intel_dp.c revision 50f3b016b055dbc83094bc2d7a91c3c69edbc88b
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41/**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48static bool is_edp(struct intel_dp *intel_dp)
49{
50	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53}
54
55/**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise.  Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63static bool is_pch_edp(struct intel_dp *intel_dp)
64{
65	return intel_dp->is_pch_edp;
66}
67
68/**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74static bool is_cpu_edp(struct intel_dp *intel_dp)
75{
76	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77}
78
79static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80{
81	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83	return intel_dig_port->base.base.dev;
84}
85
86static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87{
88	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89}
90
91/**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96 * by intel_display.c.
97 */
98bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99{
100	struct intel_dp *intel_dp;
101
102	if (!encoder)
103		return false;
104
105	intel_dp = enc_to_intel_dp(encoder);
106
107	return is_pch_edp(intel_dp);
108}
109
110static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112void
113intel_edp_link_config(struct intel_encoder *intel_encoder,
114		       int *lane_num, int *link_bw)
115{
116	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118	*lane_num = intel_dp->lane_count;
119	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120}
121
122int
123intel_edp_target_clock(struct intel_encoder *intel_encoder,
124		       struct drm_display_mode *mode)
125{
126	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127	struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129	if (intel_connector->panel.fixed_mode)
130		return intel_connector->panel.fixed_mode->clock;
131	else
132		return mode->clock;
133}
134
135static int
136intel_dp_max_link_bw(struct intel_dp *intel_dp)
137{
138	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140	switch (max_link_bw) {
141	case DP_LINK_BW_1_62:
142	case DP_LINK_BW_2_7:
143		break;
144	default:
145		max_link_bw = DP_LINK_BW_1_62;
146		break;
147	}
148	return max_link_bw;
149}
150
151/*
152 * The units on the numbers in the next two are... bizarre.  Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 *     270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000.  At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168static int
169intel_dp_link_required(int pixel_clock, int bpp)
170{
171	return (pixel_clock * bpp + 9) / 10;
172}
173
174static int
175intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176{
177	return (max_link_clock * max_lanes * 8) / 10;
178}
179
180static bool
181intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182			  struct drm_display_mode *mode,
183			  bool adjust_mode)
184{
185	int max_link_clock =
186		drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188	int max_rate, mode_rate;
189
190	mode_rate = intel_dp_link_required(mode->clock, 24);
191	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193	if (mode_rate > max_rate) {
194		mode_rate = intel_dp_link_required(mode->clock, 18);
195		if (mode_rate > max_rate)
196			return false;
197
198		if (adjust_mode)
199			mode->private_flags
200				|= INTEL_MODE_DP_FORCE_6BPC;
201
202		return true;
203	}
204
205	return true;
206}
207
208static int
209intel_dp_mode_valid(struct drm_connector *connector,
210		    struct drm_display_mode *mode)
211{
212	struct intel_dp *intel_dp = intel_attached_dp(connector);
213	struct intel_connector *intel_connector = to_intel_connector(connector);
214	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216	if (is_edp(intel_dp) && fixed_mode) {
217		if (mode->hdisplay > fixed_mode->hdisplay)
218			return MODE_PANEL;
219
220		if (mode->vdisplay > fixed_mode->vdisplay)
221			return MODE_PANEL;
222	}
223
224	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225		return MODE_CLOCK_HIGH;
226
227	if (mode->clock < 10000)
228		return MODE_CLOCK_LOW;
229
230	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231		return MODE_H_ILLEGAL;
232
233	return MODE_OK;
234}
235
236static uint32_t
237pack_aux(uint8_t *src, int src_bytes)
238{
239	int	i;
240	uint32_t v = 0;
241
242	if (src_bytes > 4)
243		src_bytes = 4;
244	for (i = 0; i < src_bytes; i++)
245		v |= ((uint32_t) src[i]) << ((3-i) * 8);
246	return v;
247}
248
249static void
250unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251{
252	int i;
253	if (dst_bytes > 4)
254		dst_bytes = 4;
255	for (i = 0; i < dst_bytes; i++)
256		dst[i] = src >> ((3-i) * 8);
257}
258
259/* hrawclock is 1/4 the FSB frequency */
260static int
261intel_hrawclk(struct drm_device *dev)
262{
263	struct drm_i915_private *dev_priv = dev->dev_private;
264	uint32_t clkcfg;
265
266	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267	if (IS_VALLEYVIEW(dev))
268		return 200;
269
270	clkcfg = I915_READ(CLKCFG);
271	switch (clkcfg & CLKCFG_FSB_MASK) {
272	case CLKCFG_FSB_400:
273		return 100;
274	case CLKCFG_FSB_533:
275		return 133;
276	case CLKCFG_FSB_667:
277		return 166;
278	case CLKCFG_FSB_800:
279		return 200;
280	case CLKCFG_FSB_1067:
281		return 266;
282	case CLKCFG_FSB_1333:
283		return 333;
284	/* these two are just a guess; one of them might be right */
285	case CLKCFG_FSB_1600:
286	case CLKCFG_FSB_1600_ALT:
287		return 400;
288	default:
289		return 133;
290	}
291}
292
293static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294{
295	struct drm_device *dev = intel_dp_to_dev(intel_dp);
296	struct drm_i915_private *dev_priv = dev->dev_private;
297
298	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299}
300
301static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302{
303	struct drm_device *dev = intel_dp_to_dev(intel_dp);
304	struct drm_i915_private *dev_priv = dev->dev_private;
305
306	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307}
308
309static void
310intel_dp_check_edp(struct intel_dp *intel_dp)
311{
312	struct drm_device *dev = intel_dp_to_dev(intel_dp);
313	struct drm_i915_private *dev_priv = dev->dev_private;
314
315	if (!is_edp(intel_dp))
316		return;
317	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318		WARN(1, "eDP powered off while attempting aux channel communication.\n");
319		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320			      I915_READ(PCH_PP_STATUS),
321			      I915_READ(PCH_PP_CONTROL));
322	}
323}
324
325static uint32_t
326intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327{
328	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329	struct drm_device *dev = intel_dig_port->base.base.dev;
330	struct drm_i915_private *dev_priv = dev->dev_private;
331	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
332	uint32_t status;
333	bool done;
334
335#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
336	if (has_aux_irq)
337		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
338					  msecs_to_jiffies(10));
339	else
340		done = wait_for_atomic(C, 10) == 0;
341	if (!done)
342		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
343			  has_aux_irq);
344#undef C
345
346	return status;
347}
348
349static int
350intel_dp_aux_ch(struct intel_dp *intel_dp,
351		uint8_t *send, int send_bytes,
352		uint8_t *recv, int recv_size)
353{
354	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
355	struct drm_device *dev = intel_dig_port->base.base.dev;
356	struct drm_i915_private *dev_priv = dev->dev_private;
357	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
358	uint32_t ch_data = ch_ctl + 4;
359	int i, ret, recv_bytes;
360	uint32_t status;
361	uint32_t aux_clock_divider;
362	int try, precharge;
363	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
364
365	/* dp aux is extremely sensitive to irq latency, hence request the
366	 * lowest possible wakeup latency and so prevent the cpu from going into
367	 * deep sleep states.
368	 */
369	pm_qos_update_request(&dev_priv->pm_qos, 0);
370
371	intel_dp_check_edp(intel_dp);
372	/* The clock divider is based off the hrawclk,
373	 * and would like to run at 2MHz. So, take the
374	 * hrawclk value and divide by 2 and use that
375	 *
376	 * Note that PCH attached eDP panels should use a 125MHz input
377	 * clock divider.
378	 */
379	if (is_cpu_edp(intel_dp)) {
380		if (HAS_DDI(dev))
381			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
382		else if (IS_VALLEYVIEW(dev))
383			aux_clock_divider = 100;
384		else if (IS_GEN6(dev) || IS_GEN7(dev))
385			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
386		else
387			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
388	} else if (HAS_PCH_SPLIT(dev))
389		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
390	else
391		aux_clock_divider = intel_hrawclk(dev) / 2;
392
393	if (IS_GEN6(dev))
394		precharge = 3;
395	else
396		precharge = 5;
397
398	/* Try to wait for any previous AUX channel activity */
399	for (try = 0; try < 3; try++) {
400		status = I915_READ_NOTRACE(ch_ctl);
401		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
402			break;
403		msleep(1);
404	}
405
406	if (try == 3) {
407		WARN(1, "dp_aux_ch not started status 0x%08x\n",
408		     I915_READ(ch_ctl));
409		ret = -EBUSY;
410		goto out;
411	}
412
413	/* Must try at least 3 times according to DP spec */
414	for (try = 0; try < 5; try++) {
415		/* Load the send data into the aux channel data registers */
416		for (i = 0; i < send_bytes; i += 4)
417			I915_WRITE(ch_data + i,
418				   pack_aux(send + i, send_bytes - i));
419
420		/* Send the command and wait for it to complete */
421		I915_WRITE(ch_ctl,
422			   DP_AUX_CH_CTL_SEND_BUSY |
423			   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
424			   DP_AUX_CH_CTL_TIME_OUT_400us |
425			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
426			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
427			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
428			   DP_AUX_CH_CTL_DONE |
429			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
430			   DP_AUX_CH_CTL_RECEIVE_ERROR);
431
432		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
433
434		/* Clear done status and any errors */
435		I915_WRITE(ch_ctl,
436			   status |
437			   DP_AUX_CH_CTL_DONE |
438			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
439			   DP_AUX_CH_CTL_RECEIVE_ERROR);
440
441		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
442			      DP_AUX_CH_CTL_RECEIVE_ERROR))
443			continue;
444		if (status & DP_AUX_CH_CTL_DONE)
445			break;
446	}
447
448	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
449		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
450		ret = -EBUSY;
451		goto out;
452	}
453
454	/* Check for timeout or receive error.
455	 * Timeouts occur when the sink is not connected
456	 */
457	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
458		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
459		ret = -EIO;
460		goto out;
461	}
462
463	/* Timeouts occur when the device isn't connected, so they're
464	 * "normal" -- don't fill the kernel log with these */
465	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
466		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
467		ret = -ETIMEDOUT;
468		goto out;
469	}
470
471	/* Unload any bytes sent back from the other side */
472	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
473		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
474	if (recv_bytes > recv_size)
475		recv_bytes = recv_size;
476
477	for (i = 0; i < recv_bytes; i += 4)
478		unpack_aux(I915_READ(ch_data + i),
479			   recv + i, recv_bytes - i);
480
481	ret = recv_bytes;
482out:
483	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
484
485	return ret;
486}
487
488/* Write data to the aux channel in native mode */
489static int
490intel_dp_aux_native_write(struct intel_dp *intel_dp,
491			  uint16_t address, uint8_t *send, int send_bytes)
492{
493	int ret;
494	uint8_t	msg[20];
495	int msg_bytes;
496	uint8_t	ack;
497
498	intel_dp_check_edp(intel_dp);
499	if (send_bytes > 16)
500		return -1;
501	msg[0] = AUX_NATIVE_WRITE << 4;
502	msg[1] = address >> 8;
503	msg[2] = address & 0xff;
504	msg[3] = send_bytes - 1;
505	memcpy(&msg[4], send, send_bytes);
506	msg_bytes = send_bytes + 4;
507	for (;;) {
508		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
509		if (ret < 0)
510			return ret;
511		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
512			break;
513		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
514			udelay(100);
515		else
516			return -EIO;
517	}
518	return send_bytes;
519}
520
521/* Write a single byte to the aux channel in native mode */
522static int
523intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
524			    uint16_t address, uint8_t byte)
525{
526	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
527}
528
529/* read bytes from a native aux channel */
530static int
531intel_dp_aux_native_read(struct intel_dp *intel_dp,
532			 uint16_t address, uint8_t *recv, int recv_bytes)
533{
534	uint8_t msg[4];
535	int msg_bytes;
536	uint8_t reply[20];
537	int reply_bytes;
538	uint8_t ack;
539	int ret;
540
541	intel_dp_check_edp(intel_dp);
542	msg[0] = AUX_NATIVE_READ << 4;
543	msg[1] = address >> 8;
544	msg[2] = address & 0xff;
545	msg[3] = recv_bytes - 1;
546
547	msg_bytes = 4;
548	reply_bytes = recv_bytes + 1;
549
550	for (;;) {
551		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
552				      reply, reply_bytes);
553		if (ret == 0)
554			return -EPROTO;
555		if (ret < 0)
556			return ret;
557		ack = reply[0];
558		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
559			memcpy(recv, reply + 1, ret - 1);
560			return ret - 1;
561		}
562		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
563			udelay(100);
564		else
565			return -EIO;
566	}
567}
568
569static int
570intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
571		    uint8_t write_byte, uint8_t *read_byte)
572{
573	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
574	struct intel_dp *intel_dp = container_of(adapter,
575						struct intel_dp,
576						adapter);
577	uint16_t address = algo_data->address;
578	uint8_t msg[5];
579	uint8_t reply[2];
580	unsigned retry;
581	int msg_bytes;
582	int reply_bytes;
583	int ret;
584
585	intel_dp_check_edp(intel_dp);
586	/* Set up the command byte */
587	if (mode & MODE_I2C_READ)
588		msg[0] = AUX_I2C_READ << 4;
589	else
590		msg[0] = AUX_I2C_WRITE << 4;
591
592	if (!(mode & MODE_I2C_STOP))
593		msg[0] |= AUX_I2C_MOT << 4;
594
595	msg[1] = address >> 8;
596	msg[2] = address;
597
598	switch (mode) {
599	case MODE_I2C_WRITE:
600		msg[3] = 0;
601		msg[4] = write_byte;
602		msg_bytes = 5;
603		reply_bytes = 1;
604		break;
605	case MODE_I2C_READ:
606		msg[3] = 0;
607		msg_bytes = 4;
608		reply_bytes = 2;
609		break;
610	default:
611		msg_bytes = 3;
612		reply_bytes = 1;
613		break;
614	}
615
616	for (retry = 0; retry < 5; retry++) {
617		ret = intel_dp_aux_ch(intel_dp,
618				      msg, msg_bytes,
619				      reply, reply_bytes);
620		if (ret < 0) {
621			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
622			return ret;
623		}
624
625		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
626		case AUX_NATIVE_REPLY_ACK:
627			/* I2C-over-AUX Reply field is only valid
628			 * when paired with AUX ACK.
629			 */
630			break;
631		case AUX_NATIVE_REPLY_NACK:
632			DRM_DEBUG_KMS("aux_ch native nack\n");
633			return -EREMOTEIO;
634		case AUX_NATIVE_REPLY_DEFER:
635			udelay(100);
636			continue;
637		default:
638			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
639				  reply[0]);
640			return -EREMOTEIO;
641		}
642
643		switch (reply[0] & AUX_I2C_REPLY_MASK) {
644		case AUX_I2C_REPLY_ACK:
645			if (mode == MODE_I2C_READ) {
646				*read_byte = reply[1];
647			}
648			return reply_bytes - 1;
649		case AUX_I2C_REPLY_NACK:
650			DRM_DEBUG_KMS("aux_i2c nack\n");
651			return -EREMOTEIO;
652		case AUX_I2C_REPLY_DEFER:
653			DRM_DEBUG_KMS("aux_i2c defer\n");
654			udelay(100);
655			break;
656		default:
657			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
658			return -EREMOTEIO;
659		}
660	}
661
662	DRM_ERROR("too many retries, giving up\n");
663	return -EREMOTEIO;
664}
665
666static int
667intel_dp_i2c_init(struct intel_dp *intel_dp,
668		  struct intel_connector *intel_connector, const char *name)
669{
670	int	ret;
671
672	DRM_DEBUG_KMS("i2c_init %s\n", name);
673	intel_dp->algo.running = false;
674	intel_dp->algo.address = 0;
675	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
676
677	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
678	intel_dp->adapter.owner = THIS_MODULE;
679	intel_dp->adapter.class = I2C_CLASS_DDC;
680	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
681	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
682	intel_dp->adapter.algo_data = &intel_dp->algo;
683	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
684
685	ironlake_edp_panel_vdd_on(intel_dp);
686	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
687	ironlake_edp_panel_vdd_off(intel_dp, false);
688	return ret;
689}
690
691bool
692intel_dp_compute_config(struct intel_encoder *encoder,
693			struct intel_crtc_config *pipe_config)
694{
695	struct drm_device *dev = encoder->base.dev;
696	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
697	struct drm_display_mode *mode = &pipe_config->requested_mode;
698	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
699	struct intel_connector *intel_connector = intel_dp->attached_connector;
700	int lane_count, clock;
701	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
702	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
703	int bpp, mode_rate;
704	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
705
706	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && !is_cpu_edp(intel_dp))
707		pipe_config->has_pch_encoder = true;
708
709	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
710		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
711				       adjusted_mode);
712		intel_pch_panel_fitting(dev,
713					intel_connector->panel.fitting_mode,
714					mode, adjusted_mode);
715	}
716
717	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
718		return false;
719
720	DRM_DEBUG_KMS("DP link computation with max lane count %i "
721		      "max bw %02x pixel clock %iKHz\n",
722		      max_lane_count, bws[max_clock], adjusted_mode->clock);
723
724	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
725		return false;
726
727	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
728
729	if (intel_dp->color_range_auto) {
730		/*
731		 * See:
732		 * CEA-861-E - 5.1 Default Encoding Parameters
733		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
734		 */
735		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
736			intel_dp->color_range = DP_COLOR_RANGE_16_235;
737		else
738			intel_dp->color_range = 0;
739	}
740
741	if (intel_dp->color_range)
742		pipe_config->limited_color_range = true;
743
744	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
745
746	for (clock = 0; clock <= max_clock; clock++) {
747		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
748			int link_bw_clock =
749				drm_dp_bw_code_to_link_rate(bws[clock]);
750			int link_avail = intel_dp_max_data_rate(link_bw_clock,
751								lane_count);
752
753			if (mode_rate <= link_avail) {
754				intel_dp->link_bw = bws[clock];
755				intel_dp->lane_count = lane_count;
756				adjusted_mode->clock = link_bw_clock;
757				DRM_DEBUG_KMS("DP link bw %02x lane "
758						"count %d clock %d bpp %d\n",
759				       intel_dp->link_bw, intel_dp->lane_count,
760				       adjusted_mode->clock, bpp);
761				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
762					      mode_rate, link_avail);
763				return true;
764			}
765		}
766	}
767
768	return false;
769}
770
771void
772intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
773		 struct drm_display_mode *adjusted_mode)
774{
775	struct drm_device *dev = crtc->dev;
776	struct intel_encoder *intel_encoder;
777	struct intel_dp *intel_dp;
778	struct drm_i915_private *dev_priv = dev->dev_private;
779	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780	int lane_count = 4;
781	struct intel_link_m_n m_n;
782	int pipe = intel_crtc->pipe;
783	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
784
785	/*
786	 * Find the lane count in the intel_encoder private
787	 */
788	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
789		intel_dp = enc_to_intel_dp(&intel_encoder->base);
790
791		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
792		    intel_encoder->type == INTEL_OUTPUT_EDP)
793		{
794			lane_count = intel_dp->lane_count;
795			break;
796		}
797	}
798
799	/*
800	 * Compute the GMCH and Link ratios. The '3' here is
801	 * the number of bytes_per_pixel post-LUT, which we always
802	 * set up for 8-bits of R/G/B, or 3 bytes total.
803	 */
804	intel_link_compute_m_n(intel_crtc->bpp, lane_count,
805			       mode->clock, adjusted_mode->clock, &m_n);
806
807	if (HAS_DDI(dev)) {
808		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
809			   TU_SIZE(m_n.tu) | m_n.gmch_m);
810		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
811		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
812		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
813	} else if (HAS_PCH_SPLIT(dev)) {
814		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
815		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
816		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
817		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
818	} else if (IS_VALLEYVIEW(dev)) {
819		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
820		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
821		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
822		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
823	} else {
824		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
825			   TU_SIZE(m_n.tu) | m_n.gmch_m);
826		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
827		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
828		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
829	}
830}
831
832void intel_dp_init_link_config(struct intel_dp *intel_dp)
833{
834	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
835	intel_dp->link_configuration[0] = intel_dp->link_bw;
836	intel_dp->link_configuration[1] = intel_dp->lane_count;
837	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
838	/*
839	 * Check for DPCD version > 1.1 and enhanced framing support
840	 */
841	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
842	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
843		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
844	}
845}
846
847static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
848{
849	struct drm_device *dev = crtc->dev;
850	struct drm_i915_private *dev_priv = dev->dev_private;
851	u32 dpa_ctl;
852
853	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
854	dpa_ctl = I915_READ(DP_A);
855	dpa_ctl &= ~DP_PLL_FREQ_MASK;
856
857	if (clock < 200000) {
858		/* For a long time we've carried around a ILK-DevA w/a for the
859		 * 160MHz clock. If we're really unlucky, it's still required.
860		 */
861		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
862		dpa_ctl |= DP_PLL_FREQ_160MHZ;
863	} else {
864		dpa_ctl |= DP_PLL_FREQ_270MHZ;
865	}
866
867	I915_WRITE(DP_A, dpa_ctl);
868
869	POSTING_READ(DP_A);
870	udelay(500);
871}
872
873static void
874intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
875		  struct drm_display_mode *adjusted_mode)
876{
877	struct drm_device *dev = encoder->dev;
878	struct drm_i915_private *dev_priv = dev->dev_private;
879	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
880	struct drm_crtc *crtc = encoder->crtc;
881	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
883	/*
884	 * There are four kinds of DP registers:
885	 *
886	 * 	IBX PCH
887	 * 	SNB CPU
888	 *	IVB CPU
889	 * 	CPT PCH
890	 *
891	 * IBX PCH and CPU are the same for almost everything,
892	 * except that the CPU DP PLL is configured in this
893	 * register
894	 *
895	 * CPT PCH is quite different, having many bits moved
896	 * to the TRANS_DP_CTL register instead. That
897	 * configuration happens (oddly) in ironlake_pch_enable
898	 */
899
900	/* Preserve the BIOS-computed detected bit. This is
901	 * supposed to be read-only.
902	 */
903	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
904
905	/* Handle DP bits in common between all three register formats */
906	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
907
908	switch (intel_dp->lane_count) {
909	case 1:
910		intel_dp->DP |= DP_PORT_WIDTH_1;
911		break;
912	case 2:
913		intel_dp->DP |= DP_PORT_WIDTH_2;
914		break;
915	case 4:
916		intel_dp->DP |= DP_PORT_WIDTH_4;
917		break;
918	}
919	if (intel_dp->has_audio) {
920		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
921				 pipe_name(intel_crtc->pipe));
922		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
923		intel_write_eld(encoder, adjusted_mode);
924	}
925
926	intel_dp_init_link_config(intel_dp);
927
928	/* Split out the IBX/CPU vs CPT settings */
929
930	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
931		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
932			intel_dp->DP |= DP_SYNC_HS_HIGH;
933		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
934			intel_dp->DP |= DP_SYNC_VS_HIGH;
935		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
936
937		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
938			intel_dp->DP |= DP_ENHANCED_FRAMING;
939
940		intel_dp->DP |= intel_crtc->pipe << 29;
941
942		/* don't miss out required setting for eDP */
943		if (adjusted_mode->clock < 200000)
944			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
945		else
946			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
947	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
948		if (!HAS_PCH_SPLIT(dev))
949			intel_dp->DP |= intel_dp->color_range;
950
951		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
952			intel_dp->DP |= DP_SYNC_HS_HIGH;
953		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
954			intel_dp->DP |= DP_SYNC_VS_HIGH;
955		intel_dp->DP |= DP_LINK_TRAIN_OFF;
956
957		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
958			intel_dp->DP |= DP_ENHANCED_FRAMING;
959
960		if (intel_crtc->pipe == 1)
961			intel_dp->DP |= DP_PIPEB_SELECT;
962
963		if (is_cpu_edp(intel_dp)) {
964			/* don't miss out required setting for eDP */
965			if (adjusted_mode->clock < 200000)
966				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
967			else
968				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
969		}
970	} else {
971		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
972	}
973
974	if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
975		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
976}
977
978#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
979#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
980
981#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
982#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
983
984#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
985#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
986
987static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
988				       u32 mask,
989				       u32 value)
990{
991	struct drm_device *dev = intel_dp_to_dev(intel_dp);
992	struct drm_i915_private *dev_priv = dev->dev_private;
993
994	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
995		      mask, value,
996		      I915_READ(PCH_PP_STATUS),
997		      I915_READ(PCH_PP_CONTROL));
998
999	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1000		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1001			  I915_READ(PCH_PP_STATUS),
1002			  I915_READ(PCH_PP_CONTROL));
1003	}
1004}
1005
1006static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1007{
1008	DRM_DEBUG_KMS("Wait for panel power on\n");
1009	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1010}
1011
1012static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1013{
1014	DRM_DEBUG_KMS("Wait for panel power off time\n");
1015	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1016}
1017
1018static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1019{
1020	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1021	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1022}
1023
1024
1025/* Read the current pp_control value, unlocking the register if it
1026 * is locked
1027 */
1028
1029static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1030{
1031	u32	control = I915_READ(PCH_PP_CONTROL);
1032
1033	control &= ~PANEL_UNLOCK_MASK;
1034	control |= PANEL_UNLOCK_REGS;
1035	return control;
1036}
1037
1038void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1039{
1040	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1041	struct drm_i915_private *dev_priv = dev->dev_private;
1042	u32 pp;
1043
1044	if (!is_edp(intel_dp))
1045		return;
1046	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1047
1048	WARN(intel_dp->want_panel_vdd,
1049	     "eDP VDD already requested on\n");
1050
1051	intel_dp->want_panel_vdd = true;
1052
1053	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1054		DRM_DEBUG_KMS("eDP VDD already on\n");
1055		return;
1056	}
1057
1058	if (!ironlake_edp_have_panel_power(intel_dp))
1059		ironlake_wait_panel_power_cycle(intel_dp);
1060
1061	pp = ironlake_get_pp_control(dev_priv);
1062	pp |= EDP_FORCE_VDD;
1063	I915_WRITE(PCH_PP_CONTROL, pp);
1064	POSTING_READ(PCH_PP_CONTROL);
1065	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1066		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1067
1068	/*
1069	 * If the panel wasn't on, delay before accessing aux channel
1070	 */
1071	if (!ironlake_edp_have_panel_power(intel_dp)) {
1072		DRM_DEBUG_KMS("eDP was not running\n");
1073		msleep(intel_dp->panel_power_up_delay);
1074	}
1075}
1076
1077static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1078{
1079	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1080	struct drm_i915_private *dev_priv = dev->dev_private;
1081	u32 pp;
1082
1083	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1084
1085	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1086		pp = ironlake_get_pp_control(dev_priv);
1087		pp &= ~EDP_FORCE_VDD;
1088		I915_WRITE(PCH_PP_CONTROL, pp);
1089		POSTING_READ(PCH_PP_CONTROL);
1090
1091		/* Make sure sequencer is idle before allowing subsequent activity */
1092		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1093			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1094
1095		msleep(intel_dp->panel_power_down_delay);
1096	}
1097}
1098
1099static void ironlake_panel_vdd_work(struct work_struct *__work)
1100{
1101	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1102						 struct intel_dp, panel_vdd_work);
1103	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1104
1105	mutex_lock(&dev->mode_config.mutex);
1106	ironlake_panel_vdd_off_sync(intel_dp);
1107	mutex_unlock(&dev->mode_config.mutex);
1108}
1109
1110void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1111{
1112	if (!is_edp(intel_dp))
1113		return;
1114
1115	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1116	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1117
1118	intel_dp->want_panel_vdd = false;
1119
1120	if (sync) {
1121		ironlake_panel_vdd_off_sync(intel_dp);
1122	} else {
1123		/*
1124		 * Queue the timer to fire a long
1125		 * time from now (relative to the power down delay)
1126		 * to keep the panel power up across a sequence of operations
1127		 */
1128		schedule_delayed_work(&intel_dp->panel_vdd_work,
1129				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1130	}
1131}
1132
1133void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1134{
1135	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1136	struct drm_i915_private *dev_priv = dev->dev_private;
1137	u32 pp;
1138
1139	if (!is_edp(intel_dp))
1140		return;
1141
1142	DRM_DEBUG_KMS("Turn eDP power on\n");
1143
1144	if (ironlake_edp_have_panel_power(intel_dp)) {
1145		DRM_DEBUG_KMS("eDP power already on\n");
1146		return;
1147	}
1148
1149	ironlake_wait_panel_power_cycle(intel_dp);
1150
1151	pp = ironlake_get_pp_control(dev_priv);
1152	if (IS_GEN5(dev)) {
1153		/* ILK workaround: disable reset around power sequence */
1154		pp &= ~PANEL_POWER_RESET;
1155		I915_WRITE(PCH_PP_CONTROL, pp);
1156		POSTING_READ(PCH_PP_CONTROL);
1157	}
1158
1159	pp |= POWER_TARGET_ON;
1160	if (!IS_GEN5(dev))
1161		pp |= PANEL_POWER_RESET;
1162
1163	I915_WRITE(PCH_PP_CONTROL, pp);
1164	POSTING_READ(PCH_PP_CONTROL);
1165
1166	ironlake_wait_panel_on(intel_dp);
1167
1168	if (IS_GEN5(dev)) {
1169		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1170		I915_WRITE(PCH_PP_CONTROL, pp);
1171		POSTING_READ(PCH_PP_CONTROL);
1172	}
1173}
1174
1175void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1176{
1177	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1178	struct drm_i915_private *dev_priv = dev->dev_private;
1179	u32 pp;
1180
1181	if (!is_edp(intel_dp))
1182		return;
1183
1184	DRM_DEBUG_KMS("Turn eDP power off\n");
1185
1186	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1187
1188	pp = ironlake_get_pp_control(dev_priv);
1189	/* We need to switch off panel power _and_ force vdd, for otherwise some
1190	 * panels get very unhappy and cease to work. */
1191	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1192	I915_WRITE(PCH_PP_CONTROL, pp);
1193	POSTING_READ(PCH_PP_CONTROL);
1194
1195	intel_dp->want_panel_vdd = false;
1196
1197	ironlake_wait_panel_off(intel_dp);
1198}
1199
1200void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1201{
1202	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1203	struct drm_device *dev = intel_dig_port->base.base.dev;
1204	struct drm_i915_private *dev_priv = dev->dev_private;
1205	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1206	u32 pp;
1207
1208	if (!is_edp(intel_dp))
1209		return;
1210
1211	DRM_DEBUG_KMS("\n");
1212	/*
1213	 * If we enable the backlight right away following a panel power
1214	 * on, we may see slight flicker as the panel syncs with the eDP
1215	 * link.  So delay a bit to make sure the image is solid before
1216	 * allowing it to appear.
1217	 */
1218	msleep(intel_dp->backlight_on_delay);
1219	pp = ironlake_get_pp_control(dev_priv);
1220	pp |= EDP_BLC_ENABLE;
1221	I915_WRITE(PCH_PP_CONTROL, pp);
1222	POSTING_READ(PCH_PP_CONTROL);
1223
1224	intel_panel_enable_backlight(dev, pipe);
1225}
1226
1227void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1228{
1229	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1230	struct drm_i915_private *dev_priv = dev->dev_private;
1231	u32 pp;
1232
1233	if (!is_edp(intel_dp))
1234		return;
1235
1236	intel_panel_disable_backlight(dev);
1237
1238	DRM_DEBUG_KMS("\n");
1239	pp = ironlake_get_pp_control(dev_priv);
1240	pp &= ~EDP_BLC_ENABLE;
1241	I915_WRITE(PCH_PP_CONTROL, pp);
1242	POSTING_READ(PCH_PP_CONTROL);
1243	msleep(intel_dp->backlight_off_delay);
1244}
1245
1246static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1247{
1248	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1250	struct drm_device *dev = crtc->dev;
1251	struct drm_i915_private *dev_priv = dev->dev_private;
1252	u32 dpa_ctl;
1253
1254	assert_pipe_disabled(dev_priv,
1255			     to_intel_crtc(crtc)->pipe);
1256
1257	DRM_DEBUG_KMS("\n");
1258	dpa_ctl = I915_READ(DP_A);
1259	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1260	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1261
1262	/* We don't adjust intel_dp->DP while tearing down the link, to
1263	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1264	 * enable bits here to ensure that we don't enable too much. */
1265	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1266	intel_dp->DP |= DP_PLL_ENABLE;
1267	I915_WRITE(DP_A, intel_dp->DP);
1268	POSTING_READ(DP_A);
1269	udelay(200);
1270}
1271
1272static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1273{
1274	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1275	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1276	struct drm_device *dev = crtc->dev;
1277	struct drm_i915_private *dev_priv = dev->dev_private;
1278	u32 dpa_ctl;
1279
1280	assert_pipe_disabled(dev_priv,
1281			     to_intel_crtc(crtc)->pipe);
1282
1283	dpa_ctl = I915_READ(DP_A);
1284	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1285	     "dp pll off, should be on\n");
1286	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1287
1288	/* We can't rely on the value tracked for the DP register in
1289	 * intel_dp->DP because link_down must not change that (otherwise link
1290	 * re-training will fail. */
1291	dpa_ctl &= ~DP_PLL_ENABLE;
1292	I915_WRITE(DP_A, dpa_ctl);
1293	POSTING_READ(DP_A);
1294	udelay(200);
1295}
1296
1297/* If the sink supports it, try to set the power state appropriately */
1298void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1299{
1300	int ret, i;
1301
1302	/* Should have a valid DPCD by this point */
1303	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1304		return;
1305
1306	if (mode != DRM_MODE_DPMS_ON) {
1307		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1308						  DP_SET_POWER_D3);
1309		if (ret != 1)
1310			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1311	} else {
1312		/*
1313		 * When turning on, we need to retry for 1ms to give the sink
1314		 * time to wake up.
1315		 */
1316		for (i = 0; i < 3; i++) {
1317			ret = intel_dp_aux_native_write_1(intel_dp,
1318							  DP_SET_POWER,
1319							  DP_SET_POWER_D0);
1320			if (ret == 1)
1321				break;
1322			msleep(1);
1323		}
1324	}
1325}
1326
1327static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1328				  enum pipe *pipe)
1329{
1330	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1331	struct drm_device *dev = encoder->base.dev;
1332	struct drm_i915_private *dev_priv = dev->dev_private;
1333	u32 tmp = I915_READ(intel_dp->output_reg);
1334
1335	if (!(tmp & DP_PORT_EN))
1336		return false;
1337
1338	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1339		*pipe = PORT_TO_PIPE_CPT(tmp);
1340	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1341		*pipe = PORT_TO_PIPE(tmp);
1342	} else {
1343		u32 trans_sel;
1344		u32 trans_dp;
1345		int i;
1346
1347		switch (intel_dp->output_reg) {
1348		case PCH_DP_B:
1349			trans_sel = TRANS_DP_PORT_SEL_B;
1350			break;
1351		case PCH_DP_C:
1352			trans_sel = TRANS_DP_PORT_SEL_C;
1353			break;
1354		case PCH_DP_D:
1355			trans_sel = TRANS_DP_PORT_SEL_D;
1356			break;
1357		default:
1358			return true;
1359		}
1360
1361		for_each_pipe(i) {
1362			trans_dp = I915_READ(TRANS_DP_CTL(i));
1363			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1364				*pipe = i;
1365				return true;
1366			}
1367		}
1368
1369		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1370			      intel_dp->output_reg);
1371	}
1372
1373	return true;
1374}
1375
1376static void intel_disable_dp(struct intel_encoder *encoder)
1377{
1378	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1379
1380	/* Make sure the panel is off before trying to change the mode. But also
1381	 * ensure that we have vdd while we switch off the panel. */
1382	ironlake_edp_panel_vdd_on(intel_dp);
1383	ironlake_edp_backlight_off(intel_dp);
1384	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1385	ironlake_edp_panel_off(intel_dp);
1386
1387	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1388	if (!is_cpu_edp(intel_dp))
1389		intel_dp_link_down(intel_dp);
1390}
1391
1392static void intel_post_disable_dp(struct intel_encoder *encoder)
1393{
1394	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1395
1396	if (is_cpu_edp(intel_dp)) {
1397		intel_dp_link_down(intel_dp);
1398		ironlake_edp_pll_off(intel_dp);
1399	}
1400}
1401
1402static void intel_enable_dp(struct intel_encoder *encoder)
1403{
1404	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1405	struct drm_device *dev = encoder->base.dev;
1406	struct drm_i915_private *dev_priv = dev->dev_private;
1407	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1408
1409	if (WARN_ON(dp_reg & DP_PORT_EN))
1410		return;
1411
1412	ironlake_edp_panel_vdd_on(intel_dp);
1413	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1414	intel_dp_start_link_train(intel_dp);
1415	ironlake_edp_panel_on(intel_dp);
1416	ironlake_edp_panel_vdd_off(intel_dp, true);
1417	intel_dp_complete_link_train(intel_dp);
1418	ironlake_edp_backlight_on(intel_dp);
1419}
1420
1421static void intel_pre_enable_dp(struct intel_encoder *encoder)
1422{
1423	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1424
1425	if (is_cpu_edp(intel_dp))
1426		ironlake_edp_pll_on(intel_dp);
1427}
1428
1429/*
1430 * Native read with retry for link status and receiver capability reads for
1431 * cases where the sink may still be asleep.
1432 */
1433static bool
1434intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1435			       uint8_t *recv, int recv_bytes)
1436{
1437	int ret, i;
1438
1439	/*
1440	 * Sinks are *supposed* to come up within 1ms from an off state,
1441	 * but we're also supposed to retry 3 times per the spec.
1442	 */
1443	for (i = 0; i < 3; i++) {
1444		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1445					       recv_bytes);
1446		if (ret == recv_bytes)
1447			return true;
1448		msleep(1);
1449	}
1450
1451	return false;
1452}
1453
1454/*
1455 * Fetch AUX CH registers 0x202 - 0x207 which contain
1456 * link status information
1457 */
1458static bool
1459intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1460{
1461	return intel_dp_aux_native_read_retry(intel_dp,
1462					      DP_LANE0_1_STATUS,
1463					      link_status,
1464					      DP_LINK_STATUS_SIZE);
1465}
1466
1467#if 0
1468static char	*voltage_names[] = {
1469	"0.4V", "0.6V", "0.8V", "1.2V"
1470};
1471static char	*pre_emph_names[] = {
1472	"0dB", "3.5dB", "6dB", "9.5dB"
1473};
1474static char	*link_train_names[] = {
1475	"pattern 1", "pattern 2", "idle", "off"
1476};
1477#endif
1478
1479/*
1480 * These are source-specific values; current Intel hardware supports
1481 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1482 */
1483
1484static uint8_t
1485intel_dp_voltage_max(struct intel_dp *intel_dp)
1486{
1487	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1488
1489	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1490		return DP_TRAIN_VOLTAGE_SWING_800;
1491	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1492		return DP_TRAIN_VOLTAGE_SWING_1200;
1493	else
1494		return DP_TRAIN_VOLTAGE_SWING_800;
1495}
1496
1497static uint8_t
1498intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1499{
1500	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1501
1502	if (HAS_DDI(dev)) {
1503		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1504		case DP_TRAIN_VOLTAGE_SWING_400:
1505			return DP_TRAIN_PRE_EMPHASIS_9_5;
1506		case DP_TRAIN_VOLTAGE_SWING_600:
1507			return DP_TRAIN_PRE_EMPHASIS_6;
1508		case DP_TRAIN_VOLTAGE_SWING_800:
1509			return DP_TRAIN_PRE_EMPHASIS_3_5;
1510		case DP_TRAIN_VOLTAGE_SWING_1200:
1511		default:
1512			return DP_TRAIN_PRE_EMPHASIS_0;
1513		}
1514	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1515		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1516		case DP_TRAIN_VOLTAGE_SWING_400:
1517			return DP_TRAIN_PRE_EMPHASIS_6;
1518		case DP_TRAIN_VOLTAGE_SWING_600:
1519		case DP_TRAIN_VOLTAGE_SWING_800:
1520			return DP_TRAIN_PRE_EMPHASIS_3_5;
1521		default:
1522			return DP_TRAIN_PRE_EMPHASIS_0;
1523		}
1524	} else {
1525		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1526		case DP_TRAIN_VOLTAGE_SWING_400:
1527			return DP_TRAIN_PRE_EMPHASIS_6;
1528		case DP_TRAIN_VOLTAGE_SWING_600:
1529			return DP_TRAIN_PRE_EMPHASIS_6;
1530		case DP_TRAIN_VOLTAGE_SWING_800:
1531			return DP_TRAIN_PRE_EMPHASIS_3_5;
1532		case DP_TRAIN_VOLTAGE_SWING_1200:
1533		default:
1534			return DP_TRAIN_PRE_EMPHASIS_0;
1535		}
1536	}
1537}
1538
1539static void
1540intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1541{
1542	uint8_t v = 0;
1543	uint8_t p = 0;
1544	int lane;
1545	uint8_t voltage_max;
1546	uint8_t preemph_max;
1547
1548	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1549		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1550		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1551
1552		if (this_v > v)
1553			v = this_v;
1554		if (this_p > p)
1555			p = this_p;
1556	}
1557
1558	voltage_max = intel_dp_voltage_max(intel_dp);
1559	if (v >= voltage_max)
1560		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1561
1562	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1563	if (p >= preemph_max)
1564		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1565
1566	for (lane = 0; lane < 4; lane++)
1567		intel_dp->train_set[lane] = v | p;
1568}
1569
1570static uint32_t
1571intel_gen4_signal_levels(uint8_t train_set)
1572{
1573	uint32_t	signal_levels = 0;
1574
1575	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1576	case DP_TRAIN_VOLTAGE_SWING_400:
1577	default:
1578		signal_levels |= DP_VOLTAGE_0_4;
1579		break;
1580	case DP_TRAIN_VOLTAGE_SWING_600:
1581		signal_levels |= DP_VOLTAGE_0_6;
1582		break;
1583	case DP_TRAIN_VOLTAGE_SWING_800:
1584		signal_levels |= DP_VOLTAGE_0_8;
1585		break;
1586	case DP_TRAIN_VOLTAGE_SWING_1200:
1587		signal_levels |= DP_VOLTAGE_1_2;
1588		break;
1589	}
1590	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1591	case DP_TRAIN_PRE_EMPHASIS_0:
1592	default:
1593		signal_levels |= DP_PRE_EMPHASIS_0;
1594		break;
1595	case DP_TRAIN_PRE_EMPHASIS_3_5:
1596		signal_levels |= DP_PRE_EMPHASIS_3_5;
1597		break;
1598	case DP_TRAIN_PRE_EMPHASIS_6:
1599		signal_levels |= DP_PRE_EMPHASIS_6;
1600		break;
1601	case DP_TRAIN_PRE_EMPHASIS_9_5:
1602		signal_levels |= DP_PRE_EMPHASIS_9_5;
1603		break;
1604	}
1605	return signal_levels;
1606}
1607
1608/* Gen6's DP voltage swing and pre-emphasis control */
1609static uint32_t
1610intel_gen6_edp_signal_levels(uint8_t train_set)
1611{
1612	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1613					 DP_TRAIN_PRE_EMPHASIS_MASK);
1614	switch (signal_levels) {
1615	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1616	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1617		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1618	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1619		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1620	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1621	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1622		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1623	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1624	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1625		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1626	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1627	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1628		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1629	default:
1630		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1631			      "0x%x\n", signal_levels);
1632		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1633	}
1634}
1635
1636/* Gen7's DP voltage swing and pre-emphasis control */
1637static uint32_t
1638intel_gen7_edp_signal_levels(uint8_t train_set)
1639{
1640	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1641					 DP_TRAIN_PRE_EMPHASIS_MASK);
1642	switch (signal_levels) {
1643	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1644		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1645	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1646		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1647	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1648		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1649
1650	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1651		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1652	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1653		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1654
1655	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1656		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1657	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1658		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1659
1660	default:
1661		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1662			      "0x%x\n", signal_levels);
1663		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1664	}
1665}
1666
1667/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1668static uint32_t
1669intel_hsw_signal_levels(uint8_t train_set)
1670{
1671	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1672					 DP_TRAIN_PRE_EMPHASIS_MASK);
1673	switch (signal_levels) {
1674	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1675		return DDI_BUF_EMP_400MV_0DB_HSW;
1676	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1677		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1678	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1679		return DDI_BUF_EMP_400MV_6DB_HSW;
1680	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1681		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1682
1683	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1684		return DDI_BUF_EMP_600MV_0DB_HSW;
1685	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1686		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1687	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1688		return DDI_BUF_EMP_600MV_6DB_HSW;
1689
1690	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1691		return DDI_BUF_EMP_800MV_0DB_HSW;
1692	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1693		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1694	default:
1695		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1696			      "0x%x\n", signal_levels);
1697		return DDI_BUF_EMP_400MV_0DB_HSW;
1698	}
1699}
1700
1701/* Properly updates "DP" with the correct signal levels. */
1702static void
1703intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1704{
1705	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1706	struct drm_device *dev = intel_dig_port->base.base.dev;
1707	uint32_t signal_levels, mask;
1708	uint8_t train_set = intel_dp->train_set[0];
1709
1710	if (HAS_DDI(dev)) {
1711		signal_levels = intel_hsw_signal_levels(train_set);
1712		mask = DDI_BUF_EMP_MASK;
1713	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1714		signal_levels = intel_gen7_edp_signal_levels(train_set);
1715		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1716	} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1717		signal_levels = intel_gen6_edp_signal_levels(train_set);
1718		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1719	} else {
1720		signal_levels = intel_gen4_signal_levels(train_set);
1721		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1722	}
1723
1724	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1725
1726	*DP = (*DP & ~mask) | signal_levels;
1727}
1728
1729static bool
1730intel_dp_set_link_train(struct intel_dp *intel_dp,
1731			uint32_t dp_reg_value,
1732			uint8_t dp_train_pat)
1733{
1734	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1735	struct drm_device *dev = intel_dig_port->base.base.dev;
1736	struct drm_i915_private *dev_priv = dev->dev_private;
1737	enum port port = intel_dig_port->port;
1738	int ret;
1739	uint32_t temp;
1740
1741	if (HAS_DDI(dev)) {
1742		temp = I915_READ(DP_TP_CTL(port));
1743
1744		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1745			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1746		else
1747			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1748
1749		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1750		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1751		case DP_TRAINING_PATTERN_DISABLE:
1752
1753			if (port != PORT_A) {
1754				temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1755				I915_WRITE(DP_TP_CTL(port), temp);
1756
1757				if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1758					      DP_TP_STATUS_IDLE_DONE), 1))
1759					DRM_ERROR("Timed out waiting for DP idle patterns\n");
1760
1761				temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1762			}
1763
1764			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1765
1766			break;
1767		case DP_TRAINING_PATTERN_1:
1768			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1769			break;
1770		case DP_TRAINING_PATTERN_2:
1771			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1772			break;
1773		case DP_TRAINING_PATTERN_3:
1774			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1775			break;
1776		}
1777		I915_WRITE(DP_TP_CTL(port), temp);
1778
1779	} else if (HAS_PCH_CPT(dev) &&
1780		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1781		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1782
1783		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1784		case DP_TRAINING_PATTERN_DISABLE:
1785			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1786			break;
1787		case DP_TRAINING_PATTERN_1:
1788			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1789			break;
1790		case DP_TRAINING_PATTERN_2:
1791			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1792			break;
1793		case DP_TRAINING_PATTERN_3:
1794			DRM_ERROR("DP training pattern 3 not supported\n");
1795			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1796			break;
1797		}
1798
1799	} else {
1800		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1801
1802		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1803		case DP_TRAINING_PATTERN_DISABLE:
1804			dp_reg_value |= DP_LINK_TRAIN_OFF;
1805			break;
1806		case DP_TRAINING_PATTERN_1:
1807			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1808			break;
1809		case DP_TRAINING_PATTERN_2:
1810			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1811			break;
1812		case DP_TRAINING_PATTERN_3:
1813			DRM_ERROR("DP training pattern 3 not supported\n");
1814			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1815			break;
1816		}
1817	}
1818
1819	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1820	POSTING_READ(intel_dp->output_reg);
1821
1822	intel_dp_aux_native_write_1(intel_dp,
1823				    DP_TRAINING_PATTERN_SET,
1824				    dp_train_pat);
1825
1826	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1827	    DP_TRAINING_PATTERN_DISABLE) {
1828		ret = intel_dp_aux_native_write(intel_dp,
1829						DP_TRAINING_LANE0_SET,
1830						intel_dp->train_set,
1831						intel_dp->lane_count);
1832		if (ret != intel_dp->lane_count)
1833			return false;
1834	}
1835
1836	return true;
1837}
1838
1839/* Enable corresponding port and start training pattern 1 */
1840void
1841intel_dp_start_link_train(struct intel_dp *intel_dp)
1842{
1843	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1844	struct drm_device *dev = encoder->dev;
1845	int i;
1846	uint8_t voltage;
1847	bool clock_recovery = false;
1848	int voltage_tries, loop_tries;
1849	uint32_t DP = intel_dp->DP;
1850
1851	if (HAS_DDI(dev))
1852		intel_ddi_prepare_link_retrain(encoder);
1853
1854	/* Write the link configuration data */
1855	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1856				  intel_dp->link_configuration,
1857				  DP_LINK_CONFIGURATION_SIZE);
1858
1859	DP |= DP_PORT_EN;
1860
1861	memset(intel_dp->train_set, 0, 4);
1862	voltage = 0xff;
1863	voltage_tries = 0;
1864	loop_tries = 0;
1865	clock_recovery = false;
1866	for (;;) {
1867		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1868		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1869
1870		intel_dp_set_signal_levels(intel_dp, &DP);
1871
1872		/* Set training pattern 1 */
1873		if (!intel_dp_set_link_train(intel_dp, DP,
1874					     DP_TRAINING_PATTERN_1 |
1875					     DP_LINK_SCRAMBLING_DISABLE))
1876			break;
1877
1878		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1879		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1880			DRM_ERROR("failed to get link status\n");
1881			break;
1882		}
1883
1884		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1885			DRM_DEBUG_KMS("clock recovery OK\n");
1886			clock_recovery = true;
1887			break;
1888		}
1889
1890		/* Check to see if we've tried the max voltage */
1891		for (i = 0; i < intel_dp->lane_count; i++)
1892			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1893				break;
1894		if (i == intel_dp->lane_count && voltage_tries == 5) {
1895			++loop_tries;
1896			if (loop_tries == 5) {
1897				DRM_DEBUG_KMS("too many full retries, give up\n");
1898				break;
1899			}
1900			memset(intel_dp->train_set, 0, 4);
1901			voltage_tries = 0;
1902			continue;
1903		}
1904
1905		/* Check to see if we've tried the same voltage 5 times */
1906		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1907			++voltage_tries;
1908			if (voltage_tries == 5) {
1909				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1910				break;
1911			}
1912		} else
1913			voltage_tries = 0;
1914		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1915
1916		/* Compute new intel_dp->train_set as requested by target */
1917		intel_get_adjust_train(intel_dp, link_status);
1918	}
1919
1920	intel_dp->DP = DP;
1921}
1922
1923void
1924intel_dp_complete_link_train(struct intel_dp *intel_dp)
1925{
1926	bool channel_eq = false;
1927	int tries, cr_tries;
1928	uint32_t DP = intel_dp->DP;
1929
1930	/* channel equalization */
1931	tries = 0;
1932	cr_tries = 0;
1933	channel_eq = false;
1934	for (;;) {
1935		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1936
1937		if (cr_tries > 5) {
1938			DRM_ERROR("failed to train DP, aborting\n");
1939			intel_dp_link_down(intel_dp);
1940			break;
1941		}
1942
1943		intel_dp_set_signal_levels(intel_dp, &DP);
1944
1945		/* channel eq pattern */
1946		if (!intel_dp_set_link_train(intel_dp, DP,
1947					     DP_TRAINING_PATTERN_2 |
1948					     DP_LINK_SCRAMBLING_DISABLE))
1949			break;
1950
1951		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1952		if (!intel_dp_get_link_status(intel_dp, link_status))
1953			break;
1954
1955		/* Make sure clock is still ok */
1956		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1957			intel_dp_start_link_train(intel_dp);
1958			cr_tries++;
1959			continue;
1960		}
1961
1962		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1963			channel_eq = true;
1964			break;
1965		}
1966
1967		/* Try 5 times, then try clock recovery if that fails */
1968		if (tries > 5) {
1969			intel_dp_link_down(intel_dp);
1970			intel_dp_start_link_train(intel_dp);
1971			tries = 0;
1972			cr_tries++;
1973			continue;
1974		}
1975
1976		/* Compute new intel_dp->train_set as requested by target */
1977		intel_get_adjust_train(intel_dp, link_status);
1978		++tries;
1979	}
1980
1981	if (channel_eq)
1982		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1983
1984	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1985}
1986
1987static void
1988intel_dp_link_down(struct intel_dp *intel_dp)
1989{
1990	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1991	struct drm_device *dev = intel_dig_port->base.base.dev;
1992	struct drm_i915_private *dev_priv = dev->dev_private;
1993	struct intel_crtc *intel_crtc =
1994		to_intel_crtc(intel_dig_port->base.base.crtc);
1995	uint32_t DP = intel_dp->DP;
1996
1997	/*
1998	 * DDI code has a strict mode set sequence and we should try to respect
1999	 * it, otherwise we might hang the machine in many different ways. So we
2000	 * really should be disabling the port only on a complete crtc_disable
2001	 * sequence. This function is just called under two conditions on DDI
2002	 * code:
2003	 * - Link train failed while doing crtc_enable, and on this case we
2004	 *   really should respect the mode set sequence and wait for a
2005	 *   crtc_disable.
2006	 * - Someone turned the monitor off and intel_dp_check_link_status
2007	 *   called us. We don't need to disable the whole port on this case, so
2008	 *   when someone turns the monitor on again,
2009	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2010	 *   train.
2011	 */
2012	if (HAS_DDI(dev))
2013		return;
2014
2015	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2016		return;
2017
2018	DRM_DEBUG_KMS("\n");
2019
2020	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2021		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2022		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2023	} else {
2024		DP &= ~DP_LINK_TRAIN_MASK;
2025		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2026	}
2027	POSTING_READ(intel_dp->output_reg);
2028
2029	/* We don't really know why we're doing this */
2030	intel_wait_for_vblank(dev, intel_crtc->pipe);
2031
2032	if (HAS_PCH_IBX(dev) &&
2033	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2034		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2035
2036		/* Hardware workaround: leaving our transcoder select
2037		 * set to transcoder B while it's off will prevent the
2038		 * corresponding HDMI output on transcoder A.
2039		 *
2040		 * Combine this with another hardware workaround:
2041		 * transcoder select bit can only be cleared while the
2042		 * port is enabled.
2043		 */
2044		DP &= ~DP_PIPEB_SELECT;
2045		I915_WRITE(intel_dp->output_reg, DP);
2046
2047		/* Changes to enable or select take place the vblank
2048		 * after being written.
2049		 */
2050		if (WARN_ON(crtc == NULL)) {
2051			/* We should never try to disable a port without a crtc
2052			 * attached. For paranoia keep the code around for a
2053			 * bit. */
2054			POSTING_READ(intel_dp->output_reg);
2055			msleep(50);
2056		} else
2057			intel_wait_for_vblank(dev, intel_crtc->pipe);
2058	}
2059
2060	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2061	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2062	POSTING_READ(intel_dp->output_reg);
2063	msleep(intel_dp->panel_power_down_delay);
2064}
2065
2066static bool
2067intel_dp_get_dpcd(struct intel_dp *intel_dp)
2068{
2069	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2070
2071	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2072					   sizeof(intel_dp->dpcd)) == 0)
2073		return false; /* aux transfer failed */
2074
2075	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2076			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2077	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2078
2079	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2080		return false; /* DPCD not present */
2081
2082	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2083	      DP_DWN_STRM_PORT_PRESENT))
2084		return true; /* native DP sink */
2085
2086	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2087		return true; /* no per-port downstream info */
2088
2089	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2090					   intel_dp->downstream_ports,
2091					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2092		return false; /* downstream port status fetch failed */
2093
2094	return true;
2095}
2096
2097static void
2098intel_dp_probe_oui(struct intel_dp *intel_dp)
2099{
2100	u8 buf[3];
2101
2102	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2103		return;
2104
2105	ironlake_edp_panel_vdd_on(intel_dp);
2106
2107	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2108		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2109			      buf[0], buf[1], buf[2]);
2110
2111	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2112		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2113			      buf[0], buf[1], buf[2]);
2114
2115	ironlake_edp_panel_vdd_off(intel_dp, false);
2116}
2117
2118static bool
2119intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2120{
2121	int ret;
2122
2123	ret = intel_dp_aux_native_read_retry(intel_dp,
2124					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2125					     sink_irq_vector, 1);
2126	if (!ret)
2127		return false;
2128
2129	return true;
2130}
2131
2132static void
2133intel_dp_handle_test_request(struct intel_dp *intel_dp)
2134{
2135	/* NAK by default */
2136	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2137}
2138
2139/*
2140 * According to DP spec
2141 * 5.1.2:
2142 *  1. Read DPCD
2143 *  2. Configure link according to Receiver Capabilities
2144 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2145 *  4. Check link status on receipt of hot-plug interrupt
2146 */
2147
2148void
2149intel_dp_check_link_status(struct intel_dp *intel_dp)
2150{
2151	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2152	u8 sink_irq_vector;
2153	u8 link_status[DP_LINK_STATUS_SIZE];
2154
2155	if (!intel_encoder->connectors_active)
2156		return;
2157
2158	if (WARN_ON(!intel_encoder->base.crtc))
2159		return;
2160
2161	/* Try to read receiver status if the link appears to be up */
2162	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2163		intel_dp_link_down(intel_dp);
2164		return;
2165	}
2166
2167	/* Now read the DPCD to see if it's actually running */
2168	if (!intel_dp_get_dpcd(intel_dp)) {
2169		intel_dp_link_down(intel_dp);
2170		return;
2171	}
2172
2173	/* Try to read the source of the interrupt */
2174	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2175	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2176		/* Clear interrupt source */
2177		intel_dp_aux_native_write_1(intel_dp,
2178					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2179					    sink_irq_vector);
2180
2181		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2182			intel_dp_handle_test_request(intel_dp);
2183		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2184			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2185	}
2186
2187	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2188		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2189			      drm_get_encoder_name(&intel_encoder->base));
2190		intel_dp_start_link_train(intel_dp);
2191		intel_dp_complete_link_train(intel_dp);
2192	}
2193}
2194
2195/* XXX this is probably wrong for multiple downstream ports */
2196static enum drm_connector_status
2197intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2198{
2199	uint8_t *dpcd = intel_dp->dpcd;
2200	bool hpd;
2201	uint8_t type;
2202
2203	if (!intel_dp_get_dpcd(intel_dp))
2204		return connector_status_disconnected;
2205
2206	/* if there's no downstream port, we're done */
2207	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2208		return connector_status_connected;
2209
2210	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2211	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2212	if (hpd) {
2213		uint8_t reg;
2214		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2215						    &reg, 1))
2216			return connector_status_unknown;
2217		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2218					      : connector_status_disconnected;
2219	}
2220
2221	/* If no HPD, poke DDC gently */
2222	if (drm_probe_ddc(&intel_dp->adapter))
2223		return connector_status_connected;
2224
2225	/* Well we tried, say unknown for unreliable port types */
2226	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2227	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2228		return connector_status_unknown;
2229
2230	/* Anything else is out of spec, warn and ignore */
2231	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2232	return connector_status_disconnected;
2233}
2234
2235static enum drm_connector_status
2236ironlake_dp_detect(struct intel_dp *intel_dp)
2237{
2238	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2239	struct drm_i915_private *dev_priv = dev->dev_private;
2240	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2241	enum drm_connector_status status;
2242
2243	/* Can't disconnect eDP, but you can close the lid... */
2244	if (is_edp(intel_dp)) {
2245		status = intel_panel_detect(dev);
2246		if (status == connector_status_unknown)
2247			status = connector_status_connected;
2248		return status;
2249	}
2250
2251	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2252		return connector_status_disconnected;
2253
2254	return intel_dp_detect_dpcd(intel_dp);
2255}
2256
2257static enum drm_connector_status
2258g4x_dp_detect(struct intel_dp *intel_dp)
2259{
2260	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2261	struct drm_i915_private *dev_priv = dev->dev_private;
2262	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2263	uint32_t bit;
2264
2265	/* Can't disconnect eDP, but you can close the lid... */
2266	if (is_edp(intel_dp)) {
2267		enum drm_connector_status status;
2268
2269		status = intel_panel_detect(dev);
2270		if (status == connector_status_unknown)
2271			status = connector_status_connected;
2272		return status;
2273	}
2274
2275	switch (intel_dig_port->port) {
2276	case PORT_B:
2277		bit = PORTB_HOTPLUG_LIVE_STATUS;
2278		break;
2279	case PORT_C:
2280		bit = PORTC_HOTPLUG_LIVE_STATUS;
2281		break;
2282	case PORT_D:
2283		bit = PORTD_HOTPLUG_LIVE_STATUS;
2284		break;
2285	default:
2286		return connector_status_unknown;
2287	}
2288
2289	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2290		return connector_status_disconnected;
2291
2292	return intel_dp_detect_dpcd(intel_dp);
2293}
2294
2295static struct edid *
2296intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2297{
2298	struct intel_connector *intel_connector = to_intel_connector(connector);
2299
2300	/* use cached edid if we have one */
2301	if (intel_connector->edid) {
2302		struct edid *edid;
2303		int size;
2304
2305		/* invalid edid */
2306		if (IS_ERR(intel_connector->edid))
2307			return NULL;
2308
2309		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2310		edid = kmalloc(size, GFP_KERNEL);
2311		if (!edid)
2312			return NULL;
2313
2314		memcpy(edid, intel_connector->edid, size);
2315		return edid;
2316	}
2317
2318	return drm_get_edid(connector, adapter);
2319}
2320
2321static int
2322intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2323{
2324	struct intel_connector *intel_connector = to_intel_connector(connector);
2325
2326	/* use cached edid if we have one */
2327	if (intel_connector->edid) {
2328		/* invalid edid */
2329		if (IS_ERR(intel_connector->edid))
2330			return 0;
2331
2332		return intel_connector_update_modes(connector,
2333						    intel_connector->edid);
2334	}
2335
2336	return intel_ddc_get_modes(connector, adapter);
2337}
2338
2339static enum drm_connector_status
2340intel_dp_detect(struct drm_connector *connector, bool force)
2341{
2342	struct intel_dp *intel_dp = intel_attached_dp(connector);
2343	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2344	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2345	struct drm_device *dev = connector->dev;
2346	enum drm_connector_status status;
2347	struct edid *edid = NULL;
2348
2349	intel_dp->has_audio = false;
2350
2351	if (HAS_PCH_SPLIT(dev))
2352		status = ironlake_dp_detect(intel_dp);
2353	else
2354		status = g4x_dp_detect(intel_dp);
2355
2356	if (status != connector_status_connected)
2357		return status;
2358
2359	intel_dp_probe_oui(intel_dp);
2360
2361	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2362		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2363	} else {
2364		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2365		if (edid) {
2366			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2367			kfree(edid);
2368		}
2369	}
2370
2371	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2372		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2373	return connector_status_connected;
2374}
2375
2376static int intel_dp_get_modes(struct drm_connector *connector)
2377{
2378	struct intel_dp *intel_dp = intel_attached_dp(connector);
2379	struct intel_connector *intel_connector = to_intel_connector(connector);
2380	struct drm_device *dev = connector->dev;
2381	int ret;
2382
2383	/* We should parse the EDID data and find out if it has an audio sink
2384	 */
2385
2386	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2387	if (ret)
2388		return ret;
2389
2390	/* if eDP has no EDID, fall back to fixed mode */
2391	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2392		struct drm_display_mode *mode;
2393		mode = drm_mode_duplicate(dev,
2394					  intel_connector->panel.fixed_mode);
2395		if (mode) {
2396			drm_mode_probed_add(connector, mode);
2397			return 1;
2398		}
2399	}
2400	return 0;
2401}
2402
2403static bool
2404intel_dp_detect_audio(struct drm_connector *connector)
2405{
2406	struct intel_dp *intel_dp = intel_attached_dp(connector);
2407	struct edid *edid;
2408	bool has_audio = false;
2409
2410	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2411	if (edid) {
2412		has_audio = drm_detect_monitor_audio(edid);
2413		kfree(edid);
2414	}
2415
2416	return has_audio;
2417}
2418
2419static int
2420intel_dp_set_property(struct drm_connector *connector,
2421		      struct drm_property *property,
2422		      uint64_t val)
2423{
2424	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2425	struct intel_connector *intel_connector = to_intel_connector(connector);
2426	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2427	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2428	int ret;
2429
2430	ret = drm_object_property_set_value(&connector->base, property, val);
2431	if (ret)
2432		return ret;
2433
2434	if (property == dev_priv->force_audio_property) {
2435		int i = val;
2436		bool has_audio;
2437
2438		if (i == intel_dp->force_audio)
2439			return 0;
2440
2441		intel_dp->force_audio = i;
2442
2443		if (i == HDMI_AUDIO_AUTO)
2444			has_audio = intel_dp_detect_audio(connector);
2445		else
2446			has_audio = (i == HDMI_AUDIO_ON);
2447
2448		if (has_audio == intel_dp->has_audio)
2449			return 0;
2450
2451		intel_dp->has_audio = has_audio;
2452		goto done;
2453	}
2454
2455	if (property == dev_priv->broadcast_rgb_property) {
2456		switch (val) {
2457		case INTEL_BROADCAST_RGB_AUTO:
2458			intel_dp->color_range_auto = true;
2459			break;
2460		case INTEL_BROADCAST_RGB_FULL:
2461			intel_dp->color_range_auto = false;
2462			intel_dp->color_range = 0;
2463			break;
2464		case INTEL_BROADCAST_RGB_LIMITED:
2465			intel_dp->color_range_auto = false;
2466			intel_dp->color_range = DP_COLOR_RANGE_16_235;
2467			break;
2468		default:
2469			return -EINVAL;
2470		}
2471		goto done;
2472	}
2473
2474	if (is_edp(intel_dp) &&
2475	    property == connector->dev->mode_config.scaling_mode_property) {
2476		if (val == DRM_MODE_SCALE_NONE) {
2477			DRM_DEBUG_KMS("no scaling not supported\n");
2478			return -EINVAL;
2479		}
2480
2481		if (intel_connector->panel.fitting_mode == val) {
2482			/* the eDP scaling property is not changed */
2483			return 0;
2484		}
2485		intel_connector->panel.fitting_mode = val;
2486
2487		goto done;
2488	}
2489
2490	return -EINVAL;
2491
2492done:
2493	if (intel_encoder->base.crtc)
2494		intel_crtc_restore_mode(intel_encoder->base.crtc);
2495
2496	return 0;
2497}
2498
2499static void
2500intel_dp_destroy(struct drm_connector *connector)
2501{
2502	struct drm_device *dev = connector->dev;
2503	struct intel_dp *intel_dp = intel_attached_dp(connector);
2504	struct intel_connector *intel_connector = to_intel_connector(connector);
2505
2506	if (!IS_ERR_OR_NULL(intel_connector->edid))
2507		kfree(intel_connector->edid);
2508
2509	if (is_edp(intel_dp)) {
2510		intel_panel_destroy_backlight(dev);
2511		intel_panel_fini(&intel_connector->panel);
2512	}
2513
2514	drm_sysfs_connector_remove(connector);
2515	drm_connector_cleanup(connector);
2516	kfree(connector);
2517}
2518
2519void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2520{
2521	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2522	struct intel_dp *intel_dp = &intel_dig_port->dp;
2523
2524	i2c_del_adapter(&intel_dp->adapter);
2525	drm_encoder_cleanup(encoder);
2526	if (is_edp(intel_dp)) {
2527		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2528		ironlake_panel_vdd_off_sync(intel_dp);
2529	}
2530	kfree(intel_dig_port);
2531}
2532
2533static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2534	.mode_set = intel_dp_mode_set,
2535};
2536
2537static const struct drm_connector_funcs intel_dp_connector_funcs = {
2538	.dpms = intel_connector_dpms,
2539	.detect = intel_dp_detect,
2540	.fill_modes = drm_helper_probe_single_connector_modes,
2541	.set_property = intel_dp_set_property,
2542	.destroy = intel_dp_destroy,
2543};
2544
2545static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2546	.get_modes = intel_dp_get_modes,
2547	.mode_valid = intel_dp_mode_valid,
2548	.best_encoder = intel_best_encoder,
2549};
2550
2551static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2552	.destroy = intel_dp_encoder_destroy,
2553};
2554
2555static void
2556intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2557{
2558	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2559
2560	intel_dp_check_link_status(intel_dp);
2561}
2562
2563/* Return which DP Port should be selected for Transcoder DP control */
2564int
2565intel_trans_dp_port_sel(struct drm_crtc *crtc)
2566{
2567	struct drm_device *dev = crtc->dev;
2568	struct intel_encoder *intel_encoder;
2569	struct intel_dp *intel_dp;
2570
2571	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2572		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2573
2574		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2575		    intel_encoder->type == INTEL_OUTPUT_EDP)
2576			return intel_dp->output_reg;
2577	}
2578
2579	return -1;
2580}
2581
2582/* check the VBT to see whether the eDP is on DP-D port */
2583bool intel_dpd_is_edp(struct drm_device *dev)
2584{
2585	struct drm_i915_private *dev_priv = dev->dev_private;
2586	struct child_device_config *p_child;
2587	int i;
2588
2589	if (!dev_priv->child_dev_num)
2590		return false;
2591
2592	for (i = 0; i < dev_priv->child_dev_num; i++) {
2593		p_child = dev_priv->child_dev + i;
2594
2595		if (p_child->dvo_port == PORT_IDPD &&
2596		    p_child->device_type == DEVICE_TYPE_eDP)
2597			return true;
2598	}
2599	return false;
2600}
2601
2602static void
2603intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2604{
2605	struct intel_connector *intel_connector = to_intel_connector(connector);
2606
2607	intel_attach_force_audio_property(connector);
2608	intel_attach_broadcast_rgb_property(connector);
2609	intel_dp->color_range_auto = true;
2610
2611	if (is_edp(intel_dp)) {
2612		drm_mode_create_scaling_mode_property(connector->dev);
2613		drm_object_attach_property(
2614			&connector->base,
2615			connector->dev->mode_config.scaling_mode_property,
2616			DRM_MODE_SCALE_ASPECT);
2617		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2618	}
2619}
2620
2621static void
2622intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2623				    struct intel_dp *intel_dp,
2624				    struct edp_power_seq *out)
2625{
2626	struct drm_i915_private *dev_priv = dev->dev_private;
2627	struct edp_power_seq cur, vbt, spec, final;
2628	u32 pp_on, pp_off, pp_div, pp;
2629
2630	/* Workaround: Need to write PP_CONTROL with the unlock key as
2631	 * the very first thing. */
2632	pp = ironlake_get_pp_control(dev_priv);
2633	I915_WRITE(PCH_PP_CONTROL, pp);
2634
2635	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2636	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2637	pp_div = I915_READ(PCH_PP_DIVISOR);
2638
2639	/* Pull timing values out of registers */
2640	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2641		PANEL_POWER_UP_DELAY_SHIFT;
2642
2643	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2644		PANEL_LIGHT_ON_DELAY_SHIFT;
2645
2646	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2647		PANEL_LIGHT_OFF_DELAY_SHIFT;
2648
2649	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2650		PANEL_POWER_DOWN_DELAY_SHIFT;
2651
2652	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2653		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2654
2655	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2656		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2657
2658	vbt = dev_priv->edp.pps;
2659
2660	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2661	 * our hw here, which are all in 100usec. */
2662	spec.t1_t3 = 210 * 10;
2663	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2664	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2665	spec.t10 = 500 * 10;
2666	/* This one is special and actually in units of 100ms, but zero
2667	 * based in the hw (so we need to add 100 ms). But the sw vbt
2668	 * table multiplies it with 1000 to make it in units of 100usec,
2669	 * too. */
2670	spec.t11_t12 = (510 + 100) * 10;
2671
2672	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2673		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2674
2675	/* Use the max of the register settings and vbt. If both are
2676	 * unset, fall back to the spec limits. */
2677#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2678				       spec.field : \
2679				       max(cur.field, vbt.field))
2680	assign_final(t1_t3);
2681	assign_final(t8);
2682	assign_final(t9);
2683	assign_final(t10);
2684	assign_final(t11_t12);
2685#undef assign_final
2686
2687#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2688	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2689	intel_dp->backlight_on_delay = get_delay(t8);
2690	intel_dp->backlight_off_delay = get_delay(t9);
2691	intel_dp->panel_power_down_delay = get_delay(t10);
2692	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2693#undef get_delay
2694
2695	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2696		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2697		      intel_dp->panel_power_cycle_delay);
2698
2699	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2700		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2701
2702	if (out)
2703		*out = final;
2704}
2705
2706static void
2707intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2708					      struct intel_dp *intel_dp,
2709					      struct edp_power_seq *seq)
2710{
2711	struct drm_i915_private *dev_priv = dev->dev_private;
2712	u32 pp_on, pp_off, pp_div;
2713
2714	/* And finally store the new values in the power sequencer. */
2715	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2716		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2717	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2718		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2719	/* Compute the divisor for the pp clock, simply match the Bspec
2720	 * formula. */
2721	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2722			<< PP_REFERENCE_DIVIDER_SHIFT;
2723	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2724			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2725
2726	/* Haswell doesn't have any port selection bits for the panel
2727	 * power sequencer any more. */
2728	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2729		if (is_cpu_edp(intel_dp))
2730			pp_on |= PANEL_POWER_PORT_DP_A;
2731		else
2732			pp_on |= PANEL_POWER_PORT_DP_D;
2733	}
2734
2735	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2736	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2737	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2738
2739	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2740		      I915_READ(PCH_PP_ON_DELAYS),
2741		      I915_READ(PCH_PP_OFF_DELAYS),
2742		      I915_READ(PCH_PP_DIVISOR));
2743}
2744
2745void
2746intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2747			struct intel_connector *intel_connector)
2748{
2749	struct drm_connector *connector = &intel_connector->base;
2750	struct intel_dp *intel_dp = &intel_dig_port->dp;
2751	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2752	struct drm_device *dev = intel_encoder->base.dev;
2753	struct drm_i915_private *dev_priv = dev->dev_private;
2754	struct drm_display_mode *fixed_mode = NULL;
2755	struct edp_power_seq power_seq = { 0 };
2756	enum port port = intel_dig_port->port;
2757	const char *name = NULL;
2758	int type;
2759
2760	/* Preserve the current hw state. */
2761	intel_dp->DP = I915_READ(intel_dp->output_reg);
2762	intel_dp->attached_connector = intel_connector;
2763
2764	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2765		if (intel_dpd_is_edp(dev))
2766			intel_dp->is_pch_edp = true;
2767
2768	/*
2769	 * FIXME : We need to initialize built-in panels before external panels.
2770	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2771	 */
2772	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2773		type = DRM_MODE_CONNECTOR_eDP;
2774		intel_encoder->type = INTEL_OUTPUT_EDP;
2775	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2776		type = DRM_MODE_CONNECTOR_eDP;
2777		intel_encoder->type = INTEL_OUTPUT_EDP;
2778	} else {
2779		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2780		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2781		 * rewrite it.
2782		 */
2783		type = DRM_MODE_CONNECTOR_DisplayPort;
2784	}
2785
2786	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2787	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2788
2789	connector->polled = DRM_CONNECTOR_POLL_HPD;
2790	connector->interlace_allowed = true;
2791	connector->doublescan_allowed = 0;
2792
2793	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2794			  ironlake_panel_vdd_work);
2795
2796	intel_connector_attach_encoder(intel_connector, intel_encoder);
2797	drm_sysfs_connector_add(connector);
2798
2799	if (HAS_DDI(dev))
2800		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2801	else
2802		intel_connector->get_hw_state = intel_connector_get_hw_state;
2803
2804	intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2805	if (HAS_DDI(dev)) {
2806		switch (intel_dig_port->port) {
2807		case PORT_A:
2808			intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
2809			break;
2810		case PORT_B:
2811			intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
2812			break;
2813		case PORT_C:
2814			intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
2815			break;
2816		case PORT_D:
2817			intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
2818			break;
2819		default:
2820			BUG();
2821		}
2822	}
2823
2824	/* Set up the DDC bus. */
2825	switch (port) {
2826	case PORT_A:
2827		intel_encoder->hpd_pin = HPD_PORT_A;
2828		name = "DPDDC-A";
2829		break;
2830	case PORT_B:
2831		intel_encoder->hpd_pin = HPD_PORT_B;
2832		name = "DPDDC-B";
2833		break;
2834	case PORT_C:
2835		intel_encoder->hpd_pin = HPD_PORT_C;
2836		name = "DPDDC-C";
2837		break;
2838	case PORT_D:
2839		intel_encoder->hpd_pin = HPD_PORT_D;
2840		name = "DPDDC-D";
2841		break;
2842	default:
2843		BUG();
2844	}
2845
2846	if (is_edp(intel_dp))
2847		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2848
2849	intel_dp_i2c_init(intel_dp, intel_connector, name);
2850
2851	/* Cache DPCD and EDID for edp. */
2852	if (is_edp(intel_dp)) {
2853		bool ret;
2854		struct drm_display_mode *scan;
2855		struct edid *edid;
2856
2857		ironlake_edp_panel_vdd_on(intel_dp);
2858		ret = intel_dp_get_dpcd(intel_dp);
2859		ironlake_edp_panel_vdd_off(intel_dp, false);
2860
2861		if (ret) {
2862			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2863				dev_priv->no_aux_handshake =
2864					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2865					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2866		} else {
2867			/* if this fails, presume the device is a ghost */
2868			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2869			intel_dp_encoder_destroy(&intel_encoder->base);
2870			intel_dp_destroy(connector);
2871			return;
2872		}
2873
2874		/* We now know it's not a ghost, init power sequence regs. */
2875		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2876							      &power_seq);
2877
2878		ironlake_edp_panel_vdd_on(intel_dp);
2879		edid = drm_get_edid(connector, &intel_dp->adapter);
2880		if (edid) {
2881			if (drm_add_edid_modes(connector, edid)) {
2882				drm_mode_connector_update_edid_property(connector, edid);
2883				drm_edid_to_eld(connector, edid);
2884			} else {
2885				kfree(edid);
2886				edid = ERR_PTR(-EINVAL);
2887			}
2888		} else {
2889			edid = ERR_PTR(-ENOENT);
2890		}
2891		intel_connector->edid = edid;
2892
2893		/* prefer fixed mode from EDID if available */
2894		list_for_each_entry(scan, &connector->probed_modes, head) {
2895			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2896				fixed_mode = drm_mode_duplicate(dev, scan);
2897				break;
2898			}
2899		}
2900
2901		/* fallback to VBT if available for eDP */
2902		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2903			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2904			if (fixed_mode)
2905				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2906		}
2907
2908		ironlake_edp_panel_vdd_off(intel_dp, false);
2909	}
2910
2911	if (is_edp(intel_dp)) {
2912		intel_panel_init(&intel_connector->panel, fixed_mode);
2913		intel_panel_setup_backlight(connector);
2914	}
2915
2916	intel_dp_add_properties(intel_dp, connector);
2917
2918	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2919	 * 0xd.  Failure to do so will result in spurious interrupts being
2920	 * generated on the port when a cable is not attached.
2921	 */
2922	if (IS_G4X(dev) && !IS_GM45(dev)) {
2923		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2924		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2925	}
2926}
2927
2928void
2929intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2930{
2931	struct intel_digital_port *intel_dig_port;
2932	struct intel_encoder *intel_encoder;
2933	struct drm_encoder *encoder;
2934	struct intel_connector *intel_connector;
2935
2936	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2937	if (!intel_dig_port)
2938		return;
2939
2940	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2941	if (!intel_connector) {
2942		kfree(intel_dig_port);
2943		return;
2944	}
2945
2946	intel_encoder = &intel_dig_port->base;
2947	encoder = &intel_encoder->base;
2948
2949	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2950			 DRM_MODE_ENCODER_TMDS);
2951	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2952
2953	intel_encoder->compute_config = intel_dp_compute_config;
2954	intel_encoder->enable = intel_enable_dp;
2955	intel_encoder->pre_enable = intel_pre_enable_dp;
2956	intel_encoder->disable = intel_disable_dp;
2957	intel_encoder->post_disable = intel_post_disable_dp;
2958	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2959
2960	intel_dig_port->port = port;
2961	intel_dig_port->dp.output_reg = output_reg;
2962
2963	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2964	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2965	intel_encoder->cloneable = false;
2966	intel_encoder->hot_plug = intel_dp_hot_plug;
2967
2968	intel_dp_init_connector(intel_dig_port, intel_connector);
2969}
2970