intel_dp.c revision 6b27f7f0e97b2819f5e272ffc2dda24881caebd6
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41struct dp_link_dpll {
42	int link_bw;
43	struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47	{ DP_LINK_BW_1_62,
48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49	{ DP_LINK_BW_2_7,
50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54	{ DP_LINK_BW_1_62,
55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56	{ DP_LINK_BW_2_7,
57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61	{ DP_LINK_BW_1_62,
62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63	{ DP_LINK_BW_2_7,
64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74static bool is_edp(struct intel_dp *intel_dp)
75{
76	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79}
80
81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82{
83	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85	return intel_dig_port->base.base.dev;
86}
87
88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89{
90	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91}
92
93static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95static int
96intel_dp_max_link_bw(struct intel_dp *intel_dp)
97{
98	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100	switch (max_link_bw) {
101	case DP_LINK_BW_1_62:
102	case DP_LINK_BW_2_7:
103		break;
104	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105		max_link_bw = DP_LINK_BW_2_7;
106		break;
107	default:
108		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109		     max_link_bw);
110		max_link_bw = DP_LINK_BW_1_62;
111		break;
112	}
113	return max_link_bw;
114}
115
116/*
117 * The units on the numbers in the next two are... bizarre.  Examples will
118 * make it clearer; this one parallels an example in the eDP spec.
119 *
120 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121 *
122 *     270000 * 1 * 8 / 10 == 216000
123 *
124 * The actual data capacity of that configuration is 2.16Gbit/s, so the
125 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127 * 119000.  At 18bpp that's 2142000 kilobits per second.
128 *
129 * Thus the strange-looking division by 10 in intel_dp_link_required, to
130 * get the result in decakilobits instead of kilobits.
131 */
132
133static int
134intel_dp_link_required(int pixel_clock, int bpp)
135{
136	return (pixel_clock * bpp + 9) / 10;
137}
138
139static int
140intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141{
142	return (max_link_clock * max_lanes * 8) / 10;
143}
144
145static enum drm_mode_status
146intel_dp_mode_valid(struct drm_connector *connector,
147		    struct drm_display_mode *mode)
148{
149	struct intel_dp *intel_dp = intel_attached_dp(connector);
150	struct intel_connector *intel_connector = to_intel_connector(connector);
151	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152	int target_clock = mode->clock;
153	int max_rate, mode_rate, max_lanes, max_link_clock;
154
155	if (is_edp(intel_dp) && fixed_mode) {
156		if (mode->hdisplay > fixed_mode->hdisplay)
157			return MODE_PANEL;
158
159		if (mode->vdisplay > fixed_mode->vdisplay)
160			return MODE_PANEL;
161
162		target_clock = fixed_mode->clock;
163	}
164
165	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166	max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169	mode_rate = intel_dp_link_required(target_clock, 18);
170
171	if (mode_rate > max_rate)
172		return MODE_CLOCK_HIGH;
173
174	if (mode->clock < 10000)
175		return MODE_CLOCK_LOW;
176
177	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178		return MODE_H_ILLEGAL;
179
180	return MODE_OK;
181}
182
183static uint32_t
184pack_aux(uint8_t *src, int src_bytes)
185{
186	int	i;
187	uint32_t v = 0;
188
189	if (src_bytes > 4)
190		src_bytes = 4;
191	for (i = 0; i < src_bytes; i++)
192		v |= ((uint32_t) src[i]) << ((3-i) * 8);
193	return v;
194}
195
196static void
197unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198{
199	int i;
200	if (dst_bytes > 4)
201		dst_bytes = 4;
202	for (i = 0; i < dst_bytes; i++)
203		dst[i] = src >> ((3-i) * 8);
204}
205
206/* hrawclock is 1/4 the FSB frequency */
207static int
208intel_hrawclk(struct drm_device *dev)
209{
210	struct drm_i915_private *dev_priv = dev->dev_private;
211	uint32_t clkcfg;
212
213	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214	if (IS_VALLEYVIEW(dev))
215		return 200;
216
217	clkcfg = I915_READ(CLKCFG);
218	switch (clkcfg & CLKCFG_FSB_MASK) {
219	case CLKCFG_FSB_400:
220		return 100;
221	case CLKCFG_FSB_533:
222		return 133;
223	case CLKCFG_FSB_667:
224		return 166;
225	case CLKCFG_FSB_800:
226		return 200;
227	case CLKCFG_FSB_1067:
228		return 266;
229	case CLKCFG_FSB_1333:
230		return 333;
231	/* these two are just a guess; one of them might be right */
232	case CLKCFG_FSB_1600:
233	case CLKCFG_FSB_1600_ALT:
234		return 400;
235	default:
236		return 133;
237	}
238}
239
240static void
241intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242				    struct intel_dp *intel_dp,
243				    struct edp_power_seq *out);
244static void
245intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246					      struct intel_dp *intel_dp,
247					      struct edp_power_seq *out);
248
249static enum pipe
250vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251{
252	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254	struct drm_device *dev = intel_dig_port->base.base.dev;
255	struct drm_i915_private *dev_priv = dev->dev_private;
256	enum port port = intel_dig_port->port;
257	enum pipe pipe;
258
259	/* modeset should have pipe */
260	if (crtc)
261		return to_intel_crtc(crtc)->pipe;
262
263	/* init time, try to find a pipe with this port selected */
264	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266			PANEL_PORT_SELECT_MASK;
267		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268			return pipe;
269		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270			return pipe;
271	}
272
273	/* shrug */
274	return PIPE_A;
275}
276
277static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278{
279	struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281	if (HAS_PCH_SPLIT(dev))
282		return PCH_PP_CONTROL;
283	else
284		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285}
286
287static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288{
289	struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291	if (HAS_PCH_SPLIT(dev))
292		return PCH_PP_STATUS;
293	else
294		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295}
296
297static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298{
299	struct drm_device *dev = intel_dp_to_dev(intel_dp);
300	struct drm_i915_private *dev_priv = dev->dev_private;
301
302	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303}
304
305static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306{
307	struct drm_device *dev = intel_dp_to_dev(intel_dp);
308	struct drm_i915_private *dev_priv = dev->dev_private;
309
310	return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311}
312
313static void
314intel_dp_check_edp(struct intel_dp *intel_dp)
315{
316	struct drm_device *dev = intel_dp_to_dev(intel_dp);
317	struct drm_i915_private *dev_priv = dev->dev_private;
318
319	if (!is_edp(intel_dp))
320		return;
321
322	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323		WARN(1, "eDP powered off while attempting aux channel communication.\n");
324		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325			      I915_READ(_pp_stat_reg(intel_dp)),
326			      I915_READ(_pp_ctrl_reg(intel_dp)));
327	}
328}
329
330static uint32_t
331intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332{
333	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334	struct drm_device *dev = intel_dig_port->base.base.dev;
335	struct drm_i915_private *dev_priv = dev->dev_private;
336	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337	uint32_t status;
338	bool done;
339
340#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341	if (has_aux_irq)
342		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343					  msecs_to_jiffies_timeout(10));
344	else
345		done = wait_for_atomic(C, 10) == 0;
346	if (!done)
347		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348			  has_aux_irq);
349#undef C
350
351	return status;
352}
353
354static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355				      int index)
356{
357	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358	struct drm_device *dev = intel_dig_port->base.base.dev;
359	struct drm_i915_private *dev_priv = dev->dev_private;
360
361	/* The clock divider is based off the hrawclk,
362	 * and would like to run at 2MHz. So, take the
363	 * hrawclk value and divide by 2 and use that
364	 *
365	 * Note that PCH attached eDP panels should use a 125MHz input
366	 * clock divider.
367	 */
368	if (IS_VALLEYVIEW(dev)) {
369		return index ? 0 : 100;
370	} else if (intel_dig_port->port == PORT_A) {
371		if (index)
372			return 0;
373		if (HAS_DDI(dev))
374			return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375		else if (IS_GEN6(dev) || IS_GEN7(dev))
376			return 200; /* SNB & IVB eDP input clock at 400Mhz */
377		else
378			return 225; /* eDP input clock at 450Mhz */
379	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380		/* Workaround for non-ULT HSW */
381		switch (index) {
382		case 0: return 63;
383		case 1: return 72;
384		default: return 0;
385		}
386	} else if (HAS_PCH_SPLIT(dev)) {
387		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388	} else {
389		return index ? 0 :intel_hrawclk(dev) / 2;
390	}
391}
392
393static int
394intel_dp_aux_ch(struct intel_dp *intel_dp,
395		uint8_t *send, int send_bytes,
396		uint8_t *recv, int recv_size)
397{
398	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399	struct drm_device *dev = intel_dig_port->base.base.dev;
400	struct drm_i915_private *dev_priv = dev->dev_private;
401	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402	uint32_t ch_data = ch_ctl + 4;
403	uint32_t aux_clock_divider;
404	int i, ret, recv_bytes;
405	uint32_t status;
406	int try, precharge, clock = 0;
407	bool has_aux_irq = true;
408	uint32_t timeout;
409
410	/* dp aux is extremely sensitive to irq latency, hence request the
411	 * lowest possible wakeup latency and so prevent the cpu from going into
412	 * deep sleep states.
413	 */
414	pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416	intel_dp_check_edp(intel_dp);
417
418	if (IS_GEN6(dev))
419		precharge = 3;
420	else
421		precharge = 5;
422
423	if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425	else
426		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428	intel_aux_display_runtime_get(dev_priv);
429
430	/* Try to wait for any previous AUX channel activity */
431	for (try = 0; try < 3; try++) {
432		status = I915_READ_NOTRACE(ch_ctl);
433		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434			break;
435		msleep(1);
436	}
437
438	if (try == 3) {
439		WARN(1, "dp_aux_ch not started status 0x%08x\n",
440		     I915_READ(ch_ctl));
441		ret = -EBUSY;
442		goto out;
443	}
444
445	/* Only 5 data registers! */
446	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447		ret = -E2BIG;
448		goto out;
449	}
450
451	while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452		/* Must try at least 3 times according to DP spec */
453		for (try = 0; try < 5; try++) {
454			/* Load the send data into the aux channel data registers */
455			for (i = 0; i < send_bytes; i += 4)
456				I915_WRITE(ch_data + i,
457					   pack_aux(send + i, send_bytes - i));
458
459			/* Send the command and wait for it to complete */
460			I915_WRITE(ch_ctl,
461				   DP_AUX_CH_CTL_SEND_BUSY |
462				   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463				   timeout |
464				   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465				   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466				   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467				   DP_AUX_CH_CTL_DONE |
468				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
469				   DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473			/* Clear done status and any errors */
474			I915_WRITE(ch_ctl,
475				   status |
476				   DP_AUX_CH_CTL_DONE |
477				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
478				   DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481				      DP_AUX_CH_CTL_RECEIVE_ERROR))
482				continue;
483			if (status & DP_AUX_CH_CTL_DONE)
484				break;
485		}
486		if (status & DP_AUX_CH_CTL_DONE)
487			break;
488	}
489
490	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492		ret = -EBUSY;
493		goto out;
494	}
495
496	/* Check for timeout or receive error.
497	 * Timeouts occur when the sink is not connected
498	 */
499	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501		ret = -EIO;
502		goto out;
503	}
504
505	/* Timeouts occur when the device isn't connected, so they're
506	 * "normal" -- don't fill the kernel log with these */
507	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509		ret = -ETIMEDOUT;
510		goto out;
511	}
512
513	/* Unload any bytes sent back from the other side */
514	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516	if (recv_bytes > recv_size)
517		recv_bytes = recv_size;
518
519	for (i = 0; i < recv_bytes; i += 4)
520		unpack_aux(I915_READ(ch_data + i),
521			   recv + i, recv_bytes - i);
522
523	ret = recv_bytes;
524out:
525	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526	intel_aux_display_runtime_put(dev_priv);
527
528	return ret;
529}
530
531/* Write data to the aux channel in native mode */
532static int
533intel_dp_aux_native_write(struct intel_dp *intel_dp,
534			  uint16_t address, uint8_t *send, int send_bytes)
535{
536	int ret;
537	uint8_t	msg[20];
538	int msg_bytes;
539	uint8_t	ack;
540
541	if (WARN_ON(send_bytes > 16))
542		return -E2BIG;
543
544	intel_dp_check_edp(intel_dp);
545	msg[0] = DP_AUX_NATIVE_WRITE << 4;
546	msg[1] = address >> 8;
547	msg[2] = address & 0xff;
548	msg[3] = send_bytes - 1;
549	memcpy(&msg[4], send, send_bytes);
550	msg_bytes = send_bytes + 4;
551	for (;;) {
552		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
553		if (ret < 0)
554			return ret;
555		ack >>= 4;
556		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
557			break;
558		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
559			udelay(100);
560		else
561			return -EIO;
562	}
563	return send_bytes;
564}
565
566/* Write a single byte to the aux channel in native mode */
567static int
568intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
569			    uint16_t address, uint8_t byte)
570{
571	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
572}
573
574/* read bytes from a native aux channel */
575static int
576intel_dp_aux_native_read(struct intel_dp *intel_dp,
577			 uint16_t address, uint8_t *recv, int recv_bytes)
578{
579	uint8_t msg[4];
580	int msg_bytes;
581	uint8_t reply[20];
582	int reply_bytes;
583	uint8_t ack;
584	int ret;
585
586	if (WARN_ON(recv_bytes > 19))
587		return -E2BIG;
588
589	intel_dp_check_edp(intel_dp);
590	msg[0] = DP_AUX_NATIVE_READ << 4;
591	msg[1] = address >> 8;
592	msg[2] = address & 0xff;
593	msg[3] = recv_bytes - 1;
594
595	msg_bytes = 4;
596	reply_bytes = recv_bytes + 1;
597
598	for (;;) {
599		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
600				      reply, reply_bytes);
601		if (ret == 0)
602			return -EPROTO;
603		if (ret < 0)
604			return ret;
605		ack = reply[0] >> 4;
606		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
607			memcpy(recv, reply + 1, ret - 1);
608			return ret - 1;
609		}
610		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
611			udelay(100);
612		else
613			return -EIO;
614	}
615}
616
617static int
618intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
619		    uint8_t write_byte, uint8_t *read_byte)
620{
621	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
622	struct intel_dp *intel_dp = container_of(adapter,
623						struct intel_dp,
624						adapter);
625	uint16_t address = algo_data->address;
626	uint8_t msg[5];
627	uint8_t reply[2];
628	unsigned retry;
629	int msg_bytes;
630	int reply_bytes;
631	int ret;
632
633	ironlake_edp_panel_vdd_on(intel_dp);
634	intel_dp_check_edp(intel_dp);
635	/* Set up the command byte */
636	if (mode & MODE_I2C_READ)
637		msg[0] = DP_AUX_I2C_READ << 4;
638	else
639		msg[0] = DP_AUX_I2C_WRITE << 4;
640
641	if (!(mode & MODE_I2C_STOP))
642		msg[0] |= DP_AUX_I2C_MOT << 4;
643
644	msg[1] = address >> 8;
645	msg[2] = address;
646
647	switch (mode) {
648	case MODE_I2C_WRITE:
649		msg[3] = 0;
650		msg[4] = write_byte;
651		msg_bytes = 5;
652		reply_bytes = 1;
653		break;
654	case MODE_I2C_READ:
655		msg[3] = 0;
656		msg_bytes = 4;
657		reply_bytes = 2;
658		break;
659	default:
660		msg_bytes = 3;
661		reply_bytes = 1;
662		break;
663	}
664
665	/*
666	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
667	 * required to retry at least seven times upon receiving AUX_DEFER
668	 * before giving up the AUX transaction.
669	 */
670	for (retry = 0; retry < 7; retry++) {
671		ret = intel_dp_aux_ch(intel_dp,
672				      msg, msg_bytes,
673				      reply, reply_bytes);
674		if (ret < 0) {
675			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
676			goto out;
677		}
678
679		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
680		case DP_AUX_NATIVE_REPLY_ACK:
681			/* I2C-over-AUX Reply field is only valid
682			 * when paired with AUX ACK.
683			 */
684			break;
685		case DP_AUX_NATIVE_REPLY_NACK:
686			DRM_DEBUG_KMS("aux_ch native nack\n");
687			ret = -EREMOTEIO;
688			goto out;
689		case DP_AUX_NATIVE_REPLY_DEFER:
690			/*
691			 * For now, just give more slack to branch devices. We
692			 * could check the DPCD for I2C bit rate capabilities,
693			 * and if available, adjust the interval. We could also
694			 * be more careful with DP-to-Legacy adapters where a
695			 * long legacy cable may force very low I2C bit rates.
696			 */
697			if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
698			    DP_DWN_STRM_PORT_PRESENT)
699				usleep_range(500, 600);
700			else
701				usleep_range(300, 400);
702			continue;
703		default:
704			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
705				  reply[0]);
706			ret = -EREMOTEIO;
707			goto out;
708		}
709
710		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
711		case DP_AUX_I2C_REPLY_ACK:
712			if (mode == MODE_I2C_READ) {
713				*read_byte = reply[1];
714			}
715			ret = reply_bytes - 1;
716			goto out;
717		case DP_AUX_I2C_REPLY_NACK:
718			DRM_DEBUG_KMS("aux_i2c nack\n");
719			ret = -EREMOTEIO;
720			goto out;
721		case DP_AUX_I2C_REPLY_DEFER:
722			DRM_DEBUG_KMS("aux_i2c defer\n");
723			udelay(100);
724			break;
725		default:
726			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
727			ret = -EREMOTEIO;
728			goto out;
729		}
730	}
731
732	DRM_ERROR("too many retries, giving up\n");
733	ret = -EREMOTEIO;
734
735out:
736	ironlake_edp_panel_vdd_off(intel_dp, false);
737	return ret;
738}
739
740static int
741intel_dp_i2c_init(struct intel_dp *intel_dp,
742		  struct intel_connector *intel_connector, const char *name)
743{
744	int	ret;
745
746	DRM_DEBUG_KMS("i2c_init %s\n", name);
747	intel_dp->algo.running = false;
748	intel_dp->algo.address = 0;
749	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
750
751	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
752	intel_dp->adapter.owner = THIS_MODULE;
753	intel_dp->adapter.class = I2C_CLASS_DDC;
754	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
755	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
756	intel_dp->adapter.algo_data = &intel_dp->algo;
757	intel_dp->adapter.dev.parent = intel_connector->base.kdev;
758
759	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
760	return ret;
761}
762
763static void
764intel_dp_set_clock(struct intel_encoder *encoder,
765		   struct intel_crtc_config *pipe_config, int link_bw)
766{
767	struct drm_device *dev = encoder->base.dev;
768	const struct dp_link_dpll *divisor = NULL;
769	int i, count = 0;
770
771	if (IS_G4X(dev)) {
772		divisor = gen4_dpll;
773		count = ARRAY_SIZE(gen4_dpll);
774	} else if (IS_HASWELL(dev)) {
775		/* Haswell has special-purpose DP DDI clocks. */
776	} else if (HAS_PCH_SPLIT(dev)) {
777		divisor = pch_dpll;
778		count = ARRAY_SIZE(pch_dpll);
779	} else if (IS_VALLEYVIEW(dev)) {
780		divisor = vlv_dpll;
781		count = ARRAY_SIZE(vlv_dpll);
782	}
783
784	if (divisor && count) {
785		for (i = 0; i < count; i++) {
786			if (link_bw == divisor[i].link_bw) {
787				pipe_config->dpll = divisor[i].dpll;
788				pipe_config->clock_set = true;
789				break;
790			}
791		}
792	}
793}
794
795bool
796intel_dp_compute_config(struct intel_encoder *encoder,
797			struct intel_crtc_config *pipe_config)
798{
799	struct drm_device *dev = encoder->base.dev;
800	struct drm_i915_private *dev_priv = dev->dev_private;
801	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
802	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
803	enum port port = dp_to_dig_port(intel_dp)->port;
804	struct intel_crtc *intel_crtc = encoder->new_crtc;
805	struct intel_connector *intel_connector = intel_dp->attached_connector;
806	int lane_count, clock;
807	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
808	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
809	int bpp, mode_rate;
810	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
811	int link_avail, link_clock;
812
813	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
814		pipe_config->has_pch_encoder = true;
815
816	pipe_config->has_dp_encoder = true;
817
818	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
819		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
820				       adjusted_mode);
821		if (!HAS_PCH_SPLIT(dev))
822			intel_gmch_panel_fitting(intel_crtc, pipe_config,
823						 intel_connector->panel.fitting_mode);
824		else
825			intel_pch_panel_fitting(intel_crtc, pipe_config,
826						intel_connector->panel.fitting_mode);
827	}
828
829	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
830		return false;
831
832	DRM_DEBUG_KMS("DP link computation with max lane count %i "
833		      "max bw %02x pixel clock %iKHz\n",
834		      max_lane_count, bws[max_clock],
835		      adjusted_mode->crtc_clock);
836
837	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
838	 * bpc in between. */
839	bpp = pipe_config->pipe_bpp;
840	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
841	    dev_priv->vbt.edp_bpp < bpp) {
842		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
843			      dev_priv->vbt.edp_bpp);
844		bpp = dev_priv->vbt.edp_bpp;
845	}
846
847	for (; bpp >= 6*3; bpp -= 2*3) {
848		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
849						   bpp);
850
851		for (clock = 0; clock <= max_clock; clock++) {
852			for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
853				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
854				link_avail = intel_dp_max_data_rate(link_clock,
855								    lane_count);
856
857				if (mode_rate <= link_avail) {
858					goto found;
859				}
860			}
861		}
862	}
863
864	return false;
865
866found:
867	if (intel_dp->color_range_auto) {
868		/*
869		 * See:
870		 * CEA-861-E - 5.1 Default Encoding Parameters
871		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
872		 */
873		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
874			intel_dp->color_range = DP_COLOR_RANGE_16_235;
875		else
876			intel_dp->color_range = 0;
877	}
878
879	if (intel_dp->color_range)
880		pipe_config->limited_color_range = true;
881
882	intel_dp->link_bw = bws[clock];
883	intel_dp->lane_count = lane_count;
884	pipe_config->pipe_bpp = bpp;
885	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
886
887	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
888		      intel_dp->link_bw, intel_dp->lane_count,
889		      pipe_config->port_clock, bpp);
890	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
891		      mode_rate, link_avail);
892
893	intel_link_compute_m_n(bpp, lane_count,
894			       adjusted_mode->crtc_clock,
895			       pipe_config->port_clock,
896			       &pipe_config->dp_m_n);
897
898	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
899
900	return true;
901}
902
903static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
904{
905	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
906	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
907	struct drm_device *dev = crtc->base.dev;
908	struct drm_i915_private *dev_priv = dev->dev_private;
909	u32 dpa_ctl;
910
911	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
912	dpa_ctl = I915_READ(DP_A);
913	dpa_ctl &= ~DP_PLL_FREQ_MASK;
914
915	if (crtc->config.port_clock == 162000) {
916		/* For a long time we've carried around a ILK-DevA w/a for the
917		 * 160MHz clock. If we're really unlucky, it's still required.
918		 */
919		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
920		dpa_ctl |= DP_PLL_FREQ_160MHZ;
921		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
922	} else {
923		dpa_ctl |= DP_PLL_FREQ_270MHZ;
924		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
925	}
926
927	I915_WRITE(DP_A, dpa_ctl);
928
929	POSTING_READ(DP_A);
930	udelay(500);
931}
932
933static void intel_dp_mode_set(struct intel_encoder *encoder)
934{
935	struct drm_device *dev = encoder->base.dev;
936	struct drm_i915_private *dev_priv = dev->dev_private;
937	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
938	enum port port = dp_to_dig_port(intel_dp)->port;
939	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
940	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
941
942	/*
943	 * There are four kinds of DP registers:
944	 *
945	 * 	IBX PCH
946	 * 	SNB CPU
947	 *	IVB CPU
948	 * 	CPT PCH
949	 *
950	 * IBX PCH and CPU are the same for almost everything,
951	 * except that the CPU DP PLL is configured in this
952	 * register
953	 *
954	 * CPT PCH is quite different, having many bits moved
955	 * to the TRANS_DP_CTL register instead. That
956	 * configuration happens (oddly) in ironlake_pch_enable
957	 */
958
959	/* Preserve the BIOS-computed detected bit. This is
960	 * supposed to be read-only.
961	 */
962	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
963
964	/* Handle DP bits in common between all three register formats */
965	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
966	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
967
968	if (intel_dp->has_audio) {
969		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
970				 pipe_name(crtc->pipe));
971		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
972		intel_write_eld(&encoder->base, adjusted_mode);
973	}
974
975	/* Split out the IBX/CPU vs CPT settings */
976
977	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
978		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
979			intel_dp->DP |= DP_SYNC_HS_HIGH;
980		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
981			intel_dp->DP |= DP_SYNC_VS_HIGH;
982		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
983
984		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
985			intel_dp->DP |= DP_ENHANCED_FRAMING;
986
987		intel_dp->DP |= crtc->pipe << 29;
988	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
989		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
990			intel_dp->DP |= intel_dp->color_range;
991
992		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
993			intel_dp->DP |= DP_SYNC_HS_HIGH;
994		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
995			intel_dp->DP |= DP_SYNC_VS_HIGH;
996		intel_dp->DP |= DP_LINK_TRAIN_OFF;
997
998		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
999			intel_dp->DP |= DP_ENHANCED_FRAMING;
1000
1001		if (crtc->pipe == 1)
1002			intel_dp->DP |= DP_PIPEB_SELECT;
1003	} else {
1004		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1005	}
1006
1007	if (port == PORT_A && !IS_VALLEYVIEW(dev))
1008		ironlake_set_pll_cpu_edp(intel_dp);
1009}
1010
1011#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1012#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1013
1014#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1015#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1016
1017#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1018#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1019
1020static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1021				       u32 mask,
1022				       u32 value)
1023{
1024	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1025	struct drm_i915_private *dev_priv = dev->dev_private;
1026	u32 pp_stat_reg, pp_ctrl_reg;
1027
1028	pp_stat_reg = _pp_stat_reg(intel_dp);
1029	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1030
1031	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1032			mask, value,
1033			I915_READ(pp_stat_reg),
1034			I915_READ(pp_ctrl_reg));
1035
1036	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1037		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1038				I915_READ(pp_stat_reg),
1039				I915_READ(pp_ctrl_reg));
1040	}
1041}
1042
1043static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1044{
1045	DRM_DEBUG_KMS("Wait for panel power on\n");
1046	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1047}
1048
1049static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1050{
1051	DRM_DEBUG_KMS("Wait for panel power off time\n");
1052	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1053}
1054
1055static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1056{
1057	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1058	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1059}
1060
1061
1062/* Read the current pp_control value, unlocking the register if it
1063 * is locked
1064 */
1065
1066static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1067{
1068	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1069	struct drm_i915_private *dev_priv = dev->dev_private;
1070	u32 control;
1071
1072	control = I915_READ(_pp_ctrl_reg(intel_dp));
1073	control &= ~PANEL_UNLOCK_MASK;
1074	control |= PANEL_UNLOCK_REGS;
1075	return control;
1076}
1077
1078void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1079{
1080	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1081	struct drm_i915_private *dev_priv = dev->dev_private;
1082	u32 pp;
1083	u32 pp_stat_reg, pp_ctrl_reg;
1084
1085	if (!is_edp(intel_dp))
1086		return;
1087
1088	WARN(intel_dp->want_panel_vdd,
1089	     "eDP VDD already requested on\n");
1090
1091	intel_dp->want_panel_vdd = true;
1092
1093	if (ironlake_edp_have_panel_vdd(intel_dp))
1094		return;
1095
1096	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1097
1098	if (!ironlake_edp_have_panel_power(intel_dp))
1099		ironlake_wait_panel_power_cycle(intel_dp);
1100
1101	pp = ironlake_get_pp_control(intel_dp);
1102	pp |= EDP_FORCE_VDD;
1103
1104	pp_stat_reg = _pp_stat_reg(intel_dp);
1105	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1106
1107	I915_WRITE(pp_ctrl_reg, pp);
1108	POSTING_READ(pp_ctrl_reg);
1109	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1110			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1111	/*
1112	 * If the panel wasn't on, delay before accessing aux channel
1113	 */
1114	if (!ironlake_edp_have_panel_power(intel_dp)) {
1115		DRM_DEBUG_KMS("eDP was not running\n");
1116		msleep(intel_dp->panel_power_up_delay);
1117	}
1118}
1119
1120static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1121{
1122	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1123	struct drm_i915_private *dev_priv = dev->dev_private;
1124	u32 pp;
1125	u32 pp_stat_reg, pp_ctrl_reg;
1126
1127	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1128
1129	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1130		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1131
1132		pp = ironlake_get_pp_control(intel_dp);
1133		pp &= ~EDP_FORCE_VDD;
1134
1135		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1136		pp_stat_reg = _pp_stat_reg(intel_dp);
1137
1138		I915_WRITE(pp_ctrl_reg, pp);
1139		POSTING_READ(pp_ctrl_reg);
1140
1141		/* Make sure sequencer is idle before allowing subsequent activity */
1142		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1143		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1144		msleep(intel_dp->panel_power_down_delay);
1145	}
1146}
1147
1148static void ironlake_panel_vdd_work(struct work_struct *__work)
1149{
1150	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1151						 struct intel_dp, panel_vdd_work);
1152	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153
1154	mutex_lock(&dev->mode_config.mutex);
1155	ironlake_panel_vdd_off_sync(intel_dp);
1156	mutex_unlock(&dev->mode_config.mutex);
1157}
1158
1159void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1160{
1161	if (!is_edp(intel_dp))
1162		return;
1163
1164	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1165
1166	intel_dp->want_panel_vdd = false;
1167
1168	if (sync) {
1169		ironlake_panel_vdd_off_sync(intel_dp);
1170	} else {
1171		/*
1172		 * Queue the timer to fire a long
1173		 * time from now (relative to the power down delay)
1174		 * to keep the panel power up across a sequence of operations
1175		 */
1176		schedule_delayed_work(&intel_dp->panel_vdd_work,
1177				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1178	}
1179}
1180
1181void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1182{
1183	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1184	struct drm_i915_private *dev_priv = dev->dev_private;
1185	u32 pp;
1186	u32 pp_ctrl_reg;
1187
1188	if (!is_edp(intel_dp))
1189		return;
1190
1191	DRM_DEBUG_KMS("Turn eDP power on\n");
1192
1193	if (ironlake_edp_have_panel_power(intel_dp)) {
1194		DRM_DEBUG_KMS("eDP power already on\n");
1195		return;
1196	}
1197
1198	ironlake_wait_panel_power_cycle(intel_dp);
1199
1200	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1201	pp = ironlake_get_pp_control(intel_dp);
1202	if (IS_GEN5(dev)) {
1203		/* ILK workaround: disable reset around power sequence */
1204		pp &= ~PANEL_POWER_RESET;
1205		I915_WRITE(pp_ctrl_reg, pp);
1206		POSTING_READ(pp_ctrl_reg);
1207	}
1208
1209	pp |= POWER_TARGET_ON;
1210	if (!IS_GEN5(dev))
1211		pp |= PANEL_POWER_RESET;
1212
1213	I915_WRITE(pp_ctrl_reg, pp);
1214	POSTING_READ(pp_ctrl_reg);
1215
1216	ironlake_wait_panel_on(intel_dp);
1217
1218	if (IS_GEN5(dev)) {
1219		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1220		I915_WRITE(pp_ctrl_reg, pp);
1221		POSTING_READ(pp_ctrl_reg);
1222	}
1223}
1224
1225void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1226{
1227	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1228	struct drm_i915_private *dev_priv = dev->dev_private;
1229	u32 pp;
1230	u32 pp_ctrl_reg;
1231
1232	if (!is_edp(intel_dp))
1233		return;
1234
1235	DRM_DEBUG_KMS("Turn eDP power off\n");
1236
1237	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1238
1239	pp = ironlake_get_pp_control(intel_dp);
1240	/* We need to switch off panel power _and_ force vdd, for otherwise some
1241	 * panels get very unhappy and cease to work. */
1242	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1243
1244	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1245
1246	I915_WRITE(pp_ctrl_reg, pp);
1247	POSTING_READ(pp_ctrl_reg);
1248
1249	intel_dp->want_panel_vdd = false;
1250
1251	ironlake_wait_panel_off(intel_dp);
1252}
1253
1254void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1255{
1256	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1257	struct drm_device *dev = intel_dig_port->base.base.dev;
1258	struct drm_i915_private *dev_priv = dev->dev_private;
1259	u32 pp;
1260	u32 pp_ctrl_reg;
1261
1262	if (!is_edp(intel_dp))
1263		return;
1264
1265	DRM_DEBUG_KMS("\n");
1266	/*
1267	 * If we enable the backlight right away following a panel power
1268	 * on, we may see slight flicker as the panel syncs with the eDP
1269	 * link.  So delay a bit to make sure the image is solid before
1270	 * allowing it to appear.
1271	 */
1272	msleep(intel_dp->backlight_on_delay);
1273	pp = ironlake_get_pp_control(intel_dp);
1274	pp |= EDP_BLC_ENABLE;
1275
1276	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1277
1278	I915_WRITE(pp_ctrl_reg, pp);
1279	POSTING_READ(pp_ctrl_reg);
1280
1281	intel_panel_enable_backlight(intel_dp->attached_connector);
1282}
1283
1284void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1285{
1286	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1287	struct drm_i915_private *dev_priv = dev->dev_private;
1288	u32 pp;
1289	u32 pp_ctrl_reg;
1290
1291	if (!is_edp(intel_dp))
1292		return;
1293
1294	intel_panel_disable_backlight(intel_dp->attached_connector);
1295
1296	DRM_DEBUG_KMS("\n");
1297	pp = ironlake_get_pp_control(intel_dp);
1298	pp &= ~EDP_BLC_ENABLE;
1299
1300	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1301
1302	I915_WRITE(pp_ctrl_reg, pp);
1303	POSTING_READ(pp_ctrl_reg);
1304	msleep(intel_dp->backlight_off_delay);
1305}
1306
1307static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1308{
1309	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1311	struct drm_device *dev = crtc->dev;
1312	struct drm_i915_private *dev_priv = dev->dev_private;
1313	u32 dpa_ctl;
1314
1315	assert_pipe_disabled(dev_priv,
1316			     to_intel_crtc(crtc)->pipe);
1317
1318	DRM_DEBUG_KMS("\n");
1319	dpa_ctl = I915_READ(DP_A);
1320	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1321	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1322
1323	/* We don't adjust intel_dp->DP while tearing down the link, to
1324	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1325	 * enable bits here to ensure that we don't enable too much. */
1326	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1327	intel_dp->DP |= DP_PLL_ENABLE;
1328	I915_WRITE(DP_A, intel_dp->DP);
1329	POSTING_READ(DP_A);
1330	udelay(200);
1331}
1332
1333static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1334{
1335	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1336	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1337	struct drm_device *dev = crtc->dev;
1338	struct drm_i915_private *dev_priv = dev->dev_private;
1339	u32 dpa_ctl;
1340
1341	assert_pipe_disabled(dev_priv,
1342			     to_intel_crtc(crtc)->pipe);
1343
1344	dpa_ctl = I915_READ(DP_A);
1345	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1346	     "dp pll off, should be on\n");
1347	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1348
1349	/* We can't rely on the value tracked for the DP register in
1350	 * intel_dp->DP because link_down must not change that (otherwise link
1351	 * re-training will fail. */
1352	dpa_ctl &= ~DP_PLL_ENABLE;
1353	I915_WRITE(DP_A, dpa_ctl);
1354	POSTING_READ(DP_A);
1355	udelay(200);
1356}
1357
1358/* If the sink supports it, try to set the power state appropriately */
1359void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1360{
1361	int ret, i;
1362
1363	/* Should have a valid DPCD by this point */
1364	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1365		return;
1366
1367	if (mode != DRM_MODE_DPMS_ON) {
1368		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1369						  DP_SET_POWER_D3);
1370		if (ret != 1)
1371			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1372	} else {
1373		/*
1374		 * When turning on, we need to retry for 1ms to give the sink
1375		 * time to wake up.
1376		 */
1377		for (i = 0; i < 3; i++) {
1378			ret = intel_dp_aux_native_write_1(intel_dp,
1379							  DP_SET_POWER,
1380							  DP_SET_POWER_D0);
1381			if (ret == 1)
1382				break;
1383			msleep(1);
1384		}
1385	}
1386}
1387
1388static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1389				  enum pipe *pipe)
1390{
1391	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1392	enum port port = dp_to_dig_port(intel_dp)->port;
1393	struct drm_device *dev = encoder->base.dev;
1394	struct drm_i915_private *dev_priv = dev->dev_private;
1395	u32 tmp = I915_READ(intel_dp->output_reg);
1396
1397	if (!(tmp & DP_PORT_EN))
1398		return false;
1399
1400	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1401		*pipe = PORT_TO_PIPE_CPT(tmp);
1402	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1403		*pipe = PORT_TO_PIPE(tmp);
1404	} else {
1405		u32 trans_sel;
1406		u32 trans_dp;
1407		int i;
1408
1409		switch (intel_dp->output_reg) {
1410		case PCH_DP_B:
1411			trans_sel = TRANS_DP_PORT_SEL_B;
1412			break;
1413		case PCH_DP_C:
1414			trans_sel = TRANS_DP_PORT_SEL_C;
1415			break;
1416		case PCH_DP_D:
1417			trans_sel = TRANS_DP_PORT_SEL_D;
1418			break;
1419		default:
1420			return true;
1421		}
1422
1423		for_each_pipe(i) {
1424			trans_dp = I915_READ(TRANS_DP_CTL(i));
1425			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1426				*pipe = i;
1427				return true;
1428			}
1429		}
1430
1431		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1432			      intel_dp->output_reg);
1433	}
1434
1435	return true;
1436}
1437
1438static void intel_dp_get_config(struct intel_encoder *encoder,
1439				struct intel_crtc_config *pipe_config)
1440{
1441	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1442	u32 tmp, flags = 0;
1443	struct drm_device *dev = encoder->base.dev;
1444	struct drm_i915_private *dev_priv = dev->dev_private;
1445	enum port port = dp_to_dig_port(intel_dp)->port;
1446	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1447	int dotclock;
1448
1449	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1450		tmp = I915_READ(intel_dp->output_reg);
1451		if (tmp & DP_SYNC_HS_HIGH)
1452			flags |= DRM_MODE_FLAG_PHSYNC;
1453		else
1454			flags |= DRM_MODE_FLAG_NHSYNC;
1455
1456		if (tmp & DP_SYNC_VS_HIGH)
1457			flags |= DRM_MODE_FLAG_PVSYNC;
1458		else
1459			flags |= DRM_MODE_FLAG_NVSYNC;
1460	} else {
1461		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1462		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1463			flags |= DRM_MODE_FLAG_PHSYNC;
1464		else
1465			flags |= DRM_MODE_FLAG_NHSYNC;
1466
1467		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1468			flags |= DRM_MODE_FLAG_PVSYNC;
1469		else
1470			flags |= DRM_MODE_FLAG_NVSYNC;
1471	}
1472
1473	pipe_config->adjusted_mode.flags |= flags;
1474
1475	pipe_config->has_dp_encoder = true;
1476
1477	intel_dp_get_m_n(crtc, pipe_config);
1478
1479	if (port == PORT_A) {
1480		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1481			pipe_config->port_clock = 162000;
1482		else
1483			pipe_config->port_clock = 270000;
1484	}
1485
1486	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1487					    &pipe_config->dp_m_n);
1488
1489	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1490		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1491
1492	pipe_config->adjusted_mode.crtc_clock = dotclock;
1493
1494	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1495	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1496		/*
1497		 * This is a big fat ugly hack.
1498		 *
1499		 * Some machines in UEFI boot mode provide us a VBT that has 18
1500		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1501		 * unknown we fail to light up. Yet the same BIOS boots up with
1502		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1503		 * max, not what it tells us to use.
1504		 *
1505		 * Note: This will still be broken if the eDP panel is not lit
1506		 * up by the BIOS, and thus we can't get the mode at module
1507		 * load.
1508		 */
1509		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1510			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1511		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1512	}
1513}
1514
1515static bool is_edp_psr(struct drm_device *dev)
1516{
1517	struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519	return dev_priv->psr.sink_support;
1520}
1521
1522static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1523{
1524	struct drm_i915_private *dev_priv = dev->dev_private;
1525
1526	if (!HAS_PSR(dev))
1527		return false;
1528
1529	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1530}
1531
1532static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1533				    struct edp_vsc_psr *vsc_psr)
1534{
1535	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1536	struct drm_device *dev = dig_port->base.base.dev;
1537	struct drm_i915_private *dev_priv = dev->dev_private;
1538	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1539	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1540	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1541	uint32_t *data = (uint32_t *) vsc_psr;
1542	unsigned int i;
1543
1544	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1545	   the video DIP being updated before program video DIP data buffer
1546	   registers for DIP being updated. */
1547	I915_WRITE(ctl_reg, 0);
1548	POSTING_READ(ctl_reg);
1549
1550	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1551		if (i < sizeof(struct edp_vsc_psr))
1552			I915_WRITE(data_reg + i, *data++);
1553		else
1554			I915_WRITE(data_reg + i, 0);
1555	}
1556
1557	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1558	POSTING_READ(ctl_reg);
1559}
1560
1561static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1562{
1563	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1564	struct drm_i915_private *dev_priv = dev->dev_private;
1565	struct edp_vsc_psr psr_vsc;
1566
1567	if (intel_dp->psr_setup_done)
1568		return;
1569
1570	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1571	memset(&psr_vsc, 0, sizeof(psr_vsc));
1572	psr_vsc.sdp_header.HB0 = 0;
1573	psr_vsc.sdp_header.HB1 = 0x7;
1574	psr_vsc.sdp_header.HB2 = 0x2;
1575	psr_vsc.sdp_header.HB3 = 0x8;
1576	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1577
1578	/* Avoid continuous PSR exit by masking memup and hpd */
1579	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1580		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1581
1582	intel_dp->psr_setup_done = true;
1583}
1584
1585static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1586{
1587	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1588	struct drm_i915_private *dev_priv = dev->dev_private;
1589	uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1590	int precharge = 0x3;
1591	int msg_size = 5;       /* Header(4) + Message(1) */
1592
1593	/* Enable PSR in sink */
1594	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1595		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1596					    DP_PSR_ENABLE &
1597					    ~DP_PSR_MAIN_LINK_ACTIVE);
1598	else
1599		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1600					    DP_PSR_ENABLE |
1601					    DP_PSR_MAIN_LINK_ACTIVE);
1602
1603	/* Setup AUX registers */
1604	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1605	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1606	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1607		   DP_AUX_CH_CTL_TIME_OUT_400us |
1608		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1609		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1610		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1611}
1612
1613static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1614{
1615	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1616	struct drm_i915_private *dev_priv = dev->dev_private;
1617	uint32_t max_sleep_time = 0x1f;
1618	uint32_t idle_frames = 1;
1619	uint32_t val = 0x0;
1620	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1621
1622	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1623		val |= EDP_PSR_LINK_STANDBY;
1624		val |= EDP_PSR_TP2_TP3_TIME_0us;
1625		val |= EDP_PSR_TP1_TIME_0us;
1626		val |= EDP_PSR_SKIP_AUX_EXIT;
1627	} else
1628		val |= EDP_PSR_LINK_DISABLE;
1629
1630	I915_WRITE(EDP_PSR_CTL(dev), val |
1631		   IS_BROADWELL(dev) ? 0 : link_entry_time |
1632		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1633		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1634		   EDP_PSR_ENABLE);
1635}
1636
1637static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1638{
1639	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1640	struct drm_device *dev = dig_port->base.base.dev;
1641	struct drm_i915_private *dev_priv = dev->dev_private;
1642	struct drm_crtc *crtc = dig_port->base.base.crtc;
1643	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1644	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1645	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1646
1647	dev_priv->psr.source_ok = false;
1648
1649	if (!HAS_PSR(dev)) {
1650		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1651		return false;
1652	}
1653
1654	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1655	    (dig_port->port != PORT_A)) {
1656		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1657		return false;
1658	}
1659
1660	if (!i915_enable_psr) {
1661		DRM_DEBUG_KMS("PSR disable by flag\n");
1662		return false;
1663	}
1664
1665	crtc = dig_port->base.base.crtc;
1666	if (crtc == NULL) {
1667		DRM_DEBUG_KMS("crtc not active for PSR\n");
1668		return false;
1669	}
1670
1671	intel_crtc = to_intel_crtc(crtc);
1672	if (!intel_crtc_active(crtc)) {
1673		DRM_DEBUG_KMS("crtc not active for PSR\n");
1674		return false;
1675	}
1676
1677	obj = to_intel_framebuffer(crtc->fb)->obj;
1678	if (obj->tiling_mode != I915_TILING_X ||
1679	    obj->fence_reg == I915_FENCE_REG_NONE) {
1680		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1681		return false;
1682	}
1683
1684	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1685		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1686		return false;
1687	}
1688
1689	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1690	    S3D_ENABLE) {
1691		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1692		return false;
1693	}
1694
1695	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1696		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1697		return false;
1698	}
1699
1700	dev_priv->psr.source_ok = true;
1701	return true;
1702}
1703
1704static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1705{
1706	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1707
1708	if (!intel_edp_psr_match_conditions(intel_dp) ||
1709	    intel_edp_is_psr_enabled(dev))
1710		return;
1711
1712	/* Setup PSR once */
1713	intel_edp_psr_setup(intel_dp);
1714
1715	/* Enable PSR on the panel */
1716	intel_edp_psr_enable_sink(intel_dp);
1717
1718	/* Enable PSR on the host */
1719	intel_edp_psr_enable_source(intel_dp);
1720}
1721
1722void intel_edp_psr_enable(struct intel_dp *intel_dp)
1723{
1724	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1725
1726	if (intel_edp_psr_match_conditions(intel_dp) &&
1727	    !intel_edp_is_psr_enabled(dev))
1728		intel_edp_psr_do_enable(intel_dp);
1729}
1730
1731void intel_edp_psr_disable(struct intel_dp *intel_dp)
1732{
1733	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1734	struct drm_i915_private *dev_priv = dev->dev_private;
1735
1736	if (!intel_edp_is_psr_enabled(dev))
1737		return;
1738
1739	I915_WRITE(EDP_PSR_CTL(dev),
1740		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1741
1742	/* Wait till PSR is idle */
1743	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1744		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1745		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1746}
1747
1748void intel_edp_psr_update(struct drm_device *dev)
1749{
1750	struct intel_encoder *encoder;
1751	struct intel_dp *intel_dp = NULL;
1752
1753	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1754		if (encoder->type == INTEL_OUTPUT_EDP) {
1755			intel_dp = enc_to_intel_dp(&encoder->base);
1756
1757			if (!is_edp_psr(dev))
1758				return;
1759
1760			if (!intel_edp_psr_match_conditions(intel_dp))
1761				intel_edp_psr_disable(intel_dp);
1762			else
1763				if (!intel_edp_is_psr_enabled(dev))
1764					intel_edp_psr_do_enable(intel_dp);
1765		}
1766}
1767
1768static void intel_disable_dp(struct intel_encoder *encoder)
1769{
1770	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1771	enum port port = dp_to_dig_port(intel_dp)->port;
1772	struct drm_device *dev = encoder->base.dev;
1773
1774	/* Make sure the panel is off before trying to change the mode. But also
1775	 * ensure that we have vdd while we switch off the panel. */
1776	ironlake_edp_panel_vdd_on(intel_dp);
1777	ironlake_edp_backlight_off(intel_dp);
1778	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1779	ironlake_edp_panel_off(intel_dp);
1780
1781	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1782	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1783		intel_dp_link_down(intel_dp);
1784}
1785
1786static void intel_post_disable_dp(struct intel_encoder *encoder)
1787{
1788	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1789	enum port port = dp_to_dig_port(intel_dp)->port;
1790	struct drm_device *dev = encoder->base.dev;
1791
1792	if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1793		intel_dp_link_down(intel_dp);
1794		if (!IS_VALLEYVIEW(dev))
1795			ironlake_edp_pll_off(intel_dp);
1796	}
1797}
1798
1799static void intel_enable_dp(struct intel_encoder *encoder)
1800{
1801	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1802	struct drm_device *dev = encoder->base.dev;
1803	struct drm_i915_private *dev_priv = dev->dev_private;
1804	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1805
1806	if (WARN_ON(dp_reg & DP_PORT_EN))
1807		return;
1808
1809	ironlake_edp_panel_vdd_on(intel_dp);
1810	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1811	intel_dp_start_link_train(intel_dp);
1812	ironlake_edp_panel_on(intel_dp);
1813	ironlake_edp_panel_vdd_off(intel_dp, true);
1814	intel_dp_complete_link_train(intel_dp);
1815	intel_dp_stop_link_train(intel_dp);
1816}
1817
1818static void g4x_enable_dp(struct intel_encoder *encoder)
1819{
1820	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1821
1822	intel_enable_dp(encoder);
1823	ironlake_edp_backlight_on(intel_dp);
1824}
1825
1826static void vlv_enable_dp(struct intel_encoder *encoder)
1827{
1828	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1829
1830	ironlake_edp_backlight_on(intel_dp);
1831}
1832
1833static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1834{
1835	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1836	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1837
1838	if (dport->port == PORT_A)
1839		ironlake_edp_pll_on(intel_dp);
1840}
1841
1842static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1843{
1844	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1845	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1846	struct drm_device *dev = encoder->base.dev;
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1849	enum dpio_channel port = vlv_dport_to_channel(dport);
1850	int pipe = intel_crtc->pipe;
1851	struct edp_power_seq power_seq;
1852	u32 val;
1853
1854	mutex_lock(&dev_priv->dpio_lock);
1855
1856	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1857	val = 0;
1858	if (pipe)
1859		val |= (1<<21);
1860	else
1861		val &= ~(1<<21);
1862	val |= 0x001000c4;
1863	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1864	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1865	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1866
1867	mutex_unlock(&dev_priv->dpio_lock);
1868
1869	/* init power sequencer on this pipe and port */
1870	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1871	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1872						      &power_seq);
1873
1874	intel_enable_dp(encoder);
1875
1876	vlv_wait_port_ready(dev_priv, dport);
1877}
1878
1879static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1880{
1881	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1882	struct drm_device *dev = encoder->base.dev;
1883	struct drm_i915_private *dev_priv = dev->dev_private;
1884	struct intel_crtc *intel_crtc =
1885		to_intel_crtc(encoder->base.crtc);
1886	enum dpio_channel port = vlv_dport_to_channel(dport);
1887	int pipe = intel_crtc->pipe;
1888
1889	/* Program Tx lane resets to default */
1890	mutex_lock(&dev_priv->dpio_lock);
1891	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1892			 DPIO_PCS_TX_LANE2_RESET |
1893			 DPIO_PCS_TX_LANE1_RESET);
1894	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1895			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1896			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1897			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1898				 DPIO_PCS_CLK_SOFT_RESET);
1899
1900	/* Fix up inter-pair skew failure */
1901	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1902	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1903	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1904	mutex_unlock(&dev_priv->dpio_lock);
1905}
1906
1907/*
1908 * Native read with retry for link status and receiver capability reads for
1909 * cases where the sink may still be asleep.
1910 */
1911static bool
1912intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1913			       uint8_t *recv, int recv_bytes)
1914{
1915	int ret, i;
1916
1917	/*
1918	 * Sinks are *supposed* to come up within 1ms from an off state,
1919	 * but we're also supposed to retry 3 times per the spec.
1920	 */
1921	for (i = 0; i < 3; i++) {
1922		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1923					       recv_bytes);
1924		if (ret == recv_bytes)
1925			return true;
1926		msleep(1);
1927	}
1928
1929	return false;
1930}
1931
1932/*
1933 * Fetch AUX CH registers 0x202 - 0x207 which contain
1934 * link status information
1935 */
1936static bool
1937intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1938{
1939	return intel_dp_aux_native_read_retry(intel_dp,
1940					      DP_LANE0_1_STATUS,
1941					      link_status,
1942					      DP_LINK_STATUS_SIZE);
1943}
1944
1945#if 0
1946static char	*voltage_names[] = {
1947	"0.4V", "0.6V", "0.8V", "1.2V"
1948};
1949static char	*pre_emph_names[] = {
1950	"0dB", "3.5dB", "6dB", "9.5dB"
1951};
1952static char	*link_train_names[] = {
1953	"pattern 1", "pattern 2", "idle", "off"
1954};
1955#endif
1956
1957/*
1958 * These are source-specific values; current Intel hardware supports
1959 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1960 */
1961
1962static uint8_t
1963intel_dp_voltage_max(struct intel_dp *intel_dp)
1964{
1965	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1966	enum port port = dp_to_dig_port(intel_dp)->port;
1967
1968	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1969		return DP_TRAIN_VOLTAGE_SWING_1200;
1970	else if (IS_GEN7(dev) && port == PORT_A)
1971		return DP_TRAIN_VOLTAGE_SWING_800;
1972	else if (HAS_PCH_CPT(dev) && port != PORT_A)
1973		return DP_TRAIN_VOLTAGE_SWING_1200;
1974	else
1975		return DP_TRAIN_VOLTAGE_SWING_800;
1976}
1977
1978static uint8_t
1979intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1980{
1981	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1982	enum port port = dp_to_dig_port(intel_dp)->port;
1983
1984	if (IS_BROADWELL(dev)) {
1985		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1986		case DP_TRAIN_VOLTAGE_SWING_400:
1987		case DP_TRAIN_VOLTAGE_SWING_600:
1988			return DP_TRAIN_PRE_EMPHASIS_6;
1989		case DP_TRAIN_VOLTAGE_SWING_800:
1990			return DP_TRAIN_PRE_EMPHASIS_3_5;
1991		case DP_TRAIN_VOLTAGE_SWING_1200:
1992		default:
1993			return DP_TRAIN_PRE_EMPHASIS_0;
1994		}
1995	} else if (IS_HASWELL(dev)) {
1996		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1997		case DP_TRAIN_VOLTAGE_SWING_400:
1998			return DP_TRAIN_PRE_EMPHASIS_9_5;
1999		case DP_TRAIN_VOLTAGE_SWING_600:
2000			return DP_TRAIN_PRE_EMPHASIS_6;
2001		case DP_TRAIN_VOLTAGE_SWING_800:
2002			return DP_TRAIN_PRE_EMPHASIS_3_5;
2003		case DP_TRAIN_VOLTAGE_SWING_1200:
2004		default:
2005			return DP_TRAIN_PRE_EMPHASIS_0;
2006		}
2007	} else if (IS_VALLEYVIEW(dev)) {
2008		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2009		case DP_TRAIN_VOLTAGE_SWING_400:
2010			return DP_TRAIN_PRE_EMPHASIS_9_5;
2011		case DP_TRAIN_VOLTAGE_SWING_600:
2012			return DP_TRAIN_PRE_EMPHASIS_6;
2013		case DP_TRAIN_VOLTAGE_SWING_800:
2014			return DP_TRAIN_PRE_EMPHASIS_3_5;
2015		case DP_TRAIN_VOLTAGE_SWING_1200:
2016		default:
2017			return DP_TRAIN_PRE_EMPHASIS_0;
2018		}
2019	} else if (IS_GEN7(dev) && port == PORT_A) {
2020		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2021		case DP_TRAIN_VOLTAGE_SWING_400:
2022			return DP_TRAIN_PRE_EMPHASIS_6;
2023		case DP_TRAIN_VOLTAGE_SWING_600:
2024		case DP_TRAIN_VOLTAGE_SWING_800:
2025			return DP_TRAIN_PRE_EMPHASIS_3_5;
2026		default:
2027			return DP_TRAIN_PRE_EMPHASIS_0;
2028		}
2029	} else {
2030		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031		case DP_TRAIN_VOLTAGE_SWING_400:
2032			return DP_TRAIN_PRE_EMPHASIS_6;
2033		case DP_TRAIN_VOLTAGE_SWING_600:
2034			return DP_TRAIN_PRE_EMPHASIS_6;
2035		case DP_TRAIN_VOLTAGE_SWING_800:
2036			return DP_TRAIN_PRE_EMPHASIS_3_5;
2037		case DP_TRAIN_VOLTAGE_SWING_1200:
2038		default:
2039			return DP_TRAIN_PRE_EMPHASIS_0;
2040		}
2041	}
2042}
2043
2044static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2045{
2046	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2047	struct drm_i915_private *dev_priv = dev->dev_private;
2048	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2049	struct intel_crtc *intel_crtc =
2050		to_intel_crtc(dport->base.base.crtc);
2051	unsigned long demph_reg_value, preemph_reg_value,
2052		uniqtranscale_reg_value;
2053	uint8_t train_set = intel_dp->train_set[0];
2054	enum dpio_channel port = vlv_dport_to_channel(dport);
2055	int pipe = intel_crtc->pipe;
2056
2057	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2058	case DP_TRAIN_PRE_EMPHASIS_0:
2059		preemph_reg_value = 0x0004000;
2060		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2061		case DP_TRAIN_VOLTAGE_SWING_400:
2062			demph_reg_value = 0x2B405555;
2063			uniqtranscale_reg_value = 0x552AB83A;
2064			break;
2065		case DP_TRAIN_VOLTAGE_SWING_600:
2066			demph_reg_value = 0x2B404040;
2067			uniqtranscale_reg_value = 0x5548B83A;
2068			break;
2069		case DP_TRAIN_VOLTAGE_SWING_800:
2070			demph_reg_value = 0x2B245555;
2071			uniqtranscale_reg_value = 0x5560B83A;
2072			break;
2073		case DP_TRAIN_VOLTAGE_SWING_1200:
2074			demph_reg_value = 0x2B405555;
2075			uniqtranscale_reg_value = 0x5598DA3A;
2076			break;
2077		default:
2078			return 0;
2079		}
2080		break;
2081	case DP_TRAIN_PRE_EMPHASIS_3_5:
2082		preemph_reg_value = 0x0002000;
2083		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2084		case DP_TRAIN_VOLTAGE_SWING_400:
2085			demph_reg_value = 0x2B404040;
2086			uniqtranscale_reg_value = 0x5552B83A;
2087			break;
2088		case DP_TRAIN_VOLTAGE_SWING_600:
2089			demph_reg_value = 0x2B404848;
2090			uniqtranscale_reg_value = 0x5580B83A;
2091			break;
2092		case DP_TRAIN_VOLTAGE_SWING_800:
2093			demph_reg_value = 0x2B404040;
2094			uniqtranscale_reg_value = 0x55ADDA3A;
2095			break;
2096		default:
2097			return 0;
2098		}
2099		break;
2100	case DP_TRAIN_PRE_EMPHASIS_6:
2101		preemph_reg_value = 0x0000000;
2102		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103		case DP_TRAIN_VOLTAGE_SWING_400:
2104			demph_reg_value = 0x2B305555;
2105			uniqtranscale_reg_value = 0x5570B83A;
2106			break;
2107		case DP_TRAIN_VOLTAGE_SWING_600:
2108			demph_reg_value = 0x2B2B4040;
2109			uniqtranscale_reg_value = 0x55ADDA3A;
2110			break;
2111		default:
2112			return 0;
2113		}
2114		break;
2115	case DP_TRAIN_PRE_EMPHASIS_9_5:
2116		preemph_reg_value = 0x0006000;
2117		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2118		case DP_TRAIN_VOLTAGE_SWING_400:
2119			demph_reg_value = 0x1B405555;
2120			uniqtranscale_reg_value = 0x55ADDA3A;
2121			break;
2122		default:
2123			return 0;
2124		}
2125		break;
2126	default:
2127		return 0;
2128	}
2129
2130	mutex_lock(&dev_priv->dpio_lock);
2131	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2132	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2133	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2134			 uniqtranscale_reg_value);
2135	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2136	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2137	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2138	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2139	mutex_unlock(&dev_priv->dpio_lock);
2140
2141	return 0;
2142}
2143
2144static void
2145intel_get_adjust_train(struct intel_dp *intel_dp,
2146		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2147{
2148	uint8_t v = 0;
2149	uint8_t p = 0;
2150	int lane;
2151	uint8_t voltage_max;
2152	uint8_t preemph_max;
2153
2154	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2155		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2156		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2157
2158		if (this_v > v)
2159			v = this_v;
2160		if (this_p > p)
2161			p = this_p;
2162	}
2163
2164	voltage_max = intel_dp_voltage_max(intel_dp);
2165	if (v >= voltage_max)
2166		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2167
2168	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2169	if (p >= preemph_max)
2170		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2171
2172	for (lane = 0; lane < 4; lane++)
2173		intel_dp->train_set[lane] = v | p;
2174}
2175
2176static uint32_t
2177intel_gen4_signal_levels(uint8_t train_set)
2178{
2179	uint32_t	signal_levels = 0;
2180
2181	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2182	case DP_TRAIN_VOLTAGE_SWING_400:
2183	default:
2184		signal_levels |= DP_VOLTAGE_0_4;
2185		break;
2186	case DP_TRAIN_VOLTAGE_SWING_600:
2187		signal_levels |= DP_VOLTAGE_0_6;
2188		break;
2189	case DP_TRAIN_VOLTAGE_SWING_800:
2190		signal_levels |= DP_VOLTAGE_0_8;
2191		break;
2192	case DP_TRAIN_VOLTAGE_SWING_1200:
2193		signal_levels |= DP_VOLTAGE_1_2;
2194		break;
2195	}
2196	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2197	case DP_TRAIN_PRE_EMPHASIS_0:
2198	default:
2199		signal_levels |= DP_PRE_EMPHASIS_0;
2200		break;
2201	case DP_TRAIN_PRE_EMPHASIS_3_5:
2202		signal_levels |= DP_PRE_EMPHASIS_3_5;
2203		break;
2204	case DP_TRAIN_PRE_EMPHASIS_6:
2205		signal_levels |= DP_PRE_EMPHASIS_6;
2206		break;
2207	case DP_TRAIN_PRE_EMPHASIS_9_5:
2208		signal_levels |= DP_PRE_EMPHASIS_9_5;
2209		break;
2210	}
2211	return signal_levels;
2212}
2213
2214/* Gen6's DP voltage swing and pre-emphasis control */
2215static uint32_t
2216intel_gen6_edp_signal_levels(uint8_t train_set)
2217{
2218	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2219					 DP_TRAIN_PRE_EMPHASIS_MASK);
2220	switch (signal_levels) {
2221	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2222	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2223		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2224	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2225		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2226	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2227	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2228		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2229	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2230	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2231		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2232	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2233	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2234		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2235	default:
2236		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2237			      "0x%x\n", signal_levels);
2238		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2239	}
2240}
2241
2242/* Gen7's DP voltage swing and pre-emphasis control */
2243static uint32_t
2244intel_gen7_edp_signal_levels(uint8_t train_set)
2245{
2246	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2247					 DP_TRAIN_PRE_EMPHASIS_MASK);
2248	switch (signal_levels) {
2249	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2250		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2251	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2253	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2254		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2255
2256	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2257		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2258	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2259		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2260
2261	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2262		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2263	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2264		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2265
2266	default:
2267		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2268			      "0x%x\n", signal_levels);
2269		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2270	}
2271}
2272
2273/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2274static uint32_t
2275intel_hsw_signal_levels(uint8_t train_set)
2276{
2277	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2278					 DP_TRAIN_PRE_EMPHASIS_MASK);
2279	switch (signal_levels) {
2280	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2281		return DDI_BUF_EMP_400MV_0DB_HSW;
2282	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2283		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2284	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2285		return DDI_BUF_EMP_400MV_6DB_HSW;
2286	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2287		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2288
2289	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2290		return DDI_BUF_EMP_600MV_0DB_HSW;
2291	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2292		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2293	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2294		return DDI_BUF_EMP_600MV_6DB_HSW;
2295
2296	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2297		return DDI_BUF_EMP_800MV_0DB_HSW;
2298	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2299		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2300	default:
2301		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2302			      "0x%x\n", signal_levels);
2303		return DDI_BUF_EMP_400MV_0DB_HSW;
2304	}
2305}
2306
2307static uint32_t
2308intel_bdw_signal_levels(uint8_t train_set)
2309{
2310	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2311					 DP_TRAIN_PRE_EMPHASIS_MASK);
2312	switch (signal_levels) {
2313	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2314		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2315	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2316		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2317	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2318		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2319
2320	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2321		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2322	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2323		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2324	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2325		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2326
2327	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2328		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2329	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2330		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2331
2332	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2333		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2334
2335	default:
2336		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2337			      "0x%x\n", signal_levels);
2338		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2339	}
2340}
2341
2342/* Properly updates "DP" with the correct signal levels. */
2343static void
2344intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2345{
2346	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2347	enum port port = intel_dig_port->port;
2348	struct drm_device *dev = intel_dig_port->base.base.dev;
2349	uint32_t signal_levels, mask;
2350	uint8_t train_set = intel_dp->train_set[0];
2351
2352	if (IS_BROADWELL(dev)) {
2353		signal_levels = intel_bdw_signal_levels(train_set);
2354		mask = DDI_BUF_EMP_MASK;
2355	} else if (IS_HASWELL(dev)) {
2356		signal_levels = intel_hsw_signal_levels(train_set);
2357		mask = DDI_BUF_EMP_MASK;
2358	} else if (IS_VALLEYVIEW(dev)) {
2359		signal_levels = intel_vlv_signal_levels(intel_dp);
2360		mask = 0;
2361	} else if (IS_GEN7(dev) && port == PORT_A) {
2362		signal_levels = intel_gen7_edp_signal_levels(train_set);
2363		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2364	} else if (IS_GEN6(dev) && port == PORT_A) {
2365		signal_levels = intel_gen6_edp_signal_levels(train_set);
2366		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2367	} else {
2368		signal_levels = intel_gen4_signal_levels(train_set);
2369		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2370	}
2371
2372	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2373
2374	*DP = (*DP & ~mask) | signal_levels;
2375}
2376
2377static bool
2378intel_dp_set_link_train(struct intel_dp *intel_dp,
2379			uint32_t *DP,
2380			uint8_t dp_train_pat)
2381{
2382	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383	struct drm_device *dev = intel_dig_port->base.base.dev;
2384	struct drm_i915_private *dev_priv = dev->dev_private;
2385	enum port port = intel_dig_port->port;
2386	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2387	int ret, len;
2388
2389	if (HAS_DDI(dev)) {
2390		uint32_t temp = I915_READ(DP_TP_CTL(port));
2391
2392		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2393			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2394		else
2395			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2396
2397		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2398		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2399		case DP_TRAINING_PATTERN_DISABLE:
2400			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2401
2402			break;
2403		case DP_TRAINING_PATTERN_1:
2404			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2405			break;
2406		case DP_TRAINING_PATTERN_2:
2407			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2408			break;
2409		case DP_TRAINING_PATTERN_3:
2410			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2411			break;
2412		}
2413		I915_WRITE(DP_TP_CTL(port), temp);
2414
2415	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2416		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2417
2418		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2419		case DP_TRAINING_PATTERN_DISABLE:
2420			*DP |= DP_LINK_TRAIN_OFF_CPT;
2421			break;
2422		case DP_TRAINING_PATTERN_1:
2423			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2424			break;
2425		case DP_TRAINING_PATTERN_2:
2426			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2427			break;
2428		case DP_TRAINING_PATTERN_3:
2429			DRM_ERROR("DP training pattern 3 not supported\n");
2430			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2431			break;
2432		}
2433
2434	} else {
2435		*DP &= ~DP_LINK_TRAIN_MASK;
2436
2437		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2438		case DP_TRAINING_PATTERN_DISABLE:
2439			*DP |= DP_LINK_TRAIN_OFF;
2440			break;
2441		case DP_TRAINING_PATTERN_1:
2442			*DP |= DP_LINK_TRAIN_PAT_1;
2443			break;
2444		case DP_TRAINING_PATTERN_2:
2445			*DP |= DP_LINK_TRAIN_PAT_2;
2446			break;
2447		case DP_TRAINING_PATTERN_3:
2448			DRM_ERROR("DP training pattern 3 not supported\n");
2449			*DP |= DP_LINK_TRAIN_PAT_2;
2450			break;
2451		}
2452	}
2453
2454	I915_WRITE(intel_dp->output_reg, *DP);
2455	POSTING_READ(intel_dp->output_reg);
2456
2457	buf[0] = dp_train_pat;
2458	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2459	    DP_TRAINING_PATTERN_DISABLE) {
2460		/* don't write DP_TRAINING_LANEx_SET on disable */
2461		len = 1;
2462	} else {
2463		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2464		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2465		len = intel_dp->lane_count + 1;
2466	}
2467
2468	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2469					buf, len);
2470
2471	return ret == len;
2472}
2473
2474static bool
2475intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2476			uint8_t dp_train_pat)
2477{
2478	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2479	intel_dp_set_signal_levels(intel_dp, DP);
2480	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2481}
2482
2483static bool
2484intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2485			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2486{
2487	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2488	struct drm_device *dev = intel_dig_port->base.base.dev;
2489	struct drm_i915_private *dev_priv = dev->dev_private;
2490	int ret;
2491
2492	intel_get_adjust_train(intel_dp, link_status);
2493	intel_dp_set_signal_levels(intel_dp, DP);
2494
2495	I915_WRITE(intel_dp->output_reg, *DP);
2496	POSTING_READ(intel_dp->output_reg);
2497
2498	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2499					intel_dp->train_set,
2500					intel_dp->lane_count);
2501
2502	return ret == intel_dp->lane_count;
2503}
2504
2505static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2506{
2507	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2508	struct drm_device *dev = intel_dig_port->base.base.dev;
2509	struct drm_i915_private *dev_priv = dev->dev_private;
2510	enum port port = intel_dig_port->port;
2511	uint32_t val;
2512
2513	if (!HAS_DDI(dev))
2514		return;
2515
2516	val = I915_READ(DP_TP_CTL(port));
2517	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2518	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2519	I915_WRITE(DP_TP_CTL(port), val);
2520
2521	/*
2522	 * On PORT_A we can have only eDP in SST mode. There the only reason
2523	 * we need to set idle transmission mode is to work around a HW issue
2524	 * where we enable the pipe while not in idle link-training mode.
2525	 * In this case there is requirement to wait for a minimum number of
2526	 * idle patterns to be sent.
2527	 */
2528	if (port == PORT_A)
2529		return;
2530
2531	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2532		     1))
2533		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2534}
2535
2536/* Enable corresponding port and start training pattern 1 */
2537void
2538intel_dp_start_link_train(struct intel_dp *intel_dp)
2539{
2540	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2541	struct drm_device *dev = encoder->dev;
2542	int i;
2543	uint8_t voltage;
2544	int voltage_tries, loop_tries;
2545	uint32_t DP = intel_dp->DP;
2546	uint8_t link_config[2];
2547
2548	if (HAS_DDI(dev))
2549		intel_ddi_prepare_link_retrain(encoder);
2550
2551	/* Write the link configuration data */
2552	link_config[0] = intel_dp->link_bw;
2553	link_config[1] = intel_dp->lane_count;
2554	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2555		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2556	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2557
2558	link_config[0] = 0;
2559	link_config[1] = DP_SET_ANSI_8B10B;
2560	intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2561
2562	DP |= DP_PORT_EN;
2563
2564	/* clock recovery */
2565	if (!intel_dp_reset_link_train(intel_dp, &DP,
2566				       DP_TRAINING_PATTERN_1 |
2567				       DP_LINK_SCRAMBLING_DISABLE)) {
2568		DRM_ERROR("failed to enable link training\n");
2569		return;
2570	}
2571
2572	voltage = 0xff;
2573	voltage_tries = 0;
2574	loop_tries = 0;
2575	for (;;) {
2576		uint8_t link_status[DP_LINK_STATUS_SIZE];
2577
2578		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2579		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2580			DRM_ERROR("failed to get link status\n");
2581			break;
2582		}
2583
2584		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2585			DRM_DEBUG_KMS("clock recovery OK\n");
2586			break;
2587		}
2588
2589		/* Check to see if we've tried the max voltage */
2590		for (i = 0; i < intel_dp->lane_count; i++)
2591			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2592				break;
2593		if (i == intel_dp->lane_count) {
2594			++loop_tries;
2595			if (loop_tries == 5) {
2596				DRM_ERROR("too many full retries, give up\n");
2597				break;
2598			}
2599			intel_dp_reset_link_train(intel_dp, &DP,
2600						  DP_TRAINING_PATTERN_1 |
2601						  DP_LINK_SCRAMBLING_DISABLE);
2602			voltage_tries = 0;
2603			continue;
2604		}
2605
2606		/* Check to see if we've tried the same voltage 5 times */
2607		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2608			++voltage_tries;
2609			if (voltage_tries == 5) {
2610				DRM_ERROR("too many voltage retries, give up\n");
2611				break;
2612			}
2613		} else
2614			voltage_tries = 0;
2615		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2616
2617		/* Update training set as requested by target */
2618		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2619			DRM_ERROR("failed to update link training\n");
2620			break;
2621		}
2622	}
2623
2624	intel_dp->DP = DP;
2625}
2626
2627void
2628intel_dp_complete_link_train(struct intel_dp *intel_dp)
2629{
2630	bool channel_eq = false;
2631	int tries, cr_tries;
2632	uint32_t DP = intel_dp->DP;
2633
2634	/* channel equalization */
2635	if (!intel_dp_set_link_train(intel_dp, &DP,
2636				     DP_TRAINING_PATTERN_2 |
2637				     DP_LINK_SCRAMBLING_DISABLE)) {
2638		DRM_ERROR("failed to start channel equalization\n");
2639		return;
2640	}
2641
2642	tries = 0;
2643	cr_tries = 0;
2644	channel_eq = false;
2645	for (;;) {
2646		uint8_t link_status[DP_LINK_STATUS_SIZE];
2647
2648		if (cr_tries > 5) {
2649			DRM_ERROR("failed to train DP, aborting\n");
2650			intel_dp_link_down(intel_dp);
2651			break;
2652		}
2653
2654		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2655		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2656			DRM_ERROR("failed to get link status\n");
2657			break;
2658		}
2659
2660		/* Make sure clock is still ok */
2661		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2662			intel_dp_start_link_train(intel_dp);
2663			intel_dp_set_link_train(intel_dp, &DP,
2664						DP_TRAINING_PATTERN_2 |
2665						DP_LINK_SCRAMBLING_DISABLE);
2666			cr_tries++;
2667			continue;
2668		}
2669
2670		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2671			channel_eq = true;
2672			break;
2673		}
2674
2675		/* Try 5 times, then try clock recovery if that fails */
2676		if (tries > 5) {
2677			intel_dp_link_down(intel_dp);
2678			intel_dp_start_link_train(intel_dp);
2679			intel_dp_set_link_train(intel_dp, &DP,
2680						DP_TRAINING_PATTERN_2 |
2681						DP_LINK_SCRAMBLING_DISABLE);
2682			tries = 0;
2683			cr_tries++;
2684			continue;
2685		}
2686
2687		/* Update training set as requested by target */
2688		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2689			DRM_ERROR("failed to update link training\n");
2690			break;
2691		}
2692		++tries;
2693	}
2694
2695	intel_dp_set_idle_link_train(intel_dp);
2696
2697	intel_dp->DP = DP;
2698
2699	if (channel_eq)
2700		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2701
2702}
2703
2704void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2705{
2706	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2707				DP_TRAINING_PATTERN_DISABLE);
2708}
2709
2710static void
2711intel_dp_link_down(struct intel_dp *intel_dp)
2712{
2713	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2714	enum port port = intel_dig_port->port;
2715	struct drm_device *dev = intel_dig_port->base.base.dev;
2716	struct drm_i915_private *dev_priv = dev->dev_private;
2717	struct intel_crtc *intel_crtc =
2718		to_intel_crtc(intel_dig_port->base.base.crtc);
2719	uint32_t DP = intel_dp->DP;
2720
2721	/*
2722	 * DDI code has a strict mode set sequence and we should try to respect
2723	 * it, otherwise we might hang the machine in many different ways. So we
2724	 * really should be disabling the port only on a complete crtc_disable
2725	 * sequence. This function is just called under two conditions on DDI
2726	 * code:
2727	 * - Link train failed while doing crtc_enable, and on this case we
2728	 *   really should respect the mode set sequence and wait for a
2729	 *   crtc_disable.
2730	 * - Someone turned the monitor off and intel_dp_check_link_status
2731	 *   called us. We don't need to disable the whole port on this case, so
2732	 *   when someone turns the monitor on again,
2733	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2734	 *   train.
2735	 */
2736	if (HAS_DDI(dev))
2737		return;
2738
2739	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2740		return;
2741
2742	DRM_DEBUG_KMS("\n");
2743
2744	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2745		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2746		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2747	} else {
2748		DP &= ~DP_LINK_TRAIN_MASK;
2749		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2750	}
2751	POSTING_READ(intel_dp->output_reg);
2752
2753	/* We don't really know why we're doing this */
2754	intel_wait_for_vblank(dev, intel_crtc->pipe);
2755
2756	if (HAS_PCH_IBX(dev) &&
2757	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2758		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2759
2760		/* Hardware workaround: leaving our transcoder select
2761		 * set to transcoder B while it's off will prevent the
2762		 * corresponding HDMI output on transcoder A.
2763		 *
2764		 * Combine this with another hardware workaround:
2765		 * transcoder select bit can only be cleared while the
2766		 * port is enabled.
2767		 */
2768		DP &= ~DP_PIPEB_SELECT;
2769		I915_WRITE(intel_dp->output_reg, DP);
2770
2771		/* Changes to enable or select take place the vblank
2772		 * after being written.
2773		 */
2774		if (WARN_ON(crtc == NULL)) {
2775			/* We should never try to disable a port without a crtc
2776			 * attached. For paranoia keep the code around for a
2777			 * bit. */
2778			POSTING_READ(intel_dp->output_reg);
2779			msleep(50);
2780		} else
2781			intel_wait_for_vblank(dev, intel_crtc->pipe);
2782	}
2783
2784	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2785	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2786	POSTING_READ(intel_dp->output_reg);
2787	msleep(intel_dp->panel_power_down_delay);
2788}
2789
2790static bool
2791intel_dp_get_dpcd(struct intel_dp *intel_dp)
2792{
2793	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2794	struct drm_device *dev = dig_port->base.base.dev;
2795	struct drm_i915_private *dev_priv = dev->dev_private;
2796
2797	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2798
2799	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2800					   sizeof(intel_dp->dpcd)) == 0)
2801		return false; /* aux transfer failed */
2802
2803	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2804			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2805	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2806
2807	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2808		return false; /* DPCD not present */
2809
2810	/* Check if the panel supports PSR */
2811	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2812	if (is_edp(intel_dp)) {
2813		intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2814					       intel_dp->psr_dpcd,
2815					       sizeof(intel_dp->psr_dpcd));
2816		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2817			dev_priv->psr.sink_support = true;
2818			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2819		}
2820	}
2821
2822	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2823	      DP_DWN_STRM_PORT_PRESENT))
2824		return true; /* native DP sink */
2825
2826	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2827		return true; /* no per-port downstream info */
2828
2829	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2830					   intel_dp->downstream_ports,
2831					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2832		return false; /* downstream port status fetch failed */
2833
2834	return true;
2835}
2836
2837static void
2838intel_dp_probe_oui(struct intel_dp *intel_dp)
2839{
2840	u8 buf[3];
2841
2842	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2843		return;
2844
2845	ironlake_edp_panel_vdd_on(intel_dp);
2846
2847	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2848		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2849			      buf[0], buf[1], buf[2]);
2850
2851	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2852		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2853			      buf[0], buf[1], buf[2]);
2854
2855	ironlake_edp_panel_vdd_off(intel_dp, false);
2856}
2857
2858static bool
2859intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2860{
2861	int ret;
2862
2863	ret = intel_dp_aux_native_read_retry(intel_dp,
2864					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2865					     sink_irq_vector, 1);
2866	if (!ret)
2867		return false;
2868
2869	return true;
2870}
2871
2872static void
2873intel_dp_handle_test_request(struct intel_dp *intel_dp)
2874{
2875	/* NAK by default */
2876	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2877}
2878
2879/*
2880 * According to DP spec
2881 * 5.1.2:
2882 *  1. Read DPCD
2883 *  2. Configure link according to Receiver Capabilities
2884 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2885 *  4. Check link status on receipt of hot-plug interrupt
2886 */
2887
2888void
2889intel_dp_check_link_status(struct intel_dp *intel_dp)
2890{
2891	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2892	u8 sink_irq_vector;
2893	u8 link_status[DP_LINK_STATUS_SIZE];
2894
2895	if (!intel_encoder->connectors_active)
2896		return;
2897
2898	if (WARN_ON(!intel_encoder->base.crtc))
2899		return;
2900
2901	/* Try to read receiver status if the link appears to be up */
2902	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2903		intel_dp_link_down(intel_dp);
2904		return;
2905	}
2906
2907	/* Now read the DPCD to see if it's actually running */
2908	if (!intel_dp_get_dpcd(intel_dp)) {
2909		intel_dp_link_down(intel_dp);
2910		return;
2911	}
2912
2913	/* Try to read the source of the interrupt */
2914	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2915	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2916		/* Clear interrupt source */
2917		intel_dp_aux_native_write_1(intel_dp,
2918					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2919					    sink_irq_vector);
2920
2921		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2922			intel_dp_handle_test_request(intel_dp);
2923		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2924			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2925	}
2926
2927	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2928		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2929			      drm_get_encoder_name(&intel_encoder->base));
2930		intel_dp_start_link_train(intel_dp);
2931		intel_dp_complete_link_train(intel_dp);
2932		intel_dp_stop_link_train(intel_dp);
2933	}
2934}
2935
2936/* XXX this is probably wrong for multiple downstream ports */
2937static enum drm_connector_status
2938intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2939{
2940	uint8_t *dpcd = intel_dp->dpcd;
2941	uint8_t type;
2942
2943	if (!intel_dp_get_dpcd(intel_dp))
2944		return connector_status_disconnected;
2945
2946	/* if there's no downstream port, we're done */
2947	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2948		return connector_status_connected;
2949
2950	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2951	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2952	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2953		uint8_t reg;
2954		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2955						    &reg, 1))
2956			return connector_status_unknown;
2957		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2958					      : connector_status_disconnected;
2959	}
2960
2961	/* If no HPD, poke DDC gently */
2962	if (drm_probe_ddc(&intel_dp->adapter))
2963		return connector_status_connected;
2964
2965	/* Well we tried, say unknown for unreliable port types */
2966	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2967		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2968		if (type == DP_DS_PORT_TYPE_VGA ||
2969		    type == DP_DS_PORT_TYPE_NON_EDID)
2970			return connector_status_unknown;
2971	} else {
2972		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2973			DP_DWN_STRM_PORT_TYPE_MASK;
2974		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2975		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
2976			return connector_status_unknown;
2977	}
2978
2979	/* Anything else is out of spec, warn and ignore */
2980	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2981	return connector_status_disconnected;
2982}
2983
2984static enum drm_connector_status
2985ironlake_dp_detect(struct intel_dp *intel_dp)
2986{
2987	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2988	struct drm_i915_private *dev_priv = dev->dev_private;
2989	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2990	enum drm_connector_status status;
2991
2992	/* Can't disconnect eDP, but you can close the lid... */
2993	if (is_edp(intel_dp)) {
2994		status = intel_panel_detect(dev);
2995		if (status == connector_status_unknown)
2996			status = connector_status_connected;
2997		return status;
2998	}
2999
3000	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3001		return connector_status_disconnected;
3002
3003	return intel_dp_detect_dpcd(intel_dp);
3004}
3005
3006static enum drm_connector_status
3007g4x_dp_detect(struct intel_dp *intel_dp)
3008{
3009	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3010	struct drm_i915_private *dev_priv = dev->dev_private;
3011	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3012	uint32_t bit;
3013
3014	/* Can't disconnect eDP, but you can close the lid... */
3015	if (is_edp(intel_dp)) {
3016		enum drm_connector_status status;
3017
3018		status = intel_panel_detect(dev);
3019		if (status == connector_status_unknown)
3020			status = connector_status_connected;
3021		return status;
3022	}
3023
3024	switch (intel_dig_port->port) {
3025	case PORT_B:
3026		bit = PORTB_HOTPLUG_LIVE_STATUS;
3027		break;
3028	case PORT_C:
3029		bit = PORTC_HOTPLUG_LIVE_STATUS;
3030		break;
3031	case PORT_D:
3032		bit = PORTD_HOTPLUG_LIVE_STATUS;
3033		break;
3034	default:
3035		return connector_status_unknown;
3036	}
3037
3038	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3039		return connector_status_disconnected;
3040
3041	return intel_dp_detect_dpcd(intel_dp);
3042}
3043
3044static struct edid *
3045intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3046{
3047	struct intel_connector *intel_connector = to_intel_connector(connector);
3048
3049	/* use cached edid if we have one */
3050	if (intel_connector->edid) {
3051		/* invalid edid */
3052		if (IS_ERR(intel_connector->edid))
3053			return NULL;
3054
3055		return drm_edid_duplicate(intel_connector->edid);
3056	}
3057
3058	return drm_get_edid(connector, adapter);
3059}
3060
3061static int
3062intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3063{
3064	struct intel_connector *intel_connector = to_intel_connector(connector);
3065
3066	/* use cached edid if we have one */
3067	if (intel_connector->edid) {
3068		/* invalid edid */
3069		if (IS_ERR(intel_connector->edid))
3070			return 0;
3071
3072		return intel_connector_update_modes(connector,
3073						    intel_connector->edid);
3074	}
3075
3076	return intel_ddc_get_modes(connector, adapter);
3077}
3078
3079static enum drm_connector_status
3080intel_dp_detect(struct drm_connector *connector, bool force)
3081{
3082	struct intel_dp *intel_dp = intel_attached_dp(connector);
3083	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3084	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3085	struct drm_device *dev = connector->dev;
3086	enum drm_connector_status status;
3087	struct edid *edid = NULL;
3088
3089	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3090		      connector->base.id, drm_get_connector_name(connector));
3091
3092	intel_dp->has_audio = false;
3093
3094	if (HAS_PCH_SPLIT(dev))
3095		status = ironlake_dp_detect(intel_dp);
3096	else
3097		status = g4x_dp_detect(intel_dp);
3098
3099	if (status != connector_status_connected)
3100		return status;
3101
3102	intel_dp_probe_oui(intel_dp);
3103
3104	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3105		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3106	} else {
3107		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3108		if (edid) {
3109			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3110			kfree(edid);
3111		}
3112	}
3113
3114	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3115		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3116	return connector_status_connected;
3117}
3118
3119static int intel_dp_get_modes(struct drm_connector *connector)
3120{
3121	struct intel_dp *intel_dp = intel_attached_dp(connector);
3122	struct intel_connector *intel_connector = to_intel_connector(connector);
3123	struct drm_device *dev = connector->dev;
3124	int ret;
3125
3126	/* We should parse the EDID data and find out if it has an audio sink
3127	 */
3128
3129	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3130	if (ret)
3131		return ret;
3132
3133	/* if eDP has no EDID, fall back to fixed mode */
3134	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3135		struct drm_display_mode *mode;
3136		mode = drm_mode_duplicate(dev,
3137					  intel_connector->panel.fixed_mode);
3138		if (mode) {
3139			drm_mode_probed_add(connector, mode);
3140			return 1;
3141		}
3142	}
3143	return 0;
3144}
3145
3146static bool
3147intel_dp_detect_audio(struct drm_connector *connector)
3148{
3149	struct intel_dp *intel_dp = intel_attached_dp(connector);
3150	struct edid *edid;
3151	bool has_audio = false;
3152
3153	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3154	if (edid) {
3155		has_audio = drm_detect_monitor_audio(edid);
3156		kfree(edid);
3157	}
3158
3159	return has_audio;
3160}
3161
3162static int
3163intel_dp_set_property(struct drm_connector *connector,
3164		      struct drm_property *property,
3165		      uint64_t val)
3166{
3167	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3168	struct intel_connector *intel_connector = to_intel_connector(connector);
3169	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3170	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3171	int ret;
3172
3173	ret = drm_object_property_set_value(&connector->base, property, val);
3174	if (ret)
3175		return ret;
3176
3177	if (property == dev_priv->force_audio_property) {
3178		int i = val;
3179		bool has_audio;
3180
3181		if (i == intel_dp->force_audio)
3182			return 0;
3183
3184		intel_dp->force_audio = i;
3185
3186		if (i == HDMI_AUDIO_AUTO)
3187			has_audio = intel_dp_detect_audio(connector);
3188		else
3189			has_audio = (i == HDMI_AUDIO_ON);
3190
3191		if (has_audio == intel_dp->has_audio)
3192			return 0;
3193
3194		intel_dp->has_audio = has_audio;
3195		goto done;
3196	}
3197
3198	if (property == dev_priv->broadcast_rgb_property) {
3199		bool old_auto = intel_dp->color_range_auto;
3200		uint32_t old_range = intel_dp->color_range;
3201
3202		switch (val) {
3203		case INTEL_BROADCAST_RGB_AUTO:
3204			intel_dp->color_range_auto = true;
3205			break;
3206		case INTEL_BROADCAST_RGB_FULL:
3207			intel_dp->color_range_auto = false;
3208			intel_dp->color_range = 0;
3209			break;
3210		case INTEL_BROADCAST_RGB_LIMITED:
3211			intel_dp->color_range_auto = false;
3212			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3213			break;
3214		default:
3215			return -EINVAL;
3216		}
3217
3218		if (old_auto == intel_dp->color_range_auto &&
3219		    old_range == intel_dp->color_range)
3220			return 0;
3221
3222		goto done;
3223	}
3224
3225	if (is_edp(intel_dp) &&
3226	    property == connector->dev->mode_config.scaling_mode_property) {
3227		if (val == DRM_MODE_SCALE_NONE) {
3228			DRM_DEBUG_KMS("no scaling not supported\n");
3229			return -EINVAL;
3230		}
3231
3232		if (intel_connector->panel.fitting_mode == val) {
3233			/* the eDP scaling property is not changed */
3234			return 0;
3235		}
3236		intel_connector->panel.fitting_mode = val;
3237
3238		goto done;
3239	}
3240
3241	return -EINVAL;
3242
3243done:
3244	if (intel_encoder->base.crtc)
3245		intel_crtc_restore_mode(intel_encoder->base.crtc);
3246
3247	return 0;
3248}
3249
3250static void
3251intel_dp_connector_destroy(struct drm_connector *connector)
3252{
3253	struct intel_connector *intel_connector = to_intel_connector(connector);
3254
3255	if (!IS_ERR_OR_NULL(intel_connector->edid))
3256		kfree(intel_connector->edid);
3257
3258	/* Can't call is_edp() since the encoder may have been destroyed
3259	 * already. */
3260	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3261		intel_panel_fini(&intel_connector->panel);
3262
3263	drm_connector_cleanup(connector);
3264	kfree(connector);
3265}
3266
3267void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3268{
3269	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3270	struct intel_dp *intel_dp = &intel_dig_port->dp;
3271	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3272
3273	i2c_del_adapter(&intel_dp->adapter);
3274	drm_encoder_cleanup(encoder);
3275	if (is_edp(intel_dp)) {
3276		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3277		mutex_lock(&dev->mode_config.mutex);
3278		ironlake_panel_vdd_off_sync(intel_dp);
3279		mutex_unlock(&dev->mode_config.mutex);
3280	}
3281	kfree(intel_dig_port);
3282}
3283
3284static const struct drm_connector_funcs intel_dp_connector_funcs = {
3285	.dpms = intel_connector_dpms,
3286	.detect = intel_dp_detect,
3287	.fill_modes = drm_helper_probe_single_connector_modes,
3288	.set_property = intel_dp_set_property,
3289	.destroy = intel_dp_connector_destroy,
3290};
3291
3292static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3293	.get_modes = intel_dp_get_modes,
3294	.mode_valid = intel_dp_mode_valid,
3295	.best_encoder = intel_best_encoder,
3296};
3297
3298static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3299	.destroy = intel_dp_encoder_destroy,
3300};
3301
3302static void
3303intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3304{
3305	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3306
3307	intel_dp_check_link_status(intel_dp);
3308}
3309
3310/* Return which DP Port should be selected for Transcoder DP control */
3311int
3312intel_trans_dp_port_sel(struct drm_crtc *crtc)
3313{
3314	struct drm_device *dev = crtc->dev;
3315	struct intel_encoder *intel_encoder;
3316	struct intel_dp *intel_dp;
3317
3318	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3319		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3320
3321		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3322		    intel_encoder->type == INTEL_OUTPUT_EDP)
3323			return intel_dp->output_reg;
3324	}
3325
3326	return -1;
3327}
3328
3329/* check the VBT to see whether the eDP is on DP-D port */
3330bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3331{
3332	struct drm_i915_private *dev_priv = dev->dev_private;
3333	union child_device_config *p_child;
3334	int i;
3335	static const short port_mapping[] = {
3336		[PORT_B] = PORT_IDPB,
3337		[PORT_C] = PORT_IDPC,
3338		[PORT_D] = PORT_IDPD,
3339	};
3340
3341	if (port == PORT_A)
3342		return true;
3343
3344	if (!dev_priv->vbt.child_dev_num)
3345		return false;
3346
3347	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3348		p_child = dev_priv->vbt.child_dev + i;
3349
3350		if (p_child->common.dvo_port == port_mapping[port] &&
3351		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3352		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3353			return true;
3354	}
3355	return false;
3356}
3357
3358static void
3359intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3360{
3361	struct intel_connector *intel_connector = to_intel_connector(connector);
3362
3363	intel_attach_force_audio_property(connector);
3364	intel_attach_broadcast_rgb_property(connector);
3365	intel_dp->color_range_auto = true;
3366
3367	if (is_edp(intel_dp)) {
3368		drm_mode_create_scaling_mode_property(connector->dev);
3369		drm_object_attach_property(
3370			&connector->base,
3371			connector->dev->mode_config.scaling_mode_property,
3372			DRM_MODE_SCALE_ASPECT);
3373		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3374	}
3375}
3376
3377static void
3378intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3379				    struct intel_dp *intel_dp,
3380				    struct edp_power_seq *out)
3381{
3382	struct drm_i915_private *dev_priv = dev->dev_private;
3383	struct edp_power_seq cur, vbt, spec, final;
3384	u32 pp_on, pp_off, pp_div, pp;
3385	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3386
3387	if (HAS_PCH_SPLIT(dev)) {
3388		pp_ctrl_reg = PCH_PP_CONTROL;
3389		pp_on_reg = PCH_PP_ON_DELAYS;
3390		pp_off_reg = PCH_PP_OFF_DELAYS;
3391		pp_div_reg = PCH_PP_DIVISOR;
3392	} else {
3393		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3394
3395		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3396		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3397		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3398		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3399	}
3400
3401	/* Workaround: Need to write PP_CONTROL with the unlock key as
3402	 * the very first thing. */
3403	pp = ironlake_get_pp_control(intel_dp);
3404	I915_WRITE(pp_ctrl_reg, pp);
3405
3406	pp_on = I915_READ(pp_on_reg);
3407	pp_off = I915_READ(pp_off_reg);
3408	pp_div = I915_READ(pp_div_reg);
3409
3410	/* Pull timing values out of registers */
3411	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3412		PANEL_POWER_UP_DELAY_SHIFT;
3413
3414	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3415		PANEL_LIGHT_ON_DELAY_SHIFT;
3416
3417	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3418		PANEL_LIGHT_OFF_DELAY_SHIFT;
3419
3420	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3421		PANEL_POWER_DOWN_DELAY_SHIFT;
3422
3423	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3424		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3425
3426	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3427		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3428
3429	vbt = dev_priv->vbt.edp_pps;
3430
3431	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3432	 * our hw here, which are all in 100usec. */
3433	spec.t1_t3 = 210 * 10;
3434	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3435	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3436	spec.t10 = 500 * 10;
3437	/* This one is special and actually in units of 100ms, but zero
3438	 * based in the hw (so we need to add 100 ms). But the sw vbt
3439	 * table multiplies it with 1000 to make it in units of 100usec,
3440	 * too. */
3441	spec.t11_t12 = (510 + 100) * 10;
3442
3443	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3444		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3445
3446	/* Use the max of the register settings and vbt. If both are
3447	 * unset, fall back to the spec limits. */
3448#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3449				       spec.field : \
3450				       max(cur.field, vbt.field))
3451	assign_final(t1_t3);
3452	assign_final(t8);
3453	assign_final(t9);
3454	assign_final(t10);
3455	assign_final(t11_t12);
3456#undef assign_final
3457
3458#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3459	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3460	intel_dp->backlight_on_delay = get_delay(t8);
3461	intel_dp->backlight_off_delay = get_delay(t9);
3462	intel_dp->panel_power_down_delay = get_delay(t10);
3463	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3464#undef get_delay
3465
3466	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3467		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3468		      intel_dp->panel_power_cycle_delay);
3469
3470	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3471		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3472
3473	if (out)
3474		*out = final;
3475}
3476
3477static void
3478intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3479					      struct intel_dp *intel_dp,
3480					      struct edp_power_seq *seq)
3481{
3482	struct drm_i915_private *dev_priv = dev->dev_private;
3483	u32 pp_on, pp_off, pp_div, port_sel = 0;
3484	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3485	int pp_on_reg, pp_off_reg, pp_div_reg;
3486
3487	if (HAS_PCH_SPLIT(dev)) {
3488		pp_on_reg = PCH_PP_ON_DELAYS;
3489		pp_off_reg = PCH_PP_OFF_DELAYS;
3490		pp_div_reg = PCH_PP_DIVISOR;
3491	} else {
3492		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3493
3494		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3495		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3496		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3497	}
3498
3499	/* And finally store the new values in the power sequencer. */
3500	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3501		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3502	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3503		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3504	/* Compute the divisor for the pp clock, simply match the Bspec
3505	 * formula. */
3506	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3507	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3508			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3509
3510	/* Haswell doesn't have any port selection bits for the panel
3511	 * power sequencer any more. */
3512	if (IS_VALLEYVIEW(dev)) {
3513		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3514			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3515		else
3516			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3517	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3518		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3519			port_sel = PANEL_PORT_SELECT_DPA;
3520		else
3521			port_sel = PANEL_PORT_SELECT_DPD;
3522	}
3523
3524	pp_on |= port_sel;
3525
3526	I915_WRITE(pp_on_reg, pp_on);
3527	I915_WRITE(pp_off_reg, pp_off);
3528	I915_WRITE(pp_div_reg, pp_div);
3529
3530	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3531		      I915_READ(pp_on_reg),
3532		      I915_READ(pp_off_reg),
3533		      I915_READ(pp_div_reg));
3534}
3535
3536static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3537				     struct intel_connector *intel_connector)
3538{
3539	struct drm_connector *connector = &intel_connector->base;
3540	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3541	struct drm_device *dev = intel_dig_port->base.base.dev;
3542	struct drm_i915_private *dev_priv = dev->dev_private;
3543	struct drm_display_mode *fixed_mode = NULL;
3544	struct edp_power_seq power_seq = { 0 };
3545	bool has_dpcd;
3546	struct drm_display_mode *scan;
3547	struct edid *edid;
3548
3549	if (!is_edp(intel_dp))
3550		return true;
3551
3552	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3553
3554	/* Cache DPCD and EDID for edp. */
3555	ironlake_edp_panel_vdd_on(intel_dp);
3556	has_dpcd = intel_dp_get_dpcd(intel_dp);
3557	ironlake_edp_panel_vdd_off(intel_dp, false);
3558
3559	if (has_dpcd) {
3560		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3561			dev_priv->no_aux_handshake =
3562				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3563				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3564	} else {
3565		/* if this fails, presume the device is a ghost */
3566		DRM_INFO("failed to retrieve link info, disabling eDP\n");
3567		return false;
3568	}
3569
3570	/* We now know it's not a ghost, init power sequence regs. */
3571	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3572						      &power_seq);
3573
3574	edid = drm_get_edid(connector, &intel_dp->adapter);
3575	if (edid) {
3576		if (drm_add_edid_modes(connector, edid)) {
3577			drm_mode_connector_update_edid_property(connector,
3578								edid);
3579			drm_edid_to_eld(connector, edid);
3580		} else {
3581			kfree(edid);
3582			edid = ERR_PTR(-EINVAL);
3583		}
3584	} else {
3585		edid = ERR_PTR(-ENOENT);
3586	}
3587	intel_connector->edid = edid;
3588
3589	/* prefer fixed mode from EDID if available */
3590	list_for_each_entry(scan, &connector->probed_modes, head) {
3591		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3592			fixed_mode = drm_mode_duplicate(dev, scan);
3593			break;
3594		}
3595	}
3596
3597	/* fallback to VBT if available for eDP */
3598	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3599		fixed_mode = drm_mode_duplicate(dev,
3600					dev_priv->vbt.lfp_lvds_vbt_mode);
3601		if (fixed_mode)
3602			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3603	}
3604
3605	intel_panel_init(&intel_connector->panel, fixed_mode);
3606	intel_panel_setup_backlight(connector);
3607
3608	return true;
3609}
3610
3611bool
3612intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3613			struct intel_connector *intel_connector)
3614{
3615	struct drm_connector *connector = &intel_connector->base;
3616	struct intel_dp *intel_dp = &intel_dig_port->dp;
3617	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3618	struct drm_device *dev = intel_encoder->base.dev;
3619	struct drm_i915_private *dev_priv = dev->dev_private;
3620	enum port port = intel_dig_port->port;
3621	const char *name = NULL;
3622	int type, error;
3623
3624	/* Preserve the current hw state. */
3625	intel_dp->DP = I915_READ(intel_dp->output_reg);
3626	intel_dp->attached_connector = intel_connector;
3627
3628	if (intel_dp_is_edp(dev, port))
3629		type = DRM_MODE_CONNECTOR_eDP;
3630	else
3631		type = DRM_MODE_CONNECTOR_DisplayPort;
3632
3633	/*
3634	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3635	 * for DP the encoder type can be set by the caller to
3636	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3637	 */
3638	if (type == DRM_MODE_CONNECTOR_eDP)
3639		intel_encoder->type = INTEL_OUTPUT_EDP;
3640
3641	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3642			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3643			port_name(port));
3644
3645	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3646	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3647
3648	connector->interlace_allowed = true;
3649	connector->doublescan_allowed = 0;
3650
3651	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3652			  ironlake_panel_vdd_work);
3653
3654	intel_connector_attach_encoder(intel_connector, intel_encoder);
3655	drm_sysfs_connector_add(connector);
3656
3657	if (HAS_DDI(dev))
3658		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3659	else
3660		intel_connector->get_hw_state = intel_connector_get_hw_state;
3661
3662	intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3663	if (HAS_DDI(dev)) {
3664		switch (intel_dig_port->port) {
3665		case PORT_A:
3666			intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3667			break;
3668		case PORT_B:
3669			intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3670			break;
3671		case PORT_C:
3672			intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3673			break;
3674		case PORT_D:
3675			intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3676			break;
3677		default:
3678			BUG();
3679		}
3680	}
3681
3682	/* Set up the DDC bus. */
3683	switch (port) {
3684	case PORT_A:
3685		intel_encoder->hpd_pin = HPD_PORT_A;
3686		name = "DPDDC-A";
3687		break;
3688	case PORT_B:
3689		intel_encoder->hpd_pin = HPD_PORT_B;
3690		name = "DPDDC-B";
3691		break;
3692	case PORT_C:
3693		intel_encoder->hpd_pin = HPD_PORT_C;
3694		name = "DPDDC-C";
3695		break;
3696	case PORT_D:
3697		intel_encoder->hpd_pin = HPD_PORT_D;
3698		name = "DPDDC-D";
3699		break;
3700	default:
3701		BUG();
3702	}
3703
3704	error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3705	WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3706	     error, port_name(port));
3707
3708	intel_dp->psr_setup_done = false;
3709
3710	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3711		i2c_del_adapter(&intel_dp->adapter);
3712		if (is_edp(intel_dp)) {
3713			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3714			mutex_lock(&dev->mode_config.mutex);
3715			ironlake_panel_vdd_off_sync(intel_dp);
3716			mutex_unlock(&dev->mode_config.mutex);
3717		}
3718		drm_sysfs_connector_remove(connector);
3719		drm_connector_cleanup(connector);
3720		return false;
3721	}
3722
3723	intel_dp_add_properties(intel_dp, connector);
3724
3725	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3726	 * 0xd.  Failure to do so will result in spurious interrupts being
3727	 * generated on the port when a cable is not attached.
3728	 */
3729	if (IS_G4X(dev) && !IS_GM45(dev)) {
3730		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3731		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3732	}
3733
3734	return true;
3735}
3736
3737void
3738intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3739{
3740	struct intel_digital_port *intel_dig_port;
3741	struct intel_encoder *intel_encoder;
3742	struct drm_encoder *encoder;
3743	struct intel_connector *intel_connector;
3744
3745	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3746	if (!intel_dig_port)
3747		return;
3748
3749	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3750	if (!intel_connector) {
3751		kfree(intel_dig_port);
3752		return;
3753	}
3754
3755	intel_encoder = &intel_dig_port->base;
3756	encoder = &intel_encoder->base;
3757
3758	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3759			 DRM_MODE_ENCODER_TMDS);
3760
3761	intel_encoder->compute_config = intel_dp_compute_config;
3762	intel_encoder->mode_set = intel_dp_mode_set;
3763	intel_encoder->disable = intel_disable_dp;
3764	intel_encoder->post_disable = intel_post_disable_dp;
3765	intel_encoder->get_hw_state = intel_dp_get_hw_state;
3766	intel_encoder->get_config = intel_dp_get_config;
3767	if (IS_VALLEYVIEW(dev)) {
3768		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3769		intel_encoder->pre_enable = vlv_pre_enable_dp;
3770		intel_encoder->enable = vlv_enable_dp;
3771	} else {
3772		intel_encoder->pre_enable = g4x_pre_enable_dp;
3773		intel_encoder->enable = g4x_enable_dp;
3774	}
3775
3776	intel_dig_port->port = port;
3777	intel_dig_port->dp.output_reg = output_reg;
3778
3779	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3780	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3781	intel_encoder->cloneable = false;
3782	intel_encoder->hot_plug = intel_dp_hot_plug;
3783
3784	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3785		drm_encoder_cleanup(encoder);
3786		kfree(intel_dig_port);
3787		kfree(intel_connector);
3788	}
3789}
3790