intel_dp.c revision 5b215bcff50d549d73e43c09bcccf8eebcc95bac
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <linux/notifier.h>
32#include <linux/reboot.h>
33#include <drm/drmP.h>
34#include <drm/drm_crtc.h>
35#include <drm/drm_crtc_helper.h>
36#include <drm/drm_edid.h>
37#include "intel_drv.h"
38#include <drm/i915_drm.h>
39#include "i915_drv.h"
40
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43struct dp_link_dpll {
44	int link_bw;
45	struct dpll dpll;
46};
47
48static const struct dp_link_dpll gen4_dpll[] = {
49	{ DP_LINK_BW_1_62,
50		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51	{ DP_LINK_BW_2_7,
52		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53};
54
55static const struct dp_link_dpll pch_dpll[] = {
56	{ DP_LINK_BW_1_62,
57		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58	{ DP_LINK_BW_2_7,
59		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60};
61
62static const struct dp_link_dpll vlv_dpll[] = {
63	{ DP_LINK_BW_1_62,
64		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65	{ DP_LINK_BW_2_7,
66		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67};
68
69/*
70 * CHV supports eDP 1.4 that have  more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73static const struct dp_link_dpll chv_dpll[] = {
74	/*
75	 * CHV requires to program fractional division for m2.
76	 * m2 is stored in fixed point format using formula below
77	 * (m2_int << 22) | m2_fraction
78	 */
79	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
80		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
84		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85};
86
87/**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94static bool is_edp(struct intel_dp *intel_dp)
95{
96	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99}
100
101static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102{
103	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105	return intel_dig_port->base.base.dev;
106}
107
108static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109{
110	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111}
112
113static void intel_dp_link_down(struct intel_dp *intel_dp);
114static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117int
118intel_dp_max_link_bw(struct intel_dp *intel_dp)
119{
120	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121	struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123	switch (max_link_bw) {
124	case DP_LINK_BW_1_62:
125	case DP_LINK_BW_2_7:
126		break;
127	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129		     INTEL_INFO(dev)->gen >= 8) &&
130		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131			max_link_bw = DP_LINK_BW_5_4;
132		else
133			max_link_bw = DP_LINK_BW_2_7;
134		break;
135	default:
136		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137		     max_link_bw);
138		max_link_bw = DP_LINK_BW_1_62;
139		break;
140	}
141	return max_link_bw;
142}
143
144static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145{
146	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147	struct drm_device *dev = intel_dig_port->base.base.dev;
148	u8 source_max, sink_max;
149
150	source_max = 4;
151	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153		source_max = 2;
154
155	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157	return min(source_max, sink_max);
158}
159
160/*
161 * The units on the numbers in the next two are... bizarre.  Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 *     270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000.  At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177static int
178intel_dp_link_required(int pixel_clock, int bpp)
179{
180	return (pixel_clock * bpp + 9) / 10;
181}
182
183static int
184intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185{
186	return (max_link_clock * max_lanes * 8) / 10;
187}
188
189static enum drm_mode_status
190intel_dp_mode_valid(struct drm_connector *connector,
191		    struct drm_display_mode *mode)
192{
193	struct intel_dp *intel_dp = intel_attached_dp(connector);
194	struct intel_connector *intel_connector = to_intel_connector(connector);
195	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196	int target_clock = mode->clock;
197	int max_rate, mode_rate, max_lanes, max_link_clock;
198
199	if (is_edp(intel_dp) && fixed_mode) {
200		if (mode->hdisplay > fixed_mode->hdisplay)
201			return MODE_PANEL;
202
203		if (mode->vdisplay > fixed_mode->vdisplay)
204			return MODE_PANEL;
205
206		target_clock = fixed_mode->clock;
207	}
208
209	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210	max_lanes = intel_dp_max_lane_count(intel_dp);
211
212	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213	mode_rate = intel_dp_link_required(target_clock, 18);
214
215	if (mode_rate > max_rate)
216		return MODE_CLOCK_HIGH;
217
218	if (mode->clock < 10000)
219		return MODE_CLOCK_LOW;
220
221	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222		return MODE_H_ILLEGAL;
223
224	return MODE_OK;
225}
226
227static uint32_t
228pack_aux(uint8_t *src, int src_bytes)
229{
230	int	i;
231	uint32_t v = 0;
232
233	if (src_bytes > 4)
234		src_bytes = 4;
235	for (i = 0; i < src_bytes; i++)
236		v |= ((uint32_t) src[i]) << ((3-i) * 8);
237	return v;
238}
239
240static void
241unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242{
243	int i;
244	if (dst_bytes > 4)
245		dst_bytes = 4;
246	for (i = 0; i < dst_bytes; i++)
247		dst[i] = src >> ((3-i) * 8);
248}
249
250/* hrawclock is 1/4 the FSB frequency */
251static int
252intel_hrawclk(struct drm_device *dev)
253{
254	struct drm_i915_private *dev_priv = dev->dev_private;
255	uint32_t clkcfg;
256
257	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258	if (IS_VALLEYVIEW(dev))
259		return 200;
260
261	clkcfg = I915_READ(CLKCFG);
262	switch (clkcfg & CLKCFG_FSB_MASK) {
263	case CLKCFG_FSB_400:
264		return 100;
265	case CLKCFG_FSB_533:
266		return 133;
267	case CLKCFG_FSB_667:
268		return 166;
269	case CLKCFG_FSB_800:
270		return 200;
271	case CLKCFG_FSB_1067:
272		return 266;
273	case CLKCFG_FSB_1333:
274		return 333;
275	/* these two are just a guess; one of them might be right */
276	case CLKCFG_FSB_1600:
277	case CLKCFG_FSB_1600_ALT:
278		return 400;
279	default:
280		return 133;
281	}
282}
283
284static void
285intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286				    struct intel_dp *intel_dp,
287				    struct edp_power_seq *out);
288static void
289intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290					      struct intel_dp *intel_dp,
291					      struct edp_power_seq *out);
292
293static enum pipe
294vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295{
296	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298	struct drm_device *dev = intel_dig_port->base.base.dev;
299	struct drm_i915_private *dev_priv = dev->dev_private;
300	enum port port = intel_dig_port->port;
301	enum pipe pipe;
302
303	/* modeset should have pipe */
304	if (crtc)
305		return to_intel_crtc(crtc)->pipe;
306
307	/* init time, try to find a pipe with this port selected */
308	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310			PANEL_PORT_SELECT_MASK;
311		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312			return pipe;
313		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314			return pipe;
315	}
316
317	/* shrug */
318	return PIPE_A;
319}
320
321static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322{
323	struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325	if (HAS_PCH_SPLIT(dev))
326		return PCH_PP_CONTROL;
327	else
328		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329}
330
331static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332{
333	struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335	if (HAS_PCH_SPLIT(dev))
336		return PCH_PP_STATUS;
337	else
338		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339}
340
341/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342   This function only applicable when panel PM state is not to be tracked */
343static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344			      void *unused)
345{
346	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347						 edp_notifier);
348	struct drm_device *dev = intel_dp_to_dev(intel_dp);
349	struct drm_i915_private *dev_priv = dev->dev_private;
350	u32 pp_div;
351	u32 pp_ctrl_reg, pp_div_reg;
352	enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354	if (!is_edp(intel_dp) || code != SYS_RESTART)
355		return 0;
356
357	if (IS_VALLEYVIEW(dev)) {
358		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
360		pp_div = I915_READ(pp_div_reg);
361		pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363		/* 0x1F write to PP_DIV_REG sets max cycle delay */
364		I915_WRITE(pp_div_reg, pp_div | 0x1F);
365		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366		msleep(intel_dp->panel_power_cycle_delay);
367	}
368
369	return 0;
370}
371
372static bool edp_have_panel_power(struct intel_dp *intel_dp)
373{
374	struct drm_device *dev = intel_dp_to_dev(intel_dp);
375	struct drm_i915_private *dev_priv = dev->dev_private;
376
377	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378}
379
380static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381{
382	struct drm_device *dev = intel_dp_to_dev(intel_dp);
383	struct drm_i915_private *dev_priv = dev->dev_private;
384	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385	struct intel_encoder *intel_encoder = &intel_dig_port->base;
386	enum intel_display_power_domain power_domain;
387
388	power_domain = intel_display_port_power_domain(intel_encoder);
389	return intel_display_power_enabled(dev_priv, power_domain) &&
390	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391}
392
393static void
394intel_dp_check_edp(struct intel_dp *intel_dp)
395{
396	struct drm_device *dev = intel_dp_to_dev(intel_dp);
397	struct drm_i915_private *dev_priv = dev->dev_private;
398
399	if (!is_edp(intel_dp))
400		return;
401
402	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403		WARN(1, "eDP powered off while attempting aux channel communication.\n");
404		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405			      I915_READ(_pp_stat_reg(intel_dp)),
406			      I915_READ(_pp_ctrl_reg(intel_dp)));
407	}
408}
409
410static uint32_t
411intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412{
413	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414	struct drm_device *dev = intel_dig_port->base.base.dev;
415	struct drm_i915_private *dev_priv = dev->dev_private;
416	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417	uint32_t status;
418	bool done;
419
420#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421	if (has_aux_irq)
422		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423					  msecs_to_jiffies_timeout(10));
424	else
425		done = wait_for_atomic(C, 10) == 0;
426	if (!done)
427		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428			  has_aux_irq);
429#undef C
430
431	return status;
432}
433
434static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435{
436	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437	struct drm_device *dev = intel_dig_port->base.base.dev;
438
439	/*
440	 * The clock divider is based off the hrawclk, and would like to run at
441	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
442	 */
443	return index ? 0 : intel_hrawclk(dev) / 2;
444}
445
446static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447{
448	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449	struct drm_device *dev = intel_dig_port->base.base.dev;
450
451	if (index)
452		return 0;
453
454	if (intel_dig_port->port == PORT_A) {
455		if (IS_GEN6(dev) || IS_GEN7(dev))
456			return 200; /* SNB & IVB eDP input clock at 400Mhz */
457		else
458			return 225; /* eDP input clock at 450Mhz */
459	} else {
460		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461	}
462}
463
464static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465{
466	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467	struct drm_device *dev = intel_dig_port->base.base.dev;
468	struct drm_i915_private *dev_priv = dev->dev_private;
469
470	if (intel_dig_port->port == PORT_A) {
471		if (index)
472			return 0;
473		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475		/* Workaround for non-ULT HSW */
476		switch (index) {
477		case 0: return 63;
478		case 1: return 72;
479		default: return 0;
480		}
481	} else  {
482		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483	}
484}
485
486static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487{
488	return index ? 0 : 100;
489}
490
491static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492				      bool has_aux_irq,
493				      int send_bytes,
494				      uint32_t aux_clock_divider)
495{
496	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497	struct drm_device *dev = intel_dig_port->base.base.dev;
498	uint32_t precharge, timeout;
499
500	if (IS_GEN6(dev))
501		precharge = 3;
502	else
503		precharge = 5;
504
505	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507	else
508		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510	return DP_AUX_CH_CTL_SEND_BUSY |
511	       DP_AUX_CH_CTL_DONE |
512	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
514	       timeout |
515	       DP_AUX_CH_CTL_RECEIVE_ERROR |
516	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519}
520
521static int
522intel_dp_aux_ch(struct intel_dp *intel_dp,
523		uint8_t *send, int send_bytes,
524		uint8_t *recv, int recv_size)
525{
526	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527	struct drm_device *dev = intel_dig_port->base.base.dev;
528	struct drm_i915_private *dev_priv = dev->dev_private;
529	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530	uint32_t ch_data = ch_ctl + 4;
531	uint32_t aux_clock_divider;
532	int i, ret, recv_bytes;
533	uint32_t status;
534	int try, clock = 0;
535	bool has_aux_irq = HAS_AUX_IRQ(dev);
536	bool vdd;
537
538	vdd = _edp_panel_vdd_on(intel_dp);
539
540	/* dp aux is extremely sensitive to irq latency, hence request the
541	 * lowest possible wakeup latency and so prevent the cpu from going into
542	 * deep sleep states.
543	 */
544	pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546	intel_dp_check_edp(intel_dp);
547
548	intel_aux_display_runtime_get(dev_priv);
549
550	/* Try to wait for any previous AUX channel activity */
551	for (try = 0; try < 3; try++) {
552		status = I915_READ_NOTRACE(ch_ctl);
553		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554			break;
555		msleep(1);
556	}
557
558	if (try == 3) {
559		WARN(1, "dp_aux_ch not started status 0x%08x\n",
560		     I915_READ(ch_ctl));
561		ret = -EBUSY;
562		goto out;
563	}
564
565	/* Only 5 data registers! */
566	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567		ret = -E2BIG;
568		goto out;
569	}
570
571	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573							  has_aux_irq,
574							  send_bytes,
575							  aux_clock_divider);
576
577		/* Must try at least 3 times according to DP spec */
578		for (try = 0; try < 5; try++) {
579			/* Load the send data into the aux channel data registers */
580			for (i = 0; i < send_bytes; i += 4)
581				I915_WRITE(ch_data + i,
582					   pack_aux(send + i, send_bytes - i));
583
584			/* Send the command and wait for it to complete */
585			I915_WRITE(ch_ctl, send_ctl);
586
587			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589			/* Clear done status and any errors */
590			I915_WRITE(ch_ctl,
591				   status |
592				   DP_AUX_CH_CTL_DONE |
593				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
594				   DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597				      DP_AUX_CH_CTL_RECEIVE_ERROR))
598				continue;
599			if (status & DP_AUX_CH_CTL_DONE)
600				break;
601		}
602		if (status & DP_AUX_CH_CTL_DONE)
603			break;
604	}
605
606	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608		ret = -EBUSY;
609		goto out;
610	}
611
612	/* Check for timeout or receive error.
613	 * Timeouts occur when the sink is not connected
614	 */
615	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617		ret = -EIO;
618		goto out;
619	}
620
621	/* Timeouts occur when the device isn't connected, so they're
622	 * "normal" -- don't fill the kernel log with these */
623	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625		ret = -ETIMEDOUT;
626		goto out;
627	}
628
629	/* Unload any bytes sent back from the other side */
630	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632	if (recv_bytes > recv_size)
633		recv_bytes = recv_size;
634
635	for (i = 0; i < recv_bytes; i += 4)
636		unpack_aux(I915_READ(ch_data + i),
637			   recv + i, recv_bytes - i);
638
639	ret = recv_bytes;
640out:
641	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642	intel_aux_display_runtime_put(dev_priv);
643
644	if (vdd)
645		edp_panel_vdd_off(intel_dp, false);
646
647	return ret;
648}
649
650#define BARE_ADDRESS_SIZE	3
651#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
652static ssize_t
653intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654{
655	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656	uint8_t txbuf[20], rxbuf[20];
657	size_t txsize, rxsize;
658	int ret;
659
660	txbuf[0] = msg->request << 4;
661	txbuf[1] = msg->address >> 8;
662	txbuf[2] = msg->address & 0xff;
663	txbuf[3] = msg->size - 1;
664
665	switch (msg->request & ~DP_AUX_I2C_MOT) {
666	case DP_AUX_NATIVE_WRITE:
667	case DP_AUX_I2C_WRITE:
668		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669		rxsize = 1;
670
671		if (WARN_ON(txsize > 20))
672			return -E2BIG;
673
674		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677		if (ret > 0) {
678			msg->reply = rxbuf[0] >> 4;
679
680			/* Return payload size. */
681			ret = msg->size;
682		}
683		break;
684
685	case DP_AUX_NATIVE_READ:
686	case DP_AUX_I2C_READ:
687		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688		rxsize = msg->size + 1;
689
690		if (WARN_ON(rxsize > 20))
691			return -E2BIG;
692
693		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694		if (ret > 0) {
695			msg->reply = rxbuf[0] >> 4;
696			/*
697			 * Assume happy day, and copy the data. The caller is
698			 * expected to check msg->reply before touching it.
699			 *
700			 * Return payload size.
701			 */
702			ret--;
703			memcpy(msg->buffer, rxbuf + 1, ret);
704		}
705		break;
706
707	default:
708		ret = -EINVAL;
709		break;
710	}
711
712	return ret;
713}
714
715static void
716intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717{
718	struct drm_device *dev = intel_dp_to_dev(intel_dp);
719	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720	enum port port = intel_dig_port->port;
721	const char *name = NULL;
722	int ret;
723
724	switch (port) {
725	case PORT_A:
726		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727		name = "DPDDC-A";
728		break;
729	case PORT_B:
730		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731		name = "DPDDC-B";
732		break;
733	case PORT_C:
734		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735		name = "DPDDC-C";
736		break;
737	case PORT_D:
738		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739		name = "DPDDC-D";
740		break;
741	default:
742		BUG();
743	}
744
745	if (!HAS_DDI(dev))
746		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748	intel_dp->aux.name = name;
749	intel_dp->aux.dev = dev->dev;
750	intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753		      connector->base.kdev->kobj.name);
754
755	ret = drm_dp_aux_register(&intel_dp->aux);
756	if (ret < 0) {
757		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758			  name, ret);
759		return;
760	}
761
762	ret = sysfs_create_link(&connector->base.kdev->kobj,
763				&intel_dp->aux.ddc.dev.kobj,
764				intel_dp->aux.ddc.dev.kobj.name);
765	if (ret < 0) {
766		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767		drm_dp_aux_unregister(&intel_dp->aux);
768	}
769}
770
771static void
772intel_dp_connector_unregister(struct intel_connector *intel_connector)
773{
774	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776	if (!intel_connector->mst_port)
777		sysfs_remove_link(&intel_connector->base.kdev->kobj,
778				  intel_dp->aux.ddc.dev.kobj.name);
779	intel_connector_unregister(intel_connector);
780}
781
782static void
783hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784{
785	switch (link_bw) {
786	case DP_LINK_BW_1_62:
787		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788		break;
789	case DP_LINK_BW_2_7:
790		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791		break;
792	case DP_LINK_BW_5_4:
793		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794		break;
795	}
796}
797
798static void
799intel_dp_set_clock(struct intel_encoder *encoder,
800		   struct intel_crtc_config *pipe_config, int link_bw)
801{
802	struct drm_device *dev = encoder->base.dev;
803	const struct dp_link_dpll *divisor = NULL;
804	int i, count = 0;
805
806	if (IS_G4X(dev)) {
807		divisor = gen4_dpll;
808		count = ARRAY_SIZE(gen4_dpll);
809	} else if (HAS_PCH_SPLIT(dev)) {
810		divisor = pch_dpll;
811		count = ARRAY_SIZE(pch_dpll);
812	} else if (IS_CHERRYVIEW(dev)) {
813		divisor = chv_dpll;
814		count = ARRAY_SIZE(chv_dpll);
815	} else if (IS_VALLEYVIEW(dev)) {
816		divisor = vlv_dpll;
817		count = ARRAY_SIZE(vlv_dpll);
818	}
819
820	if (divisor && count) {
821		for (i = 0; i < count; i++) {
822			if (link_bw == divisor[i].link_bw) {
823				pipe_config->dpll = divisor[i].dpll;
824				pipe_config->clock_set = true;
825				break;
826			}
827		}
828	}
829}
830
831static void
832intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
833{
834	struct drm_device *dev = crtc->base.dev;
835	struct drm_i915_private *dev_priv = dev->dev_private;
836	enum transcoder transcoder = crtc->config.cpu_transcoder;
837
838	I915_WRITE(PIPE_DATA_M2(transcoder),
839		TU_SIZE(m_n->tu) | m_n->gmch_m);
840	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
841	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
842	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
843}
844
845bool
846intel_dp_compute_config(struct intel_encoder *encoder,
847			struct intel_crtc_config *pipe_config)
848{
849	struct drm_device *dev = encoder->base.dev;
850	struct drm_i915_private *dev_priv = dev->dev_private;
851	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
852	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
853	enum port port = dp_to_dig_port(intel_dp)->port;
854	struct intel_crtc *intel_crtc = encoder->new_crtc;
855	struct intel_connector *intel_connector = intel_dp->attached_connector;
856	int lane_count, clock;
857	int min_lane_count = 1;
858	int max_lane_count = intel_dp_max_lane_count(intel_dp);
859	/* Conveniently, the link BW constants become indices with a shift...*/
860	int min_clock = 0;
861	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
862	int bpp, mode_rate;
863	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
864	int link_avail, link_clock;
865
866	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
867		pipe_config->has_pch_encoder = true;
868
869	pipe_config->has_dp_encoder = true;
870	pipe_config->has_audio = intel_dp->has_audio;
871
872	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
873		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
874				       adjusted_mode);
875		if (!HAS_PCH_SPLIT(dev))
876			intel_gmch_panel_fitting(intel_crtc, pipe_config,
877						 intel_connector->panel.fitting_mode);
878		else
879			intel_pch_panel_fitting(intel_crtc, pipe_config,
880						intel_connector->panel.fitting_mode);
881	}
882
883	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
884		return false;
885
886	DRM_DEBUG_KMS("DP link computation with max lane count %i "
887		      "max bw %02x pixel clock %iKHz\n",
888		      max_lane_count, bws[max_clock],
889		      adjusted_mode->crtc_clock);
890
891	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
892	 * bpc in between. */
893	bpp = pipe_config->pipe_bpp;
894	if (is_edp(intel_dp)) {
895		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
896			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
897				      dev_priv->vbt.edp_bpp);
898			bpp = dev_priv->vbt.edp_bpp;
899		}
900
901		if (IS_BROADWELL(dev)) {
902			/* Yes, it's an ugly hack. */
903			min_lane_count = max_lane_count;
904			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
905				      min_lane_count);
906		} else if (dev_priv->vbt.edp_lanes) {
907			min_lane_count = min(dev_priv->vbt.edp_lanes,
908					     max_lane_count);
909			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
910				      min_lane_count);
911		}
912
913		if (dev_priv->vbt.edp_rate) {
914			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
915			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
916				      bws[min_clock]);
917		}
918	}
919
920	for (; bpp >= 6*3; bpp -= 2*3) {
921		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
922						   bpp);
923
924		for (clock = min_clock; clock <= max_clock; clock++) {
925			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
926				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
927				link_avail = intel_dp_max_data_rate(link_clock,
928								    lane_count);
929
930				if (mode_rate <= link_avail) {
931					goto found;
932				}
933			}
934		}
935	}
936
937	return false;
938
939found:
940	if (intel_dp->color_range_auto) {
941		/*
942		 * See:
943		 * CEA-861-E - 5.1 Default Encoding Parameters
944		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
945		 */
946		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
947			intel_dp->color_range = DP_COLOR_RANGE_16_235;
948		else
949			intel_dp->color_range = 0;
950	}
951
952	if (intel_dp->color_range)
953		pipe_config->limited_color_range = true;
954
955	intel_dp->link_bw = bws[clock];
956	intel_dp->lane_count = lane_count;
957	pipe_config->pipe_bpp = bpp;
958	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
959
960	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
961		      intel_dp->link_bw, intel_dp->lane_count,
962		      pipe_config->port_clock, bpp);
963	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
964		      mode_rate, link_avail);
965
966	intel_link_compute_m_n(bpp, lane_count,
967			       adjusted_mode->crtc_clock,
968			       pipe_config->port_clock,
969			       &pipe_config->dp_m_n);
970
971	if (intel_connector->panel.downclock_mode != NULL &&
972		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
973			intel_link_compute_m_n(bpp, lane_count,
974				intel_connector->panel.downclock_mode->clock,
975				pipe_config->port_clock,
976				&pipe_config->dp_m2_n2);
977	}
978
979	if (HAS_DDI(dev))
980		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
981	else
982		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
983
984	return true;
985}
986
987static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
988{
989	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
990	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
991	struct drm_device *dev = crtc->base.dev;
992	struct drm_i915_private *dev_priv = dev->dev_private;
993	u32 dpa_ctl;
994
995	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
996	dpa_ctl = I915_READ(DP_A);
997	dpa_ctl &= ~DP_PLL_FREQ_MASK;
998
999	if (crtc->config.port_clock == 162000) {
1000		/* For a long time we've carried around a ILK-DevA w/a for the
1001		 * 160MHz clock. If we're really unlucky, it's still required.
1002		 */
1003		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1004		dpa_ctl |= DP_PLL_FREQ_160MHZ;
1005		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006	} else {
1007		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1008		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1009	}
1010
1011	I915_WRITE(DP_A, dpa_ctl);
1012
1013	POSTING_READ(DP_A);
1014	udelay(500);
1015}
1016
1017static void intel_dp_prepare(struct intel_encoder *encoder)
1018{
1019	struct drm_device *dev = encoder->base.dev;
1020	struct drm_i915_private *dev_priv = dev->dev_private;
1021	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022	enum port port = dp_to_dig_port(intel_dp)->port;
1023	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1024	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1025
1026	/*
1027	 * There are four kinds of DP registers:
1028	 *
1029	 * 	IBX PCH
1030	 * 	SNB CPU
1031	 *	IVB CPU
1032	 * 	CPT PCH
1033	 *
1034	 * IBX PCH and CPU are the same for almost everything,
1035	 * except that the CPU DP PLL is configured in this
1036	 * register
1037	 *
1038	 * CPT PCH is quite different, having many bits moved
1039	 * to the TRANS_DP_CTL register instead. That
1040	 * configuration happens (oddly) in ironlake_pch_enable
1041	 */
1042
1043	/* Preserve the BIOS-computed detected bit. This is
1044	 * supposed to be read-only.
1045	 */
1046	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1047
1048	/* Handle DP bits in common between all three register formats */
1049	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1051
1052	if (crtc->config.has_audio) {
1053		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1054				 pipe_name(crtc->pipe));
1055		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1056		intel_write_eld(&encoder->base, adjusted_mode);
1057	}
1058
1059	/* Split out the IBX/CPU vs CPT settings */
1060
1061	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1062		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1063			intel_dp->DP |= DP_SYNC_HS_HIGH;
1064		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1065			intel_dp->DP |= DP_SYNC_VS_HIGH;
1066		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1067
1068		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1069			intel_dp->DP |= DP_ENHANCED_FRAMING;
1070
1071		intel_dp->DP |= crtc->pipe << 29;
1072	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1073		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1074			intel_dp->DP |= intel_dp->color_range;
1075
1076		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1077			intel_dp->DP |= DP_SYNC_HS_HIGH;
1078		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1079			intel_dp->DP |= DP_SYNC_VS_HIGH;
1080		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1081
1082		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1083			intel_dp->DP |= DP_ENHANCED_FRAMING;
1084
1085		if (!IS_CHERRYVIEW(dev)) {
1086			if (crtc->pipe == 1)
1087				intel_dp->DP |= DP_PIPEB_SELECT;
1088		} else {
1089			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1090		}
1091	} else {
1092		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1093	}
1094}
1095
1096#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1097#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1098
1099#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1100#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1101
1102#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1103#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1104
1105static void wait_panel_status(struct intel_dp *intel_dp,
1106				       u32 mask,
1107				       u32 value)
1108{
1109	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1110	struct drm_i915_private *dev_priv = dev->dev_private;
1111	u32 pp_stat_reg, pp_ctrl_reg;
1112
1113	pp_stat_reg = _pp_stat_reg(intel_dp);
1114	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1115
1116	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1117			mask, value,
1118			I915_READ(pp_stat_reg),
1119			I915_READ(pp_ctrl_reg));
1120
1121	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1122		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1123				I915_READ(pp_stat_reg),
1124				I915_READ(pp_ctrl_reg));
1125	}
1126
1127	DRM_DEBUG_KMS("Wait complete\n");
1128}
1129
1130static void wait_panel_on(struct intel_dp *intel_dp)
1131{
1132	DRM_DEBUG_KMS("Wait for panel power on\n");
1133	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1134}
1135
1136static void wait_panel_off(struct intel_dp *intel_dp)
1137{
1138	DRM_DEBUG_KMS("Wait for panel power off time\n");
1139	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1140}
1141
1142static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1143{
1144	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1145
1146	/* When we disable the VDD override bit last we have to do the manual
1147	 * wait. */
1148	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1149				       intel_dp->panel_power_cycle_delay);
1150
1151	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1152}
1153
1154static void wait_backlight_on(struct intel_dp *intel_dp)
1155{
1156	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1157				       intel_dp->backlight_on_delay);
1158}
1159
1160static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1161{
1162	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1163				       intel_dp->backlight_off_delay);
1164}
1165
1166/* Read the current pp_control value, unlocking the register if it
1167 * is locked
1168 */
1169
1170static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1171{
1172	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173	struct drm_i915_private *dev_priv = dev->dev_private;
1174	u32 control;
1175
1176	control = I915_READ(_pp_ctrl_reg(intel_dp));
1177	control &= ~PANEL_UNLOCK_MASK;
1178	control |= PANEL_UNLOCK_REGS;
1179	return control;
1180}
1181
1182static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1183{
1184	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1186	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1187	struct drm_i915_private *dev_priv = dev->dev_private;
1188	enum intel_display_power_domain power_domain;
1189	u32 pp;
1190	u32 pp_stat_reg, pp_ctrl_reg;
1191	bool need_to_disable = !intel_dp->want_panel_vdd;
1192
1193	if (!is_edp(intel_dp))
1194		return false;
1195
1196	intel_dp->want_panel_vdd = true;
1197
1198	if (edp_have_panel_vdd(intel_dp))
1199		return need_to_disable;
1200
1201	power_domain = intel_display_port_power_domain(intel_encoder);
1202	intel_display_power_get(dev_priv, power_domain);
1203
1204	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1205
1206	if (!edp_have_panel_power(intel_dp))
1207		wait_panel_power_cycle(intel_dp);
1208
1209	pp = ironlake_get_pp_control(intel_dp);
1210	pp |= EDP_FORCE_VDD;
1211
1212	pp_stat_reg = _pp_stat_reg(intel_dp);
1213	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
1215	I915_WRITE(pp_ctrl_reg, pp);
1216	POSTING_READ(pp_ctrl_reg);
1217	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1218			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1219	/*
1220	 * If the panel wasn't on, delay before accessing aux channel
1221	 */
1222	if (!edp_have_panel_power(intel_dp)) {
1223		DRM_DEBUG_KMS("eDP was not running\n");
1224		msleep(intel_dp->panel_power_up_delay);
1225	}
1226
1227	return need_to_disable;
1228}
1229
1230void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1231{
1232	if (is_edp(intel_dp)) {
1233		bool vdd = _edp_panel_vdd_on(intel_dp);
1234
1235		WARN(!vdd, "eDP VDD already requested on\n");
1236	}
1237}
1238
1239static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1240{
1241	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1242	struct drm_i915_private *dev_priv = dev->dev_private;
1243	u32 pp;
1244	u32 pp_stat_reg, pp_ctrl_reg;
1245
1246	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1247
1248	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1249		struct intel_digital_port *intel_dig_port =
1250						dp_to_dig_port(intel_dp);
1251		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1252		enum intel_display_power_domain power_domain;
1253
1254		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1255
1256		pp = ironlake_get_pp_control(intel_dp);
1257		pp &= ~EDP_FORCE_VDD;
1258
1259		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1260		pp_stat_reg = _pp_stat_reg(intel_dp);
1261
1262		I915_WRITE(pp_ctrl_reg, pp);
1263		POSTING_READ(pp_ctrl_reg);
1264
1265		/* Make sure sequencer is idle before allowing subsequent activity */
1266		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1267		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1268
1269		if ((pp & POWER_TARGET_ON) == 0)
1270			intel_dp->last_power_cycle = jiffies;
1271
1272		power_domain = intel_display_port_power_domain(intel_encoder);
1273		intel_display_power_put(dev_priv, power_domain);
1274	}
1275}
1276
1277static void edp_panel_vdd_work(struct work_struct *__work)
1278{
1279	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1280						 struct intel_dp, panel_vdd_work);
1281	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1282
1283	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1284	edp_panel_vdd_off_sync(intel_dp);
1285	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1286}
1287
1288static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1289{
1290	if (!is_edp(intel_dp))
1291		return;
1292
1293	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1294
1295	intel_dp->want_panel_vdd = false;
1296
1297	if (sync) {
1298		edp_panel_vdd_off_sync(intel_dp);
1299	} else {
1300		/*
1301		 * Queue the timer to fire a long
1302		 * time from now (relative to the power down delay)
1303		 * to keep the panel power up across a sequence of operations
1304		 */
1305		schedule_delayed_work(&intel_dp->panel_vdd_work,
1306				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1307	}
1308}
1309
1310void intel_edp_panel_on(struct intel_dp *intel_dp)
1311{
1312	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1313	struct drm_i915_private *dev_priv = dev->dev_private;
1314	u32 pp;
1315	u32 pp_ctrl_reg;
1316
1317	if (!is_edp(intel_dp))
1318		return;
1319
1320	DRM_DEBUG_KMS("Turn eDP power on\n");
1321
1322	if (edp_have_panel_power(intel_dp)) {
1323		DRM_DEBUG_KMS("eDP power already on\n");
1324		return;
1325	}
1326
1327	wait_panel_power_cycle(intel_dp);
1328
1329	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1330	pp = ironlake_get_pp_control(intel_dp);
1331	if (IS_GEN5(dev)) {
1332		/* ILK workaround: disable reset around power sequence */
1333		pp &= ~PANEL_POWER_RESET;
1334		I915_WRITE(pp_ctrl_reg, pp);
1335		POSTING_READ(pp_ctrl_reg);
1336	}
1337
1338	pp |= POWER_TARGET_ON;
1339	if (!IS_GEN5(dev))
1340		pp |= PANEL_POWER_RESET;
1341
1342	I915_WRITE(pp_ctrl_reg, pp);
1343	POSTING_READ(pp_ctrl_reg);
1344
1345	wait_panel_on(intel_dp);
1346	intel_dp->last_power_on = jiffies;
1347
1348	if (IS_GEN5(dev)) {
1349		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1350		I915_WRITE(pp_ctrl_reg, pp);
1351		POSTING_READ(pp_ctrl_reg);
1352	}
1353}
1354
1355void intel_edp_panel_off(struct intel_dp *intel_dp)
1356{
1357	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1360	struct drm_i915_private *dev_priv = dev->dev_private;
1361	enum intel_display_power_domain power_domain;
1362	u32 pp;
1363	u32 pp_ctrl_reg;
1364
1365	if (!is_edp(intel_dp))
1366		return;
1367
1368	DRM_DEBUG_KMS("Turn eDP power off\n");
1369
1370	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1371
1372	pp = ironlake_get_pp_control(intel_dp);
1373	/* We need to switch off panel power _and_ force vdd, for otherwise some
1374	 * panels get very unhappy and cease to work. */
1375	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1376		EDP_BLC_ENABLE);
1377
1378	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1379
1380	intel_dp->want_panel_vdd = false;
1381
1382	I915_WRITE(pp_ctrl_reg, pp);
1383	POSTING_READ(pp_ctrl_reg);
1384
1385	intel_dp->last_power_cycle = jiffies;
1386	wait_panel_off(intel_dp);
1387
1388	/* We got a reference when we enabled the VDD. */
1389	power_domain = intel_display_port_power_domain(intel_encoder);
1390	intel_display_power_put(dev_priv, power_domain);
1391}
1392
1393void intel_edp_backlight_on(struct intel_dp *intel_dp)
1394{
1395	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1396	struct drm_device *dev = intel_dig_port->base.base.dev;
1397	struct drm_i915_private *dev_priv = dev->dev_private;
1398	u32 pp;
1399	u32 pp_ctrl_reg;
1400
1401	if (!is_edp(intel_dp))
1402		return;
1403
1404	DRM_DEBUG_KMS("\n");
1405
1406	intel_panel_enable_backlight(intel_dp->attached_connector);
1407
1408	/*
1409	 * If we enable the backlight right away following a panel power
1410	 * on, we may see slight flicker as the panel syncs with the eDP
1411	 * link.  So delay a bit to make sure the image is solid before
1412	 * allowing it to appear.
1413	 */
1414	wait_backlight_on(intel_dp);
1415	pp = ironlake_get_pp_control(intel_dp);
1416	pp |= EDP_BLC_ENABLE;
1417
1418	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1419
1420	I915_WRITE(pp_ctrl_reg, pp);
1421	POSTING_READ(pp_ctrl_reg);
1422}
1423
1424void intel_edp_backlight_off(struct intel_dp *intel_dp)
1425{
1426	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1427	struct drm_i915_private *dev_priv = dev->dev_private;
1428	u32 pp;
1429	u32 pp_ctrl_reg;
1430
1431	if (!is_edp(intel_dp))
1432		return;
1433
1434	DRM_DEBUG_KMS("\n");
1435	pp = ironlake_get_pp_control(intel_dp);
1436	pp &= ~EDP_BLC_ENABLE;
1437
1438	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1439
1440	I915_WRITE(pp_ctrl_reg, pp);
1441	POSTING_READ(pp_ctrl_reg);
1442	intel_dp->last_backlight_off = jiffies;
1443
1444	edp_wait_backlight_off(intel_dp);
1445
1446	intel_panel_disable_backlight(intel_dp->attached_connector);
1447}
1448
1449static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1450{
1451	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1452	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1453	struct drm_device *dev = crtc->dev;
1454	struct drm_i915_private *dev_priv = dev->dev_private;
1455	u32 dpa_ctl;
1456
1457	assert_pipe_disabled(dev_priv,
1458			     to_intel_crtc(crtc)->pipe);
1459
1460	DRM_DEBUG_KMS("\n");
1461	dpa_ctl = I915_READ(DP_A);
1462	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1463	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1464
1465	/* We don't adjust intel_dp->DP while tearing down the link, to
1466	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1467	 * enable bits here to ensure that we don't enable too much. */
1468	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1469	intel_dp->DP |= DP_PLL_ENABLE;
1470	I915_WRITE(DP_A, intel_dp->DP);
1471	POSTING_READ(DP_A);
1472	udelay(200);
1473}
1474
1475static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1476{
1477	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1478	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1479	struct drm_device *dev = crtc->dev;
1480	struct drm_i915_private *dev_priv = dev->dev_private;
1481	u32 dpa_ctl;
1482
1483	assert_pipe_disabled(dev_priv,
1484			     to_intel_crtc(crtc)->pipe);
1485
1486	dpa_ctl = I915_READ(DP_A);
1487	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1488	     "dp pll off, should be on\n");
1489	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1490
1491	/* We can't rely on the value tracked for the DP register in
1492	 * intel_dp->DP because link_down must not change that (otherwise link
1493	 * re-training will fail. */
1494	dpa_ctl &= ~DP_PLL_ENABLE;
1495	I915_WRITE(DP_A, dpa_ctl);
1496	POSTING_READ(DP_A);
1497	udelay(200);
1498}
1499
1500/* If the sink supports it, try to set the power state appropriately */
1501void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1502{
1503	int ret, i;
1504
1505	/* Should have a valid DPCD by this point */
1506	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1507		return;
1508
1509	if (mode != DRM_MODE_DPMS_ON) {
1510		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1511					 DP_SET_POWER_D3);
1512		if (ret != 1)
1513			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1514	} else {
1515		/*
1516		 * When turning on, we need to retry for 1ms to give the sink
1517		 * time to wake up.
1518		 */
1519		for (i = 0; i < 3; i++) {
1520			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1521						 DP_SET_POWER_D0);
1522			if (ret == 1)
1523				break;
1524			msleep(1);
1525		}
1526	}
1527}
1528
1529static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1530				  enum pipe *pipe)
1531{
1532	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1533	enum port port = dp_to_dig_port(intel_dp)->port;
1534	struct drm_device *dev = encoder->base.dev;
1535	struct drm_i915_private *dev_priv = dev->dev_private;
1536	enum intel_display_power_domain power_domain;
1537	u32 tmp;
1538
1539	power_domain = intel_display_port_power_domain(encoder);
1540	if (!intel_display_power_enabled(dev_priv, power_domain))
1541		return false;
1542
1543	tmp = I915_READ(intel_dp->output_reg);
1544
1545	if (!(tmp & DP_PORT_EN))
1546		return false;
1547
1548	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1549		*pipe = PORT_TO_PIPE_CPT(tmp);
1550	} else if (IS_CHERRYVIEW(dev)) {
1551		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1552	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1553		*pipe = PORT_TO_PIPE(tmp);
1554	} else {
1555		u32 trans_sel;
1556		u32 trans_dp;
1557		int i;
1558
1559		switch (intel_dp->output_reg) {
1560		case PCH_DP_B:
1561			trans_sel = TRANS_DP_PORT_SEL_B;
1562			break;
1563		case PCH_DP_C:
1564			trans_sel = TRANS_DP_PORT_SEL_C;
1565			break;
1566		case PCH_DP_D:
1567			trans_sel = TRANS_DP_PORT_SEL_D;
1568			break;
1569		default:
1570			return true;
1571		}
1572
1573		for_each_pipe(i) {
1574			trans_dp = I915_READ(TRANS_DP_CTL(i));
1575			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1576				*pipe = i;
1577				return true;
1578			}
1579		}
1580
1581		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1582			      intel_dp->output_reg);
1583	}
1584
1585	return true;
1586}
1587
1588static void intel_dp_get_config(struct intel_encoder *encoder,
1589				struct intel_crtc_config *pipe_config)
1590{
1591	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1592	u32 tmp, flags = 0;
1593	struct drm_device *dev = encoder->base.dev;
1594	struct drm_i915_private *dev_priv = dev->dev_private;
1595	enum port port = dp_to_dig_port(intel_dp)->port;
1596	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1597	int dotclock;
1598
1599	tmp = I915_READ(intel_dp->output_reg);
1600	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1601		pipe_config->has_audio = true;
1602
1603	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1604		if (tmp & DP_SYNC_HS_HIGH)
1605			flags |= DRM_MODE_FLAG_PHSYNC;
1606		else
1607			flags |= DRM_MODE_FLAG_NHSYNC;
1608
1609		if (tmp & DP_SYNC_VS_HIGH)
1610			flags |= DRM_MODE_FLAG_PVSYNC;
1611		else
1612			flags |= DRM_MODE_FLAG_NVSYNC;
1613	} else {
1614		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1615		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1616			flags |= DRM_MODE_FLAG_PHSYNC;
1617		else
1618			flags |= DRM_MODE_FLAG_NHSYNC;
1619
1620		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1621			flags |= DRM_MODE_FLAG_PVSYNC;
1622		else
1623			flags |= DRM_MODE_FLAG_NVSYNC;
1624	}
1625
1626	pipe_config->adjusted_mode.flags |= flags;
1627
1628	pipe_config->has_dp_encoder = true;
1629
1630	intel_dp_get_m_n(crtc, pipe_config);
1631
1632	if (port == PORT_A) {
1633		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1634			pipe_config->port_clock = 162000;
1635		else
1636			pipe_config->port_clock = 270000;
1637	}
1638
1639	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1640					    &pipe_config->dp_m_n);
1641
1642	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1643		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1644
1645	pipe_config->adjusted_mode.crtc_clock = dotclock;
1646
1647	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1648	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1649		/*
1650		 * This is a big fat ugly hack.
1651		 *
1652		 * Some machines in UEFI boot mode provide us a VBT that has 18
1653		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1654		 * unknown we fail to light up. Yet the same BIOS boots up with
1655		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1656		 * max, not what it tells us to use.
1657		 *
1658		 * Note: This will still be broken if the eDP panel is not lit
1659		 * up by the BIOS, and thus we can't get the mode at module
1660		 * load.
1661		 */
1662		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1663			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1664		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1665	}
1666}
1667
1668static bool is_edp_psr(struct intel_dp *intel_dp)
1669{
1670	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1671}
1672
1673static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1674{
1675	struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677	if (!HAS_PSR(dev))
1678		return false;
1679
1680	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1681}
1682
1683static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1684				    struct edp_vsc_psr *vsc_psr)
1685{
1686	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687	struct drm_device *dev = dig_port->base.base.dev;
1688	struct drm_i915_private *dev_priv = dev->dev_private;
1689	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1690	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1691	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1692	uint32_t *data = (uint32_t *) vsc_psr;
1693	unsigned int i;
1694
1695	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1696	   the video DIP being updated before program video DIP data buffer
1697	   registers for DIP being updated. */
1698	I915_WRITE(ctl_reg, 0);
1699	POSTING_READ(ctl_reg);
1700
1701	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1702		if (i < sizeof(struct edp_vsc_psr))
1703			I915_WRITE(data_reg + i, *data++);
1704		else
1705			I915_WRITE(data_reg + i, 0);
1706	}
1707
1708	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1709	POSTING_READ(ctl_reg);
1710}
1711
1712static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1713{
1714	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1715	struct drm_i915_private *dev_priv = dev->dev_private;
1716	struct edp_vsc_psr psr_vsc;
1717
1718	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1719	memset(&psr_vsc, 0, sizeof(psr_vsc));
1720	psr_vsc.sdp_header.HB0 = 0;
1721	psr_vsc.sdp_header.HB1 = 0x7;
1722	psr_vsc.sdp_header.HB2 = 0x2;
1723	psr_vsc.sdp_header.HB3 = 0x8;
1724	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1725
1726	/* Avoid continuous PSR exit by masking memup and hpd */
1727	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1728		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1729}
1730
1731static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1732{
1733	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1734	struct drm_device *dev = dig_port->base.base.dev;
1735	struct drm_i915_private *dev_priv = dev->dev_private;
1736	uint32_t aux_clock_divider;
1737	int precharge = 0x3;
1738	int msg_size = 5;       /* Header(4) + Message(1) */
1739	bool only_standby = false;
1740
1741	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1742
1743	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1744		only_standby = true;
1745
1746	/* Enable PSR in sink */
1747	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1748		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1749				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1750	else
1751		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1752				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1753
1754	/* Setup AUX registers */
1755	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1756	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1757	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1758		   DP_AUX_CH_CTL_TIME_OUT_400us |
1759		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1760		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1761		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1762}
1763
1764static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1765{
1766	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1767	struct drm_device *dev = dig_port->base.base.dev;
1768	struct drm_i915_private *dev_priv = dev->dev_private;
1769	uint32_t max_sleep_time = 0x1f;
1770	uint32_t idle_frames = 1;
1771	uint32_t val = 0x0;
1772	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1773	bool only_standby = false;
1774
1775	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1776		only_standby = true;
1777
1778	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1779		val |= EDP_PSR_LINK_STANDBY;
1780		val |= EDP_PSR_TP2_TP3_TIME_0us;
1781		val |= EDP_PSR_TP1_TIME_0us;
1782		val |= EDP_PSR_SKIP_AUX_EXIT;
1783		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1784	} else
1785		val |= EDP_PSR_LINK_DISABLE;
1786
1787	I915_WRITE(EDP_PSR_CTL(dev), val |
1788		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1789		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1790		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1791		   EDP_PSR_ENABLE);
1792}
1793
1794static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1795{
1796	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1797	struct drm_device *dev = dig_port->base.base.dev;
1798	struct drm_i915_private *dev_priv = dev->dev_private;
1799	struct drm_crtc *crtc = dig_port->base.base.crtc;
1800	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1801
1802	lockdep_assert_held(&dev_priv->psr.lock);
1803	lockdep_assert_held(&dev->struct_mutex);
1804	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1805	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1806
1807	dev_priv->psr.source_ok = false;
1808
1809	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1810		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1811		return false;
1812	}
1813
1814	if (!i915.enable_psr) {
1815		DRM_DEBUG_KMS("PSR disable by flag\n");
1816		return false;
1817	}
1818
1819	/* Below limitations aren't valid for Broadwell */
1820	if (IS_BROADWELL(dev))
1821		goto out;
1822
1823	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1824	    S3D_ENABLE) {
1825		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1826		return false;
1827	}
1828
1829	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1830		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1831		return false;
1832	}
1833
1834 out:
1835	dev_priv->psr.source_ok = true;
1836	return true;
1837}
1838
1839static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1840{
1841	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1842	struct drm_device *dev = intel_dig_port->base.base.dev;
1843	struct drm_i915_private *dev_priv = dev->dev_private;
1844
1845	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1846	WARN_ON(dev_priv->psr.active);
1847	lockdep_assert_held(&dev_priv->psr.lock);
1848
1849	/* Enable PSR on the panel */
1850	intel_edp_psr_enable_sink(intel_dp);
1851
1852	/* Enable PSR on the host */
1853	intel_edp_psr_enable_source(intel_dp);
1854
1855	dev_priv->psr.active = true;
1856}
1857
1858void intel_edp_psr_enable(struct intel_dp *intel_dp)
1859{
1860	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1861	struct drm_i915_private *dev_priv = dev->dev_private;
1862
1863	if (!HAS_PSR(dev)) {
1864		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1865		return;
1866	}
1867
1868	if (!is_edp_psr(intel_dp)) {
1869		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1870		return;
1871	}
1872
1873	mutex_lock(&dev_priv->psr.lock);
1874	if (dev_priv->psr.enabled) {
1875		DRM_DEBUG_KMS("PSR already in use\n");
1876		mutex_unlock(&dev_priv->psr.lock);
1877		return;
1878	}
1879
1880	dev_priv->psr.busy_frontbuffer_bits = 0;
1881
1882	/* Setup PSR once */
1883	intel_edp_psr_setup(intel_dp);
1884
1885	if (intel_edp_psr_match_conditions(intel_dp))
1886		dev_priv->psr.enabled = intel_dp;
1887	mutex_unlock(&dev_priv->psr.lock);
1888}
1889
1890void intel_edp_psr_disable(struct intel_dp *intel_dp)
1891{
1892	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1893	struct drm_i915_private *dev_priv = dev->dev_private;
1894
1895	mutex_lock(&dev_priv->psr.lock);
1896	if (!dev_priv->psr.enabled) {
1897		mutex_unlock(&dev_priv->psr.lock);
1898		return;
1899	}
1900
1901	if (dev_priv->psr.active) {
1902		I915_WRITE(EDP_PSR_CTL(dev),
1903			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1904
1905		/* Wait till PSR is idle */
1906		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1907			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1908			DRM_ERROR("Timed out waiting for PSR Idle State\n");
1909
1910		dev_priv->psr.active = false;
1911	} else {
1912		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1913	}
1914
1915	dev_priv->psr.enabled = NULL;
1916	mutex_unlock(&dev_priv->psr.lock);
1917
1918	cancel_delayed_work_sync(&dev_priv->psr.work);
1919}
1920
1921static void intel_edp_psr_work(struct work_struct *work)
1922{
1923	struct drm_i915_private *dev_priv =
1924		container_of(work, typeof(*dev_priv), psr.work.work);
1925	struct intel_dp *intel_dp = dev_priv->psr.enabled;
1926
1927	mutex_lock(&dev_priv->psr.lock);
1928	intel_dp = dev_priv->psr.enabled;
1929
1930	if (!intel_dp)
1931		goto unlock;
1932
1933	/*
1934	 * The delayed work can race with an invalidate hence we need to
1935	 * recheck. Since psr_flush first clears this and then reschedules we
1936	 * won't ever miss a flush when bailing out here.
1937	 */
1938	if (dev_priv->psr.busy_frontbuffer_bits)
1939		goto unlock;
1940
1941	intel_edp_psr_do_enable(intel_dp);
1942unlock:
1943	mutex_unlock(&dev_priv->psr.lock);
1944}
1945
1946static void intel_edp_psr_do_exit(struct drm_device *dev)
1947{
1948	struct drm_i915_private *dev_priv = dev->dev_private;
1949
1950	if (dev_priv->psr.active) {
1951		u32 val = I915_READ(EDP_PSR_CTL(dev));
1952
1953		WARN_ON(!(val & EDP_PSR_ENABLE));
1954
1955		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1956
1957		dev_priv->psr.active = false;
1958	}
1959
1960}
1961
1962void intel_edp_psr_invalidate(struct drm_device *dev,
1963			      unsigned frontbuffer_bits)
1964{
1965	struct drm_i915_private *dev_priv = dev->dev_private;
1966	struct drm_crtc *crtc;
1967	enum pipe pipe;
1968
1969	mutex_lock(&dev_priv->psr.lock);
1970	if (!dev_priv->psr.enabled) {
1971		mutex_unlock(&dev_priv->psr.lock);
1972		return;
1973	}
1974
1975	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1976	pipe = to_intel_crtc(crtc)->pipe;
1977
1978	intel_edp_psr_do_exit(dev);
1979
1980	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1981
1982	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1983	mutex_unlock(&dev_priv->psr.lock);
1984}
1985
1986void intel_edp_psr_flush(struct drm_device *dev,
1987			 unsigned frontbuffer_bits)
1988{
1989	struct drm_i915_private *dev_priv = dev->dev_private;
1990	struct drm_crtc *crtc;
1991	enum pipe pipe;
1992
1993	mutex_lock(&dev_priv->psr.lock);
1994	if (!dev_priv->psr.enabled) {
1995		mutex_unlock(&dev_priv->psr.lock);
1996		return;
1997	}
1998
1999	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2000	pipe = to_intel_crtc(crtc)->pipe;
2001	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2002
2003	/*
2004	 * On Haswell sprite plane updates don't result in a psr invalidating
2005	 * signal in the hardware. Which means we need to manually fake this in
2006	 * software for all flushes, not just when we've seen a preceding
2007	 * invalidation through frontbuffer rendering.
2008	 */
2009	if (IS_HASWELL(dev) &&
2010	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2011		intel_edp_psr_do_exit(dev);
2012
2013	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2014		schedule_delayed_work(&dev_priv->psr.work,
2015				      msecs_to_jiffies(100));
2016	mutex_unlock(&dev_priv->psr.lock);
2017}
2018
2019void intel_edp_psr_init(struct drm_device *dev)
2020{
2021	struct drm_i915_private *dev_priv = dev->dev_private;
2022
2023	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2024	mutex_init(&dev_priv->psr.lock);
2025}
2026
2027static void intel_disable_dp(struct intel_encoder *encoder)
2028{
2029	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2030	enum port port = dp_to_dig_port(intel_dp)->port;
2031	struct drm_device *dev = encoder->base.dev;
2032
2033	/* Make sure the panel is off before trying to change the mode. But also
2034	 * ensure that we have vdd while we switch off the panel. */
2035	intel_edp_panel_vdd_on(intel_dp);
2036	intel_edp_backlight_off(intel_dp);
2037	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2038	intel_edp_panel_off(intel_dp);
2039
2040	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2041	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2042		intel_dp_link_down(intel_dp);
2043}
2044
2045static void g4x_post_disable_dp(struct intel_encoder *encoder)
2046{
2047	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2048	enum port port = dp_to_dig_port(intel_dp)->port;
2049
2050	if (port != PORT_A)
2051		return;
2052
2053	intel_dp_link_down(intel_dp);
2054	ironlake_edp_pll_off(intel_dp);
2055}
2056
2057static void vlv_post_disable_dp(struct intel_encoder *encoder)
2058{
2059	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2060
2061	intel_dp_link_down(intel_dp);
2062}
2063
2064static void chv_post_disable_dp(struct intel_encoder *encoder)
2065{
2066	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2067	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2068	struct drm_device *dev = encoder->base.dev;
2069	struct drm_i915_private *dev_priv = dev->dev_private;
2070	struct intel_crtc *intel_crtc =
2071		to_intel_crtc(encoder->base.crtc);
2072	enum dpio_channel ch = vlv_dport_to_channel(dport);
2073	enum pipe pipe = intel_crtc->pipe;
2074	u32 val;
2075
2076	intel_dp_link_down(intel_dp);
2077
2078	mutex_lock(&dev_priv->dpio_lock);
2079
2080	/* Propagate soft reset to data lane reset */
2081	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2082	val |= CHV_PCS_REQ_SOFTRESET_EN;
2083	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2084
2085	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2086	val |= CHV_PCS_REQ_SOFTRESET_EN;
2087	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2088
2089	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2090	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2091	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2092
2093	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2094	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2095	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2096
2097	mutex_unlock(&dev_priv->dpio_lock);
2098}
2099
2100static void intel_enable_dp(struct intel_encoder *encoder)
2101{
2102	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103	struct drm_device *dev = encoder->base.dev;
2104	struct drm_i915_private *dev_priv = dev->dev_private;
2105	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2106
2107	if (WARN_ON(dp_reg & DP_PORT_EN))
2108		return;
2109
2110	intel_edp_panel_vdd_on(intel_dp);
2111	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2112	intel_dp_start_link_train(intel_dp);
2113	intel_edp_panel_on(intel_dp);
2114	edp_panel_vdd_off(intel_dp, true);
2115	intel_dp_complete_link_train(intel_dp);
2116	intel_dp_stop_link_train(intel_dp);
2117}
2118
2119static void g4x_enable_dp(struct intel_encoder *encoder)
2120{
2121	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2122
2123	intel_enable_dp(encoder);
2124	intel_edp_backlight_on(intel_dp);
2125}
2126
2127static void vlv_enable_dp(struct intel_encoder *encoder)
2128{
2129	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2130
2131	intel_edp_backlight_on(intel_dp);
2132}
2133
2134static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2135{
2136	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2137	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2138
2139	intel_dp_prepare(encoder);
2140
2141	/* Only ilk+ has port A */
2142	if (dport->port == PORT_A) {
2143		ironlake_set_pll_cpu_edp(intel_dp);
2144		ironlake_edp_pll_on(intel_dp);
2145	}
2146}
2147
2148static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2149{
2150	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2151	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2152	struct drm_device *dev = encoder->base.dev;
2153	struct drm_i915_private *dev_priv = dev->dev_private;
2154	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2155	enum dpio_channel port = vlv_dport_to_channel(dport);
2156	int pipe = intel_crtc->pipe;
2157	struct edp_power_seq power_seq;
2158	u32 val;
2159
2160	mutex_lock(&dev_priv->dpio_lock);
2161
2162	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2163	val = 0;
2164	if (pipe)
2165		val |= (1<<21);
2166	else
2167		val &= ~(1<<21);
2168	val |= 0x001000c4;
2169	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2170	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2171	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2172
2173	mutex_unlock(&dev_priv->dpio_lock);
2174
2175	if (is_edp(intel_dp)) {
2176		/* init power sequencer on this pipe and port */
2177		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2178		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2179							      &power_seq);
2180	}
2181
2182	intel_enable_dp(encoder);
2183
2184	vlv_wait_port_ready(dev_priv, dport);
2185}
2186
2187static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2188{
2189	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2190	struct drm_device *dev = encoder->base.dev;
2191	struct drm_i915_private *dev_priv = dev->dev_private;
2192	struct intel_crtc *intel_crtc =
2193		to_intel_crtc(encoder->base.crtc);
2194	enum dpio_channel port = vlv_dport_to_channel(dport);
2195	int pipe = intel_crtc->pipe;
2196
2197	intel_dp_prepare(encoder);
2198
2199	/* Program Tx lane resets to default */
2200	mutex_lock(&dev_priv->dpio_lock);
2201	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2202			 DPIO_PCS_TX_LANE2_RESET |
2203			 DPIO_PCS_TX_LANE1_RESET);
2204	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2205			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2206			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2207			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2208				 DPIO_PCS_CLK_SOFT_RESET);
2209
2210	/* Fix up inter-pair skew failure */
2211	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2212	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2213	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2214	mutex_unlock(&dev_priv->dpio_lock);
2215}
2216
2217static void chv_pre_enable_dp(struct intel_encoder *encoder)
2218{
2219	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2220	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2221	struct drm_device *dev = encoder->base.dev;
2222	struct drm_i915_private *dev_priv = dev->dev_private;
2223	struct edp_power_seq power_seq;
2224	struct intel_crtc *intel_crtc =
2225		to_intel_crtc(encoder->base.crtc);
2226	enum dpio_channel ch = vlv_dport_to_channel(dport);
2227	int pipe = intel_crtc->pipe;
2228	int data, i;
2229	u32 val;
2230
2231	mutex_lock(&dev_priv->dpio_lock);
2232
2233	/* Deassert soft data lane reset*/
2234	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2235	val |= CHV_PCS_REQ_SOFTRESET_EN;
2236	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2237
2238	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2239	val |= CHV_PCS_REQ_SOFTRESET_EN;
2240	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2241
2242	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2243	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2244	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2245
2246	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2247	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2248	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2249
2250	/* Program Tx lane latency optimal setting*/
2251	for (i = 0; i < 4; i++) {
2252		/* Set the latency optimal bit */
2253		data = (i == 1) ? 0x0 : 0x6;
2254		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2255				data << DPIO_FRC_LATENCY_SHFIT);
2256
2257		/* Set the upar bit */
2258		data = (i == 1) ? 0x0 : 0x1;
2259		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2260				data << DPIO_UPAR_SHIFT);
2261	}
2262
2263	/* Data lane stagger programming */
2264	/* FIXME: Fix up value only after power analysis */
2265
2266	mutex_unlock(&dev_priv->dpio_lock);
2267
2268	if (is_edp(intel_dp)) {
2269		/* init power sequencer on this pipe and port */
2270		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2271		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2272							      &power_seq);
2273	}
2274
2275	intel_enable_dp(encoder);
2276
2277	vlv_wait_port_ready(dev_priv, dport);
2278}
2279
2280static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2281{
2282	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2283	struct drm_device *dev = encoder->base.dev;
2284	struct drm_i915_private *dev_priv = dev->dev_private;
2285	struct intel_crtc *intel_crtc =
2286		to_intel_crtc(encoder->base.crtc);
2287	enum dpio_channel ch = vlv_dport_to_channel(dport);
2288	enum pipe pipe = intel_crtc->pipe;
2289	u32 val;
2290
2291	mutex_lock(&dev_priv->dpio_lock);
2292
2293	/* program left/right clock distribution */
2294	if (pipe != PIPE_B) {
2295		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2296		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2297		if (ch == DPIO_CH0)
2298			val |= CHV_BUFLEFTENA1_FORCE;
2299		if (ch == DPIO_CH1)
2300			val |= CHV_BUFRIGHTENA1_FORCE;
2301		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2302	} else {
2303		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2304		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2305		if (ch == DPIO_CH0)
2306			val |= CHV_BUFLEFTENA2_FORCE;
2307		if (ch == DPIO_CH1)
2308			val |= CHV_BUFRIGHTENA2_FORCE;
2309		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2310	}
2311
2312	/* program clock channel usage */
2313	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2314	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2315	if (pipe != PIPE_B)
2316		val &= ~CHV_PCS_USEDCLKCHANNEL;
2317	else
2318		val |= CHV_PCS_USEDCLKCHANNEL;
2319	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2320
2321	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2322	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2323	if (pipe != PIPE_B)
2324		val &= ~CHV_PCS_USEDCLKCHANNEL;
2325	else
2326		val |= CHV_PCS_USEDCLKCHANNEL;
2327	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2328
2329	/*
2330	 * This a a bit weird since generally CL
2331	 * matches the pipe, but here we need to
2332	 * pick the CL based on the port.
2333	 */
2334	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2335	if (pipe != PIPE_B)
2336		val &= ~CHV_CMN_USEDCLKCHANNEL;
2337	else
2338		val |= CHV_CMN_USEDCLKCHANNEL;
2339	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2340
2341	mutex_unlock(&dev_priv->dpio_lock);
2342}
2343
2344/*
2345 * Native read with retry for link status and receiver capability reads for
2346 * cases where the sink may still be asleep.
2347 *
2348 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2349 * supposed to retry 3 times per the spec.
2350 */
2351static ssize_t
2352intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2353			void *buffer, size_t size)
2354{
2355	ssize_t ret;
2356	int i;
2357
2358	for (i = 0; i < 3; i++) {
2359		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2360		if (ret == size)
2361			return ret;
2362		msleep(1);
2363	}
2364
2365	return ret;
2366}
2367
2368/*
2369 * Fetch AUX CH registers 0x202 - 0x207 which contain
2370 * link status information
2371 */
2372static bool
2373intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2374{
2375	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2376				       DP_LANE0_1_STATUS,
2377				       link_status,
2378				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2379}
2380
2381/* These are source-specific values. */
2382static uint8_t
2383intel_dp_voltage_max(struct intel_dp *intel_dp)
2384{
2385	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2386	enum port port = dp_to_dig_port(intel_dp)->port;
2387
2388	if (IS_VALLEYVIEW(dev))
2389		return DP_TRAIN_VOLTAGE_SWING_1200;
2390	else if (IS_GEN7(dev) && port == PORT_A)
2391		return DP_TRAIN_VOLTAGE_SWING_800;
2392	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2393		return DP_TRAIN_VOLTAGE_SWING_1200;
2394	else
2395		return DP_TRAIN_VOLTAGE_SWING_800;
2396}
2397
2398static uint8_t
2399intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2400{
2401	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2402	enum port port = dp_to_dig_port(intel_dp)->port;
2403
2404	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2405		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2406		case DP_TRAIN_VOLTAGE_SWING_400:
2407			return DP_TRAIN_PRE_EMPHASIS_9_5;
2408		case DP_TRAIN_VOLTAGE_SWING_600:
2409			return DP_TRAIN_PRE_EMPHASIS_6;
2410		case DP_TRAIN_VOLTAGE_SWING_800:
2411			return DP_TRAIN_PRE_EMPHASIS_3_5;
2412		case DP_TRAIN_VOLTAGE_SWING_1200:
2413		default:
2414			return DP_TRAIN_PRE_EMPHASIS_0;
2415		}
2416	} else if (IS_VALLEYVIEW(dev)) {
2417		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2418		case DP_TRAIN_VOLTAGE_SWING_400:
2419			return DP_TRAIN_PRE_EMPHASIS_9_5;
2420		case DP_TRAIN_VOLTAGE_SWING_600:
2421			return DP_TRAIN_PRE_EMPHASIS_6;
2422		case DP_TRAIN_VOLTAGE_SWING_800:
2423			return DP_TRAIN_PRE_EMPHASIS_3_5;
2424		case DP_TRAIN_VOLTAGE_SWING_1200:
2425		default:
2426			return DP_TRAIN_PRE_EMPHASIS_0;
2427		}
2428	} else if (IS_GEN7(dev) && port == PORT_A) {
2429		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2430		case DP_TRAIN_VOLTAGE_SWING_400:
2431			return DP_TRAIN_PRE_EMPHASIS_6;
2432		case DP_TRAIN_VOLTAGE_SWING_600:
2433		case DP_TRAIN_VOLTAGE_SWING_800:
2434			return DP_TRAIN_PRE_EMPHASIS_3_5;
2435		default:
2436			return DP_TRAIN_PRE_EMPHASIS_0;
2437		}
2438	} else {
2439		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2440		case DP_TRAIN_VOLTAGE_SWING_400:
2441			return DP_TRAIN_PRE_EMPHASIS_6;
2442		case DP_TRAIN_VOLTAGE_SWING_600:
2443			return DP_TRAIN_PRE_EMPHASIS_6;
2444		case DP_TRAIN_VOLTAGE_SWING_800:
2445			return DP_TRAIN_PRE_EMPHASIS_3_5;
2446		case DP_TRAIN_VOLTAGE_SWING_1200:
2447		default:
2448			return DP_TRAIN_PRE_EMPHASIS_0;
2449		}
2450	}
2451}
2452
2453static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2454{
2455	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2456	struct drm_i915_private *dev_priv = dev->dev_private;
2457	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2458	struct intel_crtc *intel_crtc =
2459		to_intel_crtc(dport->base.base.crtc);
2460	unsigned long demph_reg_value, preemph_reg_value,
2461		uniqtranscale_reg_value;
2462	uint8_t train_set = intel_dp->train_set[0];
2463	enum dpio_channel port = vlv_dport_to_channel(dport);
2464	int pipe = intel_crtc->pipe;
2465
2466	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2467	case DP_TRAIN_PRE_EMPHASIS_0:
2468		preemph_reg_value = 0x0004000;
2469		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2470		case DP_TRAIN_VOLTAGE_SWING_400:
2471			demph_reg_value = 0x2B405555;
2472			uniqtranscale_reg_value = 0x552AB83A;
2473			break;
2474		case DP_TRAIN_VOLTAGE_SWING_600:
2475			demph_reg_value = 0x2B404040;
2476			uniqtranscale_reg_value = 0x5548B83A;
2477			break;
2478		case DP_TRAIN_VOLTAGE_SWING_800:
2479			demph_reg_value = 0x2B245555;
2480			uniqtranscale_reg_value = 0x5560B83A;
2481			break;
2482		case DP_TRAIN_VOLTAGE_SWING_1200:
2483			demph_reg_value = 0x2B405555;
2484			uniqtranscale_reg_value = 0x5598DA3A;
2485			break;
2486		default:
2487			return 0;
2488		}
2489		break;
2490	case DP_TRAIN_PRE_EMPHASIS_3_5:
2491		preemph_reg_value = 0x0002000;
2492		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2493		case DP_TRAIN_VOLTAGE_SWING_400:
2494			demph_reg_value = 0x2B404040;
2495			uniqtranscale_reg_value = 0x5552B83A;
2496			break;
2497		case DP_TRAIN_VOLTAGE_SWING_600:
2498			demph_reg_value = 0x2B404848;
2499			uniqtranscale_reg_value = 0x5580B83A;
2500			break;
2501		case DP_TRAIN_VOLTAGE_SWING_800:
2502			demph_reg_value = 0x2B404040;
2503			uniqtranscale_reg_value = 0x55ADDA3A;
2504			break;
2505		default:
2506			return 0;
2507		}
2508		break;
2509	case DP_TRAIN_PRE_EMPHASIS_6:
2510		preemph_reg_value = 0x0000000;
2511		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2512		case DP_TRAIN_VOLTAGE_SWING_400:
2513			demph_reg_value = 0x2B305555;
2514			uniqtranscale_reg_value = 0x5570B83A;
2515			break;
2516		case DP_TRAIN_VOLTAGE_SWING_600:
2517			demph_reg_value = 0x2B2B4040;
2518			uniqtranscale_reg_value = 0x55ADDA3A;
2519			break;
2520		default:
2521			return 0;
2522		}
2523		break;
2524	case DP_TRAIN_PRE_EMPHASIS_9_5:
2525		preemph_reg_value = 0x0006000;
2526		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2527		case DP_TRAIN_VOLTAGE_SWING_400:
2528			demph_reg_value = 0x1B405555;
2529			uniqtranscale_reg_value = 0x55ADDA3A;
2530			break;
2531		default:
2532			return 0;
2533		}
2534		break;
2535	default:
2536		return 0;
2537	}
2538
2539	mutex_lock(&dev_priv->dpio_lock);
2540	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2541	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2542	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2543			 uniqtranscale_reg_value);
2544	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2545	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2546	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2547	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2548	mutex_unlock(&dev_priv->dpio_lock);
2549
2550	return 0;
2551}
2552
2553static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2554{
2555	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2556	struct drm_i915_private *dev_priv = dev->dev_private;
2557	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2558	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2559	u32 deemph_reg_value, margin_reg_value, val;
2560	uint8_t train_set = intel_dp->train_set[0];
2561	enum dpio_channel ch = vlv_dport_to_channel(dport);
2562	enum pipe pipe = intel_crtc->pipe;
2563	int i;
2564
2565	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2566	case DP_TRAIN_PRE_EMPHASIS_0:
2567		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2568		case DP_TRAIN_VOLTAGE_SWING_400:
2569			deemph_reg_value = 128;
2570			margin_reg_value = 52;
2571			break;
2572		case DP_TRAIN_VOLTAGE_SWING_600:
2573			deemph_reg_value = 128;
2574			margin_reg_value = 77;
2575			break;
2576		case DP_TRAIN_VOLTAGE_SWING_800:
2577			deemph_reg_value = 128;
2578			margin_reg_value = 102;
2579			break;
2580		case DP_TRAIN_VOLTAGE_SWING_1200:
2581			deemph_reg_value = 128;
2582			margin_reg_value = 154;
2583			/* FIXME extra to set for 1200 */
2584			break;
2585		default:
2586			return 0;
2587		}
2588		break;
2589	case DP_TRAIN_PRE_EMPHASIS_3_5:
2590		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2591		case DP_TRAIN_VOLTAGE_SWING_400:
2592			deemph_reg_value = 85;
2593			margin_reg_value = 78;
2594			break;
2595		case DP_TRAIN_VOLTAGE_SWING_600:
2596			deemph_reg_value = 85;
2597			margin_reg_value = 116;
2598			break;
2599		case DP_TRAIN_VOLTAGE_SWING_800:
2600			deemph_reg_value = 85;
2601			margin_reg_value = 154;
2602			break;
2603		default:
2604			return 0;
2605		}
2606		break;
2607	case DP_TRAIN_PRE_EMPHASIS_6:
2608		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2609		case DP_TRAIN_VOLTAGE_SWING_400:
2610			deemph_reg_value = 64;
2611			margin_reg_value = 104;
2612			break;
2613		case DP_TRAIN_VOLTAGE_SWING_600:
2614			deemph_reg_value = 64;
2615			margin_reg_value = 154;
2616			break;
2617		default:
2618			return 0;
2619		}
2620		break;
2621	case DP_TRAIN_PRE_EMPHASIS_9_5:
2622		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2623		case DP_TRAIN_VOLTAGE_SWING_400:
2624			deemph_reg_value = 43;
2625			margin_reg_value = 154;
2626			break;
2627		default:
2628			return 0;
2629		}
2630		break;
2631	default:
2632		return 0;
2633	}
2634
2635	mutex_lock(&dev_priv->dpio_lock);
2636
2637	/* Clear calc init */
2638	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2639	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2640	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2641
2642	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2643	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2644	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2645
2646	/* Program swing deemph */
2647	for (i = 0; i < 4; i++) {
2648		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2649		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2650		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2651		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2652	}
2653
2654	/* Program swing margin */
2655	for (i = 0; i < 4; i++) {
2656		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2657		val &= ~DPIO_SWING_MARGIN_MASK;
2658		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2659		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2660	}
2661
2662	/* Disable unique transition scale */
2663	for (i = 0; i < 4; i++) {
2664		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2665		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2666		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2667	}
2668
2669	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2670			== DP_TRAIN_PRE_EMPHASIS_0) &&
2671		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2672			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2673
2674		/*
2675		 * The document said it needs to set bit 27 for ch0 and bit 26
2676		 * for ch1. Might be a typo in the doc.
2677		 * For now, for this unique transition scale selection, set bit
2678		 * 27 for ch0 and ch1.
2679		 */
2680		for (i = 0; i < 4; i++) {
2681			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2682			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2683			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2684		}
2685
2686		for (i = 0; i < 4; i++) {
2687			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2688			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2689			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2690			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2691		}
2692	}
2693
2694	/* Start swing calculation */
2695	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2696	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2697	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2698
2699	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2700	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2701	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2702
2703	/* LRC Bypass */
2704	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2705	val |= DPIO_LRC_BYPASS;
2706	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2707
2708	mutex_unlock(&dev_priv->dpio_lock);
2709
2710	return 0;
2711}
2712
2713static void
2714intel_get_adjust_train(struct intel_dp *intel_dp,
2715		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2716{
2717	uint8_t v = 0;
2718	uint8_t p = 0;
2719	int lane;
2720	uint8_t voltage_max;
2721	uint8_t preemph_max;
2722
2723	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2724		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2725		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2726
2727		if (this_v > v)
2728			v = this_v;
2729		if (this_p > p)
2730			p = this_p;
2731	}
2732
2733	voltage_max = intel_dp_voltage_max(intel_dp);
2734	if (v >= voltage_max)
2735		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2736
2737	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2738	if (p >= preemph_max)
2739		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2740
2741	for (lane = 0; lane < 4; lane++)
2742		intel_dp->train_set[lane] = v | p;
2743}
2744
2745static uint32_t
2746intel_gen4_signal_levels(uint8_t train_set)
2747{
2748	uint32_t	signal_levels = 0;
2749
2750	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2751	case DP_TRAIN_VOLTAGE_SWING_400:
2752	default:
2753		signal_levels |= DP_VOLTAGE_0_4;
2754		break;
2755	case DP_TRAIN_VOLTAGE_SWING_600:
2756		signal_levels |= DP_VOLTAGE_0_6;
2757		break;
2758	case DP_TRAIN_VOLTAGE_SWING_800:
2759		signal_levels |= DP_VOLTAGE_0_8;
2760		break;
2761	case DP_TRAIN_VOLTAGE_SWING_1200:
2762		signal_levels |= DP_VOLTAGE_1_2;
2763		break;
2764	}
2765	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2766	case DP_TRAIN_PRE_EMPHASIS_0:
2767	default:
2768		signal_levels |= DP_PRE_EMPHASIS_0;
2769		break;
2770	case DP_TRAIN_PRE_EMPHASIS_3_5:
2771		signal_levels |= DP_PRE_EMPHASIS_3_5;
2772		break;
2773	case DP_TRAIN_PRE_EMPHASIS_6:
2774		signal_levels |= DP_PRE_EMPHASIS_6;
2775		break;
2776	case DP_TRAIN_PRE_EMPHASIS_9_5:
2777		signal_levels |= DP_PRE_EMPHASIS_9_5;
2778		break;
2779	}
2780	return signal_levels;
2781}
2782
2783/* Gen6's DP voltage swing and pre-emphasis control */
2784static uint32_t
2785intel_gen6_edp_signal_levels(uint8_t train_set)
2786{
2787	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2788					 DP_TRAIN_PRE_EMPHASIS_MASK);
2789	switch (signal_levels) {
2790	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2791	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2792		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2793	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2794		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2795	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2796	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2797		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2798	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2799	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2800		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2801	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2802	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2803		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2804	default:
2805		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2806			      "0x%x\n", signal_levels);
2807		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2808	}
2809}
2810
2811/* Gen7's DP voltage swing and pre-emphasis control */
2812static uint32_t
2813intel_gen7_edp_signal_levels(uint8_t train_set)
2814{
2815	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2816					 DP_TRAIN_PRE_EMPHASIS_MASK);
2817	switch (signal_levels) {
2818	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2819		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2820	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2821		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2822	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2823		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2824
2825	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2826		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2827	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2828		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2829
2830	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2831		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2832	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2833		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2834
2835	default:
2836		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2837			      "0x%x\n", signal_levels);
2838		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2839	}
2840}
2841
2842/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2843static uint32_t
2844intel_hsw_signal_levels(uint8_t train_set)
2845{
2846	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2847					 DP_TRAIN_PRE_EMPHASIS_MASK);
2848	switch (signal_levels) {
2849	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2850		return DDI_BUF_EMP_400MV_0DB_HSW;
2851	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2852		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2853	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2854		return DDI_BUF_EMP_400MV_6DB_HSW;
2855	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2856		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2857
2858	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2859		return DDI_BUF_EMP_600MV_0DB_HSW;
2860	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2861		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2862	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2863		return DDI_BUF_EMP_600MV_6DB_HSW;
2864
2865	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2866		return DDI_BUF_EMP_800MV_0DB_HSW;
2867	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2868		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2869	default:
2870		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2871			      "0x%x\n", signal_levels);
2872		return DDI_BUF_EMP_400MV_0DB_HSW;
2873	}
2874}
2875
2876/* Properly updates "DP" with the correct signal levels. */
2877static void
2878intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2879{
2880	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2881	enum port port = intel_dig_port->port;
2882	struct drm_device *dev = intel_dig_port->base.base.dev;
2883	uint32_t signal_levels, mask;
2884	uint8_t train_set = intel_dp->train_set[0];
2885
2886	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2887		signal_levels = intel_hsw_signal_levels(train_set);
2888		mask = DDI_BUF_EMP_MASK;
2889	} else if (IS_CHERRYVIEW(dev)) {
2890		signal_levels = intel_chv_signal_levels(intel_dp);
2891		mask = 0;
2892	} else if (IS_VALLEYVIEW(dev)) {
2893		signal_levels = intel_vlv_signal_levels(intel_dp);
2894		mask = 0;
2895	} else if (IS_GEN7(dev) && port == PORT_A) {
2896		signal_levels = intel_gen7_edp_signal_levels(train_set);
2897		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2898	} else if (IS_GEN6(dev) && port == PORT_A) {
2899		signal_levels = intel_gen6_edp_signal_levels(train_set);
2900		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2901	} else {
2902		signal_levels = intel_gen4_signal_levels(train_set);
2903		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2904	}
2905
2906	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2907
2908	*DP = (*DP & ~mask) | signal_levels;
2909}
2910
2911static bool
2912intel_dp_set_link_train(struct intel_dp *intel_dp,
2913			uint32_t *DP,
2914			uint8_t dp_train_pat)
2915{
2916	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2917	struct drm_device *dev = intel_dig_port->base.base.dev;
2918	struct drm_i915_private *dev_priv = dev->dev_private;
2919	enum port port = intel_dig_port->port;
2920	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2921	int ret, len;
2922
2923	if (HAS_DDI(dev)) {
2924		uint32_t temp = I915_READ(DP_TP_CTL(port));
2925
2926		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2927			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2928		else
2929			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2930
2931		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2932		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2933		case DP_TRAINING_PATTERN_DISABLE:
2934			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2935
2936			break;
2937		case DP_TRAINING_PATTERN_1:
2938			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2939			break;
2940		case DP_TRAINING_PATTERN_2:
2941			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2942			break;
2943		case DP_TRAINING_PATTERN_3:
2944			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2945			break;
2946		}
2947		I915_WRITE(DP_TP_CTL(port), temp);
2948
2949	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2950		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2951
2952		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2953		case DP_TRAINING_PATTERN_DISABLE:
2954			*DP |= DP_LINK_TRAIN_OFF_CPT;
2955			break;
2956		case DP_TRAINING_PATTERN_1:
2957			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2958			break;
2959		case DP_TRAINING_PATTERN_2:
2960			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2961			break;
2962		case DP_TRAINING_PATTERN_3:
2963			DRM_ERROR("DP training pattern 3 not supported\n");
2964			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2965			break;
2966		}
2967
2968	} else {
2969		*DP &= ~DP_LINK_TRAIN_MASK;
2970
2971		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2972		case DP_TRAINING_PATTERN_DISABLE:
2973			*DP |= DP_LINK_TRAIN_OFF;
2974			break;
2975		case DP_TRAINING_PATTERN_1:
2976			*DP |= DP_LINK_TRAIN_PAT_1;
2977			break;
2978		case DP_TRAINING_PATTERN_2:
2979			*DP |= DP_LINK_TRAIN_PAT_2;
2980			break;
2981		case DP_TRAINING_PATTERN_3:
2982			DRM_ERROR("DP training pattern 3 not supported\n");
2983			*DP |= DP_LINK_TRAIN_PAT_2;
2984			break;
2985		}
2986	}
2987
2988	I915_WRITE(intel_dp->output_reg, *DP);
2989	POSTING_READ(intel_dp->output_reg);
2990
2991	buf[0] = dp_train_pat;
2992	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2993	    DP_TRAINING_PATTERN_DISABLE) {
2994		/* don't write DP_TRAINING_LANEx_SET on disable */
2995		len = 1;
2996	} else {
2997		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2998		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2999		len = intel_dp->lane_count + 1;
3000	}
3001
3002	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3003				buf, len);
3004
3005	return ret == len;
3006}
3007
3008static bool
3009intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3010			uint8_t dp_train_pat)
3011{
3012	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3013	intel_dp_set_signal_levels(intel_dp, DP);
3014	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3015}
3016
3017static bool
3018intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3019			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
3020{
3021	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3022	struct drm_device *dev = intel_dig_port->base.base.dev;
3023	struct drm_i915_private *dev_priv = dev->dev_private;
3024	int ret;
3025
3026	intel_get_adjust_train(intel_dp, link_status);
3027	intel_dp_set_signal_levels(intel_dp, DP);
3028
3029	I915_WRITE(intel_dp->output_reg, *DP);
3030	POSTING_READ(intel_dp->output_reg);
3031
3032	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3033				intel_dp->train_set, intel_dp->lane_count);
3034
3035	return ret == intel_dp->lane_count;
3036}
3037
3038static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3039{
3040	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3041	struct drm_device *dev = intel_dig_port->base.base.dev;
3042	struct drm_i915_private *dev_priv = dev->dev_private;
3043	enum port port = intel_dig_port->port;
3044	uint32_t val;
3045
3046	if (!HAS_DDI(dev))
3047		return;
3048
3049	val = I915_READ(DP_TP_CTL(port));
3050	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3051	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3052	I915_WRITE(DP_TP_CTL(port), val);
3053
3054	/*
3055	 * On PORT_A we can have only eDP in SST mode. There the only reason
3056	 * we need to set idle transmission mode is to work around a HW issue
3057	 * where we enable the pipe while not in idle link-training mode.
3058	 * In this case there is requirement to wait for a minimum number of
3059	 * idle patterns to be sent.
3060	 */
3061	if (port == PORT_A)
3062		return;
3063
3064	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3065		     1))
3066		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3067}
3068
3069/* Enable corresponding port and start training pattern 1 */
3070void
3071intel_dp_start_link_train(struct intel_dp *intel_dp)
3072{
3073	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3074	struct drm_device *dev = encoder->dev;
3075	int i;
3076	uint8_t voltage;
3077	int voltage_tries, loop_tries;
3078	uint32_t DP = intel_dp->DP;
3079	uint8_t link_config[2];
3080
3081	if (HAS_DDI(dev))
3082		intel_ddi_prepare_link_retrain(encoder);
3083
3084	/* Write the link configuration data */
3085	link_config[0] = intel_dp->link_bw;
3086	link_config[1] = intel_dp->lane_count;
3087	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3088		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3089	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3090
3091	link_config[0] = 0;
3092	link_config[1] = DP_SET_ANSI_8B10B;
3093	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3094
3095	DP |= DP_PORT_EN;
3096
3097	/* clock recovery */
3098	if (!intel_dp_reset_link_train(intel_dp, &DP,
3099				       DP_TRAINING_PATTERN_1 |
3100				       DP_LINK_SCRAMBLING_DISABLE)) {
3101		DRM_ERROR("failed to enable link training\n");
3102		return;
3103	}
3104
3105	voltage = 0xff;
3106	voltage_tries = 0;
3107	loop_tries = 0;
3108	for (;;) {
3109		uint8_t link_status[DP_LINK_STATUS_SIZE];
3110
3111		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3112		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3113			DRM_ERROR("failed to get link status\n");
3114			break;
3115		}
3116
3117		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3118			DRM_DEBUG_KMS("clock recovery OK\n");
3119			break;
3120		}
3121
3122		/* Check to see if we've tried the max voltage */
3123		for (i = 0; i < intel_dp->lane_count; i++)
3124			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3125				break;
3126		if (i == intel_dp->lane_count) {
3127			++loop_tries;
3128			if (loop_tries == 5) {
3129				DRM_ERROR("too many full retries, give up\n");
3130				break;
3131			}
3132			intel_dp_reset_link_train(intel_dp, &DP,
3133						  DP_TRAINING_PATTERN_1 |
3134						  DP_LINK_SCRAMBLING_DISABLE);
3135			voltage_tries = 0;
3136			continue;
3137		}
3138
3139		/* Check to see if we've tried the same voltage 5 times */
3140		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3141			++voltage_tries;
3142			if (voltage_tries == 5) {
3143				DRM_ERROR("too many voltage retries, give up\n");
3144				break;
3145			}
3146		} else
3147			voltage_tries = 0;
3148		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3149
3150		/* Update training set as requested by target */
3151		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3152			DRM_ERROR("failed to update link training\n");
3153			break;
3154		}
3155	}
3156
3157	intel_dp->DP = DP;
3158}
3159
3160void
3161intel_dp_complete_link_train(struct intel_dp *intel_dp)
3162{
3163	bool channel_eq = false;
3164	int tries, cr_tries;
3165	uint32_t DP = intel_dp->DP;
3166	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3167
3168	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3169	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3170		training_pattern = DP_TRAINING_PATTERN_3;
3171
3172	/* channel equalization */
3173	if (!intel_dp_set_link_train(intel_dp, &DP,
3174				     training_pattern |
3175				     DP_LINK_SCRAMBLING_DISABLE)) {
3176		DRM_ERROR("failed to start channel equalization\n");
3177		return;
3178	}
3179
3180	tries = 0;
3181	cr_tries = 0;
3182	channel_eq = false;
3183	for (;;) {
3184		uint8_t link_status[DP_LINK_STATUS_SIZE];
3185
3186		if (cr_tries > 5) {
3187			DRM_ERROR("failed to train DP, aborting\n");
3188			break;
3189		}
3190
3191		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3192		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3193			DRM_ERROR("failed to get link status\n");
3194			break;
3195		}
3196
3197		/* Make sure clock is still ok */
3198		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3199			intel_dp_start_link_train(intel_dp);
3200			intel_dp_set_link_train(intel_dp, &DP,
3201						training_pattern |
3202						DP_LINK_SCRAMBLING_DISABLE);
3203			cr_tries++;
3204			continue;
3205		}
3206
3207		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3208			channel_eq = true;
3209			break;
3210		}
3211
3212		/* Try 5 times, then try clock recovery if that fails */
3213		if (tries > 5) {
3214			intel_dp_link_down(intel_dp);
3215			intel_dp_start_link_train(intel_dp);
3216			intel_dp_set_link_train(intel_dp, &DP,
3217						training_pattern |
3218						DP_LINK_SCRAMBLING_DISABLE);
3219			tries = 0;
3220			cr_tries++;
3221			continue;
3222		}
3223
3224		/* Update training set as requested by target */
3225		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3226			DRM_ERROR("failed to update link training\n");
3227			break;
3228		}
3229		++tries;
3230	}
3231
3232	intel_dp_set_idle_link_train(intel_dp);
3233
3234	intel_dp->DP = DP;
3235
3236	if (channel_eq)
3237		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3238
3239}
3240
3241void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3242{
3243	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3244				DP_TRAINING_PATTERN_DISABLE);
3245}
3246
3247static void
3248intel_dp_link_down(struct intel_dp *intel_dp)
3249{
3250	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3251	enum port port = intel_dig_port->port;
3252	struct drm_device *dev = intel_dig_port->base.base.dev;
3253	struct drm_i915_private *dev_priv = dev->dev_private;
3254	struct intel_crtc *intel_crtc =
3255		to_intel_crtc(intel_dig_port->base.base.crtc);
3256	uint32_t DP = intel_dp->DP;
3257
3258	if (WARN_ON(HAS_DDI(dev)))
3259		return;
3260
3261	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3262		return;
3263
3264	DRM_DEBUG_KMS("\n");
3265
3266	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3267		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3268		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3269	} else {
3270		DP &= ~DP_LINK_TRAIN_MASK;
3271		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3272	}
3273	POSTING_READ(intel_dp->output_reg);
3274
3275	if (HAS_PCH_IBX(dev) &&
3276	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3277		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3278
3279		/* Hardware workaround: leaving our transcoder select
3280		 * set to transcoder B while it's off will prevent the
3281		 * corresponding HDMI output on transcoder A.
3282		 *
3283		 * Combine this with another hardware workaround:
3284		 * transcoder select bit can only be cleared while the
3285		 * port is enabled.
3286		 */
3287		DP &= ~DP_PIPEB_SELECT;
3288		I915_WRITE(intel_dp->output_reg, DP);
3289
3290		/* Changes to enable or select take place the vblank
3291		 * after being written.
3292		 */
3293		if (WARN_ON(crtc == NULL)) {
3294			/* We should never try to disable a port without a crtc
3295			 * attached. For paranoia keep the code around for a
3296			 * bit. */
3297			POSTING_READ(intel_dp->output_reg);
3298			msleep(50);
3299		} else
3300			intel_wait_for_vblank(dev, intel_crtc->pipe);
3301	}
3302
3303	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3304	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3305	POSTING_READ(intel_dp->output_reg);
3306	msleep(intel_dp->panel_power_down_delay);
3307}
3308
3309static bool
3310intel_dp_get_dpcd(struct intel_dp *intel_dp)
3311{
3312	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3313	struct drm_device *dev = dig_port->base.base.dev;
3314	struct drm_i915_private *dev_priv = dev->dev_private;
3315
3316	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3317
3318	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3319				    sizeof(intel_dp->dpcd)) < 0)
3320		return false; /* aux transfer failed */
3321
3322	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3323			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3324	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3325
3326	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3327		return false; /* DPCD not present */
3328
3329	/* Check if the panel supports PSR */
3330	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3331	if (is_edp(intel_dp)) {
3332		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3333					intel_dp->psr_dpcd,
3334					sizeof(intel_dp->psr_dpcd));
3335		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3336			dev_priv->psr.sink_support = true;
3337			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3338		}
3339	}
3340
3341	/* Training Pattern 3 support */
3342	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3343	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3344		intel_dp->use_tps3 = true;
3345		DRM_DEBUG_KMS("Displayport TPS3 supported");
3346	} else
3347		intel_dp->use_tps3 = false;
3348
3349	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3350	      DP_DWN_STRM_PORT_PRESENT))
3351		return true; /* native DP sink */
3352
3353	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3354		return true; /* no per-port downstream info */
3355
3356	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3357				    intel_dp->downstream_ports,
3358				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3359		return false; /* downstream port status fetch failed */
3360
3361	return true;
3362}
3363
3364static void
3365intel_dp_probe_oui(struct intel_dp *intel_dp)
3366{
3367	u8 buf[3];
3368
3369	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3370		return;
3371
3372	intel_edp_panel_vdd_on(intel_dp);
3373
3374	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3375		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3376			      buf[0], buf[1], buf[2]);
3377
3378	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3379		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3380			      buf[0], buf[1], buf[2]);
3381
3382	edp_panel_vdd_off(intel_dp, false);
3383}
3384
3385static bool
3386intel_dp_probe_mst(struct intel_dp *intel_dp)
3387{
3388	u8 buf[1];
3389
3390	if (!intel_dp->can_mst)
3391		return false;
3392
3393	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3394		return false;
3395
3396	_edp_panel_vdd_on(intel_dp);
3397	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3398		if (buf[0] & DP_MST_CAP) {
3399			DRM_DEBUG_KMS("Sink is MST capable\n");
3400			intel_dp->is_mst = true;
3401		} else {
3402			DRM_DEBUG_KMS("Sink is not MST capable\n");
3403			intel_dp->is_mst = false;
3404		}
3405	}
3406	edp_panel_vdd_off(intel_dp, false);
3407
3408	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3409	return intel_dp->is_mst;
3410}
3411
3412int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3413{
3414	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3415	struct drm_device *dev = intel_dig_port->base.base.dev;
3416	struct intel_crtc *intel_crtc =
3417		to_intel_crtc(intel_dig_port->base.base.crtc);
3418	u8 buf[1];
3419
3420	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3421		return -EAGAIN;
3422
3423	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3424		return -ENOTTY;
3425
3426	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3427			       DP_TEST_SINK_START) < 0)
3428		return -EAGAIN;
3429
3430	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3431	intel_wait_for_vblank(dev, intel_crtc->pipe);
3432	intel_wait_for_vblank(dev, intel_crtc->pipe);
3433
3434	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3435		return -EAGAIN;
3436
3437	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3438	return 0;
3439}
3440
3441static bool
3442intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3443{
3444	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3445				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3446				       sink_irq_vector, 1) == 1;
3447}
3448
3449static bool
3450intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3451{
3452	int ret;
3453
3454	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3455					     DP_SINK_COUNT_ESI,
3456					     sink_irq_vector, 14);
3457	if (ret != 14)
3458		return false;
3459
3460	return true;
3461}
3462
3463static void
3464intel_dp_handle_test_request(struct intel_dp *intel_dp)
3465{
3466	/* NAK by default */
3467	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3468}
3469
3470static int
3471intel_dp_check_mst_status(struct intel_dp *intel_dp)
3472{
3473	bool bret;
3474
3475	if (intel_dp->is_mst) {
3476		u8 esi[16] = { 0 };
3477		int ret = 0;
3478		int retry;
3479		bool handled;
3480		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3481go_again:
3482		if (bret == true) {
3483
3484			/* check link status - esi[10] = 0x200c */
3485			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3486				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3487				intel_dp_start_link_train(intel_dp);
3488				intel_dp_complete_link_train(intel_dp);
3489				intel_dp_stop_link_train(intel_dp);
3490			}
3491
3492			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3493			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3494
3495			if (handled) {
3496				for (retry = 0; retry < 3; retry++) {
3497					int wret;
3498					wret = drm_dp_dpcd_write(&intel_dp->aux,
3499								 DP_SINK_COUNT_ESI+1,
3500								 &esi[1], 3);
3501					if (wret == 3) {
3502						break;
3503					}
3504				}
3505
3506				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3507				if (bret == true) {
3508					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3509					goto go_again;
3510				}
3511			} else
3512				ret = 0;
3513
3514			return ret;
3515		} else {
3516			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3517			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3518			intel_dp->is_mst = false;
3519			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3520			/* send a hotplug event */
3521			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3522		}
3523	}
3524	return -EINVAL;
3525}
3526
3527/*
3528 * According to DP spec
3529 * 5.1.2:
3530 *  1. Read DPCD
3531 *  2. Configure link according to Receiver Capabilities
3532 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3533 *  4. Check link status on receipt of hot-plug interrupt
3534 */
3535void
3536intel_dp_check_link_status(struct intel_dp *intel_dp)
3537{
3538	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3539	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3540	u8 sink_irq_vector;
3541	u8 link_status[DP_LINK_STATUS_SIZE];
3542
3543	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3544
3545	if (!intel_encoder->connectors_active)
3546		return;
3547
3548	if (WARN_ON(!intel_encoder->base.crtc))
3549		return;
3550
3551	/* Try to read receiver status if the link appears to be up */
3552	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3553		return;
3554	}
3555
3556	/* Now read the DPCD to see if it's actually running */
3557	if (!intel_dp_get_dpcd(intel_dp)) {
3558		return;
3559	}
3560
3561	/* Try to read the source of the interrupt */
3562	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3563	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3564		/* Clear interrupt source */
3565		drm_dp_dpcd_writeb(&intel_dp->aux,
3566				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3567				   sink_irq_vector);
3568
3569		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3570			intel_dp_handle_test_request(intel_dp);
3571		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3572			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3573	}
3574
3575	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3576		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3577			      intel_encoder->base.name);
3578		intel_dp_start_link_train(intel_dp);
3579		intel_dp_complete_link_train(intel_dp);
3580		intel_dp_stop_link_train(intel_dp);
3581	}
3582}
3583
3584/* XXX this is probably wrong for multiple downstream ports */
3585static enum drm_connector_status
3586intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3587{
3588	uint8_t *dpcd = intel_dp->dpcd;
3589	uint8_t type;
3590
3591	if (!intel_dp_get_dpcd(intel_dp))
3592		return connector_status_disconnected;
3593
3594	/* if there's no downstream port, we're done */
3595	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3596		return connector_status_connected;
3597
3598	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3599	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3600	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3601		uint8_t reg;
3602
3603		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3604					    &reg, 1) < 0)
3605			return connector_status_unknown;
3606
3607		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3608					      : connector_status_disconnected;
3609	}
3610
3611	/* If no HPD, poke DDC gently */
3612	if (drm_probe_ddc(&intel_dp->aux.ddc))
3613		return connector_status_connected;
3614
3615	/* Well we tried, say unknown for unreliable port types */
3616	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3617		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3618		if (type == DP_DS_PORT_TYPE_VGA ||
3619		    type == DP_DS_PORT_TYPE_NON_EDID)
3620			return connector_status_unknown;
3621	} else {
3622		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3623			DP_DWN_STRM_PORT_TYPE_MASK;
3624		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3625		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3626			return connector_status_unknown;
3627	}
3628
3629	/* Anything else is out of spec, warn and ignore */
3630	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3631	return connector_status_disconnected;
3632}
3633
3634static enum drm_connector_status
3635ironlake_dp_detect(struct intel_dp *intel_dp)
3636{
3637	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3638	struct drm_i915_private *dev_priv = dev->dev_private;
3639	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3640	enum drm_connector_status status;
3641
3642	/* Can't disconnect eDP, but you can close the lid... */
3643	if (is_edp(intel_dp)) {
3644		status = intel_panel_detect(dev);
3645		if (status == connector_status_unknown)
3646			status = connector_status_connected;
3647		return status;
3648	}
3649
3650	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3651		return connector_status_disconnected;
3652
3653	return intel_dp_detect_dpcd(intel_dp);
3654}
3655
3656static enum drm_connector_status
3657g4x_dp_detect(struct intel_dp *intel_dp)
3658{
3659	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3660	struct drm_i915_private *dev_priv = dev->dev_private;
3661	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3662	uint32_t bit;
3663
3664	/* Can't disconnect eDP, but you can close the lid... */
3665	if (is_edp(intel_dp)) {
3666		enum drm_connector_status status;
3667
3668		status = intel_panel_detect(dev);
3669		if (status == connector_status_unknown)
3670			status = connector_status_connected;
3671		return status;
3672	}
3673
3674	if (IS_VALLEYVIEW(dev)) {
3675		switch (intel_dig_port->port) {
3676		case PORT_B:
3677			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3678			break;
3679		case PORT_C:
3680			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3681			break;
3682		case PORT_D:
3683			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3684			break;
3685		default:
3686			return connector_status_unknown;
3687		}
3688	} else {
3689		switch (intel_dig_port->port) {
3690		case PORT_B:
3691			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3692			break;
3693		case PORT_C:
3694			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3695			break;
3696		case PORT_D:
3697			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3698			break;
3699		default:
3700			return connector_status_unknown;
3701		}
3702	}
3703
3704	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3705		return connector_status_disconnected;
3706
3707	return intel_dp_detect_dpcd(intel_dp);
3708}
3709
3710static struct edid *
3711intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3712{
3713	struct intel_connector *intel_connector = to_intel_connector(connector);
3714
3715	/* use cached edid if we have one */
3716	if (intel_connector->edid) {
3717		/* invalid edid */
3718		if (IS_ERR(intel_connector->edid))
3719			return NULL;
3720
3721		return drm_edid_duplicate(intel_connector->edid);
3722	}
3723
3724	return drm_get_edid(connector, adapter);
3725}
3726
3727static int
3728intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3729{
3730	struct intel_connector *intel_connector = to_intel_connector(connector);
3731
3732	/* use cached edid if we have one */
3733	if (intel_connector->edid) {
3734		/* invalid edid */
3735		if (IS_ERR(intel_connector->edid))
3736			return 0;
3737
3738		return intel_connector_update_modes(connector,
3739						    intel_connector->edid);
3740	}
3741
3742	return intel_ddc_get_modes(connector, adapter);
3743}
3744
3745static enum drm_connector_status
3746intel_dp_detect(struct drm_connector *connector, bool force)
3747{
3748	struct intel_dp *intel_dp = intel_attached_dp(connector);
3749	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3750	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3751	struct drm_device *dev = connector->dev;
3752	struct drm_i915_private *dev_priv = dev->dev_private;
3753	enum drm_connector_status status;
3754	enum intel_display_power_domain power_domain;
3755	struct edid *edid = NULL;
3756	bool ret;
3757
3758	power_domain = intel_display_port_power_domain(intel_encoder);
3759	intel_display_power_get(dev_priv, power_domain);
3760
3761	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3762		      connector->base.id, connector->name);
3763
3764	if (intel_dp->is_mst) {
3765		/* MST devices are disconnected from a monitor POV */
3766		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3767			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3768		status = connector_status_disconnected;
3769		goto out;
3770	}
3771
3772	intel_dp->has_audio = false;
3773
3774	if (HAS_PCH_SPLIT(dev))
3775		status = ironlake_dp_detect(intel_dp);
3776	else
3777		status = g4x_dp_detect(intel_dp);
3778
3779	if (status != connector_status_connected)
3780		goto out;
3781
3782	intel_dp_probe_oui(intel_dp);
3783
3784	ret = intel_dp_probe_mst(intel_dp);
3785	if (ret) {
3786		/* if we are in MST mode then this connector
3787		   won't appear connected or have anything with EDID on it */
3788		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3789			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3790		status = connector_status_disconnected;
3791		goto out;
3792	}
3793
3794	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3795		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3796	} else {
3797		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3798		if (edid) {
3799			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3800			kfree(edid);
3801		}
3802	}
3803
3804	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3805		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3806	status = connector_status_connected;
3807
3808out:
3809	intel_display_power_put(dev_priv, power_domain);
3810	return status;
3811}
3812
3813static int intel_dp_get_modes(struct drm_connector *connector)
3814{
3815	struct intel_dp *intel_dp = intel_attached_dp(connector);
3816	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3817	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3818	struct intel_connector *intel_connector = to_intel_connector(connector);
3819	struct drm_device *dev = connector->dev;
3820	struct drm_i915_private *dev_priv = dev->dev_private;
3821	enum intel_display_power_domain power_domain;
3822	int ret;
3823
3824	/* We should parse the EDID data and find out if it has an audio sink
3825	 */
3826
3827	power_domain = intel_display_port_power_domain(intel_encoder);
3828	intel_display_power_get(dev_priv, power_domain);
3829
3830	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3831	intel_display_power_put(dev_priv, power_domain);
3832	if (ret)
3833		return ret;
3834
3835	/* if eDP has no EDID, fall back to fixed mode */
3836	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3837		struct drm_display_mode *mode;
3838		mode = drm_mode_duplicate(dev,
3839					  intel_connector->panel.fixed_mode);
3840		if (mode) {
3841			drm_mode_probed_add(connector, mode);
3842			return 1;
3843		}
3844	}
3845	return 0;
3846}
3847
3848static bool
3849intel_dp_detect_audio(struct drm_connector *connector)
3850{
3851	struct intel_dp *intel_dp = intel_attached_dp(connector);
3852	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3853	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3854	struct drm_device *dev = connector->dev;
3855	struct drm_i915_private *dev_priv = dev->dev_private;
3856	enum intel_display_power_domain power_domain;
3857	struct edid *edid;
3858	bool has_audio = false;
3859
3860	power_domain = intel_display_port_power_domain(intel_encoder);
3861	intel_display_power_get(dev_priv, power_domain);
3862
3863	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3864	if (edid) {
3865		has_audio = drm_detect_monitor_audio(edid);
3866		kfree(edid);
3867	}
3868
3869	intel_display_power_put(dev_priv, power_domain);
3870
3871	return has_audio;
3872}
3873
3874static int
3875intel_dp_set_property(struct drm_connector *connector,
3876		      struct drm_property *property,
3877		      uint64_t val)
3878{
3879	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3880	struct intel_connector *intel_connector = to_intel_connector(connector);
3881	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3882	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3883	int ret;
3884
3885	ret = drm_object_property_set_value(&connector->base, property, val);
3886	if (ret)
3887		return ret;
3888
3889	if (property == dev_priv->force_audio_property) {
3890		int i = val;
3891		bool has_audio;
3892
3893		if (i == intel_dp->force_audio)
3894			return 0;
3895
3896		intel_dp->force_audio = i;
3897
3898		if (i == HDMI_AUDIO_AUTO)
3899			has_audio = intel_dp_detect_audio(connector);
3900		else
3901			has_audio = (i == HDMI_AUDIO_ON);
3902
3903		if (has_audio == intel_dp->has_audio)
3904			return 0;
3905
3906		intel_dp->has_audio = has_audio;
3907		goto done;
3908	}
3909
3910	if (property == dev_priv->broadcast_rgb_property) {
3911		bool old_auto = intel_dp->color_range_auto;
3912		uint32_t old_range = intel_dp->color_range;
3913
3914		switch (val) {
3915		case INTEL_BROADCAST_RGB_AUTO:
3916			intel_dp->color_range_auto = true;
3917			break;
3918		case INTEL_BROADCAST_RGB_FULL:
3919			intel_dp->color_range_auto = false;
3920			intel_dp->color_range = 0;
3921			break;
3922		case INTEL_BROADCAST_RGB_LIMITED:
3923			intel_dp->color_range_auto = false;
3924			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3925			break;
3926		default:
3927			return -EINVAL;
3928		}
3929
3930		if (old_auto == intel_dp->color_range_auto &&
3931		    old_range == intel_dp->color_range)
3932			return 0;
3933
3934		goto done;
3935	}
3936
3937	if (is_edp(intel_dp) &&
3938	    property == connector->dev->mode_config.scaling_mode_property) {
3939		if (val == DRM_MODE_SCALE_NONE) {
3940			DRM_DEBUG_KMS("no scaling not supported\n");
3941			return -EINVAL;
3942		}
3943
3944		if (intel_connector->panel.fitting_mode == val) {
3945			/* the eDP scaling property is not changed */
3946			return 0;
3947		}
3948		intel_connector->panel.fitting_mode = val;
3949
3950		goto done;
3951	}
3952
3953	return -EINVAL;
3954
3955done:
3956	if (intel_encoder->base.crtc)
3957		intel_crtc_restore_mode(intel_encoder->base.crtc);
3958
3959	return 0;
3960}
3961
3962static void
3963intel_dp_connector_destroy(struct drm_connector *connector)
3964{
3965	struct intel_connector *intel_connector = to_intel_connector(connector);
3966
3967	if (!IS_ERR_OR_NULL(intel_connector->edid))
3968		kfree(intel_connector->edid);
3969
3970	/* Can't call is_edp() since the encoder may have been destroyed
3971	 * already. */
3972	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3973		intel_panel_fini(&intel_connector->panel);
3974
3975	drm_connector_cleanup(connector);
3976	kfree(connector);
3977}
3978
3979void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3980{
3981	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3982	struct intel_dp *intel_dp = &intel_dig_port->dp;
3983	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3984
3985	drm_dp_aux_unregister(&intel_dp->aux);
3986	intel_dp_mst_encoder_cleanup(intel_dig_port);
3987	drm_encoder_cleanup(encoder);
3988	if (is_edp(intel_dp)) {
3989		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3990		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3991		edp_panel_vdd_off_sync(intel_dp);
3992		drm_modeset_unlock(&dev->mode_config.connection_mutex);
3993		if (intel_dp->edp_notifier.notifier_call) {
3994			unregister_reboot_notifier(&intel_dp->edp_notifier);
3995			intel_dp->edp_notifier.notifier_call = NULL;
3996		}
3997	}
3998	kfree(intel_dig_port);
3999}
4000
4001static const struct drm_connector_funcs intel_dp_connector_funcs = {
4002	.dpms = intel_connector_dpms,
4003	.detect = intel_dp_detect,
4004	.fill_modes = drm_helper_probe_single_connector_modes,
4005	.set_property = intel_dp_set_property,
4006	.destroy = intel_dp_connector_destroy,
4007};
4008
4009static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4010	.get_modes = intel_dp_get_modes,
4011	.mode_valid = intel_dp_mode_valid,
4012	.best_encoder = intel_best_encoder,
4013};
4014
4015static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4016	.destroy = intel_dp_encoder_destroy,
4017};
4018
4019void
4020intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4021{
4022	return;
4023}
4024
4025bool
4026intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4027{
4028	struct intel_dp *intel_dp = &intel_dig_port->dp;
4029	struct drm_device *dev = intel_dig_port->base.base.dev;
4030	struct drm_i915_private *dev_priv = dev->dev_private;
4031	int ret;
4032	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4033		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4034
4035	DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4036		      long_hpd ? "long" : "short");
4037
4038	if (long_hpd) {
4039		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4040			goto mst_fail;
4041
4042		if (!intel_dp_get_dpcd(intel_dp)) {
4043			goto mst_fail;
4044		}
4045
4046		intel_dp_probe_oui(intel_dp);
4047
4048		if (!intel_dp_probe_mst(intel_dp))
4049			goto mst_fail;
4050
4051	} else {
4052		if (intel_dp->is_mst) {
4053			ret = intel_dp_check_mst_status(intel_dp);
4054			if (ret == -EINVAL)
4055				goto mst_fail;
4056		}
4057
4058		if (!intel_dp->is_mst) {
4059			/*
4060			 * we'll check the link status via the normal hot plug path later -
4061			 * but for short hpds we should check it now
4062			 */
4063			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4064			intel_dp_check_link_status(intel_dp);
4065			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4066		}
4067	}
4068	return false;
4069mst_fail:
4070	/* if we were in MST mode, and device is not there get out of MST mode */
4071	if (intel_dp->is_mst) {
4072		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4073		intel_dp->is_mst = false;
4074		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4075	}
4076	return true;
4077}
4078
4079/* Return which DP Port should be selected for Transcoder DP control */
4080int
4081intel_trans_dp_port_sel(struct drm_crtc *crtc)
4082{
4083	struct drm_device *dev = crtc->dev;
4084	struct intel_encoder *intel_encoder;
4085	struct intel_dp *intel_dp;
4086
4087	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4088		intel_dp = enc_to_intel_dp(&intel_encoder->base);
4089
4090		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4091		    intel_encoder->type == INTEL_OUTPUT_EDP)
4092			return intel_dp->output_reg;
4093	}
4094
4095	return -1;
4096}
4097
4098/* check the VBT to see whether the eDP is on DP-D port */
4099bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4100{
4101	struct drm_i915_private *dev_priv = dev->dev_private;
4102	union child_device_config *p_child;
4103	int i;
4104	static const short port_mapping[] = {
4105		[PORT_B] = PORT_IDPB,
4106		[PORT_C] = PORT_IDPC,
4107		[PORT_D] = PORT_IDPD,
4108	};
4109
4110	if (port == PORT_A)
4111		return true;
4112
4113	if (!dev_priv->vbt.child_dev_num)
4114		return false;
4115
4116	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4117		p_child = dev_priv->vbt.child_dev + i;
4118
4119		if (p_child->common.dvo_port == port_mapping[port] &&
4120		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4121		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4122			return true;
4123	}
4124	return false;
4125}
4126
4127void
4128intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4129{
4130	struct intel_connector *intel_connector = to_intel_connector(connector);
4131
4132	intel_attach_force_audio_property(connector);
4133	intel_attach_broadcast_rgb_property(connector);
4134	intel_dp->color_range_auto = true;
4135
4136	if (is_edp(intel_dp)) {
4137		drm_mode_create_scaling_mode_property(connector->dev);
4138		drm_object_attach_property(
4139			&connector->base,
4140			connector->dev->mode_config.scaling_mode_property,
4141			DRM_MODE_SCALE_ASPECT);
4142		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4143	}
4144}
4145
4146static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4147{
4148	intel_dp->last_power_cycle = jiffies;
4149	intel_dp->last_power_on = jiffies;
4150	intel_dp->last_backlight_off = jiffies;
4151}
4152
4153static void
4154intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4155				    struct intel_dp *intel_dp,
4156				    struct edp_power_seq *out)
4157{
4158	struct drm_i915_private *dev_priv = dev->dev_private;
4159	struct edp_power_seq cur, vbt, spec, final;
4160	u32 pp_on, pp_off, pp_div, pp;
4161	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4162
4163	if (HAS_PCH_SPLIT(dev)) {
4164		pp_ctrl_reg = PCH_PP_CONTROL;
4165		pp_on_reg = PCH_PP_ON_DELAYS;
4166		pp_off_reg = PCH_PP_OFF_DELAYS;
4167		pp_div_reg = PCH_PP_DIVISOR;
4168	} else {
4169		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4170
4171		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4172		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4173		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4174		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4175	}
4176
4177	/* Workaround: Need to write PP_CONTROL with the unlock key as
4178	 * the very first thing. */
4179	pp = ironlake_get_pp_control(intel_dp);
4180	I915_WRITE(pp_ctrl_reg, pp);
4181
4182	pp_on = I915_READ(pp_on_reg);
4183	pp_off = I915_READ(pp_off_reg);
4184	pp_div = I915_READ(pp_div_reg);
4185
4186	/* Pull timing values out of registers */
4187	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4188		PANEL_POWER_UP_DELAY_SHIFT;
4189
4190	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4191		PANEL_LIGHT_ON_DELAY_SHIFT;
4192
4193	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4194		PANEL_LIGHT_OFF_DELAY_SHIFT;
4195
4196	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4197		PANEL_POWER_DOWN_DELAY_SHIFT;
4198
4199	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4200		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4201
4202	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4203		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4204
4205	vbt = dev_priv->vbt.edp_pps;
4206
4207	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4208	 * our hw here, which are all in 100usec. */
4209	spec.t1_t3 = 210 * 10;
4210	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4211	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4212	spec.t10 = 500 * 10;
4213	/* This one is special and actually in units of 100ms, but zero
4214	 * based in the hw (so we need to add 100 ms). But the sw vbt
4215	 * table multiplies it with 1000 to make it in units of 100usec,
4216	 * too. */
4217	spec.t11_t12 = (510 + 100) * 10;
4218
4219	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4220		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4221
4222	/* Use the max of the register settings and vbt. If both are
4223	 * unset, fall back to the spec limits. */
4224#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4225				       spec.field : \
4226				       max(cur.field, vbt.field))
4227	assign_final(t1_t3);
4228	assign_final(t8);
4229	assign_final(t9);
4230	assign_final(t10);
4231	assign_final(t11_t12);
4232#undef assign_final
4233
4234#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4235	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4236	intel_dp->backlight_on_delay = get_delay(t8);
4237	intel_dp->backlight_off_delay = get_delay(t9);
4238	intel_dp->panel_power_down_delay = get_delay(t10);
4239	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4240#undef get_delay
4241
4242	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4243		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4244		      intel_dp->panel_power_cycle_delay);
4245
4246	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4247		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4248
4249	if (out)
4250		*out = final;
4251}
4252
4253static void
4254intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4255					      struct intel_dp *intel_dp,
4256					      struct edp_power_seq *seq)
4257{
4258	struct drm_i915_private *dev_priv = dev->dev_private;
4259	u32 pp_on, pp_off, pp_div, port_sel = 0;
4260	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4261	int pp_on_reg, pp_off_reg, pp_div_reg;
4262
4263	if (HAS_PCH_SPLIT(dev)) {
4264		pp_on_reg = PCH_PP_ON_DELAYS;
4265		pp_off_reg = PCH_PP_OFF_DELAYS;
4266		pp_div_reg = PCH_PP_DIVISOR;
4267	} else {
4268		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4269
4270		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4271		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4272		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4273	}
4274
4275	/*
4276	 * And finally store the new values in the power sequencer. The
4277	 * backlight delays are set to 1 because we do manual waits on them. For
4278	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4279	 * we'll end up waiting for the backlight off delay twice: once when we
4280	 * do the manual sleep, and once when we disable the panel and wait for
4281	 * the PP_STATUS bit to become zero.
4282	 */
4283	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4284		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4285	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4286		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4287	/* Compute the divisor for the pp clock, simply match the Bspec
4288	 * formula. */
4289	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4290	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4291			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4292
4293	/* Haswell doesn't have any port selection bits for the panel
4294	 * power sequencer any more. */
4295	if (IS_VALLEYVIEW(dev)) {
4296		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4297			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4298		else
4299			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4300	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4301		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4302			port_sel = PANEL_PORT_SELECT_DPA;
4303		else
4304			port_sel = PANEL_PORT_SELECT_DPD;
4305	}
4306
4307	pp_on |= port_sel;
4308
4309	I915_WRITE(pp_on_reg, pp_on);
4310	I915_WRITE(pp_off_reg, pp_off);
4311	I915_WRITE(pp_div_reg, pp_div);
4312
4313	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4314		      I915_READ(pp_on_reg),
4315		      I915_READ(pp_off_reg),
4316		      I915_READ(pp_div_reg));
4317}
4318
4319void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4320{
4321	struct drm_i915_private *dev_priv = dev->dev_private;
4322	struct intel_encoder *encoder;
4323	struct intel_dp *intel_dp = NULL;
4324	struct intel_crtc_config *config = NULL;
4325	struct intel_crtc *intel_crtc = NULL;
4326	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4327	u32 reg, val;
4328	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4329
4330	if (refresh_rate <= 0) {
4331		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4332		return;
4333	}
4334
4335	if (intel_connector == NULL) {
4336		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4337		return;
4338	}
4339
4340	/*
4341	 * FIXME: This needs proper synchronization with psr state. But really
4342	 * hard to tell without seeing the user of this function of this code.
4343	 * Check locking and ordering once that lands.
4344	 */
4345	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4346		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4347		return;
4348	}
4349
4350	encoder = intel_attached_encoder(&intel_connector->base);
4351	intel_dp = enc_to_intel_dp(&encoder->base);
4352	intel_crtc = encoder->new_crtc;
4353
4354	if (!intel_crtc) {
4355		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4356		return;
4357	}
4358
4359	config = &intel_crtc->config;
4360
4361	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4362		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4363		return;
4364	}
4365
4366	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4367		index = DRRS_LOW_RR;
4368
4369	if (index == intel_dp->drrs_state.refresh_rate_type) {
4370		DRM_DEBUG_KMS(
4371			"DRRS requested for previously set RR...ignoring\n");
4372		return;
4373	}
4374
4375	if (!intel_crtc->active) {
4376		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4377		return;
4378	}
4379
4380	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4381		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4382		val = I915_READ(reg);
4383		if (index > DRRS_HIGH_RR) {
4384			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4385			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4386		} else {
4387			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4388		}
4389		I915_WRITE(reg, val);
4390	}
4391
4392	/*
4393	 * mutex taken to ensure that there is no race between differnt
4394	 * drrs calls trying to update refresh rate. This scenario may occur
4395	 * in future when idleness detection based DRRS in kernel and
4396	 * possible calls from user space to set differnt RR are made.
4397	 */
4398
4399	mutex_lock(&intel_dp->drrs_state.mutex);
4400
4401	intel_dp->drrs_state.refresh_rate_type = index;
4402
4403	mutex_unlock(&intel_dp->drrs_state.mutex);
4404
4405	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4406}
4407
4408static struct drm_display_mode *
4409intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4410			struct intel_connector *intel_connector,
4411			struct drm_display_mode *fixed_mode)
4412{
4413	struct drm_connector *connector = &intel_connector->base;
4414	struct intel_dp *intel_dp = &intel_dig_port->dp;
4415	struct drm_device *dev = intel_dig_port->base.base.dev;
4416	struct drm_i915_private *dev_priv = dev->dev_private;
4417	struct drm_display_mode *downclock_mode = NULL;
4418
4419	if (INTEL_INFO(dev)->gen <= 6) {
4420		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4421		return NULL;
4422	}
4423
4424	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4425		DRM_INFO("VBT doesn't support DRRS\n");
4426		return NULL;
4427	}
4428
4429	downclock_mode = intel_find_panel_downclock
4430					(dev, fixed_mode, connector);
4431
4432	if (!downclock_mode) {
4433		DRM_INFO("DRRS not supported\n");
4434		return NULL;
4435	}
4436
4437	dev_priv->drrs.connector = intel_connector;
4438
4439	mutex_init(&intel_dp->drrs_state.mutex);
4440
4441	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4442
4443	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4444	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4445	return downclock_mode;
4446}
4447
4448static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4449				     struct intel_connector *intel_connector,
4450				     struct edp_power_seq *power_seq)
4451{
4452	struct drm_connector *connector = &intel_connector->base;
4453	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4454	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4455	struct drm_device *dev = intel_encoder->base.dev;
4456	struct drm_i915_private *dev_priv = dev->dev_private;
4457	struct drm_display_mode *fixed_mode = NULL;
4458	struct drm_display_mode *downclock_mode = NULL;
4459	bool has_dpcd;
4460	struct drm_display_mode *scan;
4461	struct edid *edid;
4462
4463	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4464
4465	if (!is_edp(intel_dp))
4466		return true;
4467
4468	/* The VDD bit needs a power domain reference, so if the bit is already
4469	 * enabled when we boot, grab this reference. */
4470	if (edp_have_panel_vdd(intel_dp)) {
4471		enum intel_display_power_domain power_domain;
4472		power_domain = intel_display_port_power_domain(intel_encoder);
4473		intel_display_power_get(dev_priv, power_domain);
4474	}
4475
4476	/* Cache DPCD and EDID for edp. */
4477	intel_edp_panel_vdd_on(intel_dp);
4478	has_dpcd = intel_dp_get_dpcd(intel_dp);
4479	edp_panel_vdd_off(intel_dp, false);
4480
4481	if (has_dpcd) {
4482		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4483			dev_priv->no_aux_handshake =
4484				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4485				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4486	} else {
4487		/* if this fails, presume the device is a ghost */
4488		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4489		return false;
4490	}
4491
4492	/* We now know it's not a ghost, init power sequence regs. */
4493	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4494
4495	mutex_lock(&dev->mode_config.mutex);
4496	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4497	if (edid) {
4498		if (drm_add_edid_modes(connector, edid)) {
4499			drm_mode_connector_update_edid_property(connector,
4500								edid);
4501			drm_edid_to_eld(connector, edid);
4502		} else {
4503			kfree(edid);
4504			edid = ERR_PTR(-EINVAL);
4505		}
4506	} else {
4507		edid = ERR_PTR(-ENOENT);
4508	}
4509	intel_connector->edid = edid;
4510
4511	/* prefer fixed mode from EDID if available */
4512	list_for_each_entry(scan, &connector->probed_modes, head) {
4513		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4514			fixed_mode = drm_mode_duplicate(dev, scan);
4515			downclock_mode = intel_dp_drrs_init(
4516						intel_dig_port,
4517						intel_connector, fixed_mode);
4518			break;
4519		}
4520	}
4521
4522	/* fallback to VBT if available for eDP */
4523	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4524		fixed_mode = drm_mode_duplicate(dev,
4525					dev_priv->vbt.lfp_lvds_vbt_mode);
4526		if (fixed_mode)
4527			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4528	}
4529	mutex_unlock(&dev->mode_config.mutex);
4530
4531	if (IS_VALLEYVIEW(dev)) {
4532		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4533		register_reboot_notifier(&intel_dp->edp_notifier);
4534	}
4535
4536	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4537	intel_panel_setup_backlight(connector);
4538
4539	return true;
4540}
4541
4542bool
4543intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4544			struct intel_connector *intel_connector)
4545{
4546	struct drm_connector *connector = &intel_connector->base;
4547	struct intel_dp *intel_dp = &intel_dig_port->dp;
4548	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4549	struct drm_device *dev = intel_encoder->base.dev;
4550	struct drm_i915_private *dev_priv = dev->dev_private;
4551	enum port port = intel_dig_port->port;
4552	struct edp_power_seq power_seq = { 0 };
4553	int type;
4554
4555	/* intel_dp vfuncs */
4556	if (IS_VALLEYVIEW(dev))
4557		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4558	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4559		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4560	else if (HAS_PCH_SPLIT(dev))
4561		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4562	else
4563		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4564
4565	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4566
4567	/* Preserve the current hw state. */
4568	intel_dp->DP = I915_READ(intel_dp->output_reg);
4569	intel_dp->attached_connector = intel_connector;
4570
4571	if (intel_dp_is_edp(dev, port))
4572		type = DRM_MODE_CONNECTOR_eDP;
4573	else
4574		type = DRM_MODE_CONNECTOR_DisplayPort;
4575
4576	/*
4577	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4578	 * for DP the encoder type can be set by the caller to
4579	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4580	 */
4581	if (type == DRM_MODE_CONNECTOR_eDP)
4582		intel_encoder->type = INTEL_OUTPUT_EDP;
4583
4584	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4585			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4586			port_name(port));
4587
4588	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4589	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4590
4591	connector->interlace_allowed = true;
4592	connector->doublescan_allowed = 0;
4593
4594	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4595			  edp_panel_vdd_work);
4596
4597	intel_connector_attach_encoder(intel_connector, intel_encoder);
4598	drm_connector_register(connector);
4599
4600	if (HAS_DDI(dev))
4601		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4602	else
4603		intel_connector->get_hw_state = intel_connector_get_hw_state;
4604	intel_connector->unregister = intel_dp_connector_unregister;
4605
4606	/* Set up the hotplug pin. */
4607	switch (port) {
4608	case PORT_A:
4609		intel_encoder->hpd_pin = HPD_PORT_A;
4610		break;
4611	case PORT_B:
4612		intel_encoder->hpd_pin = HPD_PORT_B;
4613		break;
4614	case PORT_C:
4615		intel_encoder->hpd_pin = HPD_PORT_C;
4616		break;
4617	case PORT_D:
4618		intel_encoder->hpd_pin = HPD_PORT_D;
4619		break;
4620	default:
4621		BUG();
4622	}
4623
4624	if (is_edp(intel_dp)) {
4625		intel_dp_init_panel_power_timestamps(intel_dp);
4626		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4627	}
4628
4629	intel_dp_aux_init(intel_dp, intel_connector);
4630
4631	/* init MST on ports that can support it */
4632	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4633		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4634			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4635		}
4636	}
4637
4638	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4639		drm_dp_aux_unregister(&intel_dp->aux);
4640		if (is_edp(intel_dp)) {
4641			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4642			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4643			edp_panel_vdd_off_sync(intel_dp);
4644			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4645		}
4646		drm_connector_unregister(connector);
4647		drm_connector_cleanup(connector);
4648		return false;
4649	}
4650
4651	intel_dp_add_properties(intel_dp, connector);
4652
4653	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4654	 * 0xd.  Failure to do so will result in spurious interrupts being
4655	 * generated on the port when a cable is not attached.
4656	 */
4657	if (IS_G4X(dev) && !IS_GM45(dev)) {
4658		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4659		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4660	}
4661
4662	return true;
4663}
4664
4665void
4666intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4667{
4668	struct drm_i915_private *dev_priv = dev->dev_private;
4669	struct intel_digital_port *intel_dig_port;
4670	struct intel_encoder *intel_encoder;
4671	struct drm_encoder *encoder;
4672	struct intel_connector *intel_connector;
4673
4674	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4675	if (!intel_dig_port)
4676		return;
4677
4678	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4679	if (!intel_connector) {
4680		kfree(intel_dig_port);
4681		return;
4682	}
4683
4684	intel_encoder = &intel_dig_port->base;
4685	encoder = &intel_encoder->base;
4686
4687	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4688			 DRM_MODE_ENCODER_TMDS);
4689
4690	intel_encoder->compute_config = intel_dp_compute_config;
4691	intel_encoder->disable = intel_disable_dp;
4692	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4693	intel_encoder->get_config = intel_dp_get_config;
4694	if (IS_CHERRYVIEW(dev)) {
4695		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4696		intel_encoder->pre_enable = chv_pre_enable_dp;
4697		intel_encoder->enable = vlv_enable_dp;
4698		intel_encoder->post_disable = chv_post_disable_dp;
4699	} else if (IS_VALLEYVIEW(dev)) {
4700		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4701		intel_encoder->pre_enable = vlv_pre_enable_dp;
4702		intel_encoder->enable = vlv_enable_dp;
4703		intel_encoder->post_disable = vlv_post_disable_dp;
4704	} else {
4705		intel_encoder->pre_enable = g4x_pre_enable_dp;
4706		intel_encoder->enable = g4x_enable_dp;
4707		intel_encoder->post_disable = g4x_post_disable_dp;
4708	}
4709
4710	intel_dig_port->port = port;
4711	intel_dig_port->dp.output_reg = output_reg;
4712
4713	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4714	if (IS_CHERRYVIEW(dev)) {
4715		if (port == PORT_D)
4716			intel_encoder->crtc_mask = 1 << 2;
4717		else
4718			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4719	} else {
4720		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4721	}
4722	intel_encoder->cloneable = 0;
4723	intel_encoder->hot_plug = intel_dp_hot_plug;
4724
4725	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4726	dev_priv->hpd_irq_port[port] = intel_dig_port;
4727
4728	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4729		drm_encoder_cleanup(encoder);
4730		kfree(intel_dig_port);
4731		kfree(intel_connector);
4732	}
4733}
4734
4735void intel_dp_mst_suspend(struct drm_device *dev)
4736{
4737	struct drm_i915_private *dev_priv = dev->dev_private;
4738	int i;
4739
4740	/* disable MST */
4741	for (i = 0; i < I915_MAX_PORTS; i++) {
4742		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4743		if (!intel_dig_port)
4744			continue;
4745
4746		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4747			if (!intel_dig_port->dp.can_mst)
4748				continue;
4749			if (intel_dig_port->dp.is_mst)
4750				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4751		}
4752	}
4753}
4754
4755void intel_dp_mst_resume(struct drm_device *dev)
4756{
4757	struct drm_i915_private *dev_priv = dev->dev_private;
4758	int i;
4759
4760	for (i = 0; i < I915_MAX_PORTS; i++) {
4761		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4762		if (!intel_dig_port)
4763			continue;
4764		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4765			int ret;
4766
4767			if (!intel_dig_port->dp.can_mst)
4768				continue;
4769
4770			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4771			if (ret != 0) {
4772				intel_dp_check_mst_status(&intel_dig_port->dp);
4773			}
4774		}
4775	}
4776}
4777