMPHASIS_3_5;
2817		break;
2818	case DP_TRAIN_PRE_EMPHASIS_6:
2819		signal_levels |= DP_PRE_EMPHASIS_6;
2820		break;
2821	case DP_TRAIN_PRE_EMPHASIS_9_5:
2822		signal_levels |= DP_PRE_EMPHASIS_9_5;
2823		break;
2824	}
2825	return signal_levels;
2826}
2827
2828/* Gen6's DP voltage swing and pre-emphasis control */
2829static uint32_t
2830intel_gen6_edp_signal_levels(uint8_t train_set)
2831{
2832	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2833					 DP_TRAIN_PRE_EMPHASIS_MASK);
2834	switch (signal_levels) {
2835	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2836	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2837		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2838	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2839		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2840	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2841	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2842		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2843	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2844	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2845		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2846	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2847	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2848		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2849	default:
2850		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2851			      "0x%x\n", signal_levels);
2852		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2853	}
2854}
2855
2856/* Gen7's DP voltage swing and pre-emphasis control */
2857static uint32_t
2858intel_gen7_edp_signal_levels(uint8_t train_set)
2859{
2860	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2861					 DP_TRAIN_PRE_EMPHASIS_MASK);
2862	switch (signal_levels) {
2863	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2864		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2865	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2866		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2867	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2868		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2869
2870	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2871		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2872	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2873		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2874
2875	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2876		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2877	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2878		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2879
2880	default:
2881		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2882			      "0x%x\n", signal_levels);
2883		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2884	}
2885}
2886
2887/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2888static uint32_t
2889intel_hsw_signal_levels(uint8_t train_set)
2890{
2891	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2892					 DP_TRAIN_PRE_EMPHASIS_MASK);
2893	switch (signal_levels) {
2894	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2895		return DDI_BUF_EMP_400MV_0DB_HSW;
2896	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2897		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2898	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2899		return DDI_BUF_EMP_400MV_6DB_HSW;
2900	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2901		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2902
2903	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2904		return DDI_BUF_EMP_600MV_0DB_HSW;
2905	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2906		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2907	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2908		return DDI_BUF_EMP_600MV_6DB_HSW;
2909
2910	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2911		return DDI_BUF_EMP_800MV_0DB_HSW;
2912	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2913		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2914	default:
2915		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2916			      "0x%x\n", signal_levels);
2917		return DDI_BUF_EMP_400MV_0DB_HSW;
2918	}
2919}
2920
2921/* Properly updates "DP" with the correct signal levels. */
2922static void
2923intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2924{
2925	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2926	enum port port = intel_dig_port->port;
2927	struct drm_device *dev = intel_dig_port->base.base.dev;
2928	uint32_t signal_levels, mask;
2929	uint8_t train_set = intel_dp->train_set[0];
2930
2931	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2932		signal_levels = intel_hsw_signal_levels(train_set);
2933		mask = DDI_BUF_EMP_MASK;
2934	} else if (IS_CHERRYVIEW(dev)) {
2935		signal_levels = intel_chv_signal_levels(intel_dp);
2936		mask = 0;
2937	} else if (IS_VALLEYVIEW(dev)) {
2938		signal_levels = intel_vlv_signal_levels(intel_dp);
2939		mask = 0;
2940	} else if (IS_GEN7(dev) && port == PORT_A) {
2941		signal_levels = intel_gen7_edp_signal_levels(train_set);
2942		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2943	} else if (IS_GEN6(dev) && port == PORT_A) {
2944		signal_levels = intel_gen6_edp_signal_levels(train_set);
2945		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2946	} else {
2947		signal_levels = intel_gen4_signal_levels(train_set);
2948		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2949	}
2950
2951	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2952
2953	*DP = (*DP & ~mask) | signal_levels;
2954}
2955
2956static bool
2957intel_dp_set_link_train(struct intel_dp *intel_dp,
2958			uint32_t *DP,
2959			uint8_t dp_train_pat)
2960{
2961	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2962	struct drm_device *dev = intel_dig_port->base.base.dev;
2963	struct drm_i915_private *dev_priv = dev->dev_private;
2964	enum port port = intel_dig_port->port;
2965	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2966	int ret, len;
2967
2968	if (HAS_DDI(dev)) {
2969		uint32_t temp = I915_READ(DP_TP_CTL(port));
2970
2971		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2972			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2973		else
2974			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2975
2976		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2977		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2978		case DP_TRAINING_PATTERN_DISABLE:
2979			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2980
2981			break;
2982		case DP_TRAINING_PATTERN_1:
2983			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2984			break;
2985		case DP_TRAINING_PATTERN_2:
2986			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2987			break;
2988		case DP_TRAINING_PATTERN_3:
2989			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2990			break;
2991		}
2992		I915_WRITE(DP_TP_CTL(port), temp);
2993
2994	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2995		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2996
2997		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2998		case DP_TRAINING_PATTERN_DISABLE:
2999			*DP |= DP_LINK_TRAIN_OFF_CPT;
3000			break;
3001		case DP_TRAINING_PATTERN_1:
3002			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3003			break;
3004		case DP_TRAINING_PATTERN_2:
3005			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3006			break;
3007		case DP_TRAINING_PATTERN_3:
3008			DRM_ERROR("DP training pattern 3 not supported\n");
3009			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3010			break;
3011		}
3012
3013	} else {
3014		if (IS_CHERRYVIEW(dev))
3015			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
3016		else
3017			*DP &= ~DP_LINK_TRAIN_MASK;
3018
3019		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3020		case DP_TRAINING_PATTERN_DISABLE:
3021			*DP |= DP_LINK_TRAIN_OFF;
3022			break;
3023		case DP_TRAINING_PATTERN_1:
3024			*DP |= DP_LINK_TRAIN_PAT_1;
3025			break;
3026		case DP_TRAINING_PATTERN_2:
3027			*DP |= DP_LINK_TRAIN_PAT_2;
3028			break;
3029		case DP_TRAINING_PATTERN_3:
3030			if (IS_CHERRYVIEW(dev)) {
3031				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
3032			} else {
3033				DRM_ERROR("DP training pattern 3 not supported\n");
3034				*DP |= DP_LINK_TRAIN_PAT_2;
3035			}
3036			break;
3037		}
3038	}
3039
3040	I915_WRITE(intel_dp->output_reg, *DP);
3041	POSTING_READ(intel_dp->output_reg);
3042
3043	buf[0] = dp_train_pat;
3044	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3045	    DP_TRAINING_PATTERN_DISABLE) {
3046		/* don't write DP_TRAINING_LANEx_SET on disable */
3047		len = 1;
3048	} else {
3049		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3050		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3051		len = intel_dp->lane_count + 1;
3052	}
3053
3054	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3055				buf, len);
3056
3057	return ret == len;
3058}
3059
3060static bool
3061intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3062			uint8_t dp_train_pat)
3063{
3064	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3065	intel_dp_set_signal_levels(intel_dp, DP);
3066	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3067}
3068
3069static bool
3070intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3071			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
3072{
3073	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3074	struct drm_device *dev = intel_dig_port->base.base.dev;
3075	struct drm_i915_private *dev_priv = dev->dev_private;
3076	int ret;
3077
3078	intel_get_adjust_train(intel_dp, link_status);
3079	intel_dp_set_signal_levels(intel_dp, DP);
3080
3081	I915_WRITE(intel_dp->output_reg, *DP);
3082	POSTING_READ(intel_dp->output_reg);
3083
3084	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3085				intel_dp->train_set, intel_dp->lane_count);
3086
3087	return ret == intel_dp->lane_count;
3088}
3089
3090static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3091{
3092	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3093	struct drm_device *dev = intel_dig_port->base.base.dev;
3094	struct drm_i915_private *dev_priv = dev->dev_private;
3095	enum port port = intel_dig_port->port;
3096	uint32_t val;
3097
3098	if (!HAS_DDI(dev))
3099		return;
3100
3101	val = I915_READ(DP_TP_CTL(port));
3102	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3103	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3104	I915_WRITE(DP_TP_CTL(port), val);
3105
3106	/*
3107	 * On PORT_A we can have only eDP in SST mode. There the only reason
3108	 * we need to set idle transmission mode is to work around a HW issue
3109	 * where we enable the pipe while not in idle link-training mode.
3110	 * In this case there is requirement to wait for a minimum number of
3111	 * idle patterns to be sent.
3112	 */
3113	if (port == PORT_A)
3114		return;
3115
3116	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3117		     1))
3118		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3119}
3120
3121/* Enable corresponding port and start training pattern 1 */
3122void
3123intel_dp_start_link_train(struct intel_dp *intel_dp)
3124{
3125	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3126	struct drm_device *dev = encoder->dev;
3127	int i;
3128	uint8_t voltage;
3129	int voltage_tries, loop_tries;
3130	uint32_t DP = intel_dp->DP;
3131	uint8_t link_config[2];
3132
3133	if (HAS_DDI(dev))
3134		intel_ddi_prepare_link_retrain(encoder);
3135
3136	/* Write the link configuration data */
3137	link_config[0] = intel_dp->link_bw;
3138	link_config[1] = intel_dp->lane_count;
3139	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3140		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3141	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3142
3143	link_config[0] = 0;
3144	link_config[1] = DP_SET_ANSI_8B10B;
3145	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3146
3147	DP |= DP_PORT_EN;
3148
3149	/* clock recovery */
3150	if (!intel_dp_reset_link_train(intel_dp, &DP,
3151				       DP_TRAINING_PATTERN_1 |
3152				       DP_LINK_SCRAMBLING_DISABLE)) {
3153		DRM_ERROR("failed to enable link training\n");
3154		return;
3155	}
3156
3157	voltage = 0xff;
3158	voltage_tries = 0;
3159	loop_tries = 0;
3160	for (;;) {
3161		uint8_t link_status[DP_LINK_STATUS_SIZE];
3162
3163		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3164		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3165			DRM_ERROR("failed to get link status\n");
3166			break;
3167		}
3168
3169		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3170			DRM_DEBUG_KMS("clock recovery OK\n");
3171			break;
3172		}
3173
3174		/* Check to see if we've tried the max voltage */
3175		for (i = 0; i < intel_dp->lane_count; i++)
3176			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3177				break;
3178		if (i == intel_dp->lane_count) {
3179			++loop_tries;
3180			if (loop_tries == 5) {
3181				DRM_ERROR("too many full retries, give up\n");
3182				break;
3183			}
3184			intel_dp_reset_link_train(intel_dp, &DP,
3185						  DP_TRAINING_PATTERN_1 |
3186						  DP_LINK_SCRAMBLING_DISABLE);
3187			voltage_tries = 0;
3188			continue;
3189		}
3190
3191		/* Check to see if we've tried the same voltage 5 times */
3192		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3193			++voltage_tries;
3194			if (voltage_tries == 5) {
3195				DRM_ERROR("too many voltage retries, give up\n");
3196				break;
3197			}
3198		} else
3199			voltage_tries = 0;
3200		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3201
3202		/* Update training set as requested by target */
3203		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3204			DRM_ERROR("failed to update link training\n");
3205			break;
3206		}
3207	}
3208
3209	intel_dp->DP = DP;
3210}
3211
3212void
3213intel_dp_complete_link_train(struct intel_dp *intel_dp)
3214{
3215	bool channel_eq = false;
3216	int tries, cr_tries;
3217	uint32_t DP = intel_dp->DP;
3218	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3219
3220	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3221	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3222		training_pattern = DP_TRAINING_PATTERN_3;
3223
3224	/* channel equalization */
3225	if (!intel_dp_set_link_train(intel_dp, &DP,
3226				     training_pattern |
3227				     DP_LINK_SCRAMBLING_DISABLE)) {
3228		DRM_ERROR("failed to start channel equalization\n");
3229		return;
3230	}
3231
3232	tries = 0;
3233	cr_tries = 0;
3234	channel_eq = false;
3235	for (;;) {
3236		uint8_t link_status[DP_LINK_STATUS_SIZE];
3237
3238		if (cr_tries > 5) {
3239			DRM_ERROR("failed to train DP, aborting\n");
3240			break;
3241		}
3242
3243		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3244		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3245			DRM_ERROR("failed to get link status\n");
3246			break;
3247		}
3248
3249		/* Make sure clock is still ok */
3250		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3251			intel_dp_start_link_train(intel_dp);
3252			intel_dp_set_link_train(intel_dp, &DP,
3253						training_pattern |
3254						DP_LINK_SCRAMBLING_DISABLE);
3255			cr_tries++;
3256			continue;
3257		}
3258
3259		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3260			channel_eq = true;
3261			break;
3262		}
3263
3264		/* Try 5 times, then try clock recovery if that fails */
3265		if (tries > 5) {
3266			intel_dp_link_down(intel_dp);
3267			intel_dp_start_link_train(intel_dp);
3268			intel_dp_set_link_train(intel_dp, &DP,
3269						training_pattern |
3270						DP_LINK_SCRAMBLING_DISABLE);
3271			tries = 0;
3272			cr_tries++;
3273			continue;
3274		}
3275
3276		/* Update training set as requested by target */
3277		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3278			DRM_ERROR("failed to update link training\n");
3279			break;
3280		}
3281		++tries;
3282	}
3283
3284	intel_dp_set_idle_link_train(intel_dp);
3285
3286	intel_dp->DP = DP;
3287
3288	if (channel_eq)
3289		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3290
3291}
3292
3293void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3294{
3295	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3296				DP_TRAINING_PATTERN_DISABLE);
3297}
3298
3299static void
3300intel_dp_link_down(struct intel_dp *intel_dp)
3301{
3302	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3303	enum port port = intel_dig_port->port;
3304	struct drm_device *dev = intel_dig_port->base.base.dev;
3305	struct drm_i915_private *dev_priv = dev->dev_private;
3306	struct intel_crtc *intel_crtc =
3307		to_intel_crtc(intel_dig_port->base.base.crtc);
3308	uint32_t DP = intel_dp->DP;
3309
3310	if (WARN_ON(HAS_DDI(dev)))
3311		return;
3312
3313	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3314		return;
3315
3316	DRM_DEBUG_KMS("\n");
3317
3318	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3319		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3320		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3321	} else {
3322		if (IS_CHERRYVIEW(dev))
3323			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3324		else
3325			DP &= ~DP_LINK_TRAIN_MASK;
3326		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3327	}
3328	POSTING_READ(intel_dp->output_reg);
3329
3330	if (HAS_PCH_IBX(dev) &&
3331	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3332		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3333
3334		/* Hardware workaround: leaving our transcoder select
3335		 * set to transcoder B while it's off will prevent the
3336		 * corresponding HDMI output on transcoder A.
3337		 *
3338		 * Combine this with another hardware workaround:
3339		 * transcoder select bit can only be cleared while the
3340		 * port is enabled.
3341		 */
3342		DP &= ~DP_PIPEB_SELECT;
3343		I915_WRITE(intel_dp->output_reg, DP);
3344
3345		/* Changes to enable or select take place the vblank
3346		 * after being written.
3347		 */
3348		if (WARN_ON(crtc == NULL)) {
3349			/* We should never try to disable a port without a crtc
3350			 * attached. For paranoia keep the code around for a
3351			 * bit. */
3352			POSTING_READ(intel_dp->output_reg);
3353			msleep(50);
3354		} else
3355			intel_wait_for_vblank(dev, intel_crtc->pipe);
3356	}
3357
3358	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3359	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3360	POSTING_READ(intel_dp->output_reg);
3361	msleep(intel_dp->panel_power_down_delay);
3362}
3363
3364static bool
3365intel_dp_get_dpcd(struct intel_dp *intel_dp)
3366{
3367	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3368	struct drm_device *dev = dig_port->base.base.dev;
3369	struct drm_i915_private *dev_priv = dev->dev_private;
3370
3371	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3372
3373	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3374				    sizeof(intel_dp->dpcd)) < 0)
3375		return false; /* aux transfer failed */
3376
3377	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3378			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3379	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3380
3381	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3382		return false; /* DPCD not present */
3383
3384	/* Check if the panel supports PSR */
3385	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3386	if (is_edp(intel_dp)) {
3387		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3388					intel_dp->psr_dpcd,
3389					sizeof(intel_dp->psr_dpcd));
3390		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3391			dev_priv->psr.sink_support = true;
3392			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3393		}
3394	}
3395
3396	/* Training Pattern 3 support */
3397	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3398	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3399		intel_dp->use_tps3 = true;
3400		DRM_DEBUG_KMS("Displayport TPS3 supported");
3401	} else
3402		intel_dp->use_tps3 = false;
3403
3404	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3405	      DP_DWN_STRM_PORT_PRESENT))
3406		return true; /* native DP sink */
3407
3408	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3409		return true; /* no per-port downstream info */
3410
3411	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3412				    intel_dp->downstream_ports,
3413				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3414		return false; /* downstream port status fetch failed */
3415
3416	return true;
3417}
3418
3419static void
3420intel_dp_probe_oui(struct intel_dp *intel_dp)
3421{
3422	u8 buf[3];
3423
3424	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3425		return;
3426
3427	intel_edp_panel_vdd_on(intel_dp);
3428
3429	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3430		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3431			      buf[0], buf[1], buf[2]);
3432
3433	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3434		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3435			      buf[0], buf[1], buf[2]);
3436
3437	intel_edp_panel_vdd_off(intel_dp, false);
3438}
3439
3440static bool
3441intel_dp_probe_mst(struct intel_dp *intel_dp)
3442{
3443	u8 buf[1];
3444
3445	if (!intel_dp->can_mst)
3446		return false;
3447
3448	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3449		return false;
3450
3451	intel_edp_panel_vdd_on(intel_dp);
3452	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3453		if (buf[0] & DP_MST_CAP) {
3454			DRM_DEBUG_KMS("Sink is MST capable\n");
3455			intel_dp->is_mst = true;
3456		} else {
3457			DRM_DEBUG_KMS("Sink is not MST capable\n");
3458			intel_dp->is_mst = false;
3459		}
3460	}
3461	intel_edp_panel_vdd_off(intel_dp, false);
3462
3463	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3464	return intel_dp->is_mst;
3465}
3466
3467int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3468{
3469	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3470	struct drm_device *dev = intel_dig_port->base.base.dev;
3471	struct intel_crtc *intel_crtc =
3472		to_intel_crtc(intel_dig_port->base.base.crtc);
3473	u8 buf[1];
3474
3475	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3476		return -EAGAIN;
3477
3478	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3479		return -ENOTTY;
3480
3481	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3482			       DP_TEST_SINK_START) < 0)
3483		return -EAGAIN;
3484
3485	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3486	intel_wait_for_vblank(dev, intel_crtc->pipe);
3487	intel_wait_for_vblank(dev, intel_crtc->pipe);
3488
3489	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3490		return -EAGAIN;
3491
3492	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3493	return 0;
3494}
3495
3496static bool
3497intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3498{
3499	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3500				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3501				       sink_irq_vector, 1) == 1;
3502}
3503
3504static bool
3505intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3506{
3507	int ret;
3508
3509	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3510					     DP_SINK_COUNT_ESI,
3511					     sink_irq_vector, 14);
3512	if (ret != 14)
3513		return false;
3514
3515	return true;
3516}
3517
3518static void
3519intel_dp_handle_test_request(struct intel_dp *intel_dp)
3520{
3521	/* NAK by default */
3522	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3523}
3524
3525static int
3526intel_dp_check_mst_status(struct intel_dp *intel_dp)
3527{
3528	bool bret;
3529
3530	if (intel_dp->is_mst) {
3531		u8 esi[16] = { 0 };
3532		int ret = 0;
3533		int retry;
3534		bool handled;
3535		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3536go_again:
3537		if (bret == true) {
3538
3539			/* check link status - esi[10] = 0x200c */
3540			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3541				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3542				intel_dp_start_link_train(intel_dp);
3543				intel_dp_complete_link_train(intel_dp);
3544				intel_dp_stop_link_train(intel_dp);
3545			}
3546
3547			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3548			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3549
3550			if (handled) {
3551				for (retry = 0; retry < 3; retry++) {
3552					int wret;
3553					wret = drm_dp_dpcd_write(&intel_dp->aux,
3554								 DP_SINK_COUNT_ESI+1,
3555								 &esi[1], 3);
3556					if (wret == 3) {
3557						break;
3558					}
3559				}
3560
3561				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3562				if (bret == true) {
3563					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3564					goto go_again;
3565				}
3566			} else
3567				ret = 0;
3568
3569			return ret;
3570		} else {
3571			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3572			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3573			intel_dp->is_mst = false;
3574			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3575			/* send a hotplug event */
3576			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3577		}
3578	}
3579	return -EINVAL;
3580}
3581
3582/*
3583 * According to DP spec
3584 * 5.1.2:
3585 *  1. Read DPCD
3586 *  2. Configure link according to Receiver Capabilities
3587 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3588 *  4. Check link status on receipt of hot-plug interrupt
3589 */
3590void
3591intel_dp_check_link_status(struct intel_dp *intel_dp)
3592{
3593	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3594	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3595	u8 sink_irq_vector;
3596	u8 link_status[DP_LINK_STATUS_SIZE];
3597
3598	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3599
3600	if (!intel_encoder->connectors_active)
3601		return;
3602
3603	if (WARN_ON(!intel_encoder->base.crtc))
3604		return;
3605
3606	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3607		return;
3608
3609	/* Try to read receiver status if the link appears to be up */
3610	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3611		return;
3612	}
3613
3614	/* Now read the DPCD to see if it's actually running */
3615	if (!intel_dp_get_dpcd(intel_dp)) {
3616		return;
3617	}
3618
3619	/* Try to read the source of the interrupt */
3620	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3621	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3622		/* Clear interrupt source */
3623		drm_dp_dpcd_writeb(&intel_dp->aux,
3624				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3625				   sink_irq_vector);
3626
3627		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3628			intel_dp_handle_test_request(intel_dp);
3629		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3630			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3631	}
3632
3633	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3634		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3635			      intel_encoder->base.name);
3636		intel_dp_start_link_train(intel_dp);
3637		intel_dp_complete_link_train(intel_dp);
3638		intel_dp_stop_link_train(intel_dp);
3639	}
3640}
3641
3642/* XXX this is probably wrong for multiple downstream ports */
3643static enum drm_connector_status
3644intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3645{
3646	uint8_t *dpcd = intel_dp->dpcd;
3647	uint8_t type;
3648
3649	if (!intel_dp_get_dpcd(intel_dp))
3650		return connector_status_disconnected;
3651
3652	/* if there's no downstream port, we're done */
3653	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3654		return connector_status_connected;
3655
3656	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3657	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3658	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3659		uint8_t reg;
3660
3661		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3662					    &reg, 1) < 0)
3663			return connector_status_unknown;
3664
3665		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3666					      : connector_status_disconnected;
3667	}
3668
3669	/* If no HPD, poke DDC gently */
3670	if (drm_probe_ddc(&intel_dp->aux.ddc))
3671		return connector_status_connected;
3672
3673	/* Well we tried, say unknown for unreliable port types */
3674	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3675		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3676		if (type == DP_DS_PORT_TYPE_VGA ||
3677		    type == DP_DS_PORT_TYPE_NON_EDID)
3678			return connector_status_unknown;
3679	} else {
3680		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3681			DP_DWN_STRM_PORT_TYPE_MASK;
3682		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3683		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3684			return connector_status_unknown;
3685	}
3686
3687	/* Anything else is out of spec, warn and ignore */
3688	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3689	return connector_status_disconnected;
3690}
3691
3692static enum drm_connector_status
3693ironlake_dp_detect(struct intel_dp *intel_dp)
3694{
3695	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3696	struct drm_i915_private *dev_priv = dev->dev_private;
3697	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3698	enum drm_connector_status status;
3699
3700	/* Can't disconnect eDP, but you can close the lid... */
3701	if (is_edp(intel_dp)) {
3702		status = intel_panel_detect(dev);
3703		if (status == connector_status_unknown)
3704			status = connector_status_connected;
3705		return status;
3706	}
3707
3708	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3709		return connector_status_disconnected;
3710
3711	return intel_dp_detect_dpcd(intel_dp);
3712}
3713
3714static enum drm_connector_status
3715g4x_dp_detect(struct intel_dp *intel_dp)
3716{
3717	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3718	struct drm_i915_private *dev_priv = dev->dev_private;
3719	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3720	uint32_t bit;
3721
3722	/* Can't disconnect eDP, but you can close the lid... */
3723	if (is_edp(intel_dp)) {
3724		enum drm_connector_status status;
3725
3726		status = intel_panel_detect(dev);
3727		if (status == connector_status_unknown)
3728			status = connector_status_connected;
3729		return status;
3730	}
3731
3732	if (IS_VALLEYVIEW(dev)) {
3733		switch (intel_dig_port->port) {
3734		case PORT_B:
3735			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3736			break;
3737		case PORT_C:
3738			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3739			break;
3740		case PORT_D:
3741			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3742			break;
3743		default:
3744			return connector_status_unknown;
3745		}
3746	} else {
3747		switch (intel_dig_port->port) {
3748		case PORT_B:
3749			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3750			break;
3751		case PORT_C:
3752			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3753			break;
3754		case PORT_D:
3755			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3756			break;
3757		default:
3758			return connector_status_unknown;
3759		}
3760	}
3761
3762	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3763		return connector_status_disconnected;
3764
3765	return intel_dp_detect_dpcd(intel_dp);
3766}
3767
3768static struct edid *
3769intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3770{
3771	struct intel_connector *intel_connector = to_intel_connector(connector);
3772
3773	/* use cached edid if we have one */
3774	if (intel_connector->edid) {
3775		/* invalid edid */
3776		if (IS_ERR(intel_connector->edid))
3777			return NULL;
3778
3779		return drm_edid_duplicate(intel_connector->edid);
3780	}
3781
3782	return drm_get_edid(connector, adapter);
3783}
3784
3785static int
3786intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3787{
3788	struct intel_connector *intel_connector = to_intel_connector(connector);
3789
3790	/* use cached edid if we have one */
3791	if (intel_connector->edid) {
3792		/* invalid edid */
3793		if (IS_ERR(intel_connector->edid))
3794			return 0;
3795
3796		return intel_connector_update_modes(connector,
3797						    intel_connector->edid);
3798	}
3799
3800	return intel_ddc_get_modes(connector, adapter);
3801}
3802
3803static enum drm_connector_status
3804intel_dp_detect(struct drm_connector *connector, bool force)
3805{
3806	struct intel_dp *intel_dp = intel_attached_dp(connector);
3807	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3808	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3809	struct drm_device *dev = connector->dev;
3810	struct drm_i915_private *dev_priv = dev->dev_private;
3811	enum drm_connector_status status;
3812	enum intel_display_power_domain power_domain;
3813	struct edid *edid = NULL;
3814	bool ret;
3815
3816	power_domain = intel_display_port_power_domain(intel_encoder);
3817	intel_display_power_get(dev_priv, power_domain);
3818
3819	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3820		      connector->base.id, connector->name);
3821
3822	if (intel_dp->is_mst) {
3823		/* MST devices are disconnected from a monitor POV */
3824		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3825			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3826		status = connector_status_disconnected;
3827		goto out;
3828	}
3829
3830	intel_dp->has_audio = false;
3831
3832	if (HAS_PCH_SPLIT(dev))
3833		status = ironlake_dp_detect(intel_dp);
3834	else
3835		status = g4x_dp_detect(intel_dp);
3836
3837	if (status != connector_status_connected)
3838		goto out;
3839
3840	intel_dp_probe_oui(intel_dp);
3841
3842	ret = intel_dp_probe_mst(intel_dp);
3843	if (ret) {
3844		/* if we are in MST mode then this connector
3845		   won't appear connected or have anything with EDID on it */
3846		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3847			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3848		status = connector_status_disconnected;
3849		goto out;
3850	}
3851
3852	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3853		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3854	} else {
3855		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3856		if (edid) {
3857			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3858			kfree(edid);
3859		}
3860	}
3861
3862	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3863		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3864	status = connector_status_connected;
3865
3866out:
3867	intel_display_power_put(dev_priv, power_domain);
3868	return status;
3869}
3870
3871static int intel_dp_get_modes(struct drm_connector *connector)
3872{
3873	struct intel_dp *intel_dp = intel_attached_dp(connector);
3874	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3875	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3876	struct intel_connector *intel_connector = to_intel_connector(connector);
3877	struct drm_device *dev = connector->dev;
3878	struct drm_i915_private *dev_priv = dev->dev_private;
3879	enum intel_display_power_domain power_domain;
3880	int ret;
3881
3882	/* We should parse the EDID data and find out if it has an audio sink
3883	 */
3884
3885	power_domain = intel_display_port_power_domain(intel_encoder);
3886	intel_display_power_get(dev_priv, power_domain);
3887
3888	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3889	intel_display_power_put(dev_priv, power_domain);
3890	if (ret)
3891		return ret;
3892
3893	/* if eDP has no EDID, fall back to fixed mode */
3894	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3895		struct drm_display_mode *mode;
3896		mode = drm_mode_duplicate(dev,
3897					  intel_connector->panel.fixed_mode);
3898		if (mode) {
3899			drm_mode_probed_add(connector, mode);
3900			return 1;
3901		}
3902	}
3903	return 0;
3904}
3905
3906static bool
3907intel_dp_detect_audio(struct drm_connector *connector)
3908{
3909	struct intel_dp *intel_dp = intel_attached_dp(connector);
3910	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3911	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3912	struct drm_device *dev = connector->dev;
3913	struct drm_i915_private *dev_priv = dev->dev_private;
3914	enum intel_display_power_domain power_domain;
3915	struct edid *edid;
3916	bool has_audio = false;
3917
3918	power_domain = intel_display_port_power_domain(intel_encoder);
3919	intel_display_power_get(dev_priv, power_domain);
3920
3921	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3922	if (edid) {
3923		has_audio = drm_detect_monitor_audio(edid);
3924		kfree(edid);
3925	}
3926
3927	intel_display_power_put(dev_priv, power_domain);
3928
3929	return has_audio;
3930}
3931
3932static int
3933intel_dp_set_property(struct drm_connector *connector,
3934		      struct drm_property *property,
3935		      uint64_t val)
3936{
3937	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3938	struct intel_connector *intel_connector = to_intel_connector(connector);
3939	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3940	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3941	int ret;
3942
3943	ret = drm_object_property_set_value(&connector->base, property, val);
3944	if (ret)
3945		return ret;
3946
3947	if (property == dev_priv->force_audio_property) {
3948		int i = val;
3949		bool has_audio;
3950
3951		if (i == intel_dp->force_audio)
3952			return 0;
3953
3954		intel_dp->force_audio = i;
3955
3956		if (i == HDMI_AUDIO_AUTO)
3957			has_audio = intel_dp_detect_audio(connector);
3958		else
3959			has_audio = (i == HDMI_AUDIO_ON);
3960
3961		if (has_audio == intel_dp->has_audio)
3962			return 0;
3963
3964		intel_dp->has_audio = has_audio;
3965		goto done;
3966	}
3967
3968	if (property == dev_priv->broadcast_rgb_property) {
3969		bool old_auto = intel_dp->color_range_auto;
3970		uint32_t old_range = intel_dp->color_range;
3971
3972		switch (val) {
3973		case INTEL_BROADCAST_RGB_AUTO:
3974			intel_dp->color_range_auto = true;
3975			break;
3976		case INTEL_BROADCAST_RGB_FULL:
3977			intel_dp->color_range_auto = false;
3978			intel_dp->color_range = 0;
3979			break;
3980		case INTEL_BROADCAST_RGB_LIMITED:
3981			intel_dp->color_range_auto = false;
3982			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3983			break;
3984		default:
3985			return -EINVAL;
3986		}
3987
3988		if (old_auto == intel_dp->color_range_auto &&
3989		    old_range == intel_dp->color_range)
3990			return 0;
3991
3992		goto done;
3993	}
3994
3995	if (is_edp(intel_dp) &&
3996	    property == connector->dev->mode_config.scaling_mode_property) {
3997		if (val == DRM_MODE_SCALE_NONE) {
3998			DRM_DEBUG_KMS("no scaling not supported\n");
3999			return -EINVAL;
4000		}
4001
4002		if (intel_connector->panel.fitting_mode == val) {
4003			/* the eDP scaling property is not changed */
4004			return 0;
4005		}
4006		intel_connector->panel.fitting_mode = val;
4007
4008		goto done;
4009	}
4010
4011	return -EINVAL;
4012
4013done:
4014	if (intel_encoder->base.crtc)
4015		intel_crtc_restore_mode(intel_encoder->base.crtc);
4016
4017	return 0;
4018}
4019
4020static void
4021intel_dp_connector_destroy(struct drm_connector *connector)
4022{
4023	struct intel_connector *intel_connector = to_intel_connector(connector);
4024
4025	if (!IS_ERR_OR_NULL(intel_connector->edid))
4026		kfree(intel_connector->edid);
4027
4028	/* Can't call is_edp() since the encoder may have been destroyed
4029	 * already. */
4030	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4031		intel_panel_fini(&intel_connector->panel);
4032
4033	drm_connector_cleanup(connector);
4034	kfree(connector);
4035}
4036
4037void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4038{
4039	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4040	struct intel_dp *intel_dp = &intel_dig_port->dp;
4041	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4042
4043	drm_dp_aux_unregister(&intel_dp->aux);
4044	intel_dp_mst_encoder_cleanup(intel_dig_port);
4045	drm_encoder_cleanup(encoder);
4046	if (is_edp(intel_dp)) {
4047		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4048		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4049		edp_panel_vdd_off_sync(intel_dp);
4050		drm_modeset_unlock(&dev->mode_config.connection_mutex);
4051		if (intel_dp->edp_notifier.notifier_call) {
4052			unregister_reboot_notifier(&intel_dp->edp_notifier);
4053			intel_dp->edp_notifier.notifier_call = NULL;
4054		}
4055	}
4056	kfree(intel_dig_port);
4057}
4058
4059static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4060{
4061	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4062
4063	if (!is_edp(intel_dp))
4064		return;
4065
4066	edp_panel_vdd_off_sync(intel_dp);
4067}
4068
4069static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4070{
4071	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4072}
4073
4074static const struct drm_connector_funcs intel_dp_connector_funcs = {
4075	.dpms = intel_connector_dpms,
4076	.detect = intel_dp_detect,
4077	.fill_modes = drm_helper_probe_single_connector_modes,
4078	.set_property = intel_dp_set_property,
4079	.destroy = intel_dp_connector_destroy,
4080};
4081
4082static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4083	.get_modes = intel_dp_get_modes,
4084	.mode_valid = intel_dp_mode_valid,
4085	.best_encoder = intel_best_encoder,
4086};
4087
4088static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4089	.reset = intel_dp_encoder_reset,
4090	.destroy = intel_dp_encoder_destroy,
4091};
4092
4093void
4094intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4095{
4096	return;
4097}
4098
4099bool
4100intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4101{
4102	struct intel_dp *intel_dp = &intel_dig_port->dp;
4103	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4104	struct drm_device *dev = intel_dig_port->base.base.dev;
4105	struct drm_i915_private *dev_priv = dev->dev_private;
4106	enum intel_display_power_domain power_domain;
4107	bool ret = true;
4108
4109	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4110		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4111
4112	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4113		      port_name(intel_dig_port->port),
4114		      long_hpd ? "long" : "short");
4115
4116	power_domain = intel_display_port_power_domain(intel_encoder);
4117	intel_display_power_get(dev_priv, power_domain);
4118
4119	if (long_hpd) {
4120		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4121			goto mst_fail;
4122
4123		if (!intel_dp_get_dpcd(intel_dp)) {
4124			goto mst_fail;
4125		}
4126
4127		intel_dp_probe_oui(intel_dp);
4128
4129		if (!intel_dp_probe_mst(intel_dp))
4130			goto mst_fail;
4131
4132	} else {
4133		if (intel_dp->is_mst) {
4134			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4135				goto mst_fail;
4136		}
4137
4138		if (!intel_dp->is_mst) {
4139			/*
4140			 * we'll check the link status via the normal hot plug path later -
4141			 * but for short hpds we should check it now
4142			 */
4143			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4144			intel_dp_check_link_status(intel_dp);
4145			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4146		}
4147	}
4148	ret = false;
4149	goto put_power;
4150mst_fail:
4151	/* if we were in MST mode, and device is not there get out of MST mode */
4152	if (intel_dp->is_mst) {
4153		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4154		intel_dp->is_mst = false;
4155		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4156	}
4157put_power:
4158	intel_display_power_put(dev_priv, power_domain);
4159
4160	return ret;
4161}
4162
4163/* Return which DP Port should be selected for Transcoder DP control */
4164int
4165intel_trans_dp_port_sel(struct drm_crtc *crtc)
4166{
4167	struct drm_device *dev = crtc->dev;
4168	struct intel_encoder *intel_encoder;
4169	struct intel_dp *intel_dp;
4170
4171	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4172		intel_dp = enc_to_intel_dp(&intel_encoder->base);
4173
4174		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4175		    intel_encoder->type == INTEL_OUTPUT_EDP)
4176			return intel_dp->output_reg;
4177	}
4178
4179	return -1;
4180}
4181
4182/* check the VBT to see whether the eDP is on DP-D port */
4183bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4184{
4185	struct drm_i915_private *dev_priv = dev->dev_private;
4186	union child_device_config *p_child;
4187	int i;
4188	static const short port_mapping[] = {
4189		[PORT_B] = PORT_IDPB,
4190		[PORT_C] = PORT_IDPC,
4191		[PORT_D] = PORT_IDPD,
4192	};
4193
4194	if (port == PORT_A)
4195		return true;
4196
4197	if (!dev_priv->vbt.child_dev_num)
4198		return false;
4199
4200	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4201		p_child = dev_priv->vbt.child_dev + i;
4202
4203		if (p_child->common.dvo_port == port_mapping[port] &&
4204		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4205		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4206			return true;
4207	}
4208	return false;
4209}
4210
4211void
4212intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4213{
4214	struct intel_connector *intel_connector = to_intel_connector(connector);
4215
4216	intel_attach_force_audio_property(connector);
4217	intel_attach_broadcast_rgb_property(connector);
4218	intel_dp->color_range_auto = true;
4219
4220	if (is_edp(intel_dp)) {
4221		drm_mode_create_scaling_mode_property(connector->dev);
4222		drm_object_attach_property(
4223			&connector->base,
4224			connector->dev->mode_config.scaling_mode_property,
4225			DRM_MODE_SCALE_ASPECT);
4226		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4227	}
4228}
4229
4230static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4231{
4232	intel_dp->last_power_cycle = jiffies;
4233	intel_dp->last_power_on = jiffies;
4234	intel_dp->last_backlight_off = jiffies;
4235}
4236
4237static void
4238intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4239				    struct intel_dp *intel_dp,
4240				    struct edp_power_seq *out)
4241{
4242	struct drm_i915_private *dev_priv = dev->dev_private;
4243	struct edp_power_seq cur, vbt, spec, final;
4244	u32 pp_on, pp_off, pp_div, pp;
4245	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4246
4247	if (HAS_PCH_SPLIT(dev)) {
4248		pp_ctrl_reg = PCH_PP_CONTROL;
4249		pp_on_reg = PCH_PP_ON_DELAYS;
4250		pp_off_reg = PCH_PP_OFF_DELAYS;
4251		pp_div_reg = PCH_PP_DIVISOR;
4252	} else {
4253		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4254
4255		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4256		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4257		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4258		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4259	}
4260
4261	/* Workaround: Need to write PP_CONTROL with the unlock key as
4262	 * the very first thing. */
4263	pp = ironlake_get_pp_control(intel_dp);
4264	I915_WRITE(pp_ctrl_reg, pp);
4265
4266	pp_on = I915_READ(pp_on_reg);
4267	pp_off = I915_READ(pp_off_reg);
4268	pp_div = I915_READ(pp_div_reg);
4269
4270	/* Pull timing values out of registers */
4271	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4272		PANEL_POWER_UP_DELAY_SHIFT;
4273
4274	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4275		PANEL_LIGHT_ON_DELAY_SHIFT;
4276
4277	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4278		PANEL_LIGHT_OFF_DELAY_SHIFT;
4279
4280	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4281		PANEL_POWER_DOWN_DELAY_SHIFT;
4282
4283	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4284		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4285
4286	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4287		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4288
4289	vbt = dev_priv->vbt.edp_pps;
4290
4291	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4292	 * our hw here, which are all in 100usec. */
4293	spec.t1_t3 = 210 * 10;
4294	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4295	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4296	spec.t10 = 500 * 10;
4297	/* This one is special and actually in units of 100ms, but zero
4298	 * based in the hw (so we need to add 100 ms). But the sw vbt
4299	 * table multiplies it with 1000 to make it in units of 100usec,
4300	 * too. */
4301	spec.t11_t12 = (510 + 100) * 10;
4302
4303	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4304		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4305
4306	/* Use the max of the register settings and vbt. If both are
4307	 * unset, fall back to the spec limits. */
4308#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4309				       spec.field : \
4310				       max(cur.field, vbt.field))
4311	assign_final(t1_t3);
4312	assign_final(t8);
4313	assign_final(t9);
4314	assign_final(t10);
4315	assign_final(t11_t12);
4316#undef assign_final
4317
4318#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4319	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4320	intel_dp->backlight_on_delay = get_delay(t8);
4321	intel_dp->backlight_off_delay = get_delay(t9);
4322	intel_dp->panel_power_down_delay = get_delay(t10);
4323	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4324#undef get_delay
4325
4326	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4327		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4328		      intel_dp->panel_power_cycle_delay);
4329
4330	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4331		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4332
4333	if (out)
4334		*out = final;
4335}
4336
4337static void
4338intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4339					      struct intel_dp *intel_dp,
4340					      struct edp_power_seq *seq)
4341{
4342	struct drm_i915_private *dev_priv = dev->dev_private;
4343	u32 pp_on, pp_off, pp_div, port_sel = 0;
4344	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4345	int pp_on_reg, pp_off_reg, pp_div_reg;
4346	enum port port = dp_to_dig_port(intel_dp)->port;
4347
4348	if (HAS_PCH_SPLIT(dev)) {
4349		pp_on_reg = PCH_PP_ON_DELAYS;
4350		pp_off_reg = PCH_PP_OFF_DELAYS;
4351		pp_div_reg = PCH_PP_DIVISOR;
4352	} else {
4353		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4354
4355		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4356		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4357		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4358	}
4359
4360	/*
4361	 * And finally store the new values in the power sequencer. The
4362	 * backlight delays are set to 1 because we do manual waits on them. For
4363	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4364	 * we'll end up waiting for the backlight off delay twice: once when we
4365	 * do the manual sleep, and once when we disable the panel and wait for
4366	 * the PP_STATUS bit to become zero.
4367	 */
4368	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4369		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4370	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4371		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4372	/* Compute the divisor for the pp clock, simply match the Bspec
4373	 * formula. */
4374	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4375	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4376			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4377
4378	/* Haswell doesn't have any port selection bits for the panel
4379	 * power sequencer any more. */
4380	if (IS_VALLEYVIEW(dev)) {
4381		port_sel = PANEL_PORT_SELECT_VLV(port);
4382	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4383		if (port == PORT_A)
4384			port_sel = PANEL_PORT_SELECT_DPA;
4385		else
4386			port_sel = PANEL_PORT_SELECT_DPD;
4387	}
4388
4389	pp_on |= port_sel;
4390
4391	I915_WRITE(pp_on_reg, pp_on);
4392	I915_WRITE(pp_off_reg, pp_off);
4393	I915_WRITE(pp_div_reg, pp_div);
4394
4395	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4396		      I915_READ(pp_on_reg),
4397		      I915_READ(pp_off_reg),
4398		      I915_READ(pp_div_reg));
4399}
4400
4401void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4402{
4403	struct drm_i915_private *dev_priv = dev->dev_private;
4404	struct intel_encoder *encoder;
4405	struct intel_dp *intel_dp = NULL;
4406	struct intel_crtc_config *config = NULL;
4407	struct intel_crtc *intel_crtc = NULL;
4408	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4409	u32 reg, val;
4410	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4411
4412	if (refresh_rate <= 0) {
4413		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4414		return;
4415	}
4416
4417	if (intel_connector == NULL) {
4418		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4419		return;
4420	}
4421
4422	/*
4423	 * FIXME: This needs proper synchronization with psr state. But really
4424	 * hard to tell without seeing the user of this function of this code.
4425	 * Check locking and ordering once that lands.
4426	 */
4427	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4428		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4429		return;
4430	}
4431
4432	encoder = intel_attached_encoder(&intel_connector->base);
4433	intel_dp = enc_to_intel_dp(&encoder->base);
4434	intel_crtc = encoder->new_crtc;
4435
4436	if (!intel_crtc) {
4437		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4438		return;
4439	}
4440
4441	config = &intel_crtc->config;
4442
4443	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4444		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4445		return;
4446	}
4447
4448	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4449		index = DRRS_LOW_RR;
4450
4451	if (index == intel_dp->drrs_state.refresh_rate_type) {
4452		DRM_DEBUG_KMS(
4453			"DRRS requested for previously set RR...ignoring\n");
4454		return;
4455	}
4456
4457	if (!intel_crtc->active) {
4458		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4459		return;
4460	}
4461
4462	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4463		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4464		val = I915_READ(reg);
4465		if (index > DRRS_HIGH_RR) {
4466			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4467			intel_dp_set_m_n(intel_crtc);
4468		} else {
4469			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4470		}
4471		I915_WRITE(reg, val);
4472	}
4473
4474	/*
4475	 * mutex taken to ensure that there is no race between differnt
4476	 * drrs calls trying to update refresh rate. This scenario may occur
4477	 * in future when idleness detection based DRRS in kernel and
4478	 * possible calls from user space to set differnt RR are made.
4479	 */
4480
4481	mutex_lock(&intel_dp->drrs_state.mutex);
4482
4483	intel_dp->drrs_state.refresh_rate_type = index;
4484
4485	mutex_unlock(&intel_dp->drrs_state.mutex);
4486
4487	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4488}
4489
4490static struct drm_display_mode *
4491intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4492			struct intel_connector *intel_connector,
4493			struct drm_display_mode *fixed_mode)
4494{
4495	struct drm_connector *connector = &intel_connector->base;
4496	struct intel_dp *intel_dp = &intel_dig_port->dp;
4497	struct drm_device *dev = intel_dig_port->base.base.dev;
4498	struct drm_i915_private *dev_priv = dev->dev_private;
4499	struct drm_display_mode *downclock_mode = NULL;
4500
4501	if (INTEL_INFO(dev)->gen <= 6) {
4502		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4503		return NULL;
4504	}
4505
4506	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4507		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4508		return NULL;
4509	}
4510
4511	downclock_mode = intel_find_panel_downclock
4512					(dev, fixed_mode, connector);
4513
4514	if (!downclock_mode) {
4515		DRM_DEBUG_KMS("DRRS not supported\n");
4516		return NULL;
4517	}
4518
4519	dev_priv->drrs.connector = intel_connector;
4520
4521	mutex_init(&intel_dp->drrs_state.mutex);
4522
4523	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4524
4525	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4526	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4527	return downclock_mode;
4528}
4529
4530void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4531{
4532	struct drm_device *dev = intel_encoder->base.dev;
4533	struct drm_i915_private *dev_priv = dev->dev_private;
4534	struct intel_dp *intel_dp;
4535	enum intel_display_power_domain power_domain;
4536
4537	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4538		return;
4539
4540	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4541	if (!edp_have_panel_vdd(intel_dp))
4542		return;
4543	/*
4544	 * The VDD bit needs a power domain reference, so if the bit is
4545	 * already enabled when we boot or resume, grab this reference and
4546	 * schedule a vdd off, so we don't hold on to the reference
4547	 * indefinitely.
4548	 */
4549	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4550	power_domain = intel_display_port_power_domain(intel_encoder);
4551	intel_display_power_get(dev_priv, power_domain);
4552
4553	edp_panel_vdd_schedule_off(intel_dp);
4554}
4555
4556static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4557				     struct intel_connector *intel_connector,
4558				     struct edp_power_seq *power_seq)
4559{
4560	struct drm_connector *connector = &intel_connector->base;
4561	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4562	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4563	struct drm_device *dev = intel_encoder->base.dev;
4564	struct drm_i915_private *dev_priv = dev->dev_private;
4565	struct drm_display_mode *fixed_mode = NULL;
4566	struct drm_display_mode *downclock_mode = NULL;
4567	bool has_dpcd;
4568	struct drm_display_mode *scan;
4569	struct edid *edid;
4570
4571	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4572
4573	if (!is_edp(intel_dp))
4574		return true;
4575
4576	intel_edp_panel_vdd_sanitize(intel_encoder);
4577
4578	/* Cache DPCD and EDID for edp. */
4579	intel_edp_panel_vdd_on(intel_dp);
4580	has_dpcd = intel_dp_get_dpcd(intel_dp);
4581	intel_edp_panel_vdd_off(intel_dp, false);
4582
4583	if (has_dpcd) {
4584		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4585			dev_priv->no_aux_handshake =
4586				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4587				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4588	} else {
4589		/* if this fails, presume the device is a ghost */
4590		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4591		return false;
4592	}
4593
4594	/* We now know it's not a ghost, init power sequence regs. */
4595	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4596
4597	mutex_lock(&dev->mode_config.mutex);
4598	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4599	if (edid) {
4600		if (drm_add_edid_modes(connector, edid)) {
4601			drm_mode_connector_update_edid_property(connector,
4602								edid);
4603			drm_edid_to_eld(connector, edid);
4604		} else {
4605			kfree(edid);
4606			edid = ERR_PTR(-EINVAL);
4607		}
4608	} else {
4609		edid = ERR_PTR(-ENOENT);
4610	}
4611	intel_connector->edid = edid;
4612
4613	/* prefer fixed mode from EDID if available */
4614	list_for_each_entry(scan, &connector->probed_modes, head) {
4615		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4616			fixed_mode = drm_mode_duplicate(dev, scan);
4617			downclock_mode = intel_dp_drrs_init(
4618						intel_dig_port,
4619						intel_connector, fixed_mode);
4620			break;
4621		}
4622	}
4623
4624	/* fallback to VBT if available for eDP */
4625	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4626		fixed_mode = drm_mode_duplicate(dev,
4627					dev_priv->vbt.lfp_lvds_vbt_mode);
4628		if (fixed_mode)
4629			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4630	}
4631	mutex_unlock(&dev->mode_config.mutex);
4632
4633	if (IS_VALLEYVIEW(dev)) {
4634		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4635		register_reboot_notifier(&intel_dp->edp_notifier);
4636	}
4637
4638	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4639	intel_connector->panel.backlight_power = intel_edp_backlight_power;
4640	intel_panel_setup_backlight(connector);
4641
4642	return true;
4643}
4644
4645bool
4646intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4647			struct intel_connector *intel_connector)
4648{
4649	struct drm_connector *connector = &intel_connector->base;
4650	struct intel_dp *intel_dp = &intel_dig_port->dp;
4651	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4652	struct drm_device *dev = intel_encoder->base.dev;
4653	struct drm_i915_private *dev_priv = dev->dev_private;
4654	enum port port = intel_dig_port->port;
4655	struct edp_power_seq power_seq = { 0 };
4656	int type;
4657
4658	/* intel_dp vfuncs */
4659	if (IS_VALLEYVIEW(dev))
4660		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4661	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4662		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4663	else if (HAS_PCH_SPLIT(dev))
4664		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4665	else
4666		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4667
4668	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4669
4670	/* Preserve the current hw state. */
4671	intel_dp->DP = I915_READ(intel_dp->output_reg);
4672	intel_dp->attached_connector = intel_connector;
4673
4674	if (intel_dp_is_edp(dev, port))
4675		type = DRM_MODE_CONNECTOR_eDP;
4676	else
4677		type = DRM_MODE_CONNECTOR_DisplayPort;
4678
4679	/*
4680	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4681	 * for DP the encoder type can be set by the caller to
4682	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4683	 */
4684	if (type == DRM_MODE_CONNECTOR_eDP)
4685		intel_encoder->type = INTEL_OUTPUT_EDP;
4686
4687	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4688			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4689			port_name(port));
4690
4691	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4692	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4693
4694	connector->interlace_allowed = true;
4695	connector->doublescan_allowed = 0;
4696
4697	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4698			  edp_panel_vdd_work);
4699
4700	intel_connector_attach_encoder(intel_connector, intel_encoder);
4701	drm_connector_register(connector);
4702
4703	if (HAS_DDI(dev))
4704		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4705	else
4706		intel_connector->get_hw_state = intel_connector_get_hw_state;
4707	intel_connector->unregister = intel_dp_connector_unregister;
4708
4709	/* Set up the hotplug pin. */
4710	switch (port) {
4711	case PORT_A:
4712		intel_encoder->hpd_pin = HPD_PORT_A;
4713		break;
4714	case PORT_B:
4715		intel_encoder->hpd_pin = HPD_PORT_B;
4716		break;
4717	case PORT_C:
4718		intel_encoder->hpd_pin = HPD_PORT_C;
4719		break;
4720	case PORT_D:
4721		intel_encoder->hpd_pin = HPD_PORT_D;
4722		break;
4723	default:
4724		BUG();
4725	}
4726
4727	if (is_edp(intel_dp)) {
4728		intel_dp_init_panel_power_timestamps(intel_dp);
4729		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4730	}
4731
4732	intel_dp_aux_init(intel_dp, intel_connector);
4733
4734	/* init MST on ports that can support it */
4735	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4736		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4737			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4738		}
4739	}
4740
4741	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4742		drm_dp_aux_unregister(&intel_dp->aux);
4743		if (is_edp(intel_dp)) {
4744			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4745			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4746			edp_panel_vdd_off_sync(intel_dp);
4747			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4748		}
4749		drm_connector_unregister(connector);
4750		drm_connector_cleanup(connector);
4751		return false;
4752	}
4753
4754	intel_dp_add_properties(intel_dp, connector);
4755
4756	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4757	 * 0xd.  Failure to do so will result in spurious interrupts being
4758	 * generated on the port when a cable is not attached.
4759	 */
4760	if (IS_G4X(dev) && !IS_GM45(dev)) {
4761		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4762		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4763	}
4764
4765	return true;
4766}
4767
4768void
4769intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4770{
4771	struct drm_i915_private *dev_priv = dev->dev_private;
4772	struct intel_digital_port *intel_dig_port;
4773	struct intel_encoder *intel_encoder;
4774	struct drm_encoder *encoder;
4775	struct intel_connector *intel_connector;
4776
4777	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4778	if (!intel_dig_port)
4779		return;
4780
4781	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4782	if (!intel_connector) {
4783		kfree(intel_dig_port);
4784		return;
4785	}
4786
4787	intel_encoder = &intel_dig_port->base;
4788	encoder = &intel_encoder->base;
4789
4790	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4791			 DRM_MODE_ENCODER_TMDS);
4792
4793	intel_encoder->compute_config = intel_dp_compute_config;
4794	intel_encoder->disable = intel_disable_dp;
4795	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4796	intel_encoder->get_config = intel_dp_get_config;
4797	intel_encoder->suspend = intel_dp_encoder_suspend;
4798	if (IS_CHERRYVIEW(dev)) {
4799		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4800		intel_encoder->pre_enable = chv_pre_enable_dp;
4801		intel_encoder->enable = vlv_enable_dp;
4802		intel_encoder->post_disable = chv_post_disable_dp;
4803	} else if (IS_VALLEYVIEW(dev)) {
4804		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4805		intel_encoder->pre_enable = vlv_pre_enable_dp;
4806		intel_encoder->enable = vlv_enable_dp;
4807		intel_encoder->post_disable = vlv_post_disable_dp;
4808	} else {
4809		intel_encoder->pre_enable = g4x_pre_enable_dp;
4810		intel_encoder->enable = g4x_enable_dp;
4811		intel_encoder->post_disable = g4x_post_disable_dp;
4812	}
4813
4814	intel_dig_port->port = port;
4815	intel_dig_port->dp.output_reg = output_reg;
4816
4817	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4818	if (IS_CHERRYVIEW(dev)) {
4819		if (port == PORT_D)
4820			intel_encoder->crtc_mask = 1 << 2;
4821		else
4822			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4823	} else {
4824		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4825	}
4826	intel_encoder->cloneable = 0;
4827	intel_encoder->hot_plug = intel_dp_hot_plug;
4828
4829	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4830	dev_priv->hpd_irq_port[port] = intel_dig_port;
4831
4832	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4833		drm_encoder_cleanup(encoder);
4834		kfree(intel_dig_port);
4835		kfree(intel_connector);
4836	}
4837}
4838
4839void intel_dp_mst_suspend(struct drm_device *dev)
4840{
4841	struct drm_i915_private *dev_priv = dev->dev_private;
4842	int i;
4843
4844	/* disable MST */
4845	for (i = 0; i < I915_MAX_PORTS; i++) {
4846		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4847		if (!intel_dig_port)
4848			continue;
4849
4850		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4851			if (!intel_dig_port->dp.can_mst)
4852				continue;
4853			if (intel_dig_port->dp.is_mst)
4854				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4855		}
4856	}
4857}
4858
4859void intel_dp_mst_resume(struct drm_device *dev)
4860{
4861	struct drm_i915_private *dev_priv = dev->dev_private;
4862	int i;
4863
4864	for (i = 0; i < I915_MAX_PORTS; i++) {
4865		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4866		if (!intel_dig_port)
4867			continue;
4868		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4869			int ret;
4870
4871			if (!intel_dig_port->dp.can_mst)
4872				continue;
4873
4874			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4875			if (ret != 0) {
4876				intel_dp_check_mst_status(&intel_dig_port->dp);
4877			}
4878		}
4879	}
4880}
4881