intel_dp.c revision 3739850b46f560a2be29287c3e5c29999d1a7e0e
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "drm_edid.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43/**
44 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45 * @intel_dp: DP struct
46 *
47 * If a CPU or PCH DP output is attached to an eDP panel, this function
48 * will return true, and false otherwise.
49 */
50static bool is_edp(struct intel_dp *intel_dp)
51{
52	return intel_dp->base.type == INTEL_OUTPUT_EDP;
53}
54
55/**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise.  Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63static bool is_pch_edp(struct intel_dp *intel_dp)
64{
65	return intel_dp->is_pch_edp;
66}
67
68/**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74static bool is_cpu_edp(struct intel_dp *intel_dp)
75{
76	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77}
78
79static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80{
81	return container_of(encoder, struct intel_dp, base.base);
82}
83
84static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85{
86	return container_of(intel_attached_encoder(connector),
87			    struct intel_dp, base);
88}
89
90/**
91 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92 * @encoder: DRM encoder
93 *
94 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
95 * by intel_display.c.
96 */
97bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98{
99	struct intel_dp *intel_dp;
100
101	if (!encoder)
102		return false;
103
104	intel_dp = enc_to_intel_dp(encoder);
105
106	return is_pch_edp(intel_dp);
107}
108
109static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113void
114intel_edp_link_config(struct intel_encoder *intel_encoder,
115		       int *lane_num, int *link_bw)
116{
117	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119	*lane_num = intel_dp->lane_count;
120	if (intel_dp->link_bw == DP_LINK_BW_1_62)
121		*link_bw = 162000;
122	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123		*link_bw = 270000;
124}
125
126int
127intel_edp_target_clock(struct intel_encoder *intel_encoder,
128		       struct drm_display_mode *mode)
129{
130	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132	if (intel_dp->panel_fixed_mode)
133		return intel_dp->panel_fixed_mode->clock;
134	else
135		return mode->clock;
136}
137
138static int
139intel_dp_max_lane_count(struct intel_dp *intel_dp)
140{
141	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142	switch (max_lane_count) {
143	case 1: case 2: case 4:
144		break;
145	default:
146		max_lane_count = 4;
147	}
148	return max_lane_count;
149}
150
151static int
152intel_dp_max_link_bw(struct intel_dp *intel_dp)
153{
154	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156	switch (max_link_bw) {
157	case DP_LINK_BW_1_62:
158	case DP_LINK_BW_2_7:
159		break;
160	default:
161		max_link_bw = DP_LINK_BW_1_62;
162		break;
163	}
164	return max_link_bw;
165}
166
167static int
168intel_dp_link_clock(uint8_t link_bw)
169{
170	if (link_bw == DP_LINK_BW_2_7)
171		return 270000;
172	else
173		return 162000;
174}
175
176/*
177 * The units on the numbers in the next two are... bizarre.  Examples will
178 * make it clearer; this one parallels an example in the eDP spec.
179 *
180 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181 *
182 *     270000 * 1 * 8 / 10 == 216000
183 *
184 * The actual data capacity of that configuration is 2.16Gbit/s, so the
185 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
186 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187 * 119000.  At 18bpp that's 2142000 kilobits per second.
188 *
189 * Thus the strange-looking division by 10 in intel_dp_link_required, to
190 * get the result in decakilobits instead of kilobits.
191 */
192
193static int
194intel_dp_link_required(int pixel_clock, int bpp)
195{
196	return (pixel_clock * bpp + 9) / 10;
197}
198
199static int
200intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201{
202	return (max_link_clock * max_lanes * 8) / 10;
203}
204
205static bool
206intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207			  struct drm_display_mode *mode,
208			  bool adjust_mode)
209{
210	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211	int max_lanes = intel_dp_max_lane_count(intel_dp);
212	int max_rate, mode_rate;
213
214	mode_rate = intel_dp_link_required(mode->clock, 24);
215	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217	if (mode_rate > max_rate) {
218		mode_rate = intel_dp_link_required(mode->clock, 18);
219		if (mode_rate > max_rate)
220			return false;
221
222		if (adjust_mode)
223			mode->private_flags
224				|= INTEL_MODE_DP_FORCE_6BPC;
225
226		return true;
227	}
228
229	return true;
230}
231
232static int
233intel_dp_mode_valid(struct drm_connector *connector,
234		    struct drm_display_mode *mode)
235{
236	struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240			return MODE_PANEL;
241
242		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243			return MODE_PANEL;
244	}
245
246	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247		return MODE_CLOCK_HIGH;
248
249	if (mode->clock < 10000)
250		return MODE_CLOCK_LOW;
251
252	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253		return MODE_H_ILLEGAL;
254
255	return MODE_OK;
256}
257
258static uint32_t
259pack_aux(uint8_t *src, int src_bytes)
260{
261	int	i;
262	uint32_t v = 0;
263
264	if (src_bytes > 4)
265		src_bytes = 4;
266	for (i = 0; i < src_bytes; i++)
267		v |= ((uint32_t) src[i]) << ((3-i) * 8);
268	return v;
269}
270
271static void
272unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273{
274	int i;
275	if (dst_bytes > 4)
276		dst_bytes = 4;
277	for (i = 0; i < dst_bytes; i++)
278		dst[i] = src >> ((3-i) * 8);
279}
280
281/* hrawclock is 1/4 the FSB frequency */
282static int
283intel_hrawclk(struct drm_device *dev)
284{
285	struct drm_i915_private *dev_priv = dev->dev_private;
286	uint32_t clkcfg;
287
288	clkcfg = I915_READ(CLKCFG);
289	switch (clkcfg & CLKCFG_FSB_MASK) {
290	case CLKCFG_FSB_400:
291		return 100;
292	case CLKCFG_FSB_533:
293		return 133;
294	case CLKCFG_FSB_667:
295		return 166;
296	case CLKCFG_FSB_800:
297		return 200;
298	case CLKCFG_FSB_1067:
299		return 266;
300	case CLKCFG_FSB_1333:
301		return 333;
302	/* these two are just a guess; one of them might be right */
303	case CLKCFG_FSB_1600:
304	case CLKCFG_FSB_1600_ALT:
305		return 400;
306	default:
307		return 133;
308	}
309}
310
311static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312{
313	struct drm_device *dev = intel_dp->base.base.dev;
314	struct drm_i915_private *dev_priv = dev->dev_private;
315
316	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317}
318
319static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp->base.base.dev;
322	struct drm_i915_private *dev_priv = dev->dev_private;
323
324	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325}
326
327static void
328intel_dp_check_edp(struct intel_dp *intel_dp)
329{
330	struct drm_device *dev = intel_dp->base.base.dev;
331	struct drm_i915_private *dev_priv = dev->dev_private;
332
333	if (!is_edp(intel_dp))
334		return;
335	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336		WARN(1, "eDP powered off while attempting aux channel communication.\n");
337		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338			      I915_READ(PCH_PP_STATUS),
339			      I915_READ(PCH_PP_CONTROL));
340	}
341}
342
343static int
344intel_dp_aux_ch(struct intel_dp *intel_dp,
345		uint8_t *send, int send_bytes,
346		uint8_t *recv, int recv_size)
347{
348	uint32_t output_reg = intel_dp->output_reg;
349	struct drm_device *dev = intel_dp->base.base.dev;
350	struct drm_i915_private *dev_priv = dev->dev_private;
351	uint32_t ch_ctl = output_reg + 0x10;
352	uint32_t ch_data = ch_ctl + 4;
353	int i;
354	int recv_bytes;
355	uint32_t status;
356	uint32_t aux_clock_divider;
357	int try, precharge;
358
359	intel_dp_check_edp(intel_dp);
360	/* The clock divider is based off the hrawclk,
361	 * and would like to run at 2MHz. So, take the
362	 * hrawclk value and divide by 2 and use that
363	 *
364	 * Note that PCH attached eDP panels should use a 125MHz input
365	 * clock divider.
366	 */
367	if (is_cpu_edp(intel_dp)) {
368		if (IS_GEN6(dev) || IS_GEN7(dev))
369			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370		else
371			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372	} else if (HAS_PCH_SPLIT(dev))
373		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374	else
375		aux_clock_divider = intel_hrawclk(dev) / 2;
376
377	if (IS_GEN6(dev))
378		precharge = 3;
379	else
380		precharge = 5;
381
382	/* Try to wait for any previous AUX channel activity */
383	for (try = 0; try < 3; try++) {
384		status = I915_READ(ch_ctl);
385		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386			break;
387		msleep(1);
388	}
389
390	if (try == 3) {
391		WARN(1, "dp_aux_ch not started status 0x%08x\n",
392		     I915_READ(ch_ctl));
393		return -EBUSY;
394	}
395
396	/* Must try at least 3 times according to DP spec */
397	for (try = 0; try < 5; try++) {
398		/* Load the send data into the aux channel data registers */
399		for (i = 0; i < send_bytes; i += 4)
400			I915_WRITE(ch_data + i,
401				   pack_aux(send + i, send_bytes - i));
402
403		/* Send the command and wait for it to complete */
404		I915_WRITE(ch_ctl,
405			   DP_AUX_CH_CTL_SEND_BUSY |
406			   DP_AUX_CH_CTL_TIME_OUT_400us |
407			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410			   DP_AUX_CH_CTL_DONE |
411			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
412			   DP_AUX_CH_CTL_RECEIVE_ERROR);
413		for (;;) {
414			status = I915_READ(ch_ctl);
415			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416				break;
417			udelay(100);
418		}
419
420		/* Clear done status and any errors */
421		I915_WRITE(ch_ctl,
422			   status |
423			   DP_AUX_CH_CTL_DONE |
424			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
425			   DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428			      DP_AUX_CH_CTL_RECEIVE_ERROR))
429			continue;
430		if (status & DP_AUX_CH_CTL_DONE)
431			break;
432	}
433
434	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436		return -EBUSY;
437	}
438
439	/* Check for timeout or receive error.
440	 * Timeouts occur when the sink is not connected
441	 */
442	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444		return -EIO;
445	}
446
447	/* Timeouts occur when the device isn't connected, so they're
448	 * "normal" -- don't fill the kernel log with these */
449	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451		return -ETIMEDOUT;
452	}
453
454	/* Unload any bytes sent back from the other side */
455	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457	if (recv_bytes > recv_size)
458		recv_bytes = recv_size;
459
460	for (i = 0; i < recv_bytes; i += 4)
461		unpack_aux(I915_READ(ch_data + i),
462			   recv + i, recv_bytes - i);
463
464	return recv_bytes;
465}
466
467/* Write data to the aux channel in native mode */
468static int
469intel_dp_aux_native_write(struct intel_dp *intel_dp,
470			  uint16_t address, uint8_t *send, int send_bytes)
471{
472	int ret;
473	uint8_t	msg[20];
474	int msg_bytes;
475	uint8_t	ack;
476
477	intel_dp_check_edp(intel_dp);
478	if (send_bytes > 16)
479		return -1;
480	msg[0] = AUX_NATIVE_WRITE << 4;
481	msg[1] = address >> 8;
482	msg[2] = address & 0xff;
483	msg[3] = send_bytes - 1;
484	memcpy(&msg[4], send, send_bytes);
485	msg_bytes = send_bytes + 4;
486	for (;;) {
487		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488		if (ret < 0)
489			return ret;
490		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491			break;
492		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493			udelay(100);
494		else
495			return -EIO;
496	}
497	return send_bytes;
498}
499
500/* Write a single byte to the aux channel in native mode */
501static int
502intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503			    uint16_t address, uint8_t byte)
504{
505	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506}
507
508/* read bytes from a native aux channel */
509static int
510intel_dp_aux_native_read(struct intel_dp *intel_dp,
511			 uint16_t address, uint8_t *recv, int recv_bytes)
512{
513	uint8_t msg[4];
514	int msg_bytes;
515	uint8_t reply[20];
516	int reply_bytes;
517	uint8_t ack;
518	int ret;
519
520	intel_dp_check_edp(intel_dp);
521	msg[0] = AUX_NATIVE_READ << 4;
522	msg[1] = address >> 8;
523	msg[2] = address & 0xff;
524	msg[3] = recv_bytes - 1;
525
526	msg_bytes = 4;
527	reply_bytes = recv_bytes + 1;
528
529	for (;;) {
530		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531				      reply, reply_bytes);
532		if (ret == 0)
533			return -EPROTO;
534		if (ret < 0)
535			return ret;
536		ack = reply[0];
537		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538			memcpy(recv, reply + 1, ret - 1);
539			return ret - 1;
540		}
541		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542			udelay(100);
543		else
544			return -EIO;
545	}
546}
547
548static int
549intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550		    uint8_t write_byte, uint8_t *read_byte)
551{
552	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553	struct intel_dp *intel_dp = container_of(adapter,
554						struct intel_dp,
555						adapter);
556	uint16_t address = algo_data->address;
557	uint8_t msg[5];
558	uint8_t reply[2];
559	unsigned retry;
560	int msg_bytes;
561	int reply_bytes;
562	int ret;
563
564	intel_dp_check_edp(intel_dp);
565	/* Set up the command byte */
566	if (mode & MODE_I2C_READ)
567		msg[0] = AUX_I2C_READ << 4;
568	else
569		msg[0] = AUX_I2C_WRITE << 4;
570
571	if (!(mode & MODE_I2C_STOP))
572		msg[0] |= AUX_I2C_MOT << 4;
573
574	msg[1] = address >> 8;
575	msg[2] = address;
576
577	switch (mode) {
578	case MODE_I2C_WRITE:
579		msg[3] = 0;
580		msg[4] = write_byte;
581		msg_bytes = 5;
582		reply_bytes = 1;
583		break;
584	case MODE_I2C_READ:
585		msg[3] = 0;
586		msg_bytes = 4;
587		reply_bytes = 2;
588		break;
589	default:
590		msg_bytes = 3;
591		reply_bytes = 1;
592		break;
593	}
594
595	for (retry = 0; retry < 5; retry++) {
596		ret = intel_dp_aux_ch(intel_dp,
597				      msg, msg_bytes,
598				      reply, reply_bytes);
599		if (ret < 0) {
600			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601			return ret;
602		}
603
604		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605		case AUX_NATIVE_REPLY_ACK:
606			/* I2C-over-AUX Reply field is only valid
607			 * when paired with AUX ACK.
608			 */
609			break;
610		case AUX_NATIVE_REPLY_NACK:
611			DRM_DEBUG_KMS("aux_ch native nack\n");
612			return -EREMOTEIO;
613		case AUX_NATIVE_REPLY_DEFER:
614			udelay(100);
615			continue;
616		default:
617			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618				  reply[0]);
619			return -EREMOTEIO;
620		}
621
622		switch (reply[0] & AUX_I2C_REPLY_MASK) {
623		case AUX_I2C_REPLY_ACK:
624			if (mode == MODE_I2C_READ) {
625				*read_byte = reply[1];
626			}
627			return reply_bytes - 1;
628		case AUX_I2C_REPLY_NACK:
629			DRM_DEBUG_KMS("aux_i2c nack\n");
630			return -EREMOTEIO;
631		case AUX_I2C_REPLY_DEFER:
632			DRM_DEBUG_KMS("aux_i2c defer\n");
633			udelay(100);
634			break;
635		default:
636			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637			return -EREMOTEIO;
638		}
639	}
640
641	DRM_ERROR("too many retries, giving up\n");
642	return -EREMOTEIO;
643}
644
645static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648static int
649intel_dp_i2c_init(struct intel_dp *intel_dp,
650		  struct intel_connector *intel_connector, const char *name)
651{
652	int	ret;
653
654	DRM_DEBUG_KMS("i2c_init %s\n", name);
655	intel_dp->algo.running = false;
656	intel_dp->algo.address = 0;
657	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660	intel_dp->adapter.owner = THIS_MODULE;
661	intel_dp->adapter.class = I2C_CLASS_DDC;
662	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664	intel_dp->adapter.algo_data = &intel_dp->algo;
665	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667	ironlake_edp_panel_vdd_on(intel_dp);
668	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669	ironlake_edp_panel_vdd_off(intel_dp, false);
670	return ret;
671}
672
673static bool
674intel_dp_mode_fixup(struct drm_encoder *encoder,
675		    const struct drm_display_mode *mode,
676		    struct drm_display_mode *adjusted_mode)
677{
678	struct drm_device *dev = encoder->dev;
679	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680	int lane_count, clock;
681	int max_lane_count = intel_dp_max_lane_count(intel_dp);
682	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683	int bpp, mode_rate;
684	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689					mode, adjusted_mode);
690	}
691
692	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693		return false;
694
695	DRM_DEBUG_KMS("DP link computation with max lane count %i "
696		      "max bw %02x pixel clock %iKHz\n",
697		      max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700		return false;
701
702	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705	for (clock = 0; clock <= max_clock; clock++) {
706		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709			if (mode_rate <= link_avail) {
710				intel_dp->link_bw = bws[clock];
711				intel_dp->lane_count = lane_count;
712				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713				DRM_DEBUG_KMS("DP link bw %02x lane "
714						"count %d clock %d bpp %d\n",
715				       intel_dp->link_bw, intel_dp->lane_count,
716				       adjusted_mode->clock, bpp);
717				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718					      mode_rate, link_avail);
719				return true;
720			}
721		}
722	}
723
724	return false;
725}
726
727struct intel_dp_m_n {
728	uint32_t	tu;
729	uint32_t	gmch_m;
730	uint32_t	gmch_n;
731	uint32_t	link_m;
732	uint32_t	link_n;
733};
734
735static void
736intel_reduce_ratio(uint32_t *num, uint32_t *den)
737{
738	while (*num > 0xffffff || *den > 0xffffff) {
739		*num >>= 1;
740		*den >>= 1;
741	}
742}
743
744static void
745intel_dp_compute_m_n(int bpp,
746		     int nlanes,
747		     int pixel_clock,
748		     int link_clock,
749		     struct intel_dp_m_n *m_n)
750{
751	m_n->tu = 64;
752	m_n->gmch_m = (pixel_clock * bpp) >> 3;
753	m_n->gmch_n = link_clock * nlanes;
754	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755	m_n->link_m = pixel_clock;
756	m_n->link_n = link_clock;
757	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758}
759
760void
761intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762		 struct drm_display_mode *adjusted_mode)
763{
764	struct drm_device *dev = crtc->dev;
765	struct intel_encoder *encoder;
766	struct drm_i915_private *dev_priv = dev->dev_private;
767	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768	int lane_count = 4;
769	struct intel_dp_m_n m_n;
770	int pipe = intel_crtc->pipe;
771
772	/*
773	 * Find the lane count in the intel_encoder private
774	 */
775	for_each_encoder_on_crtc(dev, crtc, encoder) {
776		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779		    intel_dp->base.type == INTEL_OUTPUT_EDP)
780		{
781			lane_count = intel_dp->lane_count;
782			break;
783		}
784	}
785
786	/*
787	 * Compute the GMCH and Link ratios. The '3' here is
788	 * the number of bytes_per_pixel post-LUT, which we always
789	 * set up for 8-bits of R/G/B, or 3 bytes total.
790	 */
791	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792			     mode->clock, adjusted_mode->clock, &m_n);
793
794	if (HAS_PCH_SPLIT(dev)) {
795		I915_WRITE(TRANSDATA_M1(pipe),
796			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797			   m_n.gmch_m);
798		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801	} else {
802		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804			   m_n.gmch_m);
805		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808	}
809}
810
811static void
812intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
813		  struct drm_display_mode *adjusted_mode)
814{
815	struct drm_device *dev = encoder->dev;
816	struct drm_i915_private *dev_priv = dev->dev_private;
817	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
818	struct drm_crtc *crtc = intel_dp->base.base.crtc;
819	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
820
821	/*
822	 * There are four kinds of DP registers:
823	 *
824	 * 	IBX PCH
825	 * 	SNB CPU
826	 *	IVB CPU
827	 * 	CPT PCH
828	 *
829	 * IBX PCH and CPU are the same for almost everything,
830	 * except that the CPU DP PLL is configured in this
831	 * register
832	 *
833	 * CPT PCH is quite different, having many bits moved
834	 * to the TRANS_DP_CTL register instead. That
835	 * configuration happens (oddly) in ironlake_pch_enable
836	 */
837
838	/* Preserve the BIOS-computed detected bit. This is
839	 * supposed to be read-only.
840	 */
841	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842
843	/* Handle DP bits in common between all three register formats */
844	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
845
846	switch (intel_dp->lane_count) {
847	case 1:
848		intel_dp->DP |= DP_PORT_WIDTH_1;
849		break;
850	case 2:
851		intel_dp->DP |= DP_PORT_WIDTH_2;
852		break;
853	case 4:
854		intel_dp->DP |= DP_PORT_WIDTH_4;
855		break;
856	}
857	if (intel_dp->has_audio) {
858		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859				 pipe_name(intel_crtc->pipe));
860		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861		intel_write_eld(encoder, adjusted_mode);
862	}
863	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
864	intel_dp->link_configuration[0] = intel_dp->link_bw;
865	intel_dp->link_configuration[1] = intel_dp->lane_count;
866	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
867	/*
868	 * Check for DPCD version > 1.1 and enhanced framing support
869	 */
870	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
871	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
872		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
873	}
874
875	/* Split out the IBX/CPU vs CPT settings */
876
877	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
878		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879			intel_dp->DP |= DP_SYNC_HS_HIGH;
880		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881			intel_dp->DP |= DP_SYNC_VS_HIGH;
882		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
883
884		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
885			intel_dp->DP |= DP_ENHANCED_FRAMING;
886
887		intel_dp->DP |= intel_crtc->pipe << 29;
888
889		/* don't miss out required setting for eDP */
890		if (adjusted_mode->clock < 200000)
891			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
892		else
893			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
894	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
895		intel_dp->DP |= intel_dp->color_range;
896
897		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898			intel_dp->DP |= DP_SYNC_HS_HIGH;
899		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900			intel_dp->DP |= DP_SYNC_VS_HIGH;
901		intel_dp->DP |= DP_LINK_TRAIN_OFF;
902
903		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904			intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906		if (intel_crtc->pipe == 1)
907			intel_dp->DP |= DP_PIPEB_SELECT;
908
909		if (is_cpu_edp(intel_dp)) {
910			/* don't miss out required setting for eDP */
911			if (adjusted_mode->clock < 200000)
912				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
913			else
914				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
915		}
916	} else {
917		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
918	}
919}
920
921#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
922#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
923
924#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
925#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
926
927#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
928#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
929
930static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
931				       u32 mask,
932				       u32 value)
933{
934	struct drm_device *dev = intel_dp->base.base.dev;
935	struct drm_i915_private *dev_priv = dev->dev_private;
936
937	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
938		      mask, value,
939		      I915_READ(PCH_PP_STATUS),
940		      I915_READ(PCH_PP_CONTROL));
941
942	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
943		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
944			  I915_READ(PCH_PP_STATUS),
945			  I915_READ(PCH_PP_CONTROL));
946	}
947}
948
949static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
950{
951	DRM_DEBUG_KMS("Wait for panel power on\n");
952	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
953}
954
955static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
956{
957	DRM_DEBUG_KMS("Wait for panel power off time\n");
958	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
959}
960
961static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
962{
963	DRM_DEBUG_KMS("Wait for panel power cycle\n");
964	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
965}
966
967
968/* Read the current pp_control value, unlocking the register if it
969 * is locked
970 */
971
972static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
973{
974	u32	control = I915_READ(PCH_PP_CONTROL);
975
976	control &= ~PANEL_UNLOCK_MASK;
977	control |= PANEL_UNLOCK_REGS;
978	return control;
979}
980
981static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
982{
983	struct drm_device *dev = intel_dp->base.base.dev;
984	struct drm_i915_private *dev_priv = dev->dev_private;
985	u32 pp;
986
987	if (!is_edp(intel_dp))
988		return;
989	DRM_DEBUG_KMS("Turn eDP VDD on\n");
990
991	WARN(intel_dp->want_panel_vdd,
992	     "eDP VDD already requested on\n");
993
994	intel_dp->want_panel_vdd = true;
995
996	if (ironlake_edp_have_panel_vdd(intel_dp)) {
997		DRM_DEBUG_KMS("eDP VDD already on\n");
998		return;
999	}
1000
1001	if (!ironlake_edp_have_panel_power(intel_dp))
1002		ironlake_wait_panel_power_cycle(intel_dp);
1003
1004	pp = ironlake_get_pp_control(dev_priv);
1005	pp |= EDP_FORCE_VDD;
1006	I915_WRITE(PCH_PP_CONTROL, pp);
1007	POSTING_READ(PCH_PP_CONTROL);
1008	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1009		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1010
1011	/*
1012	 * If the panel wasn't on, delay before accessing aux channel
1013	 */
1014	if (!ironlake_edp_have_panel_power(intel_dp)) {
1015		DRM_DEBUG_KMS("eDP was not running\n");
1016		msleep(intel_dp->panel_power_up_delay);
1017	}
1018}
1019
1020static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1021{
1022	struct drm_device *dev = intel_dp->base.base.dev;
1023	struct drm_i915_private *dev_priv = dev->dev_private;
1024	u32 pp;
1025
1026	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1027		pp = ironlake_get_pp_control(dev_priv);
1028		pp &= ~EDP_FORCE_VDD;
1029		I915_WRITE(PCH_PP_CONTROL, pp);
1030		POSTING_READ(PCH_PP_CONTROL);
1031
1032		/* Make sure sequencer is idle before allowing subsequent activity */
1033		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1034			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1035
1036		msleep(intel_dp->panel_power_down_delay);
1037	}
1038}
1039
1040static void ironlake_panel_vdd_work(struct work_struct *__work)
1041{
1042	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1043						 struct intel_dp, panel_vdd_work);
1044	struct drm_device *dev = intel_dp->base.base.dev;
1045
1046	mutex_lock(&dev->mode_config.mutex);
1047	ironlake_panel_vdd_off_sync(intel_dp);
1048	mutex_unlock(&dev->mode_config.mutex);
1049}
1050
1051static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1052{
1053	if (!is_edp(intel_dp))
1054		return;
1055
1056	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1057	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1058
1059	intel_dp->want_panel_vdd = false;
1060
1061	if (sync) {
1062		ironlake_panel_vdd_off_sync(intel_dp);
1063	} else {
1064		/*
1065		 * Queue the timer to fire a long
1066		 * time from now (relative to the power down delay)
1067		 * to keep the panel power up across a sequence of operations
1068		 */
1069		schedule_delayed_work(&intel_dp->panel_vdd_work,
1070				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1071	}
1072}
1073
1074static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1075{
1076	struct drm_device *dev = intel_dp->base.base.dev;
1077	struct drm_i915_private *dev_priv = dev->dev_private;
1078	u32 pp;
1079
1080	if (!is_edp(intel_dp))
1081		return;
1082
1083	DRM_DEBUG_KMS("Turn eDP power on\n");
1084
1085	if (ironlake_edp_have_panel_power(intel_dp)) {
1086		DRM_DEBUG_KMS("eDP power already on\n");
1087		return;
1088	}
1089
1090	ironlake_wait_panel_power_cycle(intel_dp);
1091
1092	pp = ironlake_get_pp_control(dev_priv);
1093	if (IS_GEN5(dev)) {
1094		/* ILK workaround: disable reset around power sequence */
1095		pp &= ~PANEL_POWER_RESET;
1096		I915_WRITE(PCH_PP_CONTROL, pp);
1097		POSTING_READ(PCH_PP_CONTROL);
1098	}
1099
1100	pp |= POWER_TARGET_ON;
1101	if (!IS_GEN5(dev))
1102		pp |= PANEL_POWER_RESET;
1103
1104	I915_WRITE(PCH_PP_CONTROL, pp);
1105	POSTING_READ(PCH_PP_CONTROL);
1106
1107	ironlake_wait_panel_on(intel_dp);
1108
1109	if (IS_GEN5(dev)) {
1110		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1111		I915_WRITE(PCH_PP_CONTROL, pp);
1112		POSTING_READ(PCH_PP_CONTROL);
1113	}
1114}
1115
1116static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1117{
1118	struct drm_device *dev = intel_dp->base.base.dev;
1119	struct drm_i915_private *dev_priv = dev->dev_private;
1120	u32 pp;
1121
1122	if (!is_edp(intel_dp))
1123		return;
1124
1125	DRM_DEBUG_KMS("Turn eDP power off\n");
1126
1127	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1128
1129	pp = ironlake_get_pp_control(dev_priv);
1130	/* We need to switch off panel power _and_ force vdd, for otherwise some
1131	 * panels get very unhappy and cease to work. */
1132	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1133	I915_WRITE(PCH_PP_CONTROL, pp);
1134	POSTING_READ(PCH_PP_CONTROL);
1135
1136	intel_dp->want_panel_vdd = false;
1137
1138	ironlake_wait_panel_off(intel_dp);
1139}
1140
1141static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142{
1143	struct drm_device *dev = intel_dp->base.base.dev;
1144	struct drm_i915_private *dev_priv = dev->dev_private;
1145	u32 pp;
1146
1147	if (!is_edp(intel_dp))
1148		return;
1149
1150	DRM_DEBUG_KMS("\n");
1151	/*
1152	 * If we enable the backlight right away following a panel power
1153	 * on, we may see slight flicker as the panel syncs with the eDP
1154	 * link.  So delay a bit to make sure the image is solid before
1155	 * allowing it to appear.
1156	 */
1157	msleep(intel_dp->backlight_on_delay);
1158	pp = ironlake_get_pp_control(dev_priv);
1159	pp |= EDP_BLC_ENABLE;
1160	I915_WRITE(PCH_PP_CONTROL, pp);
1161	POSTING_READ(PCH_PP_CONTROL);
1162}
1163
1164static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165{
1166	struct drm_device *dev = intel_dp->base.base.dev;
1167	struct drm_i915_private *dev_priv = dev->dev_private;
1168	u32 pp;
1169
1170	if (!is_edp(intel_dp))
1171		return;
1172
1173	DRM_DEBUG_KMS("\n");
1174	pp = ironlake_get_pp_control(dev_priv);
1175	pp &= ~EDP_BLC_ENABLE;
1176	I915_WRITE(PCH_PP_CONTROL, pp);
1177	POSTING_READ(PCH_PP_CONTROL);
1178	msleep(intel_dp->backlight_off_delay);
1179}
1180
1181static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1182{
1183	struct drm_device *dev = intel_dp->base.base.dev;
1184	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1185	struct drm_i915_private *dev_priv = dev->dev_private;
1186	u32 dpa_ctl;
1187
1188	assert_pipe_disabled(dev_priv,
1189			     to_intel_crtc(crtc)->pipe);
1190
1191	DRM_DEBUG_KMS("\n");
1192	dpa_ctl = I915_READ(DP_A);
1193	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1194	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1195
1196	/* We don't adjust intel_dp->DP while tearing down the link, to
1197	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1198	 * enable bits here to ensure that we don't enable too much. */
1199	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1200	intel_dp->DP |= DP_PLL_ENABLE;
1201	I915_WRITE(DP_A, intel_dp->DP);
1202	POSTING_READ(DP_A);
1203	udelay(200);
1204}
1205
1206static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1207{
1208	struct drm_device *dev = intel_dp->base.base.dev;
1209	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1210	struct drm_i915_private *dev_priv = dev->dev_private;
1211	u32 dpa_ctl;
1212
1213	assert_pipe_disabled(dev_priv,
1214			     to_intel_crtc(crtc)->pipe);
1215
1216	dpa_ctl = I915_READ(DP_A);
1217	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1218	     "dp pll off, should be on\n");
1219	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1220
1221	/* We can't rely on the value tracked for the DP register in
1222	 * intel_dp->DP because link_down must not change that (otherwise link
1223	 * re-training will fail. */
1224	dpa_ctl &= ~DP_PLL_ENABLE;
1225	I915_WRITE(DP_A, dpa_ctl);
1226	POSTING_READ(DP_A);
1227	udelay(200);
1228}
1229
1230/* If the sink supports it, try to set the power state appropriately */
1231static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1232{
1233	int ret, i;
1234
1235	/* Should have a valid DPCD by this point */
1236	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1237		return;
1238
1239	if (mode != DRM_MODE_DPMS_ON) {
1240		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1241						  DP_SET_POWER_D3);
1242		if (ret != 1)
1243			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1244	} else {
1245		/*
1246		 * When turning on, we need to retry for 1ms to give the sink
1247		 * time to wake up.
1248		 */
1249		for (i = 0; i < 3; i++) {
1250			ret = intel_dp_aux_native_write_1(intel_dp,
1251							  DP_SET_POWER,
1252							  DP_SET_POWER_D0);
1253			if (ret == 1)
1254				break;
1255			msleep(1);
1256		}
1257	}
1258}
1259
1260static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1261				  enum pipe *pipe)
1262{
1263	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1264	struct drm_device *dev = encoder->base.dev;
1265	struct drm_i915_private *dev_priv = dev->dev_private;
1266	u32 tmp = I915_READ(intel_dp->output_reg);
1267
1268	if (!(tmp & DP_PORT_EN))
1269		return false;
1270
1271	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1272		*pipe = PORT_TO_PIPE_CPT(tmp);
1273	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1274		*pipe = PORT_TO_PIPE(tmp);
1275	} else {
1276		u32 trans_sel;
1277		u32 trans_dp;
1278		int i;
1279
1280		switch (intel_dp->output_reg) {
1281		case PCH_DP_B:
1282			trans_sel = TRANS_DP_PORT_SEL_B;
1283			break;
1284		case PCH_DP_C:
1285			trans_sel = TRANS_DP_PORT_SEL_C;
1286			break;
1287		case PCH_DP_D:
1288			trans_sel = TRANS_DP_PORT_SEL_D;
1289			break;
1290		default:
1291			return true;
1292		}
1293
1294		for_each_pipe(i) {
1295			trans_dp = I915_READ(TRANS_DP_CTL(i));
1296			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1297				*pipe = i;
1298				return true;
1299			}
1300		}
1301	}
1302
1303	DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1304
1305	return true;
1306}
1307
1308static void intel_disable_dp(struct intel_encoder *encoder)
1309{
1310	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1311
1312	/* Make sure the panel is off before trying to change the mode. But also
1313	 * ensure that we have vdd while we switch off the panel. */
1314	ironlake_edp_panel_vdd_on(intel_dp);
1315	ironlake_edp_backlight_off(intel_dp);
1316	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1317	ironlake_edp_panel_off(intel_dp);
1318
1319	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1320	if (!is_cpu_edp(intel_dp))
1321		intel_dp_link_down(intel_dp);
1322}
1323
1324static void intel_post_disable_dp(struct intel_encoder *encoder)
1325{
1326	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327
1328	if (is_cpu_edp(intel_dp)) {
1329		intel_dp_link_down(intel_dp);
1330		ironlake_edp_pll_off(intel_dp);
1331	}
1332}
1333
1334static void intel_enable_dp(struct intel_encoder *encoder)
1335{
1336	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1337	struct drm_device *dev = encoder->base.dev;
1338	struct drm_i915_private *dev_priv = dev->dev_private;
1339	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1340
1341	if (WARN_ON(dp_reg & DP_PORT_EN))
1342		return;
1343
1344	ironlake_edp_panel_vdd_on(intel_dp);
1345	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346	intel_dp_start_link_train(intel_dp);
1347	ironlake_edp_panel_on(intel_dp);
1348	ironlake_edp_panel_vdd_off(intel_dp, true);
1349	intel_dp_complete_link_train(intel_dp);
1350	ironlake_edp_backlight_on(intel_dp);
1351}
1352
1353static void intel_pre_enable_dp(struct intel_encoder *encoder)
1354{
1355	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356
1357	if (is_cpu_edp(intel_dp))
1358		ironlake_edp_pll_on(intel_dp);
1359}
1360
1361/*
1362 * Native read with retry for link status and receiver capability reads for
1363 * cases where the sink may still be asleep.
1364 */
1365static bool
1366intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1367			       uint8_t *recv, int recv_bytes)
1368{
1369	int ret, i;
1370
1371	/*
1372	 * Sinks are *supposed* to come up within 1ms from an off state,
1373	 * but we're also supposed to retry 3 times per the spec.
1374	 */
1375	for (i = 0; i < 3; i++) {
1376		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1377					       recv_bytes);
1378		if (ret == recv_bytes)
1379			return true;
1380		msleep(1);
1381	}
1382
1383	return false;
1384}
1385
1386/*
1387 * Fetch AUX CH registers 0x202 - 0x207 which contain
1388 * link status information
1389 */
1390static bool
1391intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1392{
1393	return intel_dp_aux_native_read_retry(intel_dp,
1394					      DP_LANE0_1_STATUS,
1395					      link_status,
1396					      DP_LINK_STATUS_SIZE);
1397}
1398
1399static uint8_t
1400intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1401		     int r)
1402{
1403	return link_status[r - DP_LANE0_1_STATUS];
1404}
1405
1406static uint8_t
1407intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1408				 int lane)
1409{
1410	int	    s = ((lane & 1) ?
1411			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1412			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1413	uint8_t l = adjust_request[lane>>1];
1414
1415	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1416}
1417
1418static uint8_t
1419intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1420				      int lane)
1421{
1422	int	    s = ((lane & 1) ?
1423			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1424			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1425	uint8_t l = adjust_request[lane>>1];
1426
1427	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1428}
1429
1430
1431#if 0
1432static char	*voltage_names[] = {
1433	"0.4V", "0.6V", "0.8V", "1.2V"
1434};
1435static char	*pre_emph_names[] = {
1436	"0dB", "3.5dB", "6dB", "9.5dB"
1437};
1438static char	*link_train_names[] = {
1439	"pattern 1", "pattern 2", "idle", "off"
1440};
1441#endif
1442
1443/*
1444 * These are source-specific values; current Intel hardware supports
1445 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1446 */
1447
1448static uint8_t
1449intel_dp_voltage_max(struct intel_dp *intel_dp)
1450{
1451	struct drm_device *dev = intel_dp->base.base.dev;
1452
1453	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1454		return DP_TRAIN_VOLTAGE_SWING_800;
1455	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1456		return DP_TRAIN_VOLTAGE_SWING_1200;
1457	else
1458		return DP_TRAIN_VOLTAGE_SWING_800;
1459}
1460
1461static uint8_t
1462intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1463{
1464	struct drm_device *dev = intel_dp->base.base.dev;
1465
1466	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1467		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1468		case DP_TRAIN_VOLTAGE_SWING_400:
1469			return DP_TRAIN_PRE_EMPHASIS_6;
1470		case DP_TRAIN_VOLTAGE_SWING_600:
1471		case DP_TRAIN_VOLTAGE_SWING_800:
1472			return DP_TRAIN_PRE_EMPHASIS_3_5;
1473		default:
1474			return DP_TRAIN_PRE_EMPHASIS_0;
1475		}
1476	} else {
1477		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1478		case DP_TRAIN_VOLTAGE_SWING_400:
1479			return DP_TRAIN_PRE_EMPHASIS_6;
1480		case DP_TRAIN_VOLTAGE_SWING_600:
1481			return DP_TRAIN_PRE_EMPHASIS_6;
1482		case DP_TRAIN_VOLTAGE_SWING_800:
1483			return DP_TRAIN_PRE_EMPHASIS_3_5;
1484		case DP_TRAIN_VOLTAGE_SWING_1200:
1485		default:
1486			return DP_TRAIN_PRE_EMPHASIS_0;
1487		}
1488	}
1489}
1490
1491static void
1492intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1493{
1494	uint8_t v = 0;
1495	uint8_t p = 0;
1496	int lane;
1497	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1498	uint8_t voltage_max;
1499	uint8_t preemph_max;
1500
1501	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1502		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1503		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1504
1505		if (this_v > v)
1506			v = this_v;
1507		if (this_p > p)
1508			p = this_p;
1509	}
1510
1511	voltage_max = intel_dp_voltage_max(intel_dp);
1512	if (v >= voltage_max)
1513		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1514
1515	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1516	if (p >= preemph_max)
1517		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1518
1519	for (lane = 0; lane < 4; lane++)
1520		intel_dp->train_set[lane] = v | p;
1521}
1522
1523static uint32_t
1524intel_dp_signal_levels(uint8_t train_set)
1525{
1526	uint32_t	signal_levels = 0;
1527
1528	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1529	case DP_TRAIN_VOLTAGE_SWING_400:
1530	default:
1531		signal_levels |= DP_VOLTAGE_0_4;
1532		break;
1533	case DP_TRAIN_VOLTAGE_SWING_600:
1534		signal_levels |= DP_VOLTAGE_0_6;
1535		break;
1536	case DP_TRAIN_VOLTAGE_SWING_800:
1537		signal_levels |= DP_VOLTAGE_0_8;
1538		break;
1539	case DP_TRAIN_VOLTAGE_SWING_1200:
1540		signal_levels |= DP_VOLTAGE_1_2;
1541		break;
1542	}
1543	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1544	case DP_TRAIN_PRE_EMPHASIS_0:
1545	default:
1546		signal_levels |= DP_PRE_EMPHASIS_0;
1547		break;
1548	case DP_TRAIN_PRE_EMPHASIS_3_5:
1549		signal_levels |= DP_PRE_EMPHASIS_3_5;
1550		break;
1551	case DP_TRAIN_PRE_EMPHASIS_6:
1552		signal_levels |= DP_PRE_EMPHASIS_6;
1553		break;
1554	case DP_TRAIN_PRE_EMPHASIS_9_5:
1555		signal_levels |= DP_PRE_EMPHASIS_9_5;
1556		break;
1557	}
1558	return signal_levels;
1559}
1560
1561/* Gen6's DP voltage swing and pre-emphasis control */
1562static uint32_t
1563intel_gen6_edp_signal_levels(uint8_t train_set)
1564{
1565	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1566					 DP_TRAIN_PRE_EMPHASIS_MASK);
1567	switch (signal_levels) {
1568	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1569	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1570		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1571	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1573	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1574	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1575		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1576	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1577	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1578		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1579	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1580	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1581		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1582	default:
1583		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1584			      "0x%x\n", signal_levels);
1585		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1586	}
1587}
1588
1589/* Gen7's DP voltage swing and pre-emphasis control */
1590static uint32_t
1591intel_gen7_edp_signal_levels(uint8_t train_set)
1592{
1593	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1594					 DP_TRAIN_PRE_EMPHASIS_MASK);
1595	switch (signal_levels) {
1596	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1597		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1598	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1600	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1601		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1602
1603	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1604		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1605	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1607
1608	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1609		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1610	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1611		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1612
1613	default:
1614		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1615			      "0x%x\n", signal_levels);
1616		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1617	}
1618}
1619
1620static uint8_t
1621intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1622		      int lane)
1623{
1624	int s = (lane & 1) * 4;
1625	uint8_t l = link_status[lane>>1];
1626
1627	return (l >> s) & 0xf;
1628}
1629
1630/* Check for clock recovery is done on all channels */
1631static bool
1632intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1633{
1634	int lane;
1635	uint8_t lane_status;
1636
1637	for (lane = 0; lane < lane_count; lane++) {
1638		lane_status = intel_get_lane_status(link_status, lane);
1639		if ((lane_status & DP_LANE_CR_DONE) == 0)
1640			return false;
1641	}
1642	return true;
1643}
1644
1645/* Check to see if channel eq is done on all channels */
1646#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1647			 DP_LANE_CHANNEL_EQ_DONE|\
1648			 DP_LANE_SYMBOL_LOCKED)
1649static bool
1650intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1651{
1652	uint8_t lane_align;
1653	uint8_t lane_status;
1654	int lane;
1655
1656	lane_align = intel_dp_link_status(link_status,
1657					  DP_LANE_ALIGN_STATUS_UPDATED);
1658	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1659		return false;
1660	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1661		lane_status = intel_get_lane_status(link_status, lane);
1662		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1663			return false;
1664	}
1665	return true;
1666}
1667
1668static bool
1669intel_dp_set_link_train(struct intel_dp *intel_dp,
1670			uint32_t dp_reg_value,
1671			uint8_t dp_train_pat)
1672{
1673	struct drm_device *dev = intel_dp->base.base.dev;
1674	struct drm_i915_private *dev_priv = dev->dev_private;
1675	int ret;
1676
1677	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1678		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1679
1680		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1681		case DP_TRAINING_PATTERN_DISABLE:
1682			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1683			break;
1684		case DP_TRAINING_PATTERN_1:
1685			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1686			break;
1687		case DP_TRAINING_PATTERN_2:
1688			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1689			break;
1690		case DP_TRAINING_PATTERN_3:
1691			DRM_ERROR("DP training pattern 3 not supported\n");
1692			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1693			break;
1694		}
1695
1696	} else {
1697		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1698
1699		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1700		case DP_TRAINING_PATTERN_DISABLE:
1701			dp_reg_value |= DP_LINK_TRAIN_OFF;
1702			break;
1703		case DP_TRAINING_PATTERN_1:
1704			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1705			break;
1706		case DP_TRAINING_PATTERN_2:
1707			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1708			break;
1709		case DP_TRAINING_PATTERN_3:
1710			DRM_ERROR("DP training pattern 3 not supported\n");
1711			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1712			break;
1713		}
1714	}
1715
1716	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1717	POSTING_READ(intel_dp->output_reg);
1718
1719	intel_dp_aux_native_write_1(intel_dp,
1720				    DP_TRAINING_PATTERN_SET,
1721				    dp_train_pat);
1722
1723	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1724	    DP_TRAINING_PATTERN_DISABLE) {
1725		ret = intel_dp_aux_native_write(intel_dp,
1726						DP_TRAINING_LANE0_SET,
1727						intel_dp->train_set,
1728						intel_dp->lane_count);
1729		if (ret != intel_dp->lane_count)
1730			return false;
1731	}
1732
1733	return true;
1734}
1735
1736/* Enable corresponding port and start training pattern 1 */
1737static void
1738intel_dp_start_link_train(struct intel_dp *intel_dp)
1739{
1740	struct drm_device *dev = intel_dp->base.base.dev;
1741	int i;
1742	uint8_t voltage;
1743	bool clock_recovery = false;
1744	int voltage_tries, loop_tries;
1745	uint32_t DP = intel_dp->DP;
1746
1747	/* Write the link configuration data */
1748	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1749				  intel_dp->link_configuration,
1750				  DP_LINK_CONFIGURATION_SIZE);
1751
1752	DP |= DP_PORT_EN;
1753
1754	memset(intel_dp->train_set, 0, 4);
1755	voltage = 0xff;
1756	voltage_tries = 0;
1757	loop_tries = 0;
1758	clock_recovery = false;
1759	for (;;) {
1760		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1761		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1762		uint32_t    signal_levels;
1763
1764
1765		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1766			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1767			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1768		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1769			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1770			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1771		} else {
1772			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1773			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1774			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1775		}
1776
1777		if (!intel_dp_set_link_train(intel_dp, DP,
1778					     DP_TRAINING_PATTERN_1 |
1779					     DP_LINK_SCRAMBLING_DISABLE))
1780			break;
1781		/* Set training pattern 1 */
1782
1783		udelay(100);
1784		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1785			DRM_ERROR("failed to get link status\n");
1786			break;
1787		}
1788
1789		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1790			DRM_DEBUG_KMS("clock recovery OK\n");
1791			clock_recovery = true;
1792			break;
1793		}
1794
1795		/* Check to see if we've tried the max voltage */
1796		for (i = 0; i < intel_dp->lane_count; i++)
1797			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1798				break;
1799		if (i == intel_dp->lane_count && voltage_tries == 5) {
1800			++loop_tries;
1801			if (loop_tries == 5) {
1802				DRM_DEBUG_KMS("too many full retries, give up\n");
1803				break;
1804			}
1805			memset(intel_dp->train_set, 0, 4);
1806			voltage_tries = 0;
1807			continue;
1808		}
1809
1810		/* Check to see if we've tried the same voltage 5 times */
1811		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1812			++voltage_tries;
1813			if (voltage_tries == 5) {
1814				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1815				break;
1816			}
1817		} else
1818			voltage_tries = 0;
1819		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1820
1821		/* Compute new intel_dp->train_set as requested by target */
1822		intel_get_adjust_train(intel_dp, link_status);
1823	}
1824
1825	intel_dp->DP = DP;
1826}
1827
1828static void
1829intel_dp_complete_link_train(struct intel_dp *intel_dp)
1830{
1831	struct drm_device *dev = intel_dp->base.base.dev;
1832	bool channel_eq = false;
1833	int tries, cr_tries;
1834	uint32_t DP = intel_dp->DP;
1835
1836	/* channel equalization */
1837	tries = 0;
1838	cr_tries = 0;
1839	channel_eq = false;
1840	for (;;) {
1841		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1842		uint32_t    signal_levels;
1843		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1844
1845		if (cr_tries > 5) {
1846			DRM_ERROR("failed to train DP, aborting\n");
1847			intel_dp_link_down(intel_dp);
1848			break;
1849		}
1850
1851		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1852			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1853			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1854		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1855			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1856			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1857		} else {
1858			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1859			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1860		}
1861
1862		/* channel eq pattern */
1863		if (!intel_dp_set_link_train(intel_dp, DP,
1864					     DP_TRAINING_PATTERN_2 |
1865					     DP_LINK_SCRAMBLING_DISABLE))
1866			break;
1867
1868		udelay(400);
1869		if (!intel_dp_get_link_status(intel_dp, link_status))
1870			break;
1871
1872		/* Make sure clock is still ok */
1873		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1874			intel_dp_start_link_train(intel_dp);
1875			cr_tries++;
1876			continue;
1877		}
1878
1879		if (intel_channel_eq_ok(intel_dp, link_status)) {
1880			channel_eq = true;
1881			break;
1882		}
1883
1884		/* Try 5 times, then try clock recovery if that fails */
1885		if (tries > 5) {
1886			intel_dp_link_down(intel_dp);
1887			intel_dp_start_link_train(intel_dp);
1888			tries = 0;
1889			cr_tries++;
1890			continue;
1891		}
1892
1893		/* Compute new intel_dp->train_set as requested by target */
1894		intel_get_adjust_train(intel_dp, link_status);
1895		++tries;
1896	}
1897
1898	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1899}
1900
1901static void
1902intel_dp_link_down(struct intel_dp *intel_dp)
1903{
1904	struct drm_device *dev = intel_dp->base.base.dev;
1905	struct drm_i915_private *dev_priv = dev->dev_private;
1906	uint32_t DP = intel_dp->DP;
1907
1908	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1909		return;
1910
1911	DRM_DEBUG_KMS("\n");
1912
1913	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1914		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1915		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1916	} else {
1917		DP &= ~DP_LINK_TRAIN_MASK;
1918		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1919	}
1920	POSTING_READ(intel_dp->output_reg);
1921
1922	msleep(17);
1923
1924	if (is_edp(intel_dp)) {
1925		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1926			DP |= DP_LINK_TRAIN_OFF_CPT;
1927		else
1928			DP |= DP_LINK_TRAIN_OFF;
1929	}
1930
1931	if (HAS_PCH_IBX(dev) &&
1932	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1933		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1934
1935		/* Hardware workaround: leaving our transcoder select
1936		 * set to transcoder B while it's off will prevent the
1937		 * corresponding HDMI output on transcoder A.
1938		 *
1939		 * Combine this with another hardware workaround:
1940		 * transcoder select bit can only be cleared while the
1941		 * port is enabled.
1942		 */
1943		DP &= ~DP_PIPEB_SELECT;
1944		I915_WRITE(intel_dp->output_reg, DP);
1945
1946		/* Changes to enable or select take place the vblank
1947		 * after being written.
1948		 */
1949		if (crtc == NULL) {
1950			/* We can arrive here never having been attached
1951			 * to a CRTC, for instance, due to inheriting
1952			 * random state from the BIOS.
1953			 *
1954			 * If the pipe is not running, play safe and
1955			 * wait for the clocks to stabilise before
1956			 * continuing.
1957			 */
1958			POSTING_READ(intel_dp->output_reg);
1959			msleep(50);
1960		} else
1961			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1962	}
1963
1964	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1965	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1966	POSTING_READ(intel_dp->output_reg);
1967	msleep(intel_dp->panel_power_down_delay);
1968}
1969
1970static bool
1971intel_dp_get_dpcd(struct intel_dp *intel_dp)
1972{
1973	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1974					   sizeof(intel_dp->dpcd)) &&
1975	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1976		return true;
1977	}
1978
1979	return false;
1980}
1981
1982static void
1983intel_dp_probe_oui(struct intel_dp *intel_dp)
1984{
1985	u8 buf[3];
1986
1987	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1988		return;
1989
1990	ironlake_edp_panel_vdd_on(intel_dp);
1991
1992	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1993		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1994			      buf[0], buf[1], buf[2]);
1995
1996	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1997		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1998			      buf[0], buf[1], buf[2]);
1999
2000	ironlake_edp_panel_vdd_off(intel_dp, false);
2001}
2002
2003static bool
2004intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2005{
2006	int ret;
2007
2008	ret = intel_dp_aux_native_read_retry(intel_dp,
2009					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2010					     sink_irq_vector, 1);
2011	if (!ret)
2012		return false;
2013
2014	return true;
2015}
2016
2017static void
2018intel_dp_handle_test_request(struct intel_dp *intel_dp)
2019{
2020	/* NAK by default */
2021	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2022}
2023
2024/*
2025 * According to DP spec
2026 * 5.1.2:
2027 *  1. Read DPCD
2028 *  2. Configure link according to Receiver Capabilities
2029 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2030 *  4. Check link status on receipt of hot-plug interrupt
2031 */
2032
2033static void
2034intel_dp_check_link_status(struct intel_dp *intel_dp)
2035{
2036	u8 sink_irq_vector;
2037	u8 link_status[DP_LINK_STATUS_SIZE];
2038
2039	if (!intel_dp->base.connectors_active)
2040		return;
2041
2042	if (WARN_ON(!intel_dp->base.base.crtc))
2043		return;
2044
2045	/* Try to read receiver status if the link appears to be up */
2046	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2047		intel_dp_link_down(intel_dp);
2048		return;
2049	}
2050
2051	/* Now read the DPCD to see if it's actually running */
2052	if (!intel_dp_get_dpcd(intel_dp)) {
2053		intel_dp_link_down(intel_dp);
2054		return;
2055	}
2056
2057	/* Try to read the source of the interrupt */
2058	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2059	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2060		/* Clear interrupt source */
2061		intel_dp_aux_native_write_1(intel_dp,
2062					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2063					    sink_irq_vector);
2064
2065		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2066			intel_dp_handle_test_request(intel_dp);
2067		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2068			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2069	}
2070
2071	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2072		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2073			      drm_get_encoder_name(&intel_dp->base.base));
2074		intel_dp_start_link_train(intel_dp);
2075		intel_dp_complete_link_train(intel_dp);
2076	}
2077}
2078
2079static enum drm_connector_status
2080intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2081{
2082	if (intel_dp_get_dpcd(intel_dp))
2083		return connector_status_connected;
2084	return connector_status_disconnected;
2085}
2086
2087static enum drm_connector_status
2088ironlake_dp_detect(struct intel_dp *intel_dp)
2089{
2090	enum drm_connector_status status;
2091
2092	/* Can't disconnect eDP, but you can close the lid... */
2093	if (is_edp(intel_dp)) {
2094		status = intel_panel_detect(intel_dp->base.base.dev);
2095		if (status == connector_status_unknown)
2096			status = connector_status_connected;
2097		return status;
2098	}
2099
2100	return intel_dp_detect_dpcd(intel_dp);
2101}
2102
2103static enum drm_connector_status
2104g4x_dp_detect(struct intel_dp *intel_dp)
2105{
2106	struct drm_device *dev = intel_dp->base.base.dev;
2107	struct drm_i915_private *dev_priv = dev->dev_private;
2108	uint32_t bit;
2109
2110	switch (intel_dp->output_reg) {
2111	case DP_B:
2112		bit = DPB_HOTPLUG_LIVE_STATUS;
2113		break;
2114	case DP_C:
2115		bit = DPC_HOTPLUG_LIVE_STATUS;
2116		break;
2117	case DP_D:
2118		bit = DPD_HOTPLUG_LIVE_STATUS;
2119		break;
2120	default:
2121		return connector_status_unknown;
2122	}
2123
2124	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2125		return connector_status_disconnected;
2126
2127	return intel_dp_detect_dpcd(intel_dp);
2128}
2129
2130static struct edid *
2131intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2132{
2133	struct intel_dp *intel_dp = intel_attached_dp(connector);
2134	struct edid	*edid;
2135	int size;
2136
2137	if (is_edp(intel_dp)) {
2138		if (!intel_dp->edid)
2139			return NULL;
2140
2141		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2142		edid = kmalloc(size, GFP_KERNEL);
2143		if (!edid)
2144			return NULL;
2145
2146		memcpy(edid, intel_dp->edid, size);
2147		return edid;
2148	}
2149
2150	edid = drm_get_edid(connector, adapter);
2151	return edid;
2152}
2153
2154static int
2155intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2156{
2157	struct intel_dp *intel_dp = intel_attached_dp(connector);
2158	int	ret;
2159
2160	if (is_edp(intel_dp)) {
2161		drm_mode_connector_update_edid_property(connector,
2162							intel_dp->edid);
2163		ret = drm_add_edid_modes(connector, intel_dp->edid);
2164		drm_edid_to_eld(connector,
2165				intel_dp->edid);
2166		return intel_dp->edid_mode_count;
2167	}
2168
2169	ret = intel_ddc_get_modes(connector, adapter);
2170	return ret;
2171}
2172
2173
2174/**
2175 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2176 *
2177 * \return true if DP port is connected.
2178 * \return false if DP port is disconnected.
2179 */
2180static enum drm_connector_status
2181intel_dp_detect(struct drm_connector *connector, bool force)
2182{
2183	struct intel_dp *intel_dp = intel_attached_dp(connector);
2184	struct drm_device *dev = intel_dp->base.base.dev;
2185	enum drm_connector_status status;
2186	struct edid *edid = NULL;
2187
2188	intel_dp->has_audio = false;
2189
2190	if (HAS_PCH_SPLIT(dev))
2191		status = ironlake_dp_detect(intel_dp);
2192	else
2193		status = g4x_dp_detect(intel_dp);
2194
2195	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2196		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2197		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2198		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2199
2200	if (status != connector_status_connected)
2201		return status;
2202
2203	intel_dp_probe_oui(intel_dp);
2204
2205	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2206		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2207	} else {
2208		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2209		if (edid) {
2210			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2211			kfree(edid);
2212		}
2213	}
2214
2215	return connector_status_connected;
2216}
2217
2218static int intel_dp_get_modes(struct drm_connector *connector)
2219{
2220	struct intel_dp *intel_dp = intel_attached_dp(connector);
2221	struct drm_device *dev = intel_dp->base.base.dev;
2222	struct drm_i915_private *dev_priv = dev->dev_private;
2223	int ret;
2224
2225	/* We should parse the EDID data and find out if it has an audio sink
2226	 */
2227
2228	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2229	if (ret) {
2230		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2231			struct drm_display_mode *newmode;
2232			list_for_each_entry(newmode, &connector->probed_modes,
2233					    head) {
2234				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2235					intel_dp->panel_fixed_mode =
2236						drm_mode_duplicate(dev, newmode);
2237					break;
2238				}
2239			}
2240		}
2241		return ret;
2242	}
2243
2244	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2245	if (is_edp(intel_dp)) {
2246		/* initialize panel mode from VBT if available for eDP */
2247		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2248			intel_dp->panel_fixed_mode =
2249				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2250			if (intel_dp->panel_fixed_mode) {
2251				intel_dp->panel_fixed_mode->type |=
2252					DRM_MODE_TYPE_PREFERRED;
2253			}
2254		}
2255		if (intel_dp->panel_fixed_mode) {
2256			struct drm_display_mode *mode;
2257			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2258			drm_mode_probed_add(connector, mode);
2259			return 1;
2260		}
2261	}
2262	return 0;
2263}
2264
2265static bool
2266intel_dp_detect_audio(struct drm_connector *connector)
2267{
2268	struct intel_dp *intel_dp = intel_attached_dp(connector);
2269	struct edid *edid;
2270	bool has_audio = false;
2271
2272	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2273	if (edid) {
2274		has_audio = drm_detect_monitor_audio(edid);
2275		kfree(edid);
2276	}
2277
2278	return has_audio;
2279}
2280
2281static int
2282intel_dp_set_property(struct drm_connector *connector,
2283		      struct drm_property *property,
2284		      uint64_t val)
2285{
2286	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287	struct intel_dp *intel_dp = intel_attached_dp(connector);
2288	int ret;
2289
2290	ret = drm_connector_property_set_value(connector, property, val);
2291	if (ret)
2292		return ret;
2293
2294	if (property == dev_priv->force_audio_property) {
2295		int i = val;
2296		bool has_audio;
2297
2298		if (i == intel_dp->force_audio)
2299			return 0;
2300
2301		intel_dp->force_audio = i;
2302
2303		if (i == HDMI_AUDIO_AUTO)
2304			has_audio = intel_dp_detect_audio(connector);
2305		else
2306			has_audio = (i == HDMI_AUDIO_ON);
2307
2308		if (has_audio == intel_dp->has_audio)
2309			return 0;
2310
2311		intel_dp->has_audio = has_audio;
2312		goto done;
2313	}
2314
2315	if (property == dev_priv->broadcast_rgb_property) {
2316		if (val == !!intel_dp->color_range)
2317			return 0;
2318
2319		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320		goto done;
2321	}
2322
2323	return -EINVAL;
2324
2325done:
2326	if (intel_dp->base.base.crtc) {
2327		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328		intel_set_mode(crtc, &crtc->mode,
2329			       crtc->x, crtc->y, crtc->fb);
2330	}
2331
2332	return 0;
2333}
2334
2335static void
2336intel_dp_destroy(struct drm_connector *connector)
2337{
2338	struct drm_device *dev = connector->dev;
2339
2340	if (intel_dpd_is_edp(dev))
2341		intel_panel_destroy_backlight(dev);
2342
2343	drm_sysfs_connector_remove(connector);
2344	drm_connector_cleanup(connector);
2345	kfree(connector);
2346}
2347
2348static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2349{
2350	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2351
2352	i2c_del_adapter(&intel_dp->adapter);
2353	drm_encoder_cleanup(encoder);
2354	if (is_edp(intel_dp)) {
2355		kfree(intel_dp->edid);
2356		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2357		ironlake_panel_vdd_off_sync(intel_dp);
2358	}
2359	kfree(intel_dp);
2360}
2361
2362static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2363	.mode_fixup = intel_dp_mode_fixup,
2364	.mode_set = intel_dp_mode_set,
2365	.disable = intel_encoder_noop,
2366};
2367
2368static const struct drm_connector_funcs intel_dp_connector_funcs = {
2369	.dpms = intel_connector_dpms,
2370	.detect = intel_dp_detect,
2371	.fill_modes = drm_helper_probe_single_connector_modes,
2372	.set_property = intel_dp_set_property,
2373	.destroy = intel_dp_destroy,
2374};
2375
2376static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2377	.get_modes = intel_dp_get_modes,
2378	.mode_valid = intel_dp_mode_valid,
2379	.best_encoder = intel_best_encoder,
2380};
2381
2382static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2383	.destroy = intel_dp_encoder_destroy,
2384};
2385
2386static void
2387intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2388{
2389	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2390
2391	intel_dp_check_link_status(intel_dp);
2392}
2393
2394/* Return which DP Port should be selected for Transcoder DP control */
2395int
2396intel_trans_dp_port_sel(struct drm_crtc *crtc)
2397{
2398	struct drm_device *dev = crtc->dev;
2399	struct intel_encoder *encoder;
2400
2401	for_each_encoder_on_crtc(dev, crtc, encoder) {
2402		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2403
2404		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2405		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2406			return intel_dp->output_reg;
2407	}
2408
2409	return -1;
2410}
2411
2412/* check the VBT to see whether the eDP is on DP-D port */
2413bool intel_dpd_is_edp(struct drm_device *dev)
2414{
2415	struct drm_i915_private *dev_priv = dev->dev_private;
2416	struct child_device_config *p_child;
2417	int i;
2418
2419	if (!dev_priv->child_dev_num)
2420		return false;
2421
2422	for (i = 0; i < dev_priv->child_dev_num; i++) {
2423		p_child = dev_priv->child_dev + i;
2424
2425		if (p_child->dvo_port == PORT_IDPD &&
2426		    p_child->device_type == DEVICE_TYPE_eDP)
2427			return true;
2428	}
2429	return false;
2430}
2431
2432static void
2433intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2434{
2435	intel_attach_force_audio_property(connector);
2436	intel_attach_broadcast_rgb_property(connector);
2437}
2438
2439void
2440intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2441{
2442	struct drm_i915_private *dev_priv = dev->dev_private;
2443	struct drm_connector *connector;
2444	struct intel_dp *intel_dp;
2445	struct intel_encoder *intel_encoder;
2446	struct intel_connector *intel_connector;
2447	const char *name = NULL;
2448	int type;
2449
2450	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2451	if (!intel_dp)
2452		return;
2453
2454	intel_dp->output_reg = output_reg;
2455	intel_dp->port = port;
2456	/* Preserve the current hw state. */
2457	intel_dp->DP = I915_READ(intel_dp->output_reg);
2458
2459	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2460	if (!intel_connector) {
2461		kfree(intel_dp);
2462		return;
2463	}
2464	intel_encoder = &intel_dp->base;
2465
2466	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2467		if (intel_dpd_is_edp(dev))
2468			intel_dp->is_pch_edp = true;
2469
2470	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2471		type = DRM_MODE_CONNECTOR_eDP;
2472		intel_encoder->type = INTEL_OUTPUT_EDP;
2473	} else {
2474		type = DRM_MODE_CONNECTOR_DisplayPort;
2475		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2476	}
2477
2478	connector = &intel_connector->base;
2479	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2480	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2481
2482	connector->polled = DRM_CONNECTOR_POLL_HPD;
2483
2484	intel_encoder->cloneable = false;
2485
2486	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2487			  ironlake_panel_vdd_work);
2488
2489	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2490
2491	connector->interlace_allowed = true;
2492	connector->doublescan_allowed = 0;
2493
2494	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2495			 DRM_MODE_ENCODER_TMDS);
2496	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2497
2498	intel_connector_attach_encoder(intel_connector, intel_encoder);
2499	drm_sysfs_connector_add(connector);
2500
2501	intel_encoder->enable = intel_enable_dp;
2502	intel_encoder->pre_enable = intel_pre_enable_dp;
2503	intel_encoder->disable = intel_disable_dp;
2504	intel_encoder->post_disable = intel_post_disable_dp;
2505	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2506	intel_connector->get_hw_state = intel_connector_get_hw_state;
2507
2508	/* Set up the DDC bus. */
2509	switch (port) {
2510	case PORT_A:
2511		name = "DPDDC-A";
2512		break;
2513	case PORT_B:
2514		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2515		name = "DPDDC-B";
2516		break;
2517	case PORT_C:
2518		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2519		name = "DPDDC-C";
2520		break;
2521	case PORT_D:
2522		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2523		name = "DPDDC-D";
2524		break;
2525	default:
2526		WARN(1, "Invalid port %c\n", port_name(port));
2527		break;
2528	}
2529
2530	intel_dp_i2c_init(intel_dp, intel_connector, name);
2531
2532	/* Cache some DPCD data in the eDP case */
2533	if (is_edp(intel_dp)) {
2534		bool ret;
2535		struct edp_power_seq	cur, vbt;
2536		u32 pp_on, pp_off, pp_div;
2537		struct edid *edid;
2538
2539		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2540		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2541		pp_div = I915_READ(PCH_PP_DIVISOR);
2542
2543		if (!pp_on || !pp_off || !pp_div) {
2544			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2545			intel_dp_encoder_destroy(&intel_dp->base.base);
2546			intel_dp_destroy(&intel_connector->base);
2547			return;
2548		}
2549
2550		/* Pull timing values out of registers */
2551		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2552			PANEL_POWER_UP_DELAY_SHIFT;
2553
2554		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2555			PANEL_LIGHT_ON_DELAY_SHIFT;
2556
2557		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2558			PANEL_LIGHT_OFF_DELAY_SHIFT;
2559
2560		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2561			PANEL_POWER_DOWN_DELAY_SHIFT;
2562
2563		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2564			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2565
2566		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2567			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2568
2569		vbt = dev_priv->edp.pps;
2570
2571		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2572			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2573
2574#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2575
2576		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2577		intel_dp->backlight_on_delay = get_delay(t8);
2578		intel_dp->backlight_off_delay = get_delay(t9);
2579		intel_dp->panel_power_down_delay = get_delay(t10);
2580		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2581
2582		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2583			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2584			      intel_dp->panel_power_cycle_delay);
2585
2586		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2587			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2588
2589		ironlake_edp_panel_vdd_on(intel_dp);
2590		ret = intel_dp_get_dpcd(intel_dp);
2591		ironlake_edp_panel_vdd_off(intel_dp, false);
2592
2593		if (ret) {
2594			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2595				dev_priv->no_aux_handshake =
2596					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2597					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2598		} else {
2599			/* if this fails, presume the device is a ghost */
2600			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2601			intel_dp_encoder_destroy(&intel_dp->base.base);
2602			intel_dp_destroy(&intel_connector->base);
2603			return;
2604		}
2605
2606		ironlake_edp_panel_vdd_on(intel_dp);
2607		edid = drm_get_edid(connector, &intel_dp->adapter);
2608		if (edid) {
2609			drm_mode_connector_update_edid_property(connector,
2610								edid);
2611			intel_dp->edid_mode_count =
2612				drm_add_edid_modes(connector, edid);
2613			drm_edid_to_eld(connector, edid);
2614			intel_dp->edid = edid;
2615		}
2616		ironlake_edp_panel_vdd_off(intel_dp, false);
2617	}
2618
2619	intel_encoder->hot_plug = intel_dp_hot_plug;
2620
2621	if (is_edp(intel_dp)) {
2622		dev_priv->int_edp_connector = connector;
2623		intel_panel_setup_backlight(dev);
2624	}
2625
2626	intel_dp_add_properties(intel_dp, connector);
2627
2628	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2629	 * 0xd.  Failure to do so will result in spurious interrupts being
2630	 * generated on the port when a cable is not attached.
2631	 */
2632	if (IS_G4X(dev) && !IS_GM45(dev)) {
2633		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2634		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2635	}
2636}
2637