intel_dp.c revision 5a0e3ad6af8660be21ca98a971cd00f331318c05
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE	9
44
45#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
46
47struct intel_dp_priv {
48	uint32_t output_reg;
49	uint32_t DP;
50	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51	uint32_t save_DP;
52	uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
53	bool has_audio;
54	int dpms_mode;
55	uint8_t link_bw;
56	uint8_t lane_count;
57	uint8_t dpcd[4];
58	struct intel_output *intel_output;
59	struct i2c_adapter adapter;
60	struct i2c_algo_dp_aux_data algo;
61};
62
63static void
64intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
65		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
66
67static void
68intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
69
70void
71intel_edp_link_config (struct intel_output *intel_output,
72		int *lane_num, int *link_bw)
73{
74	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
75
76	*lane_num = dp_priv->lane_count;
77	if (dp_priv->link_bw == DP_LINK_BW_1_62)
78		*link_bw = 162000;
79	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
80		*link_bw = 270000;
81}
82
83static int
84intel_dp_max_lane_count(struct intel_output *intel_output)
85{
86	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
87	int max_lane_count = 4;
88
89	if (dp_priv->dpcd[0] >= 0x11) {
90		max_lane_count = dp_priv->dpcd[2] & 0x1f;
91		switch (max_lane_count) {
92		case 1: case 2: case 4:
93			break;
94		default:
95			max_lane_count = 4;
96		}
97	}
98	return max_lane_count;
99}
100
101static int
102intel_dp_max_link_bw(struct intel_output *intel_output)
103{
104	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
105	int max_link_bw = dp_priv->dpcd[1];
106
107	switch (max_link_bw) {
108	case DP_LINK_BW_1_62:
109	case DP_LINK_BW_2_7:
110		break;
111	default:
112		max_link_bw = DP_LINK_BW_1_62;
113		break;
114	}
115	return max_link_bw;
116}
117
118static int
119intel_dp_link_clock(uint8_t link_bw)
120{
121	if (link_bw == DP_LINK_BW_2_7)
122		return 270000;
123	else
124		return 162000;
125}
126
127/* I think this is a fiction */
128static int
129intel_dp_link_required(struct drm_device *dev,
130		       struct intel_output *intel_output, int pixel_clock)
131{
132	struct drm_i915_private *dev_priv = dev->dev_private;
133
134	if (IS_eDP(intel_output))
135		return (pixel_clock * dev_priv->edp_bpp) / 8;
136	else
137		return pixel_clock * 3;
138}
139
140static int
141intel_dp_mode_valid(struct drm_connector *connector,
142		    struct drm_display_mode *mode)
143{
144	struct intel_output *intel_output = to_intel_output(connector);
145	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
146	int max_lanes = intel_dp_max_lane_count(intel_output);
147
148	if (intel_dp_link_required(connector->dev, intel_output, mode->clock)
149			> max_link_clock * max_lanes)
150		return MODE_CLOCK_HIGH;
151
152	if (mode->clock < 10000)
153		return MODE_CLOCK_LOW;
154
155	return MODE_OK;
156}
157
158static uint32_t
159pack_aux(uint8_t *src, int src_bytes)
160{
161	int	i;
162	uint32_t v = 0;
163
164	if (src_bytes > 4)
165		src_bytes = 4;
166	for (i = 0; i < src_bytes; i++)
167		v |= ((uint32_t) src[i]) << ((3-i) * 8);
168	return v;
169}
170
171static void
172unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
173{
174	int i;
175	if (dst_bytes > 4)
176		dst_bytes = 4;
177	for (i = 0; i < dst_bytes; i++)
178		dst[i] = src >> ((3-i) * 8);
179}
180
181/* hrawclock is 1/4 the FSB frequency */
182static int
183intel_hrawclk(struct drm_device *dev)
184{
185	struct drm_i915_private *dev_priv = dev->dev_private;
186	uint32_t clkcfg;
187
188	clkcfg = I915_READ(CLKCFG);
189	switch (clkcfg & CLKCFG_FSB_MASK) {
190	case CLKCFG_FSB_400:
191		return 100;
192	case CLKCFG_FSB_533:
193		return 133;
194	case CLKCFG_FSB_667:
195		return 166;
196	case CLKCFG_FSB_800:
197		return 200;
198	case CLKCFG_FSB_1067:
199		return 266;
200	case CLKCFG_FSB_1333:
201		return 333;
202	/* these two are just a guess; one of them might be right */
203	case CLKCFG_FSB_1600:
204	case CLKCFG_FSB_1600_ALT:
205		return 400;
206	default:
207		return 133;
208	}
209}
210
211static int
212intel_dp_aux_ch(struct intel_output *intel_output,
213		uint8_t *send, int send_bytes,
214		uint8_t *recv, int recv_size)
215{
216	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
217	uint32_t output_reg = dp_priv->output_reg;
218	struct drm_device *dev = intel_output->base.dev;
219	struct drm_i915_private *dev_priv = dev->dev_private;
220	uint32_t ch_ctl = output_reg + 0x10;
221	uint32_t ch_data = ch_ctl + 4;
222	int i;
223	int recv_bytes;
224	uint32_t ctl;
225	uint32_t status;
226	uint32_t aux_clock_divider;
227	int try;
228
229	/* The clock divider is based off the hrawclk,
230	 * and would like to run at 2MHz. So, take the
231	 * hrawclk value and divide by 2 and use that
232	 */
233	if (IS_eDP(intel_output))
234		aux_clock_divider = 225; /* eDP input clock at 450Mhz */
235	else if (HAS_PCH_SPLIT(dev))
236		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
237	else
238		aux_clock_divider = intel_hrawclk(dev) / 2;
239
240	/* Must try at least 3 times according to DP spec */
241	for (try = 0; try < 5; try++) {
242		/* Load the send data into the aux channel data registers */
243		for (i = 0; i < send_bytes; i += 4) {
244			uint32_t    d = pack_aux(send + i, send_bytes - i);
245
246			I915_WRITE(ch_data + i, d);
247		}
248
249		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
250		       DP_AUX_CH_CTL_TIME_OUT_400us |
251		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
252		       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
253		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
254		       DP_AUX_CH_CTL_DONE |
255		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
256		       DP_AUX_CH_CTL_RECEIVE_ERROR);
257
258		/* Send the command and wait for it to complete */
259		I915_WRITE(ch_ctl, ctl);
260		(void) I915_READ(ch_ctl);
261		for (;;) {
262			udelay(100);
263			status = I915_READ(ch_ctl);
264			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
265				break;
266		}
267
268		/* Clear done status and any errors */
269		I915_WRITE(ch_ctl, (status |
270				DP_AUX_CH_CTL_DONE |
271				DP_AUX_CH_CTL_TIME_OUT_ERROR |
272				DP_AUX_CH_CTL_RECEIVE_ERROR));
273		(void) I915_READ(ch_ctl);
274		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
275			break;
276	}
277
278	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
279		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
280		return -EBUSY;
281	}
282
283	/* Check for timeout or receive error.
284	 * Timeouts occur when the sink is not connected
285	 */
286	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
287		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
288		return -EIO;
289	}
290
291	/* Timeouts occur when the device isn't connected, so they're
292	 * "normal" -- don't fill the kernel log with these */
293	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
294		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
295		return -ETIMEDOUT;
296	}
297
298	/* Unload any bytes sent back from the other side */
299	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
300		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
301
302	if (recv_bytes > recv_size)
303		recv_bytes = recv_size;
304
305	for (i = 0; i < recv_bytes; i += 4) {
306		uint32_t    d = I915_READ(ch_data + i);
307
308		unpack_aux(d, recv + i, recv_bytes - i);
309	}
310
311	return recv_bytes;
312}
313
314/* Write data to the aux channel in native mode */
315static int
316intel_dp_aux_native_write(struct intel_output *intel_output,
317			  uint16_t address, uint8_t *send, int send_bytes)
318{
319	int ret;
320	uint8_t	msg[20];
321	int msg_bytes;
322	uint8_t	ack;
323
324	if (send_bytes > 16)
325		return -1;
326	msg[0] = AUX_NATIVE_WRITE << 4;
327	msg[1] = address >> 8;
328	msg[2] = address & 0xff;
329	msg[3] = send_bytes - 1;
330	memcpy(&msg[4], send, send_bytes);
331	msg_bytes = send_bytes + 4;
332	for (;;) {
333		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
334		if (ret < 0)
335			return ret;
336		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
337			break;
338		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
339			udelay(100);
340		else
341			return -EIO;
342	}
343	return send_bytes;
344}
345
346/* Write a single byte to the aux channel in native mode */
347static int
348intel_dp_aux_native_write_1(struct intel_output *intel_output,
349			    uint16_t address, uint8_t byte)
350{
351	return intel_dp_aux_native_write(intel_output, address, &byte, 1);
352}
353
354/* read bytes from a native aux channel */
355static int
356intel_dp_aux_native_read(struct intel_output *intel_output,
357			 uint16_t address, uint8_t *recv, int recv_bytes)
358{
359	uint8_t msg[4];
360	int msg_bytes;
361	uint8_t reply[20];
362	int reply_bytes;
363	uint8_t ack;
364	int ret;
365
366	msg[0] = AUX_NATIVE_READ << 4;
367	msg[1] = address >> 8;
368	msg[2] = address & 0xff;
369	msg[3] = recv_bytes - 1;
370
371	msg_bytes = 4;
372	reply_bytes = recv_bytes + 1;
373
374	for (;;) {
375		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
376				      reply, reply_bytes);
377		if (ret == 0)
378			return -EPROTO;
379		if (ret < 0)
380			return ret;
381		ack = reply[0];
382		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
383			memcpy(recv, reply + 1, ret - 1);
384			return ret - 1;
385		}
386		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
387			udelay(100);
388		else
389			return -EIO;
390	}
391}
392
393static int
394intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
395		    uint8_t write_byte, uint8_t *read_byte)
396{
397	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
398	struct intel_dp_priv *dp_priv = container_of(adapter,
399						     struct intel_dp_priv,
400						     adapter);
401	struct intel_output *intel_output = dp_priv->intel_output;
402	uint16_t address = algo_data->address;
403	uint8_t msg[5];
404	uint8_t reply[2];
405	int msg_bytes;
406	int reply_bytes;
407	int ret;
408
409	/* Set up the command byte */
410	if (mode & MODE_I2C_READ)
411		msg[0] = AUX_I2C_READ << 4;
412	else
413		msg[0] = AUX_I2C_WRITE << 4;
414
415	if (!(mode & MODE_I2C_STOP))
416		msg[0] |= AUX_I2C_MOT << 4;
417
418	msg[1] = address >> 8;
419	msg[2] = address;
420
421	switch (mode) {
422	case MODE_I2C_WRITE:
423		msg[3] = 0;
424		msg[4] = write_byte;
425		msg_bytes = 5;
426		reply_bytes = 1;
427		break;
428	case MODE_I2C_READ:
429		msg[3] = 0;
430		msg_bytes = 4;
431		reply_bytes = 2;
432		break;
433	default:
434		msg_bytes = 3;
435		reply_bytes = 1;
436		break;
437	}
438
439	for (;;) {
440	  ret = intel_dp_aux_ch(intel_output,
441				msg, msg_bytes,
442				reply, reply_bytes);
443		if (ret < 0) {
444			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
445			return ret;
446		}
447		switch (reply[0] & AUX_I2C_REPLY_MASK) {
448		case AUX_I2C_REPLY_ACK:
449			if (mode == MODE_I2C_READ) {
450				*read_byte = reply[1];
451			}
452			return reply_bytes - 1;
453		case AUX_I2C_REPLY_NACK:
454			DRM_DEBUG_KMS("aux_ch nack\n");
455			return -EREMOTEIO;
456		case AUX_I2C_REPLY_DEFER:
457			DRM_DEBUG_KMS("aux_ch defer\n");
458			udelay(100);
459			break;
460		default:
461			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
462			return -EREMOTEIO;
463		}
464	}
465}
466
467static int
468intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
469{
470	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
471
472	DRM_DEBUG_KMS("i2c_init %s\n", name);
473	dp_priv->algo.running = false;
474	dp_priv->algo.address = 0;
475	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
476
477	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
478	dp_priv->adapter.owner = THIS_MODULE;
479	dp_priv->adapter.class = I2C_CLASS_DDC;
480	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
481	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
482	dp_priv->adapter.algo_data = &dp_priv->algo;
483	dp_priv->adapter.dev.parent = &intel_output->base.kdev;
484
485	return i2c_dp_aux_add_bus(&dp_priv->adapter);
486}
487
488static bool
489intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
490		    struct drm_display_mode *adjusted_mode)
491{
492	struct intel_output *intel_output = enc_to_intel_output(encoder);
493	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
494	int lane_count, clock;
495	int max_lane_count = intel_dp_max_lane_count(intel_output);
496	int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
497	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
498
499	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
500		for (clock = 0; clock <= max_clock; clock++) {
501			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
502
503			if (intel_dp_link_required(encoder->dev, intel_output, mode->clock)
504					<= link_avail) {
505				dp_priv->link_bw = bws[clock];
506				dp_priv->lane_count = lane_count;
507				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
508				DRM_DEBUG_KMS("Display port link bw %02x lane "
509						"count %d clock %d\n",
510				       dp_priv->link_bw, dp_priv->lane_count,
511				       adjusted_mode->clock);
512				return true;
513			}
514		}
515	}
516	return false;
517}
518
519struct intel_dp_m_n {
520	uint32_t	tu;
521	uint32_t	gmch_m;
522	uint32_t	gmch_n;
523	uint32_t	link_m;
524	uint32_t	link_n;
525};
526
527static void
528intel_reduce_ratio(uint32_t *num, uint32_t *den)
529{
530	while (*num > 0xffffff || *den > 0xffffff) {
531		*num >>= 1;
532		*den >>= 1;
533	}
534}
535
536static void
537intel_dp_compute_m_n(int bytes_per_pixel,
538		     int nlanes,
539		     int pixel_clock,
540		     int link_clock,
541		     struct intel_dp_m_n *m_n)
542{
543	m_n->tu = 64;
544	m_n->gmch_m = pixel_clock * bytes_per_pixel;
545	m_n->gmch_n = link_clock * nlanes;
546	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
547	m_n->link_m = pixel_clock;
548	m_n->link_n = link_clock;
549	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
550}
551
552void
553intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
554		 struct drm_display_mode *adjusted_mode)
555{
556	struct drm_device *dev = crtc->dev;
557	struct drm_mode_config *mode_config = &dev->mode_config;
558	struct drm_connector *connector;
559	struct drm_i915_private *dev_priv = dev->dev_private;
560	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
561	int lane_count = 4;
562	struct intel_dp_m_n m_n;
563
564	/*
565	 * Find the lane count in the intel_output private
566	 */
567	list_for_each_entry(connector, &mode_config->connector_list, head) {
568		struct intel_output *intel_output = to_intel_output(connector);
569		struct intel_dp_priv *dp_priv = intel_output->dev_priv;
570
571		if (!connector->encoder || connector->encoder->crtc != crtc)
572			continue;
573
574		if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
575			lane_count = dp_priv->lane_count;
576			break;
577		}
578	}
579
580	/*
581	 * Compute the GMCH and Link ratios. The '3' here is
582	 * the number of bytes_per_pixel post-LUT, which we always
583	 * set up for 8-bits of R/G/B, or 3 bytes total.
584	 */
585	intel_dp_compute_m_n(3, lane_count,
586			     mode->clock, adjusted_mode->clock, &m_n);
587
588	if (HAS_PCH_SPLIT(dev)) {
589		if (intel_crtc->pipe == 0) {
590			I915_WRITE(TRANSA_DATA_M1,
591				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
592				   m_n.gmch_m);
593			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
594			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
595			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
596		} else {
597			I915_WRITE(TRANSB_DATA_M1,
598				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
599				   m_n.gmch_m);
600			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
601			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
602			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
603		}
604	} else {
605		if (intel_crtc->pipe == 0) {
606			I915_WRITE(PIPEA_GMCH_DATA_M,
607				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
608				   m_n.gmch_m);
609			I915_WRITE(PIPEA_GMCH_DATA_N,
610				   m_n.gmch_n);
611			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
612			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
613		} else {
614			I915_WRITE(PIPEB_GMCH_DATA_M,
615				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
616				   m_n.gmch_m);
617			I915_WRITE(PIPEB_GMCH_DATA_N,
618					m_n.gmch_n);
619			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
620			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
621		}
622	}
623}
624
625static void
626intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
627		  struct drm_display_mode *adjusted_mode)
628{
629	struct intel_output *intel_output = enc_to_intel_output(encoder);
630	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
631	struct drm_crtc *crtc = intel_output->enc.crtc;
632	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634	dp_priv->DP = (DP_LINK_TRAIN_OFF |
635			DP_VOLTAGE_0_4 |
636			DP_PRE_EMPHASIS_0 |
637			DP_SYNC_VS_HIGH |
638			DP_SYNC_HS_HIGH);
639
640	switch (dp_priv->lane_count) {
641	case 1:
642		dp_priv->DP |= DP_PORT_WIDTH_1;
643		break;
644	case 2:
645		dp_priv->DP |= DP_PORT_WIDTH_2;
646		break;
647	case 4:
648		dp_priv->DP |= DP_PORT_WIDTH_4;
649		break;
650	}
651	if (dp_priv->has_audio)
652		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
653
654	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
655	dp_priv->link_configuration[0] = dp_priv->link_bw;
656	dp_priv->link_configuration[1] = dp_priv->lane_count;
657
658	/*
659	 * Check for DPCD version > 1.1,
660	 * enable enahanced frame stuff in that case
661	 */
662	if (dp_priv->dpcd[0] >= 0x11) {
663		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
664		dp_priv->DP |= DP_ENHANCED_FRAMING;
665	}
666
667	if (intel_crtc->pipe == 1)
668		dp_priv->DP |= DP_PIPEB_SELECT;
669
670	if (IS_eDP(intel_output)) {
671		/* don't miss out required setting for eDP */
672		dp_priv->DP |= DP_PLL_ENABLE;
673		if (adjusted_mode->clock < 200000)
674			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
675		else
676			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
677	}
678}
679
680static void ironlake_edp_backlight_on (struct drm_device *dev)
681{
682	struct drm_i915_private *dev_priv = dev->dev_private;
683	u32 pp;
684
685	DRM_DEBUG_KMS("\n");
686	pp = I915_READ(PCH_PP_CONTROL);
687	pp |= EDP_BLC_ENABLE;
688	I915_WRITE(PCH_PP_CONTROL, pp);
689}
690
691static void ironlake_edp_backlight_off (struct drm_device *dev)
692{
693	struct drm_i915_private *dev_priv = dev->dev_private;
694	u32 pp;
695
696	DRM_DEBUG_KMS("\n");
697	pp = I915_READ(PCH_PP_CONTROL);
698	pp &= ~EDP_BLC_ENABLE;
699	I915_WRITE(PCH_PP_CONTROL, pp);
700}
701
702static void
703intel_dp_dpms(struct drm_encoder *encoder, int mode)
704{
705	struct intel_output *intel_output = enc_to_intel_output(encoder);
706	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
707	struct drm_device *dev = intel_output->base.dev;
708	struct drm_i915_private *dev_priv = dev->dev_private;
709	uint32_t dp_reg = I915_READ(dp_priv->output_reg);
710
711	if (mode != DRM_MODE_DPMS_ON) {
712		if (dp_reg & DP_PORT_EN) {
713			intel_dp_link_down(intel_output, dp_priv->DP);
714			if (IS_eDP(intel_output))
715				ironlake_edp_backlight_off(dev);
716		}
717	} else {
718		if (!(dp_reg & DP_PORT_EN)) {
719			intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
720			if (IS_eDP(intel_output))
721				ironlake_edp_backlight_on(dev);
722		}
723	}
724	dp_priv->dpms_mode = mode;
725}
726
727/*
728 * Fetch AUX CH registers 0x202 - 0x207 which contain
729 * link status information
730 */
731static bool
732intel_dp_get_link_status(struct intel_output *intel_output,
733			 uint8_t link_status[DP_LINK_STATUS_SIZE])
734{
735	int ret;
736
737	ret = intel_dp_aux_native_read(intel_output,
738				       DP_LANE0_1_STATUS,
739				       link_status, DP_LINK_STATUS_SIZE);
740	if (ret != DP_LINK_STATUS_SIZE)
741		return false;
742	return true;
743}
744
745static uint8_t
746intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
747		     int r)
748{
749	return link_status[r - DP_LANE0_1_STATUS];
750}
751
752static void
753intel_dp_save(struct drm_connector *connector)
754{
755	struct intel_output *intel_output = to_intel_output(connector);
756	struct drm_device *dev = intel_output->base.dev;
757	struct drm_i915_private *dev_priv = dev->dev_private;
758	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
759
760	dp_priv->save_DP = I915_READ(dp_priv->output_reg);
761	intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
762				 dp_priv->save_link_configuration,
763				 sizeof (dp_priv->save_link_configuration));
764}
765
766static uint8_t
767intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
768				 int lane)
769{
770	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
771	int	    s = ((lane & 1) ?
772			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
773			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
774	uint8_t l = intel_dp_link_status(link_status, i);
775
776	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
777}
778
779static uint8_t
780intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
781				      int lane)
782{
783	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
784	int	    s = ((lane & 1) ?
785			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
786			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
787	uint8_t l = intel_dp_link_status(link_status, i);
788
789	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
790}
791
792
793#if 0
794static char	*voltage_names[] = {
795	"0.4V", "0.6V", "0.8V", "1.2V"
796};
797static char	*pre_emph_names[] = {
798	"0dB", "3.5dB", "6dB", "9.5dB"
799};
800static char	*link_train_names[] = {
801	"pattern 1", "pattern 2", "idle", "off"
802};
803#endif
804
805/*
806 * These are source-specific values; current Intel hardware supports
807 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
808 */
809#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
810
811static uint8_t
812intel_dp_pre_emphasis_max(uint8_t voltage_swing)
813{
814	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
815	case DP_TRAIN_VOLTAGE_SWING_400:
816		return DP_TRAIN_PRE_EMPHASIS_6;
817	case DP_TRAIN_VOLTAGE_SWING_600:
818		return DP_TRAIN_PRE_EMPHASIS_6;
819	case DP_TRAIN_VOLTAGE_SWING_800:
820		return DP_TRAIN_PRE_EMPHASIS_3_5;
821	case DP_TRAIN_VOLTAGE_SWING_1200:
822	default:
823		return DP_TRAIN_PRE_EMPHASIS_0;
824	}
825}
826
827static void
828intel_get_adjust_train(struct intel_output *intel_output,
829		       uint8_t link_status[DP_LINK_STATUS_SIZE],
830		       int lane_count,
831		       uint8_t train_set[4])
832{
833	uint8_t v = 0;
834	uint8_t p = 0;
835	int lane;
836
837	for (lane = 0; lane < lane_count; lane++) {
838		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
839		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
840
841		if (this_v > v)
842			v = this_v;
843		if (this_p > p)
844			p = this_p;
845	}
846
847	if (v >= I830_DP_VOLTAGE_MAX)
848		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
849
850	if (p >= intel_dp_pre_emphasis_max(v))
851		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
852
853	for (lane = 0; lane < 4; lane++)
854		train_set[lane] = v | p;
855}
856
857static uint32_t
858intel_dp_signal_levels(uint8_t train_set, int lane_count)
859{
860	uint32_t	signal_levels = 0;
861
862	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
863	case DP_TRAIN_VOLTAGE_SWING_400:
864	default:
865		signal_levels |= DP_VOLTAGE_0_4;
866		break;
867	case DP_TRAIN_VOLTAGE_SWING_600:
868		signal_levels |= DP_VOLTAGE_0_6;
869		break;
870	case DP_TRAIN_VOLTAGE_SWING_800:
871		signal_levels |= DP_VOLTAGE_0_8;
872		break;
873	case DP_TRAIN_VOLTAGE_SWING_1200:
874		signal_levels |= DP_VOLTAGE_1_2;
875		break;
876	}
877	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
878	case DP_TRAIN_PRE_EMPHASIS_0:
879	default:
880		signal_levels |= DP_PRE_EMPHASIS_0;
881		break;
882	case DP_TRAIN_PRE_EMPHASIS_3_5:
883		signal_levels |= DP_PRE_EMPHASIS_3_5;
884		break;
885	case DP_TRAIN_PRE_EMPHASIS_6:
886		signal_levels |= DP_PRE_EMPHASIS_6;
887		break;
888	case DP_TRAIN_PRE_EMPHASIS_9_5:
889		signal_levels |= DP_PRE_EMPHASIS_9_5;
890		break;
891	}
892	return signal_levels;
893}
894
895static uint8_t
896intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
897		      int lane)
898{
899	int i = DP_LANE0_1_STATUS + (lane >> 1);
900	int s = (lane & 1) * 4;
901	uint8_t l = intel_dp_link_status(link_status, i);
902
903	return (l >> s) & 0xf;
904}
905
906/* Check for clock recovery is done on all channels */
907static bool
908intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
909{
910	int lane;
911	uint8_t lane_status;
912
913	for (lane = 0; lane < lane_count; lane++) {
914		lane_status = intel_get_lane_status(link_status, lane);
915		if ((lane_status & DP_LANE_CR_DONE) == 0)
916			return false;
917	}
918	return true;
919}
920
921/* Check to see if channel eq is done on all channels */
922#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
923			 DP_LANE_CHANNEL_EQ_DONE|\
924			 DP_LANE_SYMBOL_LOCKED)
925static bool
926intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
927{
928	uint8_t lane_align;
929	uint8_t lane_status;
930	int lane;
931
932	lane_align = intel_dp_link_status(link_status,
933					  DP_LANE_ALIGN_STATUS_UPDATED);
934	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
935		return false;
936	for (lane = 0; lane < lane_count; lane++) {
937		lane_status = intel_get_lane_status(link_status, lane);
938		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
939			return false;
940	}
941	return true;
942}
943
944static bool
945intel_dp_set_link_train(struct intel_output *intel_output,
946			uint32_t dp_reg_value,
947			uint8_t dp_train_pat,
948			uint8_t train_set[4],
949			bool first)
950{
951	struct drm_device *dev = intel_output->base.dev;
952	struct drm_i915_private *dev_priv = dev->dev_private;
953	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
954	int ret;
955
956	I915_WRITE(dp_priv->output_reg, dp_reg_value);
957	POSTING_READ(dp_priv->output_reg);
958	if (first)
959		intel_wait_for_vblank(dev);
960
961	intel_dp_aux_native_write_1(intel_output,
962				    DP_TRAINING_PATTERN_SET,
963				    dp_train_pat);
964
965	ret = intel_dp_aux_native_write(intel_output,
966					DP_TRAINING_LANE0_SET, train_set, 4);
967	if (ret != 4)
968		return false;
969
970	return true;
971}
972
973static void
974intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
975		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
976{
977	struct drm_device *dev = intel_output->base.dev;
978	struct drm_i915_private *dev_priv = dev->dev_private;
979	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
980	uint8_t	train_set[4];
981	uint8_t link_status[DP_LINK_STATUS_SIZE];
982	int i;
983	uint8_t voltage;
984	bool clock_recovery = false;
985	bool channel_eq = false;
986	bool first = true;
987	int tries;
988
989	/* Write the link configuration data */
990	intel_dp_aux_native_write(intel_output, 0x100,
991				  link_configuration, DP_LINK_CONFIGURATION_SIZE);
992
993	DP |= DP_PORT_EN;
994	DP &= ~DP_LINK_TRAIN_MASK;
995	memset(train_set, 0, 4);
996	voltage = 0xff;
997	tries = 0;
998	clock_recovery = false;
999	for (;;) {
1000		/* Use train_set[0] to set the voltage and pre emphasis values */
1001		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1002		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1003
1004		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
1005					     DP_TRAINING_PATTERN_1, train_set, first))
1006			break;
1007		first = false;
1008		/* Set training pattern 1 */
1009
1010		udelay(100);
1011		if (!intel_dp_get_link_status(intel_output, link_status))
1012			break;
1013
1014		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
1015			clock_recovery = true;
1016			break;
1017		}
1018
1019		/* Check to see if we've tried the max voltage */
1020		for (i = 0; i < dp_priv->lane_count; i++)
1021			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1022				break;
1023		if (i == dp_priv->lane_count)
1024			break;
1025
1026		/* Check to see if we've tried the same voltage 5 times */
1027		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1028			++tries;
1029			if (tries == 5)
1030				break;
1031		} else
1032			tries = 0;
1033		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1034
1035		/* Compute new train_set as requested by target */
1036		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1037	}
1038
1039	/* channel equalization */
1040	tries = 0;
1041	channel_eq = false;
1042	for (;;) {
1043		/* Use train_set[0] to set the voltage and pre emphasis values */
1044		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1045		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1046
1047		/* channel eq pattern */
1048		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
1049					     DP_TRAINING_PATTERN_2, train_set,
1050					     false))
1051			break;
1052
1053		udelay(400);
1054		if (!intel_dp_get_link_status(intel_output, link_status))
1055			break;
1056
1057		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1058			channel_eq = true;
1059			break;
1060		}
1061
1062		/* Try 5 times */
1063		if (tries > 5)
1064			break;
1065
1066		/* Compute new train_set as requested by target */
1067		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1068		++tries;
1069	}
1070
1071	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
1072	POSTING_READ(dp_priv->output_reg);
1073	intel_dp_aux_native_write_1(intel_output,
1074				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1075}
1076
1077static void
1078intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
1079{
1080	struct drm_device *dev = intel_output->base.dev;
1081	struct drm_i915_private *dev_priv = dev->dev_private;
1082	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1083
1084	DRM_DEBUG_KMS("\n");
1085
1086	if (IS_eDP(intel_output)) {
1087		DP &= ~DP_PLL_ENABLE;
1088		I915_WRITE(dp_priv->output_reg, DP);
1089		POSTING_READ(dp_priv->output_reg);
1090		udelay(100);
1091	}
1092
1093	DP &= ~DP_LINK_TRAIN_MASK;
1094	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1095	POSTING_READ(dp_priv->output_reg);
1096
1097	udelay(17000);
1098
1099	if (IS_eDP(intel_output))
1100		DP |= DP_LINK_TRAIN_OFF;
1101	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1102	POSTING_READ(dp_priv->output_reg);
1103}
1104
1105static void
1106intel_dp_restore(struct drm_connector *connector)
1107{
1108	struct intel_output *intel_output = to_intel_output(connector);
1109	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1110
1111	if (dp_priv->save_DP & DP_PORT_EN)
1112		intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
1113	else
1114		intel_dp_link_down(intel_output,  dp_priv->save_DP);
1115}
1116
1117/*
1118 * According to DP spec
1119 * 5.1.2:
1120 *  1. Read DPCD
1121 *  2. Configure link according to Receiver Capabilities
1122 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1123 *  4. Check link status on receipt of hot-plug interrupt
1124 */
1125
1126static void
1127intel_dp_check_link_status(struct intel_output *intel_output)
1128{
1129	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1130	uint8_t link_status[DP_LINK_STATUS_SIZE];
1131
1132	if (!intel_output->enc.crtc)
1133		return;
1134
1135	if (!intel_dp_get_link_status(intel_output, link_status)) {
1136		intel_dp_link_down(intel_output, dp_priv->DP);
1137		return;
1138	}
1139
1140	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1141		intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
1142}
1143
1144static enum drm_connector_status
1145ironlake_dp_detect(struct drm_connector *connector)
1146{
1147	struct intel_output *intel_output = to_intel_output(connector);
1148	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1149	enum drm_connector_status status;
1150
1151	status = connector_status_disconnected;
1152	if (intel_dp_aux_native_read(intel_output,
1153				     0x000, dp_priv->dpcd,
1154				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1155	{
1156		if (dp_priv->dpcd[0] != 0)
1157			status = connector_status_connected;
1158	}
1159	return status;
1160}
1161
1162/**
1163 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1164 *
1165 * \return true if DP port is connected.
1166 * \return false if DP port is disconnected.
1167 */
1168static enum drm_connector_status
1169intel_dp_detect(struct drm_connector *connector)
1170{
1171	struct intel_output *intel_output = to_intel_output(connector);
1172	struct drm_device *dev = intel_output->base.dev;
1173	struct drm_i915_private *dev_priv = dev->dev_private;
1174	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1175	uint32_t temp, bit;
1176	enum drm_connector_status status;
1177
1178	dp_priv->has_audio = false;
1179
1180	if (HAS_PCH_SPLIT(dev))
1181		return ironlake_dp_detect(connector);
1182
1183	temp = I915_READ(PORT_HOTPLUG_EN);
1184
1185	I915_WRITE(PORT_HOTPLUG_EN,
1186	       temp |
1187	       DPB_HOTPLUG_INT_EN |
1188	       DPC_HOTPLUG_INT_EN |
1189	       DPD_HOTPLUG_INT_EN);
1190
1191	POSTING_READ(PORT_HOTPLUG_EN);
1192
1193	switch (dp_priv->output_reg) {
1194	case DP_B:
1195		bit = DPB_HOTPLUG_INT_STATUS;
1196		break;
1197	case DP_C:
1198		bit = DPC_HOTPLUG_INT_STATUS;
1199		break;
1200	case DP_D:
1201		bit = DPD_HOTPLUG_INT_STATUS;
1202		break;
1203	default:
1204		return connector_status_unknown;
1205	}
1206
1207	temp = I915_READ(PORT_HOTPLUG_STAT);
1208
1209	if ((temp & bit) == 0)
1210		return connector_status_disconnected;
1211
1212	status = connector_status_disconnected;
1213	if (intel_dp_aux_native_read(intel_output,
1214				     0x000, dp_priv->dpcd,
1215				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1216	{
1217		if (dp_priv->dpcd[0] != 0)
1218			status = connector_status_connected;
1219	}
1220	return status;
1221}
1222
1223static int intel_dp_get_modes(struct drm_connector *connector)
1224{
1225	struct intel_output *intel_output = to_intel_output(connector);
1226	struct drm_device *dev = intel_output->base.dev;
1227	struct drm_i915_private *dev_priv = dev->dev_private;
1228	int ret;
1229
1230	/* We should parse the EDID data and find out if it has an audio sink
1231	 */
1232
1233	ret = intel_ddc_get_modes(intel_output);
1234	if (ret)
1235		return ret;
1236
1237	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1238	if (IS_eDP(intel_output)) {
1239		if (dev_priv->panel_fixed_mode != NULL) {
1240			struct drm_display_mode *mode;
1241			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1242			drm_mode_probed_add(connector, mode);
1243			return 1;
1244		}
1245	}
1246	return 0;
1247}
1248
1249static void
1250intel_dp_destroy (struct drm_connector *connector)
1251{
1252	struct intel_output *intel_output = to_intel_output(connector);
1253
1254	if (intel_output->i2c_bus)
1255		intel_i2c_destroy(intel_output->i2c_bus);
1256	drm_sysfs_connector_remove(connector);
1257	drm_connector_cleanup(connector);
1258	kfree(intel_output);
1259}
1260
1261static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1262	.dpms = intel_dp_dpms,
1263	.mode_fixup = intel_dp_mode_fixup,
1264	.prepare = intel_encoder_prepare,
1265	.mode_set = intel_dp_mode_set,
1266	.commit = intel_encoder_commit,
1267};
1268
1269static const struct drm_connector_funcs intel_dp_connector_funcs = {
1270	.dpms = drm_helper_connector_dpms,
1271	.save = intel_dp_save,
1272	.restore = intel_dp_restore,
1273	.detect = intel_dp_detect,
1274	.fill_modes = drm_helper_probe_single_connector_modes,
1275	.destroy = intel_dp_destroy,
1276};
1277
1278static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1279	.get_modes = intel_dp_get_modes,
1280	.mode_valid = intel_dp_mode_valid,
1281	.best_encoder = intel_best_encoder,
1282};
1283
1284static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1285{
1286	drm_encoder_cleanup(encoder);
1287}
1288
1289static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1290	.destroy = intel_dp_enc_destroy,
1291};
1292
1293void
1294intel_dp_hot_plug(struct intel_output *intel_output)
1295{
1296	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1297
1298	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1299		intel_dp_check_link_status(intel_output);
1300}
1301
1302void
1303intel_dp_init(struct drm_device *dev, int output_reg)
1304{
1305	struct drm_i915_private *dev_priv = dev->dev_private;
1306	struct drm_connector *connector;
1307	struct intel_output *intel_output;
1308	struct intel_dp_priv *dp_priv;
1309	const char *name = NULL;
1310
1311	intel_output = kcalloc(sizeof(struct intel_output) +
1312			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1313	if (!intel_output)
1314		return;
1315
1316	dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1317
1318	connector = &intel_output->base;
1319	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1320			   DRM_MODE_CONNECTOR_DisplayPort);
1321	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1322
1323	if (output_reg == DP_A)
1324		intel_output->type = INTEL_OUTPUT_EDP;
1325	else
1326		intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1327
1328	if (output_reg == DP_B || output_reg == PCH_DP_B)
1329		intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1330	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1331		intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1332	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1333		intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1334
1335	if (IS_eDP(intel_output))
1336		intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1337
1338	intel_output->crtc_mask = (1 << 0) | (1 << 1);
1339	connector->interlace_allowed = true;
1340	connector->doublescan_allowed = 0;
1341
1342	dp_priv->intel_output = intel_output;
1343	dp_priv->output_reg = output_reg;
1344	dp_priv->has_audio = false;
1345	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1346	intel_output->dev_priv = dp_priv;
1347
1348	drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1349			 DRM_MODE_ENCODER_TMDS);
1350	drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1351
1352	drm_mode_connector_attach_encoder(&intel_output->base,
1353					  &intel_output->enc);
1354	drm_sysfs_connector_add(connector);
1355
1356	/* Set up the DDC bus. */
1357	switch (output_reg) {
1358		case DP_A:
1359			name = "DPDDC-A";
1360			break;
1361		case DP_B:
1362		case PCH_DP_B:
1363			dev_priv->hotplug_supported_mask |=
1364				HDMIB_HOTPLUG_INT_STATUS;
1365			name = "DPDDC-B";
1366			break;
1367		case DP_C:
1368		case PCH_DP_C:
1369			dev_priv->hotplug_supported_mask |=
1370				HDMIC_HOTPLUG_INT_STATUS;
1371			name = "DPDDC-C";
1372			break;
1373		case DP_D:
1374		case PCH_DP_D:
1375			dev_priv->hotplug_supported_mask |=
1376				HDMID_HOTPLUG_INT_STATUS;
1377			name = "DPDDC-D";
1378			break;
1379	}
1380
1381	intel_dp_i2c_init(intel_output, name);
1382
1383	intel_output->ddc_bus = &dp_priv->adapter;
1384	intel_output->hot_plug = intel_dp_hot_plug;
1385
1386	if (output_reg == DP_A) {
1387		/* initialize panel mode from VBT if available for eDP */
1388		if (dev_priv->lfp_lvds_vbt_mode) {
1389			dev_priv->panel_fixed_mode =
1390				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1391			if (dev_priv->panel_fixed_mode) {
1392				dev_priv->panel_fixed_mode->type |=
1393					DRM_MODE_TYPE_PREFERRED;
1394			}
1395		}
1396	}
1397
1398	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1399	 * 0xd.  Failure to do so will result in spurious interrupts being
1400	 * generated on the port when a cable is not attached.
1401	 */
1402	if (IS_G4X(dev) && !IS_GM45(dev)) {
1403		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1404		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1405	}
1406}
1407