intel_dp.c revision 53b41837935a4016852b30a6242a510e6927f9c7
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41/**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48static bool is_edp(struct intel_dp *intel_dp)
49{
50	return intel_dp->base.type == INTEL_OUTPUT_EDP;
51}
52
53/**
54 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55 * @intel_dp: DP struct
56 *
57 * Returns true if the given DP struct corresponds to a PCH DP port attached
58 * to an eDP panel, false otherwise.  Helpful for determining whether we
59 * may need FDI resources for a given DP output or not.
60 */
61static bool is_pch_edp(struct intel_dp *intel_dp)
62{
63	return intel_dp->is_pch_edp;
64}
65
66/**
67 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68 * @intel_dp: DP struct
69 *
70 * Returns true if the given DP struct corresponds to a CPU eDP port.
71 */
72static bool is_cpu_edp(struct intel_dp *intel_dp)
73{
74	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
75}
76
77static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
78{
79	return container_of(intel_attached_encoder(connector),
80			    struct intel_dp, base);
81}
82
83/**
84 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
85 * @encoder: DRM encoder
86 *
87 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
88 * by intel_display.c.
89 */
90bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
91{
92	struct intel_dp *intel_dp;
93
94	if (!encoder)
95		return false;
96
97	intel_dp = enc_to_intel_dp(encoder);
98
99	return is_pch_edp(intel_dp);
100}
101
102static void intel_dp_link_down(struct intel_dp *intel_dp);
103
104void
105intel_edp_link_config(struct intel_encoder *intel_encoder,
106		       int *lane_num, int *link_bw)
107{
108	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
109
110	*lane_num = intel_dp->lane_count;
111	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
112}
113
114int
115intel_edp_target_clock(struct intel_encoder *intel_encoder,
116		       struct drm_display_mode *mode)
117{
118	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119	struct intel_connector *intel_connector = intel_dp->attached_connector;
120
121	if (intel_connector->panel.fixed_mode)
122		return intel_connector->panel.fixed_mode->clock;
123	else
124		return mode->clock;
125}
126
127static int
128intel_dp_max_link_bw(struct intel_dp *intel_dp)
129{
130	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
131
132	switch (max_link_bw) {
133	case DP_LINK_BW_1_62:
134	case DP_LINK_BW_2_7:
135		break;
136	default:
137		max_link_bw = DP_LINK_BW_1_62;
138		break;
139	}
140	return max_link_bw;
141}
142
143static int
144intel_dp_link_clock(uint8_t link_bw)
145{
146	if (link_bw == DP_LINK_BW_2_7)
147		return 270000;
148	else
149		return 162000;
150}
151
152/*
153 * The units on the numbers in the next two are... bizarre.  Examples will
154 * make it clearer; this one parallels an example in the eDP spec.
155 *
156 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
157 *
158 *     270000 * 1 * 8 / 10 == 216000
159 *
160 * The actual data capacity of that configuration is 2.16Gbit/s, so the
161 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
162 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
163 * 119000.  At 18bpp that's 2142000 kilobits per second.
164 *
165 * Thus the strange-looking division by 10 in intel_dp_link_required, to
166 * get the result in decakilobits instead of kilobits.
167 */
168
169static int
170intel_dp_link_required(int pixel_clock, int bpp)
171{
172	return (pixel_clock * bpp + 9) / 10;
173}
174
175static int
176intel_dp_max_data_rate(int max_link_clock, int max_lanes)
177{
178	return (max_link_clock * max_lanes * 8) / 10;
179}
180
181static bool
182intel_dp_adjust_dithering(struct intel_dp *intel_dp,
183			  struct drm_display_mode *mode,
184			  bool adjust_mode)
185{
186	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
187	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188	int max_rate, mode_rate;
189
190	mode_rate = intel_dp_link_required(mode->clock, 24);
191	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193	if (mode_rate > max_rate) {
194		mode_rate = intel_dp_link_required(mode->clock, 18);
195		if (mode_rate > max_rate)
196			return false;
197
198		if (adjust_mode)
199			mode->private_flags
200				|= INTEL_MODE_DP_FORCE_6BPC;
201
202		return true;
203	}
204
205	return true;
206}
207
208static int
209intel_dp_mode_valid(struct drm_connector *connector,
210		    struct drm_display_mode *mode)
211{
212	struct intel_dp *intel_dp = intel_attached_dp(connector);
213	struct intel_connector *intel_connector = to_intel_connector(connector);
214	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216	if (is_edp(intel_dp) && fixed_mode) {
217		if (mode->hdisplay > fixed_mode->hdisplay)
218			return MODE_PANEL;
219
220		if (mode->vdisplay > fixed_mode->vdisplay)
221			return MODE_PANEL;
222	}
223
224	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225		return MODE_CLOCK_HIGH;
226
227	if (mode->clock < 10000)
228		return MODE_CLOCK_LOW;
229
230	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231		return MODE_H_ILLEGAL;
232
233	return MODE_OK;
234}
235
236static uint32_t
237pack_aux(uint8_t *src, int src_bytes)
238{
239	int	i;
240	uint32_t v = 0;
241
242	if (src_bytes > 4)
243		src_bytes = 4;
244	for (i = 0; i < src_bytes; i++)
245		v |= ((uint32_t) src[i]) << ((3-i) * 8);
246	return v;
247}
248
249static void
250unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251{
252	int i;
253	if (dst_bytes > 4)
254		dst_bytes = 4;
255	for (i = 0; i < dst_bytes; i++)
256		dst[i] = src >> ((3-i) * 8);
257}
258
259/* hrawclock is 1/4 the FSB frequency */
260static int
261intel_hrawclk(struct drm_device *dev)
262{
263	struct drm_i915_private *dev_priv = dev->dev_private;
264	uint32_t clkcfg;
265
266	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267	if (IS_VALLEYVIEW(dev))
268		return 200;
269
270	clkcfg = I915_READ(CLKCFG);
271	switch (clkcfg & CLKCFG_FSB_MASK) {
272	case CLKCFG_FSB_400:
273		return 100;
274	case CLKCFG_FSB_533:
275		return 133;
276	case CLKCFG_FSB_667:
277		return 166;
278	case CLKCFG_FSB_800:
279		return 200;
280	case CLKCFG_FSB_1067:
281		return 266;
282	case CLKCFG_FSB_1333:
283		return 333;
284	/* these two are just a guess; one of them might be right */
285	case CLKCFG_FSB_1600:
286	case CLKCFG_FSB_1600_ALT:
287		return 400;
288	default:
289		return 133;
290	}
291}
292
293static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294{
295	struct drm_device *dev = intel_dp->base.base.dev;
296	struct drm_i915_private *dev_priv = dev->dev_private;
297
298	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299}
300
301static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302{
303	struct drm_device *dev = intel_dp->base.base.dev;
304	struct drm_i915_private *dev_priv = dev->dev_private;
305
306	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307}
308
309static void
310intel_dp_check_edp(struct intel_dp *intel_dp)
311{
312	struct drm_device *dev = intel_dp->base.base.dev;
313	struct drm_i915_private *dev_priv = dev->dev_private;
314
315	if (!is_edp(intel_dp))
316		return;
317	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318		WARN(1, "eDP powered off while attempting aux channel communication.\n");
319		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320			      I915_READ(PCH_PP_STATUS),
321			      I915_READ(PCH_PP_CONTROL));
322	}
323}
324
325static int
326intel_dp_aux_ch(struct intel_dp *intel_dp,
327		uint8_t *send, int send_bytes,
328		uint8_t *recv, int recv_size)
329{
330	uint32_t output_reg = intel_dp->output_reg;
331	struct drm_device *dev = intel_dp->base.base.dev;
332	struct drm_i915_private *dev_priv = dev->dev_private;
333	uint32_t ch_ctl = output_reg + 0x10;
334	uint32_t ch_data = ch_ctl + 4;
335	int i;
336	int recv_bytes;
337	uint32_t status;
338	uint32_t aux_clock_divider;
339	int try, precharge;
340
341	if (IS_HASWELL(dev)) {
342		switch (intel_dp->port) {
343		case PORT_A:
344			ch_ctl = DPA_AUX_CH_CTL;
345			ch_data = DPA_AUX_CH_DATA1;
346			break;
347		case PORT_B:
348			ch_ctl = PCH_DPB_AUX_CH_CTL;
349			ch_data = PCH_DPB_AUX_CH_DATA1;
350			break;
351		case PORT_C:
352			ch_ctl = PCH_DPC_AUX_CH_CTL;
353			ch_data = PCH_DPC_AUX_CH_DATA1;
354			break;
355		case PORT_D:
356			ch_ctl = PCH_DPD_AUX_CH_CTL;
357			ch_data = PCH_DPD_AUX_CH_DATA1;
358			break;
359		default:
360			BUG();
361		}
362	}
363
364	intel_dp_check_edp(intel_dp);
365	/* The clock divider is based off the hrawclk,
366	 * and would like to run at 2MHz. So, take the
367	 * hrawclk value and divide by 2 and use that
368	 *
369	 * Note that PCH attached eDP panels should use a 125MHz input
370	 * clock divider.
371	 */
372	if (is_cpu_edp(intel_dp)) {
373		if (IS_HASWELL(dev))
374			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
375		else if (IS_VALLEYVIEW(dev))
376			aux_clock_divider = 100;
377		else if (IS_GEN6(dev) || IS_GEN7(dev))
378			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
379		else
380			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
381	} else if (HAS_PCH_SPLIT(dev))
382		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
383	else
384		aux_clock_divider = intel_hrawclk(dev) / 2;
385
386	if (IS_GEN6(dev))
387		precharge = 3;
388	else
389		precharge = 5;
390
391	/* Try to wait for any previous AUX channel activity */
392	for (try = 0; try < 3; try++) {
393		status = I915_READ(ch_ctl);
394		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395			break;
396		msleep(1);
397	}
398
399	if (try == 3) {
400		WARN(1, "dp_aux_ch not started status 0x%08x\n",
401		     I915_READ(ch_ctl));
402		return -EBUSY;
403	}
404
405	/* Must try at least 3 times according to DP spec */
406	for (try = 0; try < 5; try++) {
407		/* Load the send data into the aux channel data registers */
408		for (i = 0; i < send_bytes; i += 4)
409			I915_WRITE(ch_data + i,
410				   pack_aux(send + i, send_bytes - i));
411
412		/* Send the command and wait for it to complete */
413		I915_WRITE(ch_ctl,
414			   DP_AUX_CH_CTL_SEND_BUSY |
415			   DP_AUX_CH_CTL_TIME_OUT_400us |
416			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419			   DP_AUX_CH_CTL_DONE |
420			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
421			   DP_AUX_CH_CTL_RECEIVE_ERROR);
422		for (;;) {
423			status = I915_READ(ch_ctl);
424			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425				break;
426			udelay(100);
427		}
428
429		/* Clear done status and any errors */
430		I915_WRITE(ch_ctl,
431			   status |
432			   DP_AUX_CH_CTL_DONE |
433			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
434			   DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437			      DP_AUX_CH_CTL_RECEIVE_ERROR))
438			continue;
439		if (status & DP_AUX_CH_CTL_DONE)
440			break;
441	}
442
443	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445		return -EBUSY;
446	}
447
448	/* Check for timeout or receive error.
449	 * Timeouts occur when the sink is not connected
450	 */
451	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453		return -EIO;
454	}
455
456	/* Timeouts occur when the device isn't connected, so they're
457	 * "normal" -- don't fill the kernel log with these */
458	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460		return -ETIMEDOUT;
461	}
462
463	/* Unload any bytes sent back from the other side */
464	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466	if (recv_bytes > recv_size)
467		recv_bytes = recv_size;
468
469	for (i = 0; i < recv_bytes; i += 4)
470		unpack_aux(I915_READ(ch_data + i),
471			   recv + i, recv_bytes - i);
472
473	return recv_bytes;
474}
475
476/* Write data to the aux channel in native mode */
477static int
478intel_dp_aux_native_write(struct intel_dp *intel_dp,
479			  uint16_t address, uint8_t *send, int send_bytes)
480{
481	int ret;
482	uint8_t	msg[20];
483	int msg_bytes;
484	uint8_t	ack;
485
486	intel_dp_check_edp(intel_dp);
487	if (send_bytes > 16)
488		return -1;
489	msg[0] = AUX_NATIVE_WRITE << 4;
490	msg[1] = address >> 8;
491	msg[2] = address & 0xff;
492	msg[3] = send_bytes - 1;
493	memcpy(&msg[4], send, send_bytes);
494	msg_bytes = send_bytes + 4;
495	for (;;) {
496		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497		if (ret < 0)
498			return ret;
499		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500			break;
501		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502			udelay(100);
503		else
504			return -EIO;
505	}
506	return send_bytes;
507}
508
509/* Write a single byte to the aux channel in native mode */
510static int
511intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512			    uint16_t address, uint8_t byte)
513{
514	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515}
516
517/* read bytes from a native aux channel */
518static int
519intel_dp_aux_native_read(struct intel_dp *intel_dp,
520			 uint16_t address, uint8_t *recv, int recv_bytes)
521{
522	uint8_t msg[4];
523	int msg_bytes;
524	uint8_t reply[20];
525	int reply_bytes;
526	uint8_t ack;
527	int ret;
528
529	intel_dp_check_edp(intel_dp);
530	msg[0] = AUX_NATIVE_READ << 4;
531	msg[1] = address >> 8;
532	msg[2] = address & 0xff;
533	msg[3] = recv_bytes - 1;
534
535	msg_bytes = 4;
536	reply_bytes = recv_bytes + 1;
537
538	for (;;) {
539		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540				      reply, reply_bytes);
541		if (ret == 0)
542			return -EPROTO;
543		if (ret < 0)
544			return ret;
545		ack = reply[0];
546		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547			memcpy(recv, reply + 1, ret - 1);
548			return ret - 1;
549		}
550		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551			udelay(100);
552		else
553			return -EIO;
554	}
555}
556
557static int
558intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
559		    uint8_t write_byte, uint8_t *read_byte)
560{
561	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
562	struct intel_dp *intel_dp = container_of(adapter,
563						struct intel_dp,
564						adapter);
565	uint16_t address = algo_data->address;
566	uint8_t msg[5];
567	uint8_t reply[2];
568	unsigned retry;
569	int msg_bytes;
570	int reply_bytes;
571	int ret;
572
573	intel_dp_check_edp(intel_dp);
574	/* Set up the command byte */
575	if (mode & MODE_I2C_READ)
576		msg[0] = AUX_I2C_READ << 4;
577	else
578		msg[0] = AUX_I2C_WRITE << 4;
579
580	if (!(mode & MODE_I2C_STOP))
581		msg[0] |= AUX_I2C_MOT << 4;
582
583	msg[1] = address >> 8;
584	msg[2] = address;
585
586	switch (mode) {
587	case MODE_I2C_WRITE:
588		msg[3] = 0;
589		msg[4] = write_byte;
590		msg_bytes = 5;
591		reply_bytes = 1;
592		break;
593	case MODE_I2C_READ:
594		msg[3] = 0;
595		msg_bytes = 4;
596		reply_bytes = 2;
597		break;
598	default:
599		msg_bytes = 3;
600		reply_bytes = 1;
601		break;
602	}
603
604	for (retry = 0; retry < 5; retry++) {
605		ret = intel_dp_aux_ch(intel_dp,
606				      msg, msg_bytes,
607				      reply, reply_bytes);
608		if (ret < 0) {
609			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
610			return ret;
611		}
612
613		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
614		case AUX_NATIVE_REPLY_ACK:
615			/* I2C-over-AUX Reply field is only valid
616			 * when paired with AUX ACK.
617			 */
618			break;
619		case AUX_NATIVE_REPLY_NACK:
620			DRM_DEBUG_KMS("aux_ch native nack\n");
621			return -EREMOTEIO;
622		case AUX_NATIVE_REPLY_DEFER:
623			udelay(100);
624			continue;
625		default:
626			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
627				  reply[0]);
628			return -EREMOTEIO;
629		}
630
631		switch (reply[0] & AUX_I2C_REPLY_MASK) {
632		case AUX_I2C_REPLY_ACK:
633			if (mode == MODE_I2C_READ) {
634				*read_byte = reply[1];
635			}
636			return reply_bytes - 1;
637		case AUX_I2C_REPLY_NACK:
638			DRM_DEBUG_KMS("aux_i2c nack\n");
639			return -EREMOTEIO;
640		case AUX_I2C_REPLY_DEFER:
641			DRM_DEBUG_KMS("aux_i2c defer\n");
642			udelay(100);
643			break;
644		default:
645			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
646			return -EREMOTEIO;
647		}
648	}
649
650	DRM_ERROR("too many retries, giving up\n");
651	return -EREMOTEIO;
652}
653
654static int
655intel_dp_i2c_init(struct intel_dp *intel_dp,
656		  struct intel_connector *intel_connector, const char *name)
657{
658	int	ret;
659
660	DRM_DEBUG_KMS("i2c_init %s\n", name);
661	intel_dp->algo.running = false;
662	intel_dp->algo.address = 0;
663	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
664
665	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
666	intel_dp->adapter.owner = THIS_MODULE;
667	intel_dp->adapter.class = I2C_CLASS_DDC;
668	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
669	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
670	intel_dp->adapter.algo_data = &intel_dp->algo;
671	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
672
673	ironlake_edp_panel_vdd_on(intel_dp);
674	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
675	ironlake_edp_panel_vdd_off(intel_dp, false);
676	return ret;
677}
678
679static bool
680intel_dp_mode_fixup(struct drm_encoder *encoder,
681		    const struct drm_display_mode *mode,
682		    struct drm_display_mode *adjusted_mode)
683{
684	struct drm_device *dev = encoder->dev;
685	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
686	struct intel_connector *intel_connector = intel_dp->attached_connector;
687	int lane_count, clock;
688	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
689	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
690	int bpp, mode_rate;
691	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
692
693	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
694		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
695				       adjusted_mode);
696		intel_pch_panel_fitting(dev,
697					intel_connector->panel.fitting_mode,
698					mode, adjusted_mode);
699	}
700
701	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
702		return false;
703
704	DRM_DEBUG_KMS("DP link computation with max lane count %i "
705		      "max bw %02x pixel clock %iKHz\n",
706		      max_lane_count, bws[max_clock], adjusted_mode->clock);
707
708	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
709		return false;
710
711	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
712	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
713
714	for (clock = 0; clock <= max_clock; clock++) {
715		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
716			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
717
718			if (mode_rate <= link_avail) {
719				intel_dp->link_bw = bws[clock];
720				intel_dp->lane_count = lane_count;
721				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
722				DRM_DEBUG_KMS("DP link bw %02x lane "
723						"count %d clock %d bpp %d\n",
724				       intel_dp->link_bw, intel_dp->lane_count,
725				       adjusted_mode->clock, bpp);
726				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
727					      mode_rate, link_avail);
728				return true;
729			}
730		}
731	}
732
733	return false;
734}
735
736struct intel_dp_m_n {
737	uint32_t	tu;
738	uint32_t	gmch_m;
739	uint32_t	gmch_n;
740	uint32_t	link_m;
741	uint32_t	link_n;
742};
743
744static void
745intel_reduce_ratio(uint32_t *num, uint32_t *den)
746{
747	while (*num > 0xffffff || *den > 0xffffff) {
748		*num >>= 1;
749		*den >>= 1;
750	}
751}
752
753static void
754intel_dp_compute_m_n(int bpp,
755		     int nlanes,
756		     int pixel_clock,
757		     int link_clock,
758		     struct intel_dp_m_n *m_n)
759{
760	m_n->tu = 64;
761	m_n->gmch_m = (pixel_clock * bpp) >> 3;
762	m_n->gmch_n = link_clock * nlanes;
763	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
764	m_n->link_m = pixel_clock;
765	m_n->link_n = link_clock;
766	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
767}
768
769void
770intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
771		 struct drm_display_mode *adjusted_mode)
772{
773	struct drm_device *dev = crtc->dev;
774	struct intel_encoder *encoder;
775	struct drm_i915_private *dev_priv = dev->dev_private;
776	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777	int lane_count = 4;
778	struct intel_dp_m_n m_n;
779	int pipe = intel_crtc->pipe;
780	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
781
782	/*
783	 * Find the lane count in the intel_encoder private
784	 */
785	for_each_encoder_on_crtc(dev, crtc, encoder) {
786		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
787
788		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
789		    intel_dp->base.type == INTEL_OUTPUT_EDP)
790		{
791			lane_count = intel_dp->lane_count;
792			break;
793		}
794	}
795
796	/*
797	 * Compute the GMCH and Link ratios. The '3' here is
798	 * the number of bytes_per_pixel post-LUT, which we always
799	 * set up for 8-bits of R/G/B, or 3 bytes total.
800	 */
801	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
802			     mode->clock, adjusted_mode->clock, &m_n);
803
804	if (IS_HASWELL(dev)) {
805		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
806			   TU_SIZE(m_n.tu) | m_n.gmch_m);
807		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
808		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
809		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
810	} else if (HAS_PCH_SPLIT(dev)) {
811		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
812		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
813		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
814		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
815	} else if (IS_VALLEYVIEW(dev)) {
816		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
817		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
818		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
819		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
820	} else {
821		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
822			   TU_SIZE(m_n.tu) | m_n.gmch_m);
823		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
824		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
825		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
826	}
827}
828
829void intel_dp_init_link_config(struct intel_dp *intel_dp)
830{
831	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
832	intel_dp->link_configuration[0] = intel_dp->link_bw;
833	intel_dp->link_configuration[1] = intel_dp->lane_count;
834	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
835	/*
836	 * Check for DPCD version > 1.1 and enhanced framing support
837	 */
838	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
839	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
840		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
841	}
842}
843
844static void
845intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
846		  struct drm_display_mode *adjusted_mode)
847{
848	struct drm_device *dev = encoder->dev;
849	struct drm_i915_private *dev_priv = dev->dev_private;
850	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
851	struct drm_crtc *crtc = intel_dp->base.base.crtc;
852	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853
854	/*
855	 * There are four kinds of DP registers:
856	 *
857	 * 	IBX PCH
858	 * 	SNB CPU
859	 *	IVB CPU
860	 * 	CPT PCH
861	 *
862	 * IBX PCH and CPU are the same for almost everything,
863	 * except that the CPU DP PLL is configured in this
864	 * register
865	 *
866	 * CPT PCH is quite different, having many bits moved
867	 * to the TRANS_DP_CTL register instead. That
868	 * configuration happens (oddly) in ironlake_pch_enable
869	 */
870
871	/* Preserve the BIOS-computed detected bit. This is
872	 * supposed to be read-only.
873	 */
874	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
875
876	/* Handle DP bits in common between all three register formats */
877	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
878
879	switch (intel_dp->lane_count) {
880	case 1:
881		intel_dp->DP |= DP_PORT_WIDTH_1;
882		break;
883	case 2:
884		intel_dp->DP |= DP_PORT_WIDTH_2;
885		break;
886	case 4:
887		intel_dp->DP |= DP_PORT_WIDTH_4;
888		break;
889	}
890	if (intel_dp->has_audio) {
891		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
892				 pipe_name(intel_crtc->pipe));
893		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
894		intel_write_eld(encoder, adjusted_mode);
895	}
896
897	intel_dp_init_link_config(intel_dp);
898
899	/* Split out the IBX/CPU vs CPT settings */
900
901	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
902		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
903			intel_dp->DP |= DP_SYNC_HS_HIGH;
904		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
905			intel_dp->DP |= DP_SYNC_VS_HIGH;
906		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
907
908		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
909			intel_dp->DP |= DP_ENHANCED_FRAMING;
910
911		intel_dp->DP |= intel_crtc->pipe << 29;
912
913		/* don't miss out required setting for eDP */
914		if (adjusted_mode->clock < 200000)
915			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
916		else
917			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
919		intel_dp->DP |= intel_dp->color_range;
920
921		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
922			intel_dp->DP |= DP_SYNC_HS_HIGH;
923		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
924			intel_dp->DP |= DP_SYNC_VS_HIGH;
925		intel_dp->DP |= DP_LINK_TRAIN_OFF;
926
927		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
928			intel_dp->DP |= DP_ENHANCED_FRAMING;
929
930		if (intel_crtc->pipe == 1)
931			intel_dp->DP |= DP_PIPEB_SELECT;
932
933		if (is_cpu_edp(intel_dp)) {
934			/* don't miss out required setting for eDP */
935			if (adjusted_mode->clock < 200000)
936				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
937			else
938				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
939		}
940	} else {
941		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
942	}
943}
944
945#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
946#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
947
948#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
949#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
950
951#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
952#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
953
954static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
955				       u32 mask,
956				       u32 value)
957{
958	struct drm_device *dev = intel_dp->base.base.dev;
959	struct drm_i915_private *dev_priv = dev->dev_private;
960
961	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
962		      mask, value,
963		      I915_READ(PCH_PP_STATUS),
964		      I915_READ(PCH_PP_CONTROL));
965
966	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
967		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
968			  I915_READ(PCH_PP_STATUS),
969			  I915_READ(PCH_PP_CONTROL));
970	}
971}
972
973static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
974{
975	DRM_DEBUG_KMS("Wait for panel power on\n");
976	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
977}
978
979static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
980{
981	DRM_DEBUG_KMS("Wait for panel power off time\n");
982	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
983}
984
985static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
986{
987	DRM_DEBUG_KMS("Wait for panel power cycle\n");
988	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
989}
990
991
992/* Read the current pp_control value, unlocking the register if it
993 * is locked
994 */
995
996static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
997{
998	u32	control = I915_READ(PCH_PP_CONTROL);
999
1000	control &= ~PANEL_UNLOCK_MASK;
1001	control |= PANEL_UNLOCK_REGS;
1002	return control;
1003}
1004
1005void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1006{
1007	struct drm_device *dev = intel_dp->base.base.dev;
1008	struct drm_i915_private *dev_priv = dev->dev_private;
1009	u32 pp;
1010
1011	if (!is_edp(intel_dp))
1012		return;
1013	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1014
1015	WARN(intel_dp->want_panel_vdd,
1016	     "eDP VDD already requested on\n");
1017
1018	intel_dp->want_panel_vdd = true;
1019
1020	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1021		DRM_DEBUG_KMS("eDP VDD already on\n");
1022		return;
1023	}
1024
1025	if (!ironlake_edp_have_panel_power(intel_dp))
1026		ironlake_wait_panel_power_cycle(intel_dp);
1027
1028	pp = ironlake_get_pp_control(dev_priv);
1029	pp |= EDP_FORCE_VDD;
1030	I915_WRITE(PCH_PP_CONTROL, pp);
1031	POSTING_READ(PCH_PP_CONTROL);
1032	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1033		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1034
1035	/*
1036	 * If the panel wasn't on, delay before accessing aux channel
1037	 */
1038	if (!ironlake_edp_have_panel_power(intel_dp)) {
1039		DRM_DEBUG_KMS("eDP was not running\n");
1040		msleep(intel_dp->panel_power_up_delay);
1041	}
1042}
1043
1044static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1045{
1046	struct drm_device *dev = intel_dp->base.base.dev;
1047	struct drm_i915_private *dev_priv = dev->dev_private;
1048	u32 pp;
1049
1050	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1051		pp = ironlake_get_pp_control(dev_priv);
1052		pp &= ~EDP_FORCE_VDD;
1053		I915_WRITE(PCH_PP_CONTROL, pp);
1054		POSTING_READ(PCH_PP_CONTROL);
1055
1056		/* Make sure sequencer is idle before allowing subsequent activity */
1057		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1058			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1059
1060		msleep(intel_dp->panel_power_down_delay);
1061	}
1062}
1063
1064static void ironlake_panel_vdd_work(struct work_struct *__work)
1065{
1066	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1067						 struct intel_dp, panel_vdd_work);
1068	struct drm_device *dev = intel_dp->base.base.dev;
1069
1070	mutex_lock(&dev->mode_config.mutex);
1071	ironlake_panel_vdd_off_sync(intel_dp);
1072	mutex_unlock(&dev->mode_config.mutex);
1073}
1074
1075void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1076{
1077	if (!is_edp(intel_dp))
1078		return;
1079
1080	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1081	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1082
1083	intel_dp->want_panel_vdd = false;
1084
1085	if (sync) {
1086		ironlake_panel_vdd_off_sync(intel_dp);
1087	} else {
1088		/*
1089		 * Queue the timer to fire a long
1090		 * time from now (relative to the power down delay)
1091		 * to keep the panel power up across a sequence of operations
1092		 */
1093		schedule_delayed_work(&intel_dp->panel_vdd_work,
1094				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1095	}
1096}
1097
1098void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1099{
1100	struct drm_device *dev = intel_dp->base.base.dev;
1101	struct drm_i915_private *dev_priv = dev->dev_private;
1102	u32 pp;
1103
1104	if (!is_edp(intel_dp))
1105		return;
1106
1107	DRM_DEBUG_KMS("Turn eDP power on\n");
1108
1109	if (ironlake_edp_have_panel_power(intel_dp)) {
1110		DRM_DEBUG_KMS("eDP power already on\n");
1111		return;
1112	}
1113
1114	ironlake_wait_panel_power_cycle(intel_dp);
1115
1116	pp = ironlake_get_pp_control(dev_priv);
1117	if (IS_GEN5(dev)) {
1118		/* ILK workaround: disable reset around power sequence */
1119		pp &= ~PANEL_POWER_RESET;
1120		I915_WRITE(PCH_PP_CONTROL, pp);
1121		POSTING_READ(PCH_PP_CONTROL);
1122	}
1123
1124	pp |= POWER_TARGET_ON;
1125	if (!IS_GEN5(dev))
1126		pp |= PANEL_POWER_RESET;
1127
1128	I915_WRITE(PCH_PP_CONTROL, pp);
1129	POSTING_READ(PCH_PP_CONTROL);
1130
1131	ironlake_wait_panel_on(intel_dp);
1132
1133	if (IS_GEN5(dev)) {
1134		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1135		I915_WRITE(PCH_PP_CONTROL, pp);
1136		POSTING_READ(PCH_PP_CONTROL);
1137	}
1138}
1139
1140void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1141{
1142	struct drm_device *dev = intel_dp->base.base.dev;
1143	struct drm_i915_private *dev_priv = dev->dev_private;
1144	u32 pp;
1145
1146	if (!is_edp(intel_dp))
1147		return;
1148
1149	DRM_DEBUG_KMS("Turn eDP power off\n");
1150
1151	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1152
1153	pp = ironlake_get_pp_control(dev_priv);
1154	/* We need to switch off panel power _and_ force vdd, for otherwise some
1155	 * panels get very unhappy and cease to work. */
1156	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1157	I915_WRITE(PCH_PP_CONTROL, pp);
1158	POSTING_READ(PCH_PP_CONTROL);
1159
1160	intel_dp->want_panel_vdd = false;
1161
1162	ironlake_wait_panel_off(intel_dp);
1163}
1164
1165void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1166{
1167	struct drm_device *dev = intel_dp->base.base.dev;
1168	struct drm_i915_private *dev_priv = dev->dev_private;
1169	int pipe = to_intel_crtc(intel_dp->base.base.crtc)->pipe;
1170	u32 pp;
1171
1172	if (!is_edp(intel_dp))
1173		return;
1174
1175	DRM_DEBUG_KMS("\n");
1176	/*
1177	 * If we enable the backlight right away following a panel power
1178	 * on, we may see slight flicker as the panel syncs with the eDP
1179	 * link.  So delay a bit to make sure the image is solid before
1180	 * allowing it to appear.
1181	 */
1182	msleep(intel_dp->backlight_on_delay);
1183	pp = ironlake_get_pp_control(dev_priv);
1184	pp |= EDP_BLC_ENABLE;
1185	I915_WRITE(PCH_PP_CONTROL, pp);
1186	POSTING_READ(PCH_PP_CONTROL);
1187
1188	intel_panel_enable_backlight(dev, pipe);
1189}
1190
1191void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1192{
1193	struct drm_device *dev = intel_dp->base.base.dev;
1194	struct drm_i915_private *dev_priv = dev->dev_private;
1195	u32 pp;
1196
1197	if (!is_edp(intel_dp))
1198		return;
1199
1200	intel_panel_disable_backlight(dev);
1201
1202	DRM_DEBUG_KMS("\n");
1203	pp = ironlake_get_pp_control(dev_priv);
1204	pp &= ~EDP_BLC_ENABLE;
1205	I915_WRITE(PCH_PP_CONTROL, pp);
1206	POSTING_READ(PCH_PP_CONTROL);
1207	msleep(intel_dp->backlight_off_delay);
1208}
1209
1210static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1211{
1212	struct drm_device *dev = intel_dp->base.base.dev;
1213	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1214	struct drm_i915_private *dev_priv = dev->dev_private;
1215	u32 dpa_ctl;
1216
1217	assert_pipe_disabled(dev_priv,
1218			     to_intel_crtc(crtc)->pipe);
1219
1220	DRM_DEBUG_KMS("\n");
1221	dpa_ctl = I915_READ(DP_A);
1222	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1223	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1224
1225	/* We don't adjust intel_dp->DP while tearing down the link, to
1226	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1227	 * enable bits here to ensure that we don't enable too much. */
1228	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1229	intel_dp->DP |= DP_PLL_ENABLE;
1230	I915_WRITE(DP_A, intel_dp->DP);
1231	POSTING_READ(DP_A);
1232	udelay(200);
1233}
1234
1235static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1236{
1237	struct drm_device *dev = intel_dp->base.base.dev;
1238	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1239	struct drm_i915_private *dev_priv = dev->dev_private;
1240	u32 dpa_ctl;
1241
1242	assert_pipe_disabled(dev_priv,
1243			     to_intel_crtc(crtc)->pipe);
1244
1245	dpa_ctl = I915_READ(DP_A);
1246	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1247	     "dp pll off, should be on\n");
1248	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1249
1250	/* We can't rely on the value tracked for the DP register in
1251	 * intel_dp->DP because link_down must not change that (otherwise link
1252	 * re-training will fail. */
1253	dpa_ctl &= ~DP_PLL_ENABLE;
1254	I915_WRITE(DP_A, dpa_ctl);
1255	POSTING_READ(DP_A);
1256	udelay(200);
1257}
1258
1259/* If the sink supports it, try to set the power state appropriately */
1260void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1261{
1262	int ret, i;
1263
1264	/* Should have a valid DPCD by this point */
1265	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1266		return;
1267
1268	if (mode != DRM_MODE_DPMS_ON) {
1269		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1270						  DP_SET_POWER_D3);
1271		if (ret != 1)
1272			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1273	} else {
1274		/*
1275		 * When turning on, we need to retry for 1ms to give the sink
1276		 * time to wake up.
1277		 */
1278		for (i = 0; i < 3; i++) {
1279			ret = intel_dp_aux_native_write_1(intel_dp,
1280							  DP_SET_POWER,
1281							  DP_SET_POWER_D0);
1282			if (ret == 1)
1283				break;
1284			msleep(1);
1285		}
1286	}
1287}
1288
1289static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1290				  enum pipe *pipe)
1291{
1292	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1293	struct drm_device *dev = encoder->base.dev;
1294	struct drm_i915_private *dev_priv = dev->dev_private;
1295	u32 tmp = I915_READ(intel_dp->output_reg);
1296
1297	if (!(tmp & DP_PORT_EN))
1298		return false;
1299
1300	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1301		*pipe = PORT_TO_PIPE_CPT(tmp);
1302	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1303		*pipe = PORT_TO_PIPE(tmp);
1304	} else {
1305		u32 trans_sel;
1306		u32 trans_dp;
1307		int i;
1308
1309		switch (intel_dp->output_reg) {
1310		case PCH_DP_B:
1311			trans_sel = TRANS_DP_PORT_SEL_B;
1312			break;
1313		case PCH_DP_C:
1314			trans_sel = TRANS_DP_PORT_SEL_C;
1315			break;
1316		case PCH_DP_D:
1317			trans_sel = TRANS_DP_PORT_SEL_D;
1318			break;
1319		default:
1320			return true;
1321		}
1322
1323		for_each_pipe(i) {
1324			trans_dp = I915_READ(TRANS_DP_CTL(i));
1325			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1326				*pipe = i;
1327				return true;
1328			}
1329		}
1330	}
1331
1332	DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1333
1334	return true;
1335}
1336
1337static void intel_disable_dp(struct intel_encoder *encoder)
1338{
1339	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1340
1341	/* Make sure the panel is off before trying to change the mode. But also
1342	 * ensure that we have vdd while we switch off the panel. */
1343	ironlake_edp_panel_vdd_on(intel_dp);
1344	ironlake_edp_backlight_off(intel_dp);
1345	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346	ironlake_edp_panel_off(intel_dp);
1347
1348	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1349	if (!is_cpu_edp(intel_dp))
1350		intel_dp_link_down(intel_dp);
1351}
1352
1353static void intel_post_disable_dp(struct intel_encoder *encoder)
1354{
1355	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356
1357	if (is_cpu_edp(intel_dp)) {
1358		intel_dp_link_down(intel_dp);
1359		ironlake_edp_pll_off(intel_dp);
1360	}
1361}
1362
1363static void intel_enable_dp(struct intel_encoder *encoder)
1364{
1365	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1366	struct drm_device *dev = encoder->base.dev;
1367	struct drm_i915_private *dev_priv = dev->dev_private;
1368	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1369
1370	if (WARN_ON(dp_reg & DP_PORT_EN))
1371		return;
1372
1373	ironlake_edp_panel_vdd_on(intel_dp);
1374	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1375	intel_dp_start_link_train(intel_dp);
1376	ironlake_edp_panel_on(intel_dp);
1377	ironlake_edp_panel_vdd_off(intel_dp, true);
1378	intel_dp_complete_link_train(intel_dp);
1379	ironlake_edp_backlight_on(intel_dp);
1380}
1381
1382static void intel_pre_enable_dp(struct intel_encoder *encoder)
1383{
1384	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1385
1386	if (is_cpu_edp(intel_dp))
1387		ironlake_edp_pll_on(intel_dp);
1388}
1389
1390/*
1391 * Native read with retry for link status and receiver capability reads for
1392 * cases where the sink may still be asleep.
1393 */
1394static bool
1395intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1396			       uint8_t *recv, int recv_bytes)
1397{
1398	int ret, i;
1399
1400	/*
1401	 * Sinks are *supposed* to come up within 1ms from an off state,
1402	 * but we're also supposed to retry 3 times per the spec.
1403	 */
1404	for (i = 0; i < 3; i++) {
1405		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1406					       recv_bytes);
1407		if (ret == recv_bytes)
1408			return true;
1409		msleep(1);
1410	}
1411
1412	return false;
1413}
1414
1415/*
1416 * Fetch AUX CH registers 0x202 - 0x207 which contain
1417 * link status information
1418 */
1419static bool
1420intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1421{
1422	return intel_dp_aux_native_read_retry(intel_dp,
1423					      DP_LANE0_1_STATUS,
1424					      link_status,
1425					      DP_LINK_STATUS_SIZE);
1426}
1427
1428#if 0
1429static char	*voltage_names[] = {
1430	"0.4V", "0.6V", "0.8V", "1.2V"
1431};
1432static char	*pre_emph_names[] = {
1433	"0dB", "3.5dB", "6dB", "9.5dB"
1434};
1435static char	*link_train_names[] = {
1436	"pattern 1", "pattern 2", "idle", "off"
1437};
1438#endif
1439
1440/*
1441 * These are source-specific values; current Intel hardware supports
1442 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1443 */
1444
1445static uint8_t
1446intel_dp_voltage_max(struct intel_dp *intel_dp)
1447{
1448	struct drm_device *dev = intel_dp->base.base.dev;
1449
1450	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1451		return DP_TRAIN_VOLTAGE_SWING_800;
1452	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1453		return DP_TRAIN_VOLTAGE_SWING_1200;
1454	else
1455		return DP_TRAIN_VOLTAGE_SWING_800;
1456}
1457
1458static uint8_t
1459intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1460{
1461	struct drm_device *dev = intel_dp->base.base.dev;
1462
1463	if (IS_HASWELL(dev)) {
1464		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1465		case DP_TRAIN_VOLTAGE_SWING_400:
1466			return DP_TRAIN_PRE_EMPHASIS_9_5;
1467		case DP_TRAIN_VOLTAGE_SWING_600:
1468			return DP_TRAIN_PRE_EMPHASIS_6;
1469		case DP_TRAIN_VOLTAGE_SWING_800:
1470			return DP_TRAIN_PRE_EMPHASIS_3_5;
1471		case DP_TRAIN_VOLTAGE_SWING_1200:
1472		default:
1473			return DP_TRAIN_PRE_EMPHASIS_0;
1474		}
1475	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1476		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1477		case DP_TRAIN_VOLTAGE_SWING_400:
1478			return DP_TRAIN_PRE_EMPHASIS_6;
1479		case DP_TRAIN_VOLTAGE_SWING_600:
1480		case DP_TRAIN_VOLTAGE_SWING_800:
1481			return DP_TRAIN_PRE_EMPHASIS_3_5;
1482		default:
1483			return DP_TRAIN_PRE_EMPHASIS_0;
1484		}
1485	} else {
1486		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1487		case DP_TRAIN_VOLTAGE_SWING_400:
1488			return DP_TRAIN_PRE_EMPHASIS_6;
1489		case DP_TRAIN_VOLTAGE_SWING_600:
1490			return DP_TRAIN_PRE_EMPHASIS_6;
1491		case DP_TRAIN_VOLTAGE_SWING_800:
1492			return DP_TRAIN_PRE_EMPHASIS_3_5;
1493		case DP_TRAIN_VOLTAGE_SWING_1200:
1494		default:
1495			return DP_TRAIN_PRE_EMPHASIS_0;
1496		}
1497	}
1498}
1499
1500static void
1501intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1502{
1503	uint8_t v = 0;
1504	uint8_t p = 0;
1505	int lane;
1506	uint8_t voltage_max;
1507	uint8_t preemph_max;
1508
1509	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1510		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1511		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1512
1513		if (this_v > v)
1514			v = this_v;
1515		if (this_p > p)
1516			p = this_p;
1517	}
1518
1519	voltage_max = intel_dp_voltage_max(intel_dp);
1520	if (v >= voltage_max)
1521		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1522
1523	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1524	if (p >= preemph_max)
1525		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1526
1527	for (lane = 0; lane < 4; lane++)
1528		intel_dp->train_set[lane] = v | p;
1529}
1530
1531static uint32_t
1532intel_dp_signal_levels(uint8_t train_set)
1533{
1534	uint32_t	signal_levels = 0;
1535
1536	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1537	case DP_TRAIN_VOLTAGE_SWING_400:
1538	default:
1539		signal_levels |= DP_VOLTAGE_0_4;
1540		break;
1541	case DP_TRAIN_VOLTAGE_SWING_600:
1542		signal_levels |= DP_VOLTAGE_0_6;
1543		break;
1544	case DP_TRAIN_VOLTAGE_SWING_800:
1545		signal_levels |= DP_VOLTAGE_0_8;
1546		break;
1547	case DP_TRAIN_VOLTAGE_SWING_1200:
1548		signal_levels |= DP_VOLTAGE_1_2;
1549		break;
1550	}
1551	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1552	case DP_TRAIN_PRE_EMPHASIS_0:
1553	default:
1554		signal_levels |= DP_PRE_EMPHASIS_0;
1555		break;
1556	case DP_TRAIN_PRE_EMPHASIS_3_5:
1557		signal_levels |= DP_PRE_EMPHASIS_3_5;
1558		break;
1559	case DP_TRAIN_PRE_EMPHASIS_6:
1560		signal_levels |= DP_PRE_EMPHASIS_6;
1561		break;
1562	case DP_TRAIN_PRE_EMPHASIS_9_5:
1563		signal_levels |= DP_PRE_EMPHASIS_9_5;
1564		break;
1565	}
1566	return signal_levels;
1567}
1568
1569/* Gen6's DP voltage swing and pre-emphasis control */
1570static uint32_t
1571intel_gen6_edp_signal_levels(uint8_t train_set)
1572{
1573	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1574					 DP_TRAIN_PRE_EMPHASIS_MASK);
1575	switch (signal_levels) {
1576	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1577	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1578		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1579	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1580		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1581	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1582	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1583		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1584	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1586		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1587	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1588	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1589		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1590	default:
1591		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1592			      "0x%x\n", signal_levels);
1593		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1594	}
1595}
1596
1597/* Gen7's DP voltage swing and pre-emphasis control */
1598static uint32_t
1599intel_gen7_edp_signal_levels(uint8_t train_set)
1600{
1601	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1602					 DP_TRAIN_PRE_EMPHASIS_MASK);
1603	switch (signal_levels) {
1604	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1605		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1606	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1607		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1608	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1609		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1610
1611	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1612		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1613	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1614		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1615
1616	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1617		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1618	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1619		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1620
1621	default:
1622		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1623			      "0x%x\n", signal_levels);
1624		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1625	}
1626}
1627
1628/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1629static uint32_t
1630intel_dp_signal_levels_hsw(uint8_t train_set)
1631{
1632	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1633					 DP_TRAIN_PRE_EMPHASIS_MASK);
1634	switch (signal_levels) {
1635	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1636		return DDI_BUF_EMP_400MV_0DB_HSW;
1637	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1638		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1639	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1640		return DDI_BUF_EMP_400MV_6DB_HSW;
1641	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1642		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1643
1644	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1645		return DDI_BUF_EMP_600MV_0DB_HSW;
1646	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1647		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1648	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1649		return DDI_BUF_EMP_600MV_6DB_HSW;
1650
1651	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1652		return DDI_BUF_EMP_800MV_0DB_HSW;
1653	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1654		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1655	default:
1656		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1657			      "0x%x\n", signal_levels);
1658		return DDI_BUF_EMP_400MV_0DB_HSW;
1659	}
1660}
1661
1662static bool
1663intel_dp_set_link_train(struct intel_dp *intel_dp,
1664			uint32_t dp_reg_value,
1665			uint8_t dp_train_pat)
1666{
1667	struct drm_device *dev = intel_dp->base.base.dev;
1668	struct drm_i915_private *dev_priv = dev->dev_private;
1669	int ret;
1670	uint32_t temp;
1671
1672	if (IS_HASWELL(dev)) {
1673		temp = I915_READ(DP_TP_CTL(intel_dp->port));
1674
1675		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1676			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1677		else
1678			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1679
1680		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1681		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1682		case DP_TRAINING_PATTERN_DISABLE:
1683			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1684			I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1685
1686			if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1687				      DP_TP_STATUS_IDLE_DONE), 1))
1688				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1689
1690			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1691			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1692
1693			break;
1694		case DP_TRAINING_PATTERN_1:
1695			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1696			break;
1697		case DP_TRAINING_PATTERN_2:
1698			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1699			break;
1700		case DP_TRAINING_PATTERN_3:
1701			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1702			break;
1703		}
1704		I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1705
1706	} else if (HAS_PCH_CPT(dev) &&
1707		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1708		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1709
1710		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1711		case DP_TRAINING_PATTERN_DISABLE:
1712			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1713			break;
1714		case DP_TRAINING_PATTERN_1:
1715			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1716			break;
1717		case DP_TRAINING_PATTERN_2:
1718			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1719			break;
1720		case DP_TRAINING_PATTERN_3:
1721			DRM_ERROR("DP training pattern 3 not supported\n");
1722			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1723			break;
1724		}
1725
1726	} else {
1727		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1728
1729		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1730		case DP_TRAINING_PATTERN_DISABLE:
1731			dp_reg_value |= DP_LINK_TRAIN_OFF;
1732			break;
1733		case DP_TRAINING_PATTERN_1:
1734			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1735			break;
1736		case DP_TRAINING_PATTERN_2:
1737			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1738			break;
1739		case DP_TRAINING_PATTERN_3:
1740			DRM_ERROR("DP training pattern 3 not supported\n");
1741			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1742			break;
1743		}
1744	}
1745
1746	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1747	POSTING_READ(intel_dp->output_reg);
1748
1749	intel_dp_aux_native_write_1(intel_dp,
1750				    DP_TRAINING_PATTERN_SET,
1751				    dp_train_pat);
1752
1753	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1754	    DP_TRAINING_PATTERN_DISABLE) {
1755		ret = intel_dp_aux_native_write(intel_dp,
1756						DP_TRAINING_LANE0_SET,
1757						intel_dp->train_set,
1758						intel_dp->lane_count);
1759		if (ret != intel_dp->lane_count)
1760			return false;
1761	}
1762
1763	return true;
1764}
1765
1766/* Enable corresponding port and start training pattern 1 */
1767void
1768intel_dp_start_link_train(struct intel_dp *intel_dp)
1769{
1770	struct drm_encoder *encoder = &intel_dp->base.base;
1771	struct drm_device *dev = encoder->dev;
1772	int i;
1773	uint8_t voltage;
1774	bool clock_recovery = false;
1775	int voltage_tries, loop_tries;
1776	uint32_t DP = intel_dp->DP;
1777
1778	if (IS_HASWELL(dev))
1779		intel_ddi_prepare_link_retrain(encoder);
1780
1781	/* Write the link configuration data */
1782	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1783				  intel_dp->link_configuration,
1784				  DP_LINK_CONFIGURATION_SIZE);
1785
1786	DP |= DP_PORT_EN;
1787
1788	memset(intel_dp->train_set, 0, 4);
1789	voltage = 0xff;
1790	voltage_tries = 0;
1791	loop_tries = 0;
1792	clock_recovery = false;
1793	for (;;) {
1794		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1795		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1796		uint32_t    signal_levels;
1797
1798		if (IS_HASWELL(dev)) {
1799			signal_levels = intel_dp_signal_levels_hsw(
1800							intel_dp->train_set[0]);
1801			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1802		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1803			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1804			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1805		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1806			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1807			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1808		} else {
1809			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1810			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1811		}
1812		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1813			      signal_levels);
1814
1815		/* Set training pattern 1 */
1816		if (!intel_dp_set_link_train(intel_dp, DP,
1817					     DP_TRAINING_PATTERN_1 |
1818					     DP_LINK_SCRAMBLING_DISABLE))
1819			break;
1820
1821		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1822		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1823			DRM_ERROR("failed to get link status\n");
1824			break;
1825		}
1826
1827		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1828			DRM_DEBUG_KMS("clock recovery OK\n");
1829			clock_recovery = true;
1830			break;
1831		}
1832
1833		/* Check to see if we've tried the max voltage */
1834		for (i = 0; i < intel_dp->lane_count; i++)
1835			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1836				break;
1837		if (i == intel_dp->lane_count && voltage_tries == 5) {
1838			if (++loop_tries == 5) {
1839				DRM_DEBUG_KMS("too many full retries, give up\n");
1840				break;
1841			}
1842			memset(intel_dp->train_set, 0, 4);
1843			voltage_tries = 0;
1844			continue;
1845		}
1846
1847		/* Check to see if we've tried the same voltage 5 times */
1848		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1849			voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1850			voltage_tries = 0;
1851		} else
1852			++voltage_tries;
1853
1854		/* Compute new intel_dp->train_set as requested by target */
1855		intel_get_adjust_train(intel_dp, link_status);
1856	}
1857
1858	intel_dp->DP = DP;
1859}
1860
1861void
1862intel_dp_complete_link_train(struct intel_dp *intel_dp)
1863{
1864	struct drm_device *dev = intel_dp->base.base.dev;
1865	bool channel_eq = false;
1866	int tries, cr_tries;
1867	uint32_t DP = intel_dp->DP;
1868
1869	/* channel equalization */
1870	tries = 0;
1871	cr_tries = 0;
1872	channel_eq = false;
1873	for (;;) {
1874		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1875		uint32_t    signal_levels;
1876		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1877
1878		if (cr_tries > 5) {
1879			DRM_ERROR("failed to train DP, aborting\n");
1880			intel_dp_link_down(intel_dp);
1881			break;
1882		}
1883
1884		if (IS_HASWELL(dev)) {
1885			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1886			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1887		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1888			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1889			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1890		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1891			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1892			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1893		} else {
1894			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1895			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1896		}
1897
1898		/* channel eq pattern */
1899		if (!intel_dp_set_link_train(intel_dp, DP,
1900					     DP_TRAINING_PATTERN_2 |
1901					     DP_LINK_SCRAMBLING_DISABLE))
1902			break;
1903
1904		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1905		if (!intel_dp_get_link_status(intel_dp, link_status))
1906			break;
1907
1908		/* Make sure clock is still ok */
1909		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1910			intel_dp_start_link_train(intel_dp);
1911			cr_tries++;
1912			continue;
1913		}
1914
1915		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1916			channel_eq = true;
1917			break;
1918		}
1919
1920		/* Try 5 times, then try clock recovery if that fails */
1921		if (tries > 5) {
1922			intel_dp_link_down(intel_dp);
1923			intel_dp_start_link_train(intel_dp);
1924			tries = 0;
1925			cr_tries++;
1926			continue;
1927		}
1928
1929		/* Compute new intel_dp->train_set as requested by target */
1930		intel_get_adjust_train(intel_dp, link_status);
1931		++tries;
1932	}
1933
1934	if (channel_eq)
1935		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1936
1937	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1938}
1939
1940static void
1941intel_dp_link_down(struct intel_dp *intel_dp)
1942{
1943	struct drm_device *dev = intel_dp->base.base.dev;
1944	struct drm_i915_private *dev_priv = dev->dev_private;
1945	uint32_t DP = intel_dp->DP;
1946
1947	/*
1948	 * DDI code has a strict mode set sequence and we should try to respect
1949	 * it, otherwise we might hang the machine in many different ways. So we
1950	 * really should be disabling the port only on a complete crtc_disable
1951	 * sequence. This function is just called under two conditions on DDI
1952	 * code:
1953	 * - Link train failed while doing crtc_enable, and on this case we
1954	 *   really should respect the mode set sequence and wait for a
1955	 *   crtc_disable.
1956	 * - Someone turned the monitor off and intel_dp_check_link_status
1957	 *   called us. We don't need to disable the whole port on this case, so
1958	 *   when someone turns the monitor on again,
1959	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
1960	 *   train.
1961	 */
1962	if (IS_HASWELL(dev))
1963		return;
1964
1965	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1966		return;
1967
1968	DRM_DEBUG_KMS("\n");
1969
1970	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1971		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1972		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1973	} else {
1974		DP &= ~DP_LINK_TRAIN_MASK;
1975		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1976	}
1977	POSTING_READ(intel_dp->output_reg);
1978
1979	msleep(17);
1980
1981	if (HAS_PCH_IBX(dev) &&
1982	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1983		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1984
1985		/* Hardware workaround: leaving our transcoder select
1986		 * set to transcoder B while it's off will prevent the
1987		 * corresponding HDMI output on transcoder A.
1988		 *
1989		 * Combine this with another hardware workaround:
1990		 * transcoder select bit can only be cleared while the
1991		 * port is enabled.
1992		 */
1993		DP &= ~DP_PIPEB_SELECT;
1994		I915_WRITE(intel_dp->output_reg, DP);
1995
1996		/* Changes to enable or select take place the vblank
1997		 * after being written.
1998		 */
1999		if (crtc == NULL) {
2000			/* We can arrive here never having been attached
2001			 * to a CRTC, for instance, due to inheriting
2002			 * random state from the BIOS.
2003			 *
2004			 * If the pipe is not running, play safe and
2005			 * wait for the clocks to stabilise before
2006			 * continuing.
2007			 */
2008			POSTING_READ(intel_dp->output_reg);
2009			msleep(50);
2010		} else
2011			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2012	}
2013
2014	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2015	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2016	POSTING_READ(intel_dp->output_reg);
2017	msleep(intel_dp->panel_power_down_delay);
2018}
2019
2020static bool
2021intel_dp_get_dpcd(struct intel_dp *intel_dp)
2022{
2023	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2024					   sizeof(intel_dp->dpcd)) == 0)
2025		return false; /* aux transfer failed */
2026
2027	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2028		return false; /* DPCD not present */
2029
2030	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2031	      DP_DWN_STRM_PORT_PRESENT))
2032		return true; /* native DP sink */
2033
2034	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2035		return true; /* no per-port downstream info */
2036
2037	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2038					   intel_dp->downstream_ports,
2039					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2040		return false; /* downstream port status fetch failed */
2041
2042	return true;
2043}
2044
2045static void
2046intel_dp_probe_oui(struct intel_dp *intel_dp)
2047{
2048	u8 buf[3];
2049
2050	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2051		return;
2052
2053	ironlake_edp_panel_vdd_on(intel_dp);
2054
2055	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2056		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2057			      buf[0], buf[1], buf[2]);
2058
2059	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2060		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2061			      buf[0], buf[1], buf[2]);
2062
2063	ironlake_edp_panel_vdd_off(intel_dp, false);
2064}
2065
2066static bool
2067intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2068{
2069	int ret;
2070
2071	ret = intel_dp_aux_native_read_retry(intel_dp,
2072					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2073					     sink_irq_vector, 1);
2074	if (!ret)
2075		return false;
2076
2077	return true;
2078}
2079
2080static void
2081intel_dp_handle_test_request(struct intel_dp *intel_dp)
2082{
2083	/* NAK by default */
2084	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2085}
2086
2087/*
2088 * According to DP spec
2089 * 5.1.2:
2090 *  1. Read DPCD
2091 *  2. Configure link according to Receiver Capabilities
2092 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2093 *  4. Check link status on receipt of hot-plug interrupt
2094 */
2095
2096static void
2097intel_dp_check_link_status(struct intel_dp *intel_dp)
2098{
2099	u8 sink_irq_vector;
2100	u8 link_status[DP_LINK_STATUS_SIZE];
2101
2102	if (!intel_dp->base.connectors_active)
2103		return;
2104
2105	if (WARN_ON(!intel_dp->base.base.crtc))
2106		return;
2107
2108	/* Try to read receiver status if the link appears to be up */
2109	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2110		intel_dp_link_down(intel_dp);
2111		return;
2112	}
2113
2114	/* Now read the DPCD to see if it's actually running */
2115	if (!intel_dp_get_dpcd(intel_dp)) {
2116		intel_dp_link_down(intel_dp);
2117		return;
2118	}
2119
2120	/* Try to read the source of the interrupt */
2121	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2122	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2123		/* Clear interrupt source */
2124		intel_dp_aux_native_write_1(intel_dp,
2125					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2126					    sink_irq_vector);
2127
2128		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2129			intel_dp_handle_test_request(intel_dp);
2130		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2131			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2132	}
2133
2134	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2135		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2136			      drm_get_encoder_name(&intel_dp->base.base));
2137		intel_dp_start_link_train(intel_dp);
2138		intel_dp_complete_link_train(intel_dp);
2139	}
2140}
2141
2142/* XXX this is probably wrong for multiple downstream ports */
2143static enum drm_connector_status
2144intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2145{
2146	uint8_t *dpcd = intel_dp->dpcd;
2147	bool hpd;
2148	uint8_t type;
2149
2150	if (!intel_dp_get_dpcd(intel_dp))
2151		return connector_status_disconnected;
2152
2153	/* if there's no downstream port, we're done */
2154	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2155		return connector_status_connected;
2156
2157	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2158	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2159	if (hpd) {
2160		uint8_t reg;
2161		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2162						    &reg, 1))
2163			return connector_status_unknown;
2164		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2165					      : connector_status_disconnected;
2166	}
2167
2168	/* If no HPD, poke DDC gently */
2169	if (drm_probe_ddc(&intel_dp->adapter))
2170		return connector_status_connected;
2171
2172	/* Well we tried, say unknown for unreliable port types */
2173	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2174	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2175		return connector_status_unknown;
2176
2177	/* Anything else is out of spec, warn and ignore */
2178	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2179	return connector_status_disconnected;
2180}
2181
2182static enum drm_connector_status
2183ironlake_dp_detect(struct intel_dp *intel_dp)
2184{
2185	enum drm_connector_status status;
2186
2187	/* Can't disconnect eDP, but you can close the lid... */
2188	if (is_edp(intel_dp)) {
2189		status = intel_panel_detect(intel_dp->base.base.dev);
2190		if (status == connector_status_unknown)
2191			status = connector_status_connected;
2192		return status;
2193	}
2194
2195	return intel_dp_detect_dpcd(intel_dp);
2196}
2197
2198static enum drm_connector_status
2199g4x_dp_detect(struct intel_dp *intel_dp)
2200{
2201	struct drm_device *dev = intel_dp->base.base.dev;
2202	struct drm_i915_private *dev_priv = dev->dev_private;
2203	uint32_t bit;
2204
2205	switch (intel_dp->output_reg) {
2206	case DP_B:
2207		bit = DPB_HOTPLUG_LIVE_STATUS;
2208		break;
2209	case DP_C:
2210		bit = DPC_HOTPLUG_LIVE_STATUS;
2211		break;
2212	case DP_D:
2213		bit = DPD_HOTPLUG_LIVE_STATUS;
2214		break;
2215	default:
2216		return connector_status_unknown;
2217	}
2218
2219	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2220		return connector_status_disconnected;
2221
2222	return intel_dp_detect_dpcd(intel_dp);
2223}
2224
2225static struct edid *
2226intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2227{
2228	struct intel_connector *intel_connector = to_intel_connector(connector);
2229
2230	/* use cached edid if we have one */
2231	if (intel_connector->edid) {
2232		struct edid *edid;
2233		int size;
2234
2235		/* invalid edid */
2236		if (IS_ERR(intel_connector->edid))
2237			return NULL;
2238
2239		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2240		edid = kmalloc(size, GFP_KERNEL);
2241		if (!edid)
2242			return NULL;
2243
2244		memcpy(edid, intel_connector->edid, size);
2245		return edid;
2246	}
2247
2248	return drm_get_edid(connector, adapter);
2249}
2250
2251static int
2252intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2253{
2254	struct intel_connector *intel_connector = to_intel_connector(connector);
2255
2256	/* use cached edid if we have one */
2257	if (intel_connector->edid) {
2258		/* invalid edid */
2259		if (IS_ERR(intel_connector->edid))
2260			return 0;
2261
2262		return intel_connector_update_modes(connector,
2263						    intel_connector->edid);
2264	}
2265
2266	return intel_ddc_get_modes(connector, adapter);
2267}
2268
2269
2270/**
2271 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2272 *
2273 * \return true if DP port is connected.
2274 * \return false if DP port is disconnected.
2275 */
2276static enum drm_connector_status
2277intel_dp_detect(struct drm_connector *connector, bool force)
2278{
2279	struct intel_dp *intel_dp = intel_attached_dp(connector);
2280	struct drm_device *dev = intel_dp->base.base.dev;
2281	enum drm_connector_status status;
2282	struct edid *edid = NULL;
2283	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2284
2285	intel_dp->has_audio = false;
2286
2287	if (HAS_PCH_SPLIT(dev))
2288		status = ironlake_dp_detect(intel_dp);
2289	else
2290		status = g4x_dp_detect(intel_dp);
2291
2292	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2293			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2294	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2295
2296	if (status != connector_status_connected)
2297		return status;
2298
2299	intel_dp_probe_oui(intel_dp);
2300
2301	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2302		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2303	} else {
2304		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2305		if (edid) {
2306			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2307			kfree(edid);
2308		}
2309	}
2310
2311	return connector_status_connected;
2312}
2313
2314static int intel_dp_get_modes(struct drm_connector *connector)
2315{
2316	struct intel_dp *intel_dp = intel_attached_dp(connector);
2317	struct intel_connector *intel_connector = to_intel_connector(connector);
2318	struct drm_device *dev = intel_dp->base.base.dev;
2319	int ret;
2320
2321	/* We should parse the EDID data and find out if it has an audio sink
2322	 */
2323
2324	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2325	if (ret)
2326		return ret;
2327
2328	/* if eDP has no EDID, fall back to fixed mode */
2329	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330		struct drm_display_mode *mode;
2331		mode = drm_mode_duplicate(dev,
2332					  intel_connector->panel.fixed_mode);
2333		if (mode) {
2334			drm_mode_probed_add(connector, mode);
2335			return 1;
2336		}
2337	}
2338	return 0;
2339}
2340
2341static bool
2342intel_dp_detect_audio(struct drm_connector *connector)
2343{
2344	struct intel_dp *intel_dp = intel_attached_dp(connector);
2345	struct edid *edid;
2346	bool has_audio = false;
2347
2348	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2349	if (edid) {
2350		has_audio = drm_detect_monitor_audio(edid);
2351		kfree(edid);
2352	}
2353
2354	return has_audio;
2355}
2356
2357static int
2358intel_dp_set_property(struct drm_connector *connector,
2359		      struct drm_property *property,
2360		      uint64_t val)
2361{
2362	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2363	struct intel_connector *intel_connector = to_intel_connector(connector);
2364	struct intel_dp *intel_dp = intel_attached_dp(connector);
2365	int ret;
2366
2367	ret = drm_connector_property_set_value(connector, property, val);
2368	if (ret)
2369		return ret;
2370
2371	if (property == dev_priv->force_audio_property) {
2372		int i = val;
2373		bool has_audio;
2374
2375		if (i == intel_dp->force_audio)
2376			return 0;
2377
2378		intel_dp->force_audio = i;
2379
2380		if (i == HDMI_AUDIO_AUTO)
2381			has_audio = intel_dp_detect_audio(connector);
2382		else
2383			has_audio = (i == HDMI_AUDIO_ON);
2384
2385		if (has_audio == intel_dp->has_audio)
2386			return 0;
2387
2388		intel_dp->has_audio = has_audio;
2389		goto done;
2390	}
2391
2392	if (property == dev_priv->broadcast_rgb_property) {
2393		if (val == !!intel_dp->color_range)
2394			return 0;
2395
2396		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2397		goto done;
2398	}
2399
2400	if (is_edp(intel_dp) &&
2401	    property == connector->dev->mode_config.scaling_mode_property) {
2402		if (val == DRM_MODE_SCALE_NONE) {
2403			DRM_DEBUG_KMS("no scaling not supported\n");
2404			return -EINVAL;
2405		}
2406
2407		if (intel_connector->panel.fitting_mode == val) {
2408			/* the eDP scaling property is not changed */
2409			return 0;
2410		}
2411		intel_connector->panel.fitting_mode = val;
2412
2413		goto done;
2414	}
2415
2416	return -EINVAL;
2417
2418done:
2419	if (intel_dp->base.base.crtc) {
2420		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2421		intel_set_mode(crtc, &crtc->mode,
2422			       crtc->x, crtc->y, crtc->fb);
2423	}
2424
2425	return 0;
2426}
2427
2428static void
2429intel_dp_destroy(struct drm_connector *connector)
2430{
2431	struct drm_device *dev = connector->dev;
2432	struct intel_dp *intel_dp = intel_attached_dp(connector);
2433	struct intel_connector *intel_connector = to_intel_connector(connector);
2434
2435	if (!IS_ERR_OR_NULL(intel_connector->edid))
2436		kfree(intel_connector->edid);
2437
2438	if (is_edp(intel_dp)) {
2439		intel_panel_destroy_backlight(dev);
2440		intel_panel_fini(&intel_connector->panel);
2441	}
2442
2443	drm_sysfs_connector_remove(connector);
2444	drm_connector_cleanup(connector);
2445	kfree(connector);
2446}
2447
2448static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2449{
2450	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2451
2452	i2c_del_adapter(&intel_dp->adapter);
2453	drm_encoder_cleanup(encoder);
2454	if (is_edp(intel_dp)) {
2455		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2456		ironlake_panel_vdd_off_sync(intel_dp);
2457	}
2458	kfree(intel_dp);
2459}
2460
2461static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2462	.mode_fixup = intel_dp_mode_fixup,
2463	.mode_set = intel_dp_mode_set,
2464	.disable = intel_encoder_noop,
2465};
2466
2467static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2468	.mode_fixup = intel_dp_mode_fixup,
2469	.mode_set = intel_ddi_mode_set,
2470	.disable = intel_encoder_noop,
2471};
2472
2473static const struct drm_connector_funcs intel_dp_connector_funcs = {
2474	.dpms = intel_connector_dpms,
2475	.detect = intel_dp_detect,
2476	.fill_modes = drm_helper_probe_single_connector_modes,
2477	.set_property = intel_dp_set_property,
2478	.destroy = intel_dp_destroy,
2479};
2480
2481static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2482	.get_modes = intel_dp_get_modes,
2483	.mode_valid = intel_dp_mode_valid,
2484	.best_encoder = intel_best_encoder,
2485};
2486
2487static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2488	.destroy = intel_dp_encoder_destroy,
2489};
2490
2491static void
2492intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2493{
2494	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2495
2496	intel_dp_check_link_status(intel_dp);
2497}
2498
2499/* Return which DP Port should be selected for Transcoder DP control */
2500int
2501intel_trans_dp_port_sel(struct drm_crtc *crtc)
2502{
2503	struct drm_device *dev = crtc->dev;
2504	struct intel_encoder *encoder;
2505
2506	for_each_encoder_on_crtc(dev, crtc, encoder) {
2507		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508
2509		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2510		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2511			return intel_dp->output_reg;
2512	}
2513
2514	return -1;
2515}
2516
2517/* check the VBT to see whether the eDP is on DP-D port */
2518bool intel_dpd_is_edp(struct drm_device *dev)
2519{
2520	struct drm_i915_private *dev_priv = dev->dev_private;
2521	struct child_device_config *p_child;
2522	int i;
2523
2524	if (!dev_priv->child_dev_num)
2525		return false;
2526
2527	for (i = 0; i < dev_priv->child_dev_num; i++) {
2528		p_child = dev_priv->child_dev + i;
2529
2530		if (p_child->dvo_port == PORT_IDPD &&
2531		    p_child->device_type == DEVICE_TYPE_eDP)
2532			return true;
2533	}
2534	return false;
2535}
2536
2537static void
2538intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2539{
2540	struct intel_connector *intel_connector = to_intel_connector(connector);
2541
2542	intel_attach_force_audio_property(connector);
2543	intel_attach_broadcast_rgb_property(connector);
2544
2545	if (is_edp(intel_dp)) {
2546		drm_mode_create_scaling_mode_property(connector->dev);
2547		drm_connector_attach_property(
2548			connector,
2549			connector->dev->mode_config.scaling_mode_property,
2550			DRM_MODE_SCALE_FULLSCREEN);
2551		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_FULLSCREEN;
2552	}
2553}
2554
2555static void
2556intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2557				    struct intel_dp *intel_dp)
2558{
2559	struct drm_i915_private *dev_priv = dev->dev_private;
2560	struct edp_power_seq cur, vbt, spec, final;
2561	u32 pp_on, pp_off, pp_div, pp;
2562
2563	/* Workaround: Need to write PP_CONTROL with the unlock key as
2564	 * the very first thing. */
2565	pp = ironlake_get_pp_control(dev_priv);
2566	I915_WRITE(PCH_PP_CONTROL, pp);
2567
2568	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2569	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2570	pp_div = I915_READ(PCH_PP_DIVISOR);
2571
2572	/* Pull timing values out of registers */
2573	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2574		PANEL_POWER_UP_DELAY_SHIFT;
2575
2576	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2577		PANEL_LIGHT_ON_DELAY_SHIFT;
2578
2579	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2580		PANEL_LIGHT_OFF_DELAY_SHIFT;
2581
2582	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2583		PANEL_POWER_DOWN_DELAY_SHIFT;
2584
2585	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2586		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2587
2588	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2589		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2590
2591	vbt = dev_priv->edp.pps;
2592
2593	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2594	 * our hw here, which are all in 100usec. */
2595	spec.t1_t3 = 210 * 10;
2596	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2597	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2598	spec.t10 = 500 * 10;
2599	/* This one is special and actually in units of 100ms, but zero
2600	 * based in the hw (so we need to add 100 ms). But the sw vbt
2601	 * table multiplies it with 1000 to make it in units of 100usec,
2602	 * too. */
2603	spec.t11_t12 = (510 + 100) * 10;
2604
2605	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2606		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2607
2608	/* Use the max of the register settings and vbt. If both are
2609	 * unset, fall back to the spec limits. */
2610#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2611				       spec.field : \
2612				       max(cur.field, vbt.field))
2613	assign_final(t1_t3);
2614	assign_final(t8);
2615	assign_final(t9);
2616	assign_final(t10);
2617	assign_final(t11_t12);
2618#undef assign_final
2619
2620#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2621	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2622	intel_dp->backlight_on_delay = get_delay(t8);
2623	intel_dp->backlight_off_delay = get_delay(t9);
2624	intel_dp->panel_power_down_delay = get_delay(t10);
2625	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2626#undef get_delay
2627
2628	/* And finally store the new values in the power sequencer. */
2629	pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2630		(final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2631	pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2632		 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2633	/* Compute the divisor for the pp clock, simply match the Bspec
2634	 * formula. */
2635	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2636			<< PP_REFERENCE_DIVIDER_SHIFT;
2637	pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2638			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2639
2640	/* Haswell doesn't have any port selection bits for the panel
2641	 * power sequencer any more. */
2642	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2643		if (is_cpu_edp(intel_dp))
2644			pp_on |= PANEL_POWER_PORT_DP_A;
2645		else
2646			pp_on |= PANEL_POWER_PORT_DP_D;
2647	}
2648
2649	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2650	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2651	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2652
2653
2654	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2655		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2656		      intel_dp->panel_power_cycle_delay);
2657
2658	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2659		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2660
2661	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2662		      I915_READ(PCH_PP_ON_DELAYS),
2663		      I915_READ(PCH_PP_OFF_DELAYS),
2664		      I915_READ(PCH_PP_DIVISOR));
2665}
2666
2667void
2668intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2669{
2670	struct drm_i915_private *dev_priv = dev->dev_private;
2671	struct drm_connector *connector;
2672	struct intel_dp *intel_dp;
2673	struct intel_encoder *intel_encoder;
2674	struct intel_connector *intel_connector;
2675	struct drm_display_mode *fixed_mode = NULL;
2676	const char *name = NULL;
2677	int type;
2678
2679	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2680	if (!intel_dp)
2681		return;
2682
2683	intel_dp->output_reg = output_reg;
2684	intel_dp->port = port;
2685	/* Preserve the current hw state. */
2686	intel_dp->DP = I915_READ(intel_dp->output_reg);
2687
2688	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2689	if (!intel_connector) {
2690		kfree(intel_dp);
2691		return;
2692	}
2693	intel_encoder = &intel_dp->base;
2694	intel_dp->attached_connector = intel_connector;
2695
2696	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2697		if (intel_dpd_is_edp(dev))
2698			intel_dp->is_pch_edp = true;
2699
2700	/*
2701	 * FIXME : We need to initialize built-in panels before external panels.
2702	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2703	 */
2704	if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2705		type = DRM_MODE_CONNECTOR_eDP;
2706		intel_encoder->type = INTEL_OUTPUT_EDP;
2707	} else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2708		type = DRM_MODE_CONNECTOR_eDP;
2709		intel_encoder->type = INTEL_OUTPUT_EDP;
2710	} else {
2711		type = DRM_MODE_CONNECTOR_DisplayPort;
2712		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2713	}
2714
2715	connector = &intel_connector->base;
2716	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2717	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2718
2719	connector->polled = DRM_CONNECTOR_POLL_HPD;
2720
2721	intel_encoder->cloneable = false;
2722
2723	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2724			  ironlake_panel_vdd_work);
2725
2726	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2727
2728	connector->interlace_allowed = true;
2729	connector->doublescan_allowed = 0;
2730
2731	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2732			 DRM_MODE_ENCODER_TMDS);
2733
2734	if (IS_HASWELL(dev))
2735		drm_encoder_helper_add(&intel_encoder->base,
2736				       &intel_dp_helper_funcs_hsw);
2737	else
2738		drm_encoder_helper_add(&intel_encoder->base,
2739				       &intel_dp_helper_funcs);
2740
2741	intel_connector_attach_encoder(intel_connector, intel_encoder);
2742	drm_sysfs_connector_add(connector);
2743
2744	if (IS_HASWELL(dev)) {
2745		intel_encoder->enable = intel_enable_ddi;
2746		intel_encoder->pre_enable = intel_ddi_pre_enable;
2747		intel_encoder->disable = intel_disable_ddi;
2748		intel_encoder->post_disable = intel_ddi_post_disable;
2749		intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2750	} else {
2751		intel_encoder->enable = intel_enable_dp;
2752		intel_encoder->pre_enable = intel_pre_enable_dp;
2753		intel_encoder->disable = intel_disable_dp;
2754		intel_encoder->post_disable = intel_post_disable_dp;
2755		intel_encoder->get_hw_state = intel_dp_get_hw_state;
2756	}
2757	intel_connector->get_hw_state = intel_connector_get_hw_state;
2758
2759	/* Set up the DDC bus. */
2760	switch (port) {
2761	case PORT_A:
2762		name = "DPDDC-A";
2763		break;
2764	case PORT_B:
2765		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2766		name = "DPDDC-B";
2767		break;
2768	case PORT_C:
2769		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2770		name = "DPDDC-C";
2771		break;
2772	case PORT_D:
2773		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2774		name = "DPDDC-D";
2775		break;
2776	default:
2777		WARN(1, "Invalid port %c\n", port_name(port));
2778		break;
2779	}
2780
2781	if (is_edp(intel_dp))
2782		intel_dp_init_panel_power_sequencer(dev, intel_dp);
2783
2784	intel_dp_i2c_init(intel_dp, intel_connector, name);
2785
2786	/* Cache DPCD and EDID for edp. */
2787	if (is_edp(intel_dp)) {
2788		bool ret;
2789		struct drm_display_mode *scan;
2790		struct edid *edid;
2791
2792		ironlake_edp_panel_vdd_on(intel_dp);
2793		ret = intel_dp_get_dpcd(intel_dp);
2794		ironlake_edp_panel_vdd_off(intel_dp, false);
2795
2796		if (ret) {
2797			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2798				dev_priv->no_aux_handshake =
2799					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2800					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2801		} else {
2802			/* if this fails, presume the device is a ghost */
2803			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2804			intel_dp_encoder_destroy(&intel_dp->base.base);
2805			intel_dp_destroy(&intel_connector->base);
2806			return;
2807		}
2808
2809		ironlake_edp_panel_vdd_on(intel_dp);
2810		edid = drm_get_edid(connector, &intel_dp->adapter);
2811		if (edid) {
2812			if (drm_add_edid_modes(connector, edid)) {
2813				drm_mode_connector_update_edid_property(connector, edid);
2814				drm_edid_to_eld(connector, edid);
2815			} else {
2816				kfree(edid);
2817				edid = ERR_PTR(-EINVAL);
2818			}
2819		} else {
2820			edid = ERR_PTR(-ENOENT);
2821		}
2822		intel_connector->edid = edid;
2823
2824		/* prefer fixed mode from EDID if available */
2825		list_for_each_entry(scan, &connector->probed_modes, head) {
2826			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2827				fixed_mode = drm_mode_duplicate(dev, scan);
2828				break;
2829			}
2830		}
2831
2832		/* fallback to VBT if available for eDP */
2833		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2834			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2835			if (fixed_mode)
2836				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2837		}
2838
2839		ironlake_edp_panel_vdd_off(intel_dp, false);
2840	}
2841
2842	intel_encoder->hot_plug = intel_dp_hot_plug;
2843
2844	if (is_edp(intel_dp)) {
2845		intel_panel_init(&intel_connector->panel, fixed_mode);
2846		intel_panel_setup_backlight(connector);
2847	}
2848
2849	intel_dp_add_properties(intel_dp, connector);
2850
2851	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2852	 * 0xd.  Failure to do so will result in spurious interrupts being
2853	 * generated on the port when a cable is not attached.
2854	 */
2855	if (IS_G4X(dev) && !IS_GM45(dev)) {
2856		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2857		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2858	}
2859}
2860