intel_dp.c revision 6e9f798d91c526982cca0026cd451e8fdbf18aaf
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41struct dp_link_dpll {
42	int link_bw;
43	struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47	{ DP_LINK_BW_1_62,
48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49	{ DP_LINK_BW_2_7,
50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54	{ DP_LINK_BW_1_62,
55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56	{ DP_LINK_BW_2_7,
57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61	{ DP_LINK_BW_1_62,
62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63	{ DP_LINK_BW_2_7,
64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/*
68 * CHV supports eDP 1.4 that have  more link rates.
69 * Below only provides the fixed rate but exclude variable rate.
70 */
71static const struct dp_link_dpll chv_dpll[] = {
72	/*
73	 * CHV requires to program fractional division for m2.
74	 * m2 is stored in fixed point format using formula below
75	 * (m2_int << 22) | m2_fraction
76	 */
77	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83};
84
85/**
86 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87 * @intel_dp: DP struct
88 *
89 * If a CPU or PCH DP output is attached to an eDP panel, this function
90 * will return true, and false otherwise.
91 */
92static bool is_edp(struct intel_dp *intel_dp)
93{
94	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97}
98
99static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100{
101	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103	return intel_dig_port->base.base.dev;
104}
105
106static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107{
108	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109}
110
111static void intel_dp_link_down(struct intel_dp *intel_dp);
112static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115static int
116intel_dp_max_link_bw(struct intel_dp *intel_dp)
117{
118	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119	struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121	switch (max_link_bw) {
122	case DP_LINK_BW_1_62:
123	case DP_LINK_BW_2_7:
124		break;
125	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126		if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
127		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128			max_link_bw = DP_LINK_BW_5_4;
129		else
130			max_link_bw = DP_LINK_BW_2_7;
131		break;
132	default:
133		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134		     max_link_bw);
135		max_link_bw = DP_LINK_BW_1_62;
136		break;
137	}
138	return max_link_bw;
139}
140
141/*
142 * The units on the numbers in the next two are... bizarre.  Examples will
143 * make it clearer; this one parallels an example in the eDP spec.
144 *
145 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
146 *
147 *     270000 * 1 * 8 / 10 == 216000
148 *
149 * The actual data capacity of that configuration is 2.16Gbit/s, so the
150 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
151 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
152 * 119000.  At 18bpp that's 2142000 kilobits per second.
153 *
154 * Thus the strange-looking division by 10 in intel_dp_link_required, to
155 * get the result in decakilobits instead of kilobits.
156 */
157
158static int
159intel_dp_link_required(int pixel_clock, int bpp)
160{
161	return (pixel_clock * bpp + 9) / 10;
162}
163
164static int
165intel_dp_max_data_rate(int max_link_clock, int max_lanes)
166{
167	return (max_link_clock * max_lanes * 8) / 10;
168}
169
170static enum drm_mode_status
171intel_dp_mode_valid(struct drm_connector *connector,
172		    struct drm_display_mode *mode)
173{
174	struct intel_dp *intel_dp = intel_attached_dp(connector);
175	struct intel_connector *intel_connector = to_intel_connector(connector);
176	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
177	int target_clock = mode->clock;
178	int max_rate, mode_rate, max_lanes, max_link_clock;
179
180	if (is_edp(intel_dp) && fixed_mode) {
181		if (mode->hdisplay > fixed_mode->hdisplay)
182			return MODE_PANEL;
183
184		if (mode->vdisplay > fixed_mode->vdisplay)
185			return MODE_PANEL;
186
187		target_clock = fixed_mode->clock;
188	}
189
190	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
191	max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
192
193	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
194	mode_rate = intel_dp_link_required(target_clock, 18);
195
196	if (mode_rate > max_rate)
197		return MODE_CLOCK_HIGH;
198
199	if (mode->clock < 10000)
200		return MODE_CLOCK_LOW;
201
202	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
203		return MODE_H_ILLEGAL;
204
205	return MODE_OK;
206}
207
208static uint32_t
209pack_aux(uint8_t *src, int src_bytes)
210{
211	int	i;
212	uint32_t v = 0;
213
214	if (src_bytes > 4)
215		src_bytes = 4;
216	for (i = 0; i < src_bytes; i++)
217		v |= ((uint32_t) src[i]) << ((3-i) * 8);
218	return v;
219}
220
221static void
222unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
223{
224	int i;
225	if (dst_bytes > 4)
226		dst_bytes = 4;
227	for (i = 0; i < dst_bytes; i++)
228		dst[i] = src >> ((3-i) * 8);
229}
230
231/* hrawclock is 1/4 the FSB frequency */
232static int
233intel_hrawclk(struct drm_device *dev)
234{
235	struct drm_i915_private *dev_priv = dev->dev_private;
236	uint32_t clkcfg;
237
238	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
239	if (IS_VALLEYVIEW(dev))
240		return 200;
241
242	clkcfg = I915_READ(CLKCFG);
243	switch (clkcfg & CLKCFG_FSB_MASK) {
244	case CLKCFG_FSB_400:
245		return 100;
246	case CLKCFG_FSB_533:
247		return 133;
248	case CLKCFG_FSB_667:
249		return 166;
250	case CLKCFG_FSB_800:
251		return 200;
252	case CLKCFG_FSB_1067:
253		return 266;
254	case CLKCFG_FSB_1333:
255		return 333;
256	/* these two are just a guess; one of them might be right */
257	case CLKCFG_FSB_1600:
258	case CLKCFG_FSB_1600_ALT:
259		return 400;
260	default:
261		return 133;
262	}
263}
264
265static void
266intel_dp_init_panel_power_sequencer(struct drm_device *dev,
267				    struct intel_dp *intel_dp,
268				    struct edp_power_seq *out);
269static void
270intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
271					      struct intel_dp *intel_dp,
272					      struct edp_power_seq *out);
273
274static enum pipe
275vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
276{
277	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
278	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
279	struct drm_device *dev = intel_dig_port->base.base.dev;
280	struct drm_i915_private *dev_priv = dev->dev_private;
281	enum port port = intel_dig_port->port;
282	enum pipe pipe;
283
284	/* modeset should have pipe */
285	if (crtc)
286		return to_intel_crtc(crtc)->pipe;
287
288	/* init time, try to find a pipe with this port selected */
289	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
290		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
291			PANEL_PORT_SELECT_MASK;
292		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
293			return pipe;
294		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
295			return pipe;
296	}
297
298	/* shrug */
299	return PIPE_A;
300}
301
302static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
303{
304	struct drm_device *dev = intel_dp_to_dev(intel_dp);
305
306	if (HAS_PCH_SPLIT(dev))
307		return PCH_PP_CONTROL;
308	else
309		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
310}
311
312static u32 _pp_stat_reg(struct intel_dp *intel_dp)
313{
314	struct drm_device *dev = intel_dp_to_dev(intel_dp);
315
316	if (HAS_PCH_SPLIT(dev))
317		return PCH_PP_STATUS;
318	else
319		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
320}
321
322static bool edp_have_panel_power(struct intel_dp *intel_dp)
323{
324	struct drm_device *dev = intel_dp_to_dev(intel_dp);
325	struct drm_i915_private *dev_priv = dev->dev_private;
326
327	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
328}
329
330static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
331{
332	struct drm_device *dev = intel_dp_to_dev(intel_dp);
333	struct drm_i915_private *dev_priv = dev->dev_private;
334	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335	struct intel_encoder *intel_encoder = &intel_dig_port->base;
336	enum intel_display_power_domain power_domain;
337
338	power_domain = intel_display_port_power_domain(intel_encoder);
339	return intel_display_power_enabled(dev_priv, power_domain) &&
340	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
341}
342
343static void
344intel_dp_check_edp(struct intel_dp *intel_dp)
345{
346	struct drm_device *dev = intel_dp_to_dev(intel_dp);
347	struct drm_i915_private *dev_priv = dev->dev_private;
348
349	if (!is_edp(intel_dp))
350		return;
351
352	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
353		WARN(1, "eDP powered off while attempting aux channel communication.\n");
354		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355			      I915_READ(_pp_stat_reg(intel_dp)),
356			      I915_READ(_pp_ctrl_reg(intel_dp)));
357	}
358}
359
360static uint32_t
361intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
362{
363	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364	struct drm_device *dev = intel_dig_port->base.base.dev;
365	struct drm_i915_private *dev_priv = dev->dev_private;
366	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
367	uint32_t status;
368	bool done;
369
370#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
371	if (has_aux_irq)
372		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
373					  msecs_to_jiffies_timeout(10));
374	else
375		done = wait_for_atomic(C, 10) == 0;
376	if (!done)
377		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
378			  has_aux_irq);
379#undef C
380
381	return status;
382}
383
384static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
385{
386	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
387	struct drm_device *dev = intel_dig_port->base.base.dev;
388
389	/*
390	 * The clock divider is based off the hrawclk, and would like to run at
391	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
392	 */
393	return index ? 0 : intel_hrawclk(dev) / 2;
394}
395
396static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
397{
398	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399	struct drm_device *dev = intel_dig_port->base.base.dev;
400
401	if (index)
402		return 0;
403
404	if (intel_dig_port->port == PORT_A) {
405		if (IS_GEN6(dev) || IS_GEN7(dev))
406			return 200; /* SNB & IVB eDP input clock at 400Mhz */
407		else
408			return 225; /* eDP input clock at 450Mhz */
409	} else {
410		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411	}
412}
413
414static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415{
416	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417	struct drm_device *dev = intel_dig_port->base.base.dev;
418	struct drm_i915_private *dev_priv = dev->dev_private;
419
420	if (intel_dig_port->port == PORT_A) {
421		if (index)
422			return 0;
423		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
424	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
425		/* Workaround for non-ULT HSW */
426		switch (index) {
427		case 0: return 63;
428		case 1: return 72;
429		default: return 0;
430		}
431	} else  {
432		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433	}
434}
435
436static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
437{
438	return index ? 0 : 100;
439}
440
441static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
442				      bool has_aux_irq,
443				      int send_bytes,
444				      uint32_t aux_clock_divider)
445{
446	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447	struct drm_device *dev = intel_dig_port->base.base.dev;
448	uint32_t precharge, timeout;
449
450	if (IS_GEN6(dev))
451		precharge = 3;
452	else
453		precharge = 5;
454
455	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
456		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
457	else
458		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
459
460	return DP_AUX_CH_CTL_SEND_BUSY |
461	       DP_AUX_CH_CTL_DONE |
462	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
464	       timeout |
465	       DP_AUX_CH_CTL_RECEIVE_ERROR |
466	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
467	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
468	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
469}
470
471static int
472intel_dp_aux_ch(struct intel_dp *intel_dp,
473		uint8_t *send, int send_bytes,
474		uint8_t *recv, int recv_size)
475{
476	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
477	struct drm_device *dev = intel_dig_port->base.base.dev;
478	struct drm_i915_private *dev_priv = dev->dev_private;
479	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
480	uint32_t ch_data = ch_ctl + 4;
481	uint32_t aux_clock_divider;
482	int i, ret, recv_bytes;
483	uint32_t status;
484	int try, clock = 0;
485	bool has_aux_irq = HAS_AUX_IRQ(dev);
486	bool vdd;
487
488	vdd = _edp_panel_vdd_on(intel_dp);
489
490	/* dp aux is extremely sensitive to irq latency, hence request the
491	 * lowest possible wakeup latency and so prevent the cpu from going into
492	 * deep sleep states.
493	 */
494	pm_qos_update_request(&dev_priv->pm_qos, 0);
495
496	intel_dp_check_edp(intel_dp);
497
498	intel_aux_display_runtime_get(dev_priv);
499
500	/* Try to wait for any previous AUX channel activity */
501	for (try = 0; try < 3; try++) {
502		status = I915_READ_NOTRACE(ch_ctl);
503		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
504			break;
505		msleep(1);
506	}
507
508	if (try == 3) {
509		WARN(1, "dp_aux_ch not started status 0x%08x\n",
510		     I915_READ(ch_ctl));
511		ret = -EBUSY;
512		goto out;
513	}
514
515	/* Only 5 data registers! */
516	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
517		ret = -E2BIG;
518		goto out;
519	}
520
521	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
522		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
523							  has_aux_irq,
524							  send_bytes,
525							  aux_clock_divider);
526
527		/* Must try at least 3 times according to DP spec */
528		for (try = 0; try < 5; try++) {
529			/* Load the send data into the aux channel data registers */
530			for (i = 0; i < send_bytes; i += 4)
531				I915_WRITE(ch_data + i,
532					   pack_aux(send + i, send_bytes - i));
533
534			/* Send the command and wait for it to complete */
535			I915_WRITE(ch_ctl, send_ctl);
536
537			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
538
539			/* Clear done status and any errors */
540			I915_WRITE(ch_ctl,
541				   status |
542				   DP_AUX_CH_CTL_DONE |
543				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
544				   DP_AUX_CH_CTL_RECEIVE_ERROR);
545
546			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
547				      DP_AUX_CH_CTL_RECEIVE_ERROR))
548				continue;
549			if (status & DP_AUX_CH_CTL_DONE)
550				break;
551		}
552		if (status & DP_AUX_CH_CTL_DONE)
553			break;
554	}
555
556	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
557		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
558		ret = -EBUSY;
559		goto out;
560	}
561
562	/* Check for timeout or receive error.
563	 * Timeouts occur when the sink is not connected
564	 */
565	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
566		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
567		ret = -EIO;
568		goto out;
569	}
570
571	/* Timeouts occur when the device isn't connected, so they're
572	 * "normal" -- don't fill the kernel log with these */
573	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
574		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
575		ret = -ETIMEDOUT;
576		goto out;
577	}
578
579	/* Unload any bytes sent back from the other side */
580	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
581		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
582	if (recv_bytes > recv_size)
583		recv_bytes = recv_size;
584
585	for (i = 0; i < recv_bytes; i += 4)
586		unpack_aux(I915_READ(ch_data + i),
587			   recv + i, recv_bytes - i);
588
589	ret = recv_bytes;
590out:
591	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
592	intel_aux_display_runtime_put(dev_priv);
593
594	if (vdd)
595		edp_panel_vdd_off(intel_dp, false);
596
597	return ret;
598}
599
600#define BARE_ADDRESS_SIZE	3
601#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
602static ssize_t
603intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
604{
605	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
606	uint8_t txbuf[20], rxbuf[20];
607	size_t txsize, rxsize;
608	int ret;
609
610	txbuf[0] = msg->request << 4;
611	txbuf[1] = msg->address >> 8;
612	txbuf[2] = msg->address & 0xff;
613	txbuf[3] = msg->size - 1;
614
615	switch (msg->request & ~DP_AUX_I2C_MOT) {
616	case DP_AUX_NATIVE_WRITE:
617	case DP_AUX_I2C_WRITE:
618		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
619		rxsize = 1;
620
621		if (WARN_ON(txsize > 20))
622			return -E2BIG;
623
624		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
625
626		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
627		if (ret > 0) {
628			msg->reply = rxbuf[0] >> 4;
629
630			/* Return payload size. */
631			ret = msg->size;
632		}
633		break;
634
635	case DP_AUX_NATIVE_READ:
636	case DP_AUX_I2C_READ:
637		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
638		rxsize = msg->size + 1;
639
640		if (WARN_ON(rxsize > 20))
641			return -E2BIG;
642
643		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644		if (ret > 0) {
645			msg->reply = rxbuf[0] >> 4;
646			/*
647			 * Assume happy day, and copy the data. The caller is
648			 * expected to check msg->reply before touching it.
649			 *
650			 * Return payload size.
651			 */
652			ret--;
653			memcpy(msg->buffer, rxbuf + 1, ret);
654		}
655		break;
656
657	default:
658		ret = -EINVAL;
659		break;
660	}
661
662	return ret;
663}
664
665static void
666intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
667{
668	struct drm_device *dev = intel_dp_to_dev(intel_dp);
669	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670	enum port port = intel_dig_port->port;
671	const char *name = NULL;
672	int ret;
673
674	switch (port) {
675	case PORT_A:
676		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
677		name = "DPDDC-A";
678		break;
679	case PORT_B:
680		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
681		name = "DPDDC-B";
682		break;
683	case PORT_C:
684		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
685		name = "DPDDC-C";
686		break;
687	case PORT_D:
688		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
689		name = "DPDDC-D";
690		break;
691	default:
692		BUG();
693	}
694
695	if (!HAS_DDI(dev))
696		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
697
698	intel_dp->aux.name = name;
699	intel_dp->aux.dev = dev->dev;
700	intel_dp->aux.transfer = intel_dp_aux_transfer;
701
702	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
703		      connector->base.kdev->kobj.name);
704
705	ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
706	if (ret < 0) {
707		DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
708			  name, ret);
709		return;
710	}
711
712	ret = sysfs_create_link(&connector->base.kdev->kobj,
713				&intel_dp->aux.ddc.dev.kobj,
714				intel_dp->aux.ddc.dev.kobj.name);
715	if (ret < 0) {
716		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
717		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
718	}
719}
720
721static void
722intel_dp_connector_unregister(struct intel_connector *intel_connector)
723{
724	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
725
726	sysfs_remove_link(&intel_connector->base.kdev->kobj,
727			  intel_dp->aux.ddc.dev.kobj.name);
728	intel_connector_unregister(intel_connector);
729}
730
731static void
732intel_dp_set_clock(struct intel_encoder *encoder,
733		   struct intel_crtc_config *pipe_config, int link_bw)
734{
735	struct drm_device *dev = encoder->base.dev;
736	const struct dp_link_dpll *divisor = NULL;
737	int i, count = 0;
738
739	if (IS_G4X(dev)) {
740		divisor = gen4_dpll;
741		count = ARRAY_SIZE(gen4_dpll);
742	} else if (IS_HASWELL(dev)) {
743		/* Haswell has special-purpose DP DDI clocks. */
744	} else if (HAS_PCH_SPLIT(dev)) {
745		divisor = pch_dpll;
746		count = ARRAY_SIZE(pch_dpll);
747	} else if (IS_CHERRYVIEW(dev)) {
748		divisor = chv_dpll;
749		count = ARRAY_SIZE(chv_dpll);
750	} else if (IS_VALLEYVIEW(dev)) {
751		divisor = vlv_dpll;
752		count = ARRAY_SIZE(vlv_dpll);
753	}
754
755	if (divisor && count) {
756		for (i = 0; i < count; i++) {
757			if (link_bw == divisor[i].link_bw) {
758				pipe_config->dpll = divisor[i].dpll;
759				pipe_config->clock_set = true;
760				break;
761			}
762		}
763	}
764}
765
766static void
767intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
768{
769	struct drm_device *dev = crtc->base.dev;
770	struct drm_i915_private *dev_priv = dev->dev_private;
771	enum transcoder transcoder = crtc->config.cpu_transcoder;
772
773	I915_WRITE(PIPE_DATA_M2(transcoder),
774		TU_SIZE(m_n->tu) | m_n->gmch_m);
775	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
776	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
777	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
778}
779
780bool
781intel_dp_compute_config(struct intel_encoder *encoder,
782			struct intel_crtc_config *pipe_config)
783{
784	struct drm_device *dev = encoder->base.dev;
785	struct drm_i915_private *dev_priv = dev->dev_private;
786	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788	enum port port = dp_to_dig_port(intel_dp)->port;
789	struct intel_crtc *intel_crtc = encoder->new_crtc;
790	struct intel_connector *intel_connector = intel_dp->attached_connector;
791	int lane_count, clock;
792	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793	/* Conveniently, the link BW constants become indices with a shift...*/
794	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
795	int bpp, mode_rate;
796	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
797	int link_avail, link_clock;
798
799	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
800		pipe_config->has_pch_encoder = true;
801
802	pipe_config->has_dp_encoder = true;
803	pipe_config->has_audio = intel_dp->has_audio;
804
805	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
806		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
807				       adjusted_mode);
808		if (!HAS_PCH_SPLIT(dev))
809			intel_gmch_panel_fitting(intel_crtc, pipe_config,
810						 intel_connector->panel.fitting_mode);
811		else
812			intel_pch_panel_fitting(intel_crtc, pipe_config,
813						intel_connector->panel.fitting_mode);
814	}
815
816	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
817		return false;
818
819	DRM_DEBUG_KMS("DP link computation with max lane count %i "
820		      "max bw %02x pixel clock %iKHz\n",
821		      max_lane_count, bws[max_clock],
822		      adjusted_mode->crtc_clock);
823
824	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
825	 * bpc in between. */
826	bpp = pipe_config->pipe_bpp;
827	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
828	    dev_priv->vbt.edp_bpp < bpp) {
829		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
830			      dev_priv->vbt.edp_bpp);
831		bpp = dev_priv->vbt.edp_bpp;
832	}
833
834	for (; bpp >= 6*3; bpp -= 2*3) {
835		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
836						   bpp);
837
838		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
839			for (clock = 0; clock <= max_clock; clock++) {
840				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
841				link_avail = intel_dp_max_data_rate(link_clock,
842								    lane_count);
843
844				if (mode_rate <= link_avail) {
845					goto found;
846				}
847			}
848		}
849	}
850
851	return false;
852
853found:
854	if (intel_dp->color_range_auto) {
855		/*
856		 * See:
857		 * CEA-861-E - 5.1 Default Encoding Parameters
858		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
859		 */
860		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
861			intel_dp->color_range = DP_COLOR_RANGE_16_235;
862		else
863			intel_dp->color_range = 0;
864	}
865
866	if (intel_dp->color_range)
867		pipe_config->limited_color_range = true;
868
869	intel_dp->link_bw = bws[clock];
870	intel_dp->lane_count = lane_count;
871	pipe_config->pipe_bpp = bpp;
872	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
873
874	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
875		      intel_dp->link_bw, intel_dp->lane_count,
876		      pipe_config->port_clock, bpp);
877	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
878		      mode_rate, link_avail);
879
880	intel_link_compute_m_n(bpp, lane_count,
881			       adjusted_mode->crtc_clock,
882			       pipe_config->port_clock,
883			       &pipe_config->dp_m_n);
884
885	if (intel_connector->panel.downclock_mode != NULL &&
886		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
887			intel_link_compute_m_n(bpp, lane_count,
888				intel_connector->panel.downclock_mode->clock,
889				pipe_config->port_clock,
890				&pipe_config->dp_m2_n2);
891	}
892
893	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
894
895	return true;
896}
897
898static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
899{
900	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
901	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
902	struct drm_device *dev = crtc->base.dev;
903	struct drm_i915_private *dev_priv = dev->dev_private;
904	u32 dpa_ctl;
905
906	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
907	dpa_ctl = I915_READ(DP_A);
908	dpa_ctl &= ~DP_PLL_FREQ_MASK;
909
910	if (crtc->config.port_clock == 162000) {
911		/* For a long time we've carried around a ILK-DevA w/a for the
912		 * 160MHz clock. If we're really unlucky, it's still required.
913		 */
914		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
915		dpa_ctl |= DP_PLL_FREQ_160MHZ;
916		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917	} else {
918		dpa_ctl |= DP_PLL_FREQ_270MHZ;
919		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
920	}
921
922	I915_WRITE(DP_A, dpa_ctl);
923
924	POSTING_READ(DP_A);
925	udelay(500);
926}
927
928static void intel_dp_prepare(struct intel_encoder *encoder)
929{
930	struct drm_device *dev = encoder->base.dev;
931	struct drm_i915_private *dev_priv = dev->dev_private;
932	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
933	enum port port = dp_to_dig_port(intel_dp)->port;
934	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
935	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
936
937	/*
938	 * There are four kinds of DP registers:
939	 *
940	 * 	IBX PCH
941	 * 	SNB CPU
942	 *	IVB CPU
943	 * 	CPT PCH
944	 *
945	 * IBX PCH and CPU are the same for almost everything,
946	 * except that the CPU DP PLL is configured in this
947	 * register
948	 *
949	 * CPT PCH is quite different, having many bits moved
950	 * to the TRANS_DP_CTL register instead. That
951	 * configuration happens (oddly) in ironlake_pch_enable
952	 */
953
954	/* Preserve the BIOS-computed detected bit. This is
955	 * supposed to be read-only.
956	 */
957	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
958
959	/* Handle DP bits in common between all three register formats */
960	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
961	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
962
963	if (crtc->config.has_audio) {
964		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
965				 pipe_name(crtc->pipe));
966		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
967		intel_write_eld(&encoder->base, adjusted_mode);
968	}
969
970	/* Split out the IBX/CPU vs CPT settings */
971
972	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
973		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
974			intel_dp->DP |= DP_SYNC_HS_HIGH;
975		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
976			intel_dp->DP |= DP_SYNC_VS_HIGH;
977		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
978
979		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
980			intel_dp->DP |= DP_ENHANCED_FRAMING;
981
982		intel_dp->DP |= crtc->pipe << 29;
983	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
984		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
985			intel_dp->DP |= intel_dp->color_range;
986
987		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
988			intel_dp->DP |= DP_SYNC_HS_HIGH;
989		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
990			intel_dp->DP |= DP_SYNC_VS_HIGH;
991		intel_dp->DP |= DP_LINK_TRAIN_OFF;
992
993		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
994			intel_dp->DP |= DP_ENHANCED_FRAMING;
995
996		if (!IS_CHERRYVIEW(dev)) {
997			if (crtc->pipe == 1)
998				intel_dp->DP |= DP_PIPEB_SELECT;
999		} else {
1000			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1001		}
1002	} else {
1003		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004	}
1005}
1006
1007#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1008#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1009
1010#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1011#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1012
1013#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1014#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016static void wait_panel_status(struct intel_dp *intel_dp,
1017				       u32 mask,
1018				       u32 value)
1019{
1020	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021	struct drm_i915_private *dev_priv = dev->dev_private;
1022	u32 pp_stat_reg, pp_ctrl_reg;
1023
1024	pp_stat_reg = _pp_stat_reg(intel_dp);
1025	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1026
1027	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1028			mask, value,
1029			I915_READ(pp_stat_reg),
1030			I915_READ(pp_ctrl_reg));
1031
1032	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1033		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1034				I915_READ(pp_stat_reg),
1035				I915_READ(pp_ctrl_reg));
1036	}
1037
1038	DRM_DEBUG_KMS("Wait complete\n");
1039}
1040
1041static void wait_panel_on(struct intel_dp *intel_dp)
1042{
1043	DRM_DEBUG_KMS("Wait for panel power on\n");
1044	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1045}
1046
1047static void wait_panel_off(struct intel_dp *intel_dp)
1048{
1049	DRM_DEBUG_KMS("Wait for panel power off time\n");
1050	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1051}
1052
1053static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1054{
1055	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1056
1057	/* When we disable the VDD override bit last we have to do the manual
1058	 * wait. */
1059	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1060				       intel_dp->panel_power_cycle_delay);
1061
1062	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1063}
1064
1065static void wait_backlight_on(struct intel_dp *intel_dp)
1066{
1067	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1068				       intel_dp->backlight_on_delay);
1069}
1070
1071static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1072{
1073	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1074				       intel_dp->backlight_off_delay);
1075}
1076
1077/* Read the current pp_control value, unlocking the register if it
1078 * is locked
1079 */
1080
1081static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1082{
1083	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1084	struct drm_i915_private *dev_priv = dev->dev_private;
1085	u32 control;
1086
1087	control = I915_READ(_pp_ctrl_reg(intel_dp));
1088	control &= ~PANEL_UNLOCK_MASK;
1089	control |= PANEL_UNLOCK_REGS;
1090	return control;
1091}
1092
1093static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1094{
1095	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1096	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1097	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1098	struct drm_i915_private *dev_priv = dev->dev_private;
1099	enum intel_display_power_domain power_domain;
1100	u32 pp;
1101	u32 pp_stat_reg, pp_ctrl_reg;
1102	bool need_to_disable = !intel_dp->want_panel_vdd;
1103
1104	if (!is_edp(intel_dp))
1105		return false;
1106
1107	intel_dp->want_panel_vdd = true;
1108
1109	if (edp_have_panel_vdd(intel_dp))
1110		return need_to_disable;
1111
1112	power_domain = intel_display_port_power_domain(intel_encoder);
1113	intel_display_power_get(dev_priv, power_domain);
1114
1115	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1116
1117	if (!edp_have_panel_power(intel_dp))
1118		wait_panel_power_cycle(intel_dp);
1119
1120	pp = ironlake_get_pp_control(intel_dp);
1121	pp |= EDP_FORCE_VDD;
1122
1123	pp_stat_reg = _pp_stat_reg(intel_dp);
1124	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1125
1126	I915_WRITE(pp_ctrl_reg, pp);
1127	POSTING_READ(pp_ctrl_reg);
1128	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1129			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1130	/*
1131	 * If the panel wasn't on, delay before accessing aux channel
1132	 */
1133	if (!edp_have_panel_power(intel_dp)) {
1134		DRM_DEBUG_KMS("eDP was not running\n");
1135		msleep(intel_dp->panel_power_up_delay);
1136	}
1137
1138	return need_to_disable;
1139}
1140
1141void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1142{
1143	if (is_edp(intel_dp)) {
1144		bool vdd = _edp_panel_vdd_on(intel_dp);
1145
1146		WARN(!vdd, "eDP VDD already requested on\n");
1147	}
1148}
1149
1150static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1151{
1152	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153	struct drm_i915_private *dev_priv = dev->dev_private;
1154	u32 pp;
1155	u32 pp_stat_reg, pp_ctrl_reg;
1156
1157	WARN_ON(!mutex_is_locked(&dev->mode_config.connection_mutex));
1158
1159	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1160		struct intel_digital_port *intel_dig_port =
1161						dp_to_dig_port(intel_dp);
1162		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1163		enum intel_display_power_domain power_domain;
1164
1165		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1166
1167		pp = ironlake_get_pp_control(intel_dp);
1168		pp &= ~EDP_FORCE_VDD;
1169
1170		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1171		pp_stat_reg = _pp_stat_reg(intel_dp);
1172
1173		I915_WRITE(pp_ctrl_reg, pp);
1174		POSTING_READ(pp_ctrl_reg);
1175
1176		/* Make sure sequencer is idle before allowing subsequent activity */
1177		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1178		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1179
1180		if ((pp & POWER_TARGET_ON) == 0)
1181			intel_dp->last_power_cycle = jiffies;
1182
1183		power_domain = intel_display_port_power_domain(intel_encoder);
1184		intel_display_power_put(dev_priv, power_domain);
1185	}
1186}
1187
1188static void edp_panel_vdd_work(struct work_struct *__work)
1189{
1190	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1191						 struct intel_dp, panel_vdd_work);
1192	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1193
1194	mutex_lock(&dev->mode_config.connection_mutex);
1195	edp_panel_vdd_off_sync(intel_dp);
1196	mutex_unlock(&dev->mode_config.connection_mutex);
1197}
1198
1199static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1200{
1201	if (!is_edp(intel_dp))
1202		return;
1203
1204	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1205
1206	intel_dp->want_panel_vdd = false;
1207
1208	if (sync) {
1209		edp_panel_vdd_off_sync(intel_dp);
1210	} else {
1211		/*
1212		 * Queue the timer to fire a long
1213		 * time from now (relative to the power down delay)
1214		 * to keep the panel power up across a sequence of operations
1215		 */
1216		schedule_delayed_work(&intel_dp->panel_vdd_work,
1217				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1218	}
1219}
1220
1221void intel_edp_panel_on(struct intel_dp *intel_dp)
1222{
1223	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224	struct drm_i915_private *dev_priv = dev->dev_private;
1225	u32 pp;
1226	u32 pp_ctrl_reg;
1227
1228	if (!is_edp(intel_dp))
1229		return;
1230
1231	DRM_DEBUG_KMS("Turn eDP power on\n");
1232
1233	if (edp_have_panel_power(intel_dp)) {
1234		DRM_DEBUG_KMS("eDP power already on\n");
1235		return;
1236	}
1237
1238	wait_panel_power_cycle(intel_dp);
1239
1240	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1241	pp = ironlake_get_pp_control(intel_dp);
1242	if (IS_GEN5(dev)) {
1243		/* ILK workaround: disable reset around power sequence */
1244		pp &= ~PANEL_POWER_RESET;
1245		I915_WRITE(pp_ctrl_reg, pp);
1246		POSTING_READ(pp_ctrl_reg);
1247	}
1248
1249	pp |= POWER_TARGET_ON;
1250	if (!IS_GEN5(dev))
1251		pp |= PANEL_POWER_RESET;
1252
1253	I915_WRITE(pp_ctrl_reg, pp);
1254	POSTING_READ(pp_ctrl_reg);
1255
1256	wait_panel_on(intel_dp);
1257	intel_dp->last_power_on = jiffies;
1258
1259	if (IS_GEN5(dev)) {
1260		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1261		I915_WRITE(pp_ctrl_reg, pp);
1262		POSTING_READ(pp_ctrl_reg);
1263	}
1264}
1265
1266void intel_edp_panel_off(struct intel_dp *intel_dp)
1267{
1268	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1269	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1270	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1271	struct drm_i915_private *dev_priv = dev->dev_private;
1272	enum intel_display_power_domain power_domain;
1273	u32 pp;
1274	u32 pp_ctrl_reg;
1275
1276	if (!is_edp(intel_dp))
1277		return;
1278
1279	DRM_DEBUG_KMS("Turn eDP power off\n");
1280
1281	edp_wait_backlight_off(intel_dp);
1282
1283	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1284
1285	pp = ironlake_get_pp_control(intel_dp);
1286	/* We need to switch off panel power _and_ force vdd, for otherwise some
1287	 * panels get very unhappy and cease to work. */
1288	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1289		EDP_BLC_ENABLE);
1290
1291	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1292
1293	intel_dp->want_panel_vdd = false;
1294
1295	I915_WRITE(pp_ctrl_reg, pp);
1296	POSTING_READ(pp_ctrl_reg);
1297
1298	intel_dp->last_power_cycle = jiffies;
1299	wait_panel_off(intel_dp);
1300
1301	/* We got a reference when we enabled the VDD. */
1302	power_domain = intel_display_port_power_domain(intel_encoder);
1303	intel_display_power_put(dev_priv, power_domain);
1304}
1305
1306void intel_edp_backlight_on(struct intel_dp *intel_dp)
1307{
1308	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1309	struct drm_device *dev = intel_dig_port->base.base.dev;
1310	struct drm_i915_private *dev_priv = dev->dev_private;
1311	u32 pp;
1312	u32 pp_ctrl_reg;
1313
1314	if (!is_edp(intel_dp))
1315		return;
1316
1317	DRM_DEBUG_KMS("\n");
1318	/*
1319	 * If we enable the backlight right away following a panel power
1320	 * on, we may see slight flicker as the panel syncs with the eDP
1321	 * link.  So delay a bit to make sure the image is solid before
1322	 * allowing it to appear.
1323	 */
1324	wait_backlight_on(intel_dp);
1325	pp = ironlake_get_pp_control(intel_dp);
1326	pp |= EDP_BLC_ENABLE;
1327
1328	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1329
1330	I915_WRITE(pp_ctrl_reg, pp);
1331	POSTING_READ(pp_ctrl_reg);
1332
1333	intel_panel_enable_backlight(intel_dp->attached_connector);
1334}
1335
1336void intel_edp_backlight_off(struct intel_dp *intel_dp)
1337{
1338	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1339	struct drm_i915_private *dev_priv = dev->dev_private;
1340	u32 pp;
1341	u32 pp_ctrl_reg;
1342
1343	if (!is_edp(intel_dp))
1344		return;
1345
1346	intel_panel_disable_backlight(intel_dp->attached_connector);
1347
1348	DRM_DEBUG_KMS("\n");
1349	pp = ironlake_get_pp_control(intel_dp);
1350	pp &= ~EDP_BLC_ENABLE;
1351
1352	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1353
1354	I915_WRITE(pp_ctrl_reg, pp);
1355	POSTING_READ(pp_ctrl_reg);
1356	intel_dp->last_backlight_off = jiffies;
1357}
1358
1359static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1360{
1361	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1363	struct drm_device *dev = crtc->dev;
1364	struct drm_i915_private *dev_priv = dev->dev_private;
1365	u32 dpa_ctl;
1366
1367	assert_pipe_disabled(dev_priv,
1368			     to_intel_crtc(crtc)->pipe);
1369
1370	DRM_DEBUG_KMS("\n");
1371	dpa_ctl = I915_READ(DP_A);
1372	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1373	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1374
1375	/* We don't adjust intel_dp->DP while tearing down the link, to
1376	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1377	 * enable bits here to ensure that we don't enable too much. */
1378	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1379	intel_dp->DP |= DP_PLL_ENABLE;
1380	I915_WRITE(DP_A, intel_dp->DP);
1381	POSTING_READ(DP_A);
1382	udelay(200);
1383}
1384
1385static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1386{
1387	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1388	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1389	struct drm_device *dev = crtc->dev;
1390	struct drm_i915_private *dev_priv = dev->dev_private;
1391	u32 dpa_ctl;
1392
1393	assert_pipe_disabled(dev_priv,
1394			     to_intel_crtc(crtc)->pipe);
1395
1396	dpa_ctl = I915_READ(DP_A);
1397	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1398	     "dp pll off, should be on\n");
1399	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1400
1401	/* We can't rely on the value tracked for the DP register in
1402	 * intel_dp->DP because link_down must not change that (otherwise link
1403	 * re-training will fail. */
1404	dpa_ctl &= ~DP_PLL_ENABLE;
1405	I915_WRITE(DP_A, dpa_ctl);
1406	POSTING_READ(DP_A);
1407	udelay(200);
1408}
1409
1410/* If the sink supports it, try to set the power state appropriately */
1411void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1412{
1413	int ret, i;
1414
1415	/* Should have a valid DPCD by this point */
1416	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1417		return;
1418
1419	if (mode != DRM_MODE_DPMS_ON) {
1420		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1421					 DP_SET_POWER_D3);
1422		if (ret != 1)
1423			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1424	} else {
1425		/*
1426		 * When turning on, we need to retry for 1ms to give the sink
1427		 * time to wake up.
1428		 */
1429		for (i = 0; i < 3; i++) {
1430			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1431						 DP_SET_POWER_D0);
1432			if (ret == 1)
1433				break;
1434			msleep(1);
1435		}
1436	}
1437}
1438
1439static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1440				  enum pipe *pipe)
1441{
1442	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443	enum port port = dp_to_dig_port(intel_dp)->port;
1444	struct drm_device *dev = encoder->base.dev;
1445	struct drm_i915_private *dev_priv = dev->dev_private;
1446	enum intel_display_power_domain power_domain;
1447	u32 tmp;
1448
1449	power_domain = intel_display_port_power_domain(encoder);
1450	if (!intel_display_power_enabled(dev_priv, power_domain))
1451		return false;
1452
1453	tmp = I915_READ(intel_dp->output_reg);
1454
1455	if (!(tmp & DP_PORT_EN))
1456		return false;
1457
1458	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1459		*pipe = PORT_TO_PIPE_CPT(tmp);
1460	} else if (IS_CHERRYVIEW(dev)) {
1461		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1462	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1463		*pipe = PORT_TO_PIPE(tmp);
1464	} else {
1465		u32 trans_sel;
1466		u32 trans_dp;
1467		int i;
1468
1469		switch (intel_dp->output_reg) {
1470		case PCH_DP_B:
1471			trans_sel = TRANS_DP_PORT_SEL_B;
1472			break;
1473		case PCH_DP_C:
1474			trans_sel = TRANS_DP_PORT_SEL_C;
1475			break;
1476		case PCH_DP_D:
1477			trans_sel = TRANS_DP_PORT_SEL_D;
1478			break;
1479		default:
1480			return true;
1481		}
1482
1483		for_each_pipe(i) {
1484			trans_dp = I915_READ(TRANS_DP_CTL(i));
1485			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1486				*pipe = i;
1487				return true;
1488			}
1489		}
1490
1491		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1492			      intel_dp->output_reg);
1493	}
1494
1495	return true;
1496}
1497
1498static void intel_dp_get_config(struct intel_encoder *encoder,
1499				struct intel_crtc_config *pipe_config)
1500{
1501	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1502	u32 tmp, flags = 0;
1503	struct drm_device *dev = encoder->base.dev;
1504	struct drm_i915_private *dev_priv = dev->dev_private;
1505	enum port port = dp_to_dig_port(intel_dp)->port;
1506	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1507	int dotclock;
1508
1509	tmp = I915_READ(intel_dp->output_reg);
1510	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1511		pipe_config->has_audio = true;
1512
1513	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1514		if (tmp & DP_SYNC_HS_HIGH)
1515			flags |= DRM_MODE_FLAG_PHSYNC;
1516		else
1517			flags |= DRM_MODE_FLAG_NHSYNC;
1518
1519		if (tmp & DP_SYNC_VS_HIGH)
1520			flags |= DRM_MODE_FLAG_PVSYNC;
1521		else
1522			flags |= DRM_MODE_FLAG_NVSYNC;
1523	} else {
1524		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1525		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1526			flags |= DRM_MODE_FLAG_PHSYNC;
1527		else
1528			flags |= DRM_MODE_FLAG_NHSYNC;
1529
1530		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1531			flags |= DRM_MODE_FLAG_PVSYNC;
1532		else
1533			flags |= DRM_MODE_FLAG_NVSYNC;
1534	}
1535
1536	pipe_config->adjusted_mode.flags |= flags;
1537
1538	pipe_config->has_dp_encoder = true;
1539
1540	intel_dp_get_m_n(crtc, pipe_config);
1541
1542	if (port == PORT_A) {
1543		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1544			pipe_config->port_clock = 162000;
1545		else
1546			pipe_config->port_clock = 270000;
1547	}
1548
1549	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1550					    &pipe_config->dp_m_n);
1551
1552	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1553		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1554
1555	pipe_config->adjusted_mode.crtc_clock = dotclock;
1556
1557	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1558	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1559		/*
1560		 * This is a big fat ugly hack.
1561		 *
1562		 * Some machines in UEFI boot mode provide us a VBT that has 18
1563		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1564		 * unknown we fail to light up. Yet the same BIOS boots up with
1565		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1566		 * max, not what it tells us to use.
1567		 *
1568		 * Note: This will still be broken if the eDP panel is not lit
1569		 * up by the BIOS, and thus we can't get the mode at module
1570		 * load.
1571		 */
1572		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1573			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1574		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1575	}
1576}
1577
1578static bool is_edp_psr(struct drm_device *dev)
1579{
1580	struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582	return dev_priv->psr.sink_support;
1583}
1584
1585static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1586{
1587	struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589	if (!HAS_PSR(dev))
1590		return false;
1591
1592	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1593}
1594
1595static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1596				    struct edp_vsc_psr *vsc_psr)
1597{
1598	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1599	struct drm_device *dev = dig_port->base.base.dev;
1600	struct drm_i915_private *dev_priv = dev->dev_private;
1601	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1602	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1603	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1604	uint32_t *data = (uint32_t *) vsc_psr;
1605	unsigned int i;
1606
1607	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1608	   the video DIP being updated before program video DIP data buffer
1609	   registers for DIP being updated. */
1610	I915_WRITE(ctl_reg, 0);
1611	POSTING_READ(ctl_reg);
1612
1613	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1614		if (i < sizeof(struct edp_vsc_psr))
1615			I915_WRITE(data_reg + i, *data++);
1616		else
1617			I915_WRITE(data_reg + i, 0);
1618	}
1619
1620	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1621	POSTING_READ(ctl_reg);
1622}
1623
1624static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1625{
1626	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1627	struct drm_i915_private *dev_priv = dev->dev_private;
1628	struct edp_vsc_psr psr_vsc;
1629
1630	if (intel_dp->psr_setup_done)
1631		return;
1632
1633	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1634	memset(&psr_vsc, 0, sizeof(psr_vsc));
1635	psr_vsc.sdp_header.HB0 = 0;
1636	psr_vsc.sdp_header.HB1 = 0x7;
1637	psr_vsc.sdp_header.HB2 = 0x2;
1638	psr_vsc.sdp_header.HB3 = 0x8;
1639	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1640
1641	/* Avoid continuous PSR exit by masking memup and hpd */
1642	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1643		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1644
1645	intel_dp->psr_setup_done = true;
1646}
1647
1648static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1649{
1650	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1651	struct drm_i915_private *dev_priv = dev->dev_private;
1652	uint32_t aux_clock_divider;
1653	int precharge = 0x3;
1654	int msg_size = 5;       /* Header(4) + Message(1) */
1655
1656	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1657
1658	/* Enable PSR in sink */
1659	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1660		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1661				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1662	else
1663		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1664				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1665
1666	/* Setup AUX registers */
1667	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1668	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1669	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1670		   DP_AUX_CH_CTL_TIME_OUT_400us |
1671		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1672		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1673		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1674}
1675
1676static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1677{
1678	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1679	struct drm_i915_private *dev_priv = dev->dev_private;
1680	uint32_t max_sleep_time = 0x1f;
1681	uint32_t idle_frames = 1;
1682	uint32_t val = 0x0;
1683	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1684
1685	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1686		val |= EDP_PSR_LINK_STANDBY;
1687		val |= EDP_PSR_TP2_TP3_TIME_0us;
1688		val |= EDP_PSR_TP1_TIME_0us;
1689		val |= EDP_PSR_SKIP_AUX_EXIT;
1690	} else
1691		val |= EDP_PSR_LINK_DISABLE;
1692
1693	I915_WRITE(EDP_PSR_CTL(dev), val |
1694		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1695		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1696		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1697		   EDP_PSR_ENABLE);
1698}
1699
1700static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1701{
1702	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1703	struct drm_device *dev = dig_port->base.base.dev;
1704	struct drm_i915_private *dev_priv = dev->dev_private;
1705	struct drm_crtc *crtc = dig_port->base.base.crtc;
1706	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1707	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1708	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1709
1710	dev_priv->psr.source_ok = false;
1711
1712	if (!HAS_PSR(dev)) {
1713		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1714		return false;
1715	}
1716
1717	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1718	    (dig_port->port != PORT_A)) {
1719		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1720		return false;
1721	}
1722
1723	if (!i915.enable_psr) {
1724		DRM_DEBUG_KMS("PSR disable by flag\n");
1725		return false;
1726	}
1727
1728	crtc = dig_port->base.base.crtc;
1729	if (crtc == NULL) {
1730		DRM_DEBUG_KMS("crtc not active for PSR\n");
1731		return false;
1732	}
1733
1734	intel_crtc = to_intel_crtc(crtc);
1735	if (!intel_crtc_active(crtc)) {
1736		DRM_DEBUG_KMS("crtc not active for PSR\n");
1737		return false;
1738	}
1739
1740	obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1741	if (obj->tiling_mode != I915_TILING_X ||
1742	    obj->fence_reg == I915_FENCE_REG_NONE) {
1743		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1744		return false;
1745	}
1746
1747	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1748		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1749		return false;
1750	}
1751
1752	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1753	    S3D_ENABLE) {
1754		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1755		return false;
1756	}
1757
1758	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1759		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1760		return false;
1761	}
1762
1763	dev_priv->psr.source_ok = true;
1764	return true;
1765}
1766
1767static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1768{
1769	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1770
1771	if (!intel_edp_psr_match_conditions(intel_dp) ||
1772	    intel_edp_is_psr_enabled(dev))
1773		return;
1774
1775	/* Setup PSR once */
1776	intel_edp_psr_setup(intel_dp);
1777
1778	/* Enable PSR on the panel */
1779	intel_edp_psr_enable_sink(intel_dp);
1780
1781	/* Enable PSR on the host */
1782	intel_edp_psr_enable_source(intel_dp);
1783}
1784
1785void intel_edp_psr_enable(struct intel_dp *intel_dp)
1786{
1787	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1788
1789	if (intel_edp_psr_match_conditions(intel_dp) &&
1790	    !intel_edp_is_psr_enabled(dev))
1791		intel_edp_psr_do_enable(intel_dp);
1792}
1793
1794void intel_edp_psr_disable(struct intel_dp *intel_dp)
1795{
1796	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1797	struct drm_i915_private *dev_priv = dev->dev_private;
1798
1799	if (!intel_edp_is_psr_enabled(dev))
1800		return;
1801
1802	I915_WRITE(EDP_PSR_CTL(dev),
1803		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1804
1805	/* Wait till PSR is idle */
1806	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1807		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1808		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1809}
1810
1811void intel_edp_psr_update(struct drm_device *dev)
1812{
1813	struct intel_encoder *encoder;
1814	struct intel_dp *intel_dp = NULL;
1815
1816	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1817		if (encoder->type == INTEL_OUTPUT_EDP) {
1818			intel_dp = enc_to_intel_dp(&encoder->base);
1819
1820			if (!is_edp_psr(dev))
1821				return;
1822
1823			if (!intel_edp_psr_match_conditions(intel_dp))
1824				intel_edp_psr_disable(intel_dp);
1825			else
1826				if (!intel_edp_is_psr_enabled(dev))
1827					intel_edp_psr_do_enable(intel_dp);
1828		}
1829}
1830
1831static void intel_disable_dp(struct intel_encoder *encoder)
1832{
1833	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1834	enum port port = dp_to_dig_port(intel_dp)->port;
1835	struct drm_device *dev = encoder->base.dev;
1836
1837	/* Make sure the panel is off before trying to change the mode. But also
1838	 * ensure that we have vdd while we switch off the panel. */
1839	intel_edp_panel_vdd_on(intel_dp);
1840	intel_edp_backlight_off(intel_dp);
1841	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1842	intel_edp_panel_off(intel_dp);
1843
1844	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1845	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1846		intel_dp_link_down(intel_dp);
1847}
1848
1849static void g4x_post_disable_dp(struct intel_encoder *encoder)
1850{
1851	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1852	enum port port = dp_to_dig_port(intel_dp)->port;
1853
1854	if (port != PORT_A)
1855		return;
1856
1857	intel_dp_link_down(intel_dp);
1858	ironlake_edp_pll_off(intel_dp);
1859}
1860
1861static void vlv_post_disable_dp(struct intel_encoder *encoder)
1862{
1863	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1864
1865	intel_dp_link_down(intel_dp);
1866}
1867
1868static void chv_post_disable_dp(struct intel_encoder *encoder)
1869{
1870	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1871	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1872	struct drm_device *dev = encoder->base.dev;
1873	struct drm_i915_private *dev_priv = dev->dev_private;
1874	struct intel_crtc *intel_crtc =
1875		to_intel_crtc(encoder->base.crtc);
1876	enum dpio_channel ch = vlv_dport_to_channel(dport);
1877	enum pipe pipe = intel_crtc->pipe;
1878	u32 val;
1879
1880	intel_dp_link_down(intel_dp);
1881
1882	mutex_lock(&dev_priv->dpio_lock);
1883
1884	/* Propagate soft reset to data lane reset */
1885	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1886	val |= CHV_PCS_REQ_SOFTRESET_EN;
1887	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1888
1889	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1890	val |= CHV_PCS_REQ_SOFTRESET_EN;
1891	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1892
1893	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1894	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1895	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1896
1897	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1898	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1899	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1900
1901	mutex_unlock(&dev_priv->dpio_lock);
1902}
1903
1904static void intel_enable_dp(struct intel_encoder *encoder)
1905{
1906	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1907	struct drm_device *dev = encoder->base.dev;
1908	struct drm_i915_private *dev_priv = dev->dev_private;
1909	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1910
1911	if (WARN_ON(dp_reg & DP_PORT_EN))
1912		return;
1913
1914	intel_edp_panel_vdd_on(intel_dp);
1915	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1916	intel_dp_start_link_train(intel_dp);
1917	intel_edp_panel_on(intel_dp);
1918	edp_panel_vdd_off(intel_dp, true);
1919	intel_dp_complete_link_train(intel_dp);
1920	intel_dp_stop_link_train(intel_dp);
1921}
1922
1923static void g4x_enable_dp(struct intel_encoder *encoder)
1924{
1925	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1926
1927	intel_enable_dp(encoder);
1928	intel_edp_backlight_on(intel_dp);
1929}
1930
1931static void vlv_enable_dp(struct intel_encoder *encoder)
1932{
1933	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1934
1935	intel_edp_backlight_on(intel_dp);
1936}
1937
1938static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1939{
1940	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1941	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1942
1943	intel_dp_prepare(encoder);
1944
1945	/* Only ilk+ has port A */
1946	if (dport->port == PORT_A) {
1947		ironlake_set_pll_cpu_edp(intel_dp);
1948		ironlake_edp_pll_on(intel_dp);
1949	}
1950}
1951
1952static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1953{
1954	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1955	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1956	struct drm_device *dev = encoder->base.dev;
1957	struct drm_i915_private *dev_priv = dev->dev_private;
1958	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1959	enum dpio_channel port = vlv_dport_to_channel(dport);
1960	int pipe = intel_crtc->pipe;
1961	struct edp_power_seq power_seq;
1962	u32 val;
1963
1964	mutex_lock(&dev_priv->dpio_lock);
1965
1966	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1967	val = 0;
1968	if (pipe)
1969		val |= (1<<21);
1970	else
1971		val &= ~(1<<21);
1972	val |= 0x001000c4;
1973	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1974	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1975	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1976
1977	mutex_unlock(&dev_priv->dpio_lock);
1978
1979	if (is_edp(intel_dp)) {
1980		/* init power sequencer on this pipe and port */
1981		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1982		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1983							      &power_seq);
1984	}
1985
1986	intel_enable_dp(encoder);
1987
1988	vlv_wait_port_ready(dev_priv, dport);
1989}
1990
1991static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1992{
1993	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1994	struct drm_device *dev = encoder->base.dev;
1995	struct drm_i915_private *dev_priv = dev->dev_private;
1996	struct intel_crtc *intel_crtc =
1997		to_intel_crtc(encoder->base.crtc);
1998	enum dpio_channel port = vlv_dport_to_channel(dport);
1999	int pipe = intel_crtc->pipe;
2000
2001	intel_dp_prepare(encoder);
2002
2003	/* Program Tx lane resets to default */
2004	mutex_lock(&dev_priv->dpio_lock);
2005	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2006			 DPIO_PCS_TX_LANE2_RESET |
2007			 DPIO_PCS_TX_LANE1_RESET);
2008	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2009			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2010			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2011			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2012				 DPIO_PCS_CLK_SOFT_RESET);
2013
2014	/* Fix up inter-pair skew failure */
2015	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2016	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2017	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2018	mutex_unlock(&dev_priv->dpio_lock);
2019}
2020
2021static void chv_pre_enable_dp(struct intel_encoder *encoder)
2022{
2023	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2024	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2025	struct drm_device *dev = encoder->base.dev;
2026	struct drm_i915_private *dev_priv = dev->dev_private;
2027	struct edp_power_seq power_seq;
2028	struct intel_crtc *intel_crtc =
2029		to_intel_crtc(encoder->base.crtc);
2030	enum dpio_channel ch = vlv_dport_to_channel(dport);
2031	int pipe = intel_crtc->pipe;
2032	int data, i;
2033	u32 val;
2034
2035	mutex_lock(&dev_priv->dpio_lock);
2036
2037	/* Deassert soft data lane reset*/
2038	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2039	val |= CHV_PCS_REQ_SOFTRESET_EN;
2040	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2041
2042	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2043	val |= CHV_PCS_REQ_SOFTRESET_EN;
2044	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2045
2046	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2047	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2048	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2049
2050	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2051	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2052	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2053
2054	/* Program Tx lane latency optimal setting*/
2055	for (i = 0; i < 4; i++) {
2056		/* Set the latency optimal bit */
2057		data = (i == 1) ? 0x0 : 0x6;
2058		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2059				data << DPIO_FRC_LATENCY_SHFIT);
2060
2061		/* Set the upar bit */
2062		data = (i == 1) ? 0x0 : 0x1;
2063		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2064				data << DPIO_UPAR_SHIFT);
2065	}
2066
2067	/* Data lane stagger programming */
2068	/* FIXME: Fix up value only after power analysis */
2069
2070	mutex_unlock(&dev_priv->dpio_lock);
2071
2072	if (is_edp(intel_dp)) {
2073		/* init power sequencer on this pipe and port */
2074		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2075		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2076							      &power_seq);
2077	}
2078
2079	intel_enable_dp(encoder);
2080
2081	vlv_wait_port_ready(dev_priv, dport);
2082}
2083
2084/*
2085 * Native read with retry for link status and receiver capability reads for
2086 * cases where the sink may still be asleep.
2087 *
2088 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2089 * supposed to retry 3 times per the spec.
2090 */
2091static ssize_t
2092intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2093			void *buffer, size_t size)
2094{
2095	ssize_t ret;
2096	int i;
2097
2098	for (i = 0; i < 3; i++) {
2099		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2100		if (ret == size)
2101			return ret;
2102		msleep(1);
2103	}
2104
2105	return ret;
2106}
2107
2108/*
2109 * Fetch AUX CH registers 0x202 - 0x207 which contain
2110 * link status information
2111 */
2112static bool
2113intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2114{
2115	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2116				       DP_LANE0_1_STATUS,
2117				       link_status,
2118				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2119}
2120
2121/*
2122 * These are source-specific values; current Intel hardware supports
2123 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2124 */
2125
2126static uint8_t
2127intel_dp_voltage_max(struct intel_dp *intel_dp)
2128{
2129	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2130	enum port port = dp_to_dig_port(intel_dp)->port;
2131
2132	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2133		return DP_TRAIN_VOLTAGE_SWING_1200;
2134	else if (IS_GEN7(dev) && port == PORT_A)
2135		return DP_TRAIN_VOLTAGE_SWING_800;
2136	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2137		return DP_TRAIN_VOLTAGE_SWING_1200;
2138	else
2139		return DP_TRAIN_VOLTAGE_SWING_800;
2140}
2141
2142static uint8_t
2143intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2144{
2145	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2146	enum port port = dp_to_dig_port(intel_dp)->port;
2147
2148	if (IS_BROADWELL(dev)) {
2149		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2150		case DP_TRAIN_VOLTAGE_SWING_400:
2151		case DP_TRAIN_VOLTAGE_SWING_600:
2152			return DP_TRAIN_PRE_EMPHASIS_6;
2153		case DP_TRAIN_VOLTAGE_SWING_800:
2154			return DP_TRAIN_PRE_EMPHASIS_3_5;
2155		case DP_TRAIN_VOLTAGE_SWING_1200:
2156		default:
2157			return DP_TRAIN_PRE_EMPHASIS_0;
2158		}
2159	} else if (IS_HASWELL(dev)) {
2160		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2161		case DP_TRAIN_VOLTAGE_SWING_400:
2162			return DP_TRAIN_PRE_EMPHASIS_9_5;
2163		case DP_TRAIN_VOLTAGE_SWING_600:
2164			return DP_TRAIN_PRE_EMPHASIS_6;
2165		case DP_TRAIN_VOLTAGE_SWING_800:
2166			return DP_TRAIN_PRE_EMPHASIS_3_5;
2167		case DP_TRAIN_VOLTAGE_SWING_1200:
2168		default:
2169			return DP_TRAIN_PRE_EMPHASIS_0;
2170		}
2171	} else if (IS_VALLEYVIEW(dev)) {
2172		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2173		case DP_TRAIN_VOLTAGE_SWING_400:
2174			return DP_TRAIN_PRE_EMPHASIS_9_5;
2175		case DP_TRAIN_VOLTAGE_SWING_600:
2176			return DP_TRAIN_PRE_EMPHASIS_6;
2177		case DP_TRAIN_VOLTAGE_SWING_800:
2178			return DP_TRAIN_PRE_EMPHASIS_3_5;
2179		case DP_TRAIN_VOLTAGE_SWING_1200:
2180		default:
2181			return DP_TRAIN_PRE_EMPHASIS_0;
2182		}
2183	} else if (IS_GEN7(dev) && port == PORT_A) {
2184		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2185		case DP_TRAIN_VOLTAGE_SWING_400:
2186			return DP_TRAIN_PRE_EMPHASIS_6;
2187		case DP_TRAIN_VOLTAGE_SWING_600:
2188		case DP_TRAIN_VOLTAGE_SWING_800:
2189			return DP_TRAIN_PRE_EMPHASIS_3_5;
2190		default:
2191			return DP_TRAIN_PRE_EMPHASIS_0;
2192		}
2193	} else {
2194		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2195		case DP_TRAIN_VOLTAGE_SWING_400:
2196			return DP_TRAIN_PRE_EMPHASIS_6;
2197		case DP_TRAIN_VOLTAGE_SWING_600:
2198			return DP_TRAIN_PRE_EMPHASIS_6;
2199		case DP_TRAIN_VOLTAGE_SWING_800:
2200			return DP_TRAIN_PRE_EMPHASIS_3_5;
2201		case DP_TRAIN_VOLTAGE_SWING_1200:
2202		default:
2203			return DP_TRAIN_PRE_EMPHASIS_0;
2204		}
2205	}
2206}
2207
2208static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2209{
2210	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2211	struct drm_i915_private *dev_priv = dev->dev_private;
2212	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2213	struct intel_crtc *intel_crtc =
2214		to_intel_crtc(dport->base.base.crtc);
2215	unsigned long demph_reg_value, preemph_reg_value,
2216		uniqtranscale_reg_value;
2217	uint8_t train_set = intel_dp->train_set[0];
2218	enum dpio_channel port = vlv_dport_to_channel(dport);
2219	int pipe = intel_crtc->pipe;
2220
2221	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2222	case DP_TRAIN_PRE_EMPHASIS_0:
2223		preemph_reg_value = 0x0004000;
2224		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2225		case DP_TRAIN_VOLTAGE_SWING_400:
2226			demph_reg_value = 0x2B405555;
2227			uniqtranscale_reg_value = 0x552AB83A;
2228			break;
2229		case DP_TRAIN_VOLTAGE_SWING_600:
2230			demph_reg_value = 0x2B404040;
2231			uniqtranscale_reg_value = 0x5548B83A;
2232			break;
2233		case DP_TRAIN_VOLTAGE_SWING_800:
2234			demph_reg_value = 0x2B245555;
2235			uniqtranscale_reg_value = 0x5560B83A;
2236			break;
2237		case DP_TRAIN_VOLTAGE_SWING_1200:
2238			demph_reg_value = 0x2B405555;
2239			uniqtranscale_reg_value = 0x5598DA3A;
2240			break;
2241		default:
2242			return 0;
2243		}
2244		break;
2245	case DP_TRAIN_PRE_EMPHASIS_3_5:
2246		preemph_reg_value = 0x0002000;
2247		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2248		case DP_TRAIN_VOLTAGE_SWING_400:
2249			demph_reg_value = 0x2B404040;
2250			uniqtranscale_reg_value = 0x5552B83A;
2251			break;
2252		case DP_TRAIN_VOLTAGE_SWING_600:
2253			demph_reg_value = 0x2B404848;
2254			uniqtranscale_reg_value = 0x5580B83A;
2255			break;
2256		case DP_TRAIN_VOLTAGE_SWING_800:
2257			demph_reg_value = 0x2B404040;
2258			uniqtranscale_reg_value = 0x55ADDA3A;
2259			break;
2260		default:
2261			return 0;
2262		}
2263		break;
2264	case DP_TRAIN_PRE_EMPHASIS_6:
2265		preemph_reg_value = 0x0000000;
2266		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2267		case DP_TRAIN_VOLTAGE_SWING_400:
2268			demph_reg_value = 0x2B305555;
2269			uniqtranscale_reg_value = 0x5570B83A;
2270			break;
2271		case DP_TRAIN_VOLTAGE_SWING_600:
2272			demph_reg_value = 0x2B2B4040;
2273			uniqtranscale_reg_value = 0x55ADDA3A;
2274			break;
2275		default:
2276			return 0;
2277		}
2278		break;
2279	case DP_TRAIN_PRE_EMPHASIS_9_5:
2280		preemph_reg_value = 0x0006000;
2281		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2282		case DP_TRAIN_VOLTAGE_SWING_400:
2283			demph_reg_value = 0x1B405555;
2284			uniqtranscale_reg_value = 0x55ADDA3A;
2285			break;
2286		default:
2287			return 0;
2288		}
2289		break;
2290	default:
2291		return 0;
2292	}
2293
2294	mutex_lock(&dev_priv->dpio_lock);
2295	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2296	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2297	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2298			 uniqtranscale_reg_value);
2299	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2300	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2301	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2302	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2303	mutex_unlock(&dev_priv->dpio_lock);
2304
2305	return 0;
2306}
2307
2308static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2309{
2310	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2311	struct drm_i915_private *dev_priv = dev->dev_private;
2312	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2313	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2314	u32 deemph_reg_value, margin_reg_value, val;
2315	uint8_t train_set = intel_dp->train_set[0];
2316	enum dpio_channel ch = vlv_dport_to_channel(dport);
2317	enum pipe pipe = intel_crtc->pipe;
2318	int i;
2319
2320	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2321	case DP_TRAIN_PRE_EMPHASIS_0:
2322		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2323		case DP_TRAIN_VOLTAGE_SWING_400:
2324			deemph_reg_value = 128;
2325			margin_reg_value = 52;
2326			break;
2327		case DP_TRAIN_VOLTAGE_SWING_600:
2328			deemph_reg_value = 128;
2329			margin_reg_value = 77;
2330			break;
2331		case DP_TRAIN_VOLTAGE_SWING_800:
2332			deemph_reg_value = 128;
2333			margin_reg_value = 102;
2334			break;
2335		case DP_TRAIN_VOLTAGE_SWING_1200:
2336			deemph_reg_value = 128;
2337			margin_reg_value = 154;
2338			/* FIXME extra to set for 1200 */
2339			break;
2340		default:
2341			return 0;
2342		}
2343		break;
2344	case DP_TRAIN_PRE_EMPHASIS_3_5:
2345		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2346		case DP_TRAIN_VOLTAGE_SWING_400:
2347			deemph_reg_value = 85;
2348			margin_reg_value = 78;
2349			break;
2350		case DP_TRAIN_VOLTAGE_SWING_600:
2351			deemph_reg_value = 85;
2352			margin_reg_value = 116;
2353			break;
2354		case DP_TRAIN_VOLTAGE_SWING_800:
2355			deemph_reg_value = 85;
2356			margin_reg_value = 154;
2357			break;
2358		default:
2359			return 0;
2360		}
2361		break;
2362	case DP_TRAIN_PRE_EMPHASIS_6:
2363		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2364		case DP_TRAIN_VOLTAGE_SWING_400:
2365			deemph_reg_value = 64;
2366			margin_reg_value = 104;
2367			break;
2368		case DP_TRAIN_VOLTAGE_SWING_600:
2369			deemph_reg_value = 64;
2370			margin_reg_value = 154;
2371			break;
2372		default:
2373			return 0;
2374		}
2375		break;
2376	case DP_TRAIN_PRE_EMPHASIS_9_5:
2377		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2378		case DP_TRAIN_VOLTAGE_SWING_400:
2379			deemph_reg_value = 43;
2380			margin_reg_value = 154;
2381			break;
2382		default:
2383			return 0;
2384		}
2385		break;
2386	default:
2387		return 0;
2388	}
2389
2390	mutex_lock(&dev_priv->dpio_lock);
2391
2392	/* Clear calc init */
2393	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2394	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2395	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2396
2397	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2398	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2399	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2400
2401	/* Program swing deemph */
2402	for (i = 0; i < 4; i++) {
2403		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2404		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2405		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2406		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2407	}
2408
2409	/* Program swing margin */
2410	for (i = 0; i < 4; i++) {
2411		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2412		val &= ~DPIO_SWING_MARGIN_MASK;
2413		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2414		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2415	}
2416
2417	/* Disable unique transition scale */
2418	for (i = 0; i < 4; i++) {
2419		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2420		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2421		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2422	}
2423
2424	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2425			== DP_TRAIN_PRE_EMPHASIS_0) &&
2426		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2427			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2428
2429		/*
2430		 * The document said it needs to set bit 27 for ch0 and bit 26
2431		 * for ch1. Might be a typo in the doc.
2432		 * For now, for this unique transition scale selection, set bit
2433		 * 27 for ch0 and ch1.
2434		 */
2435		for (i = 0; i < 4; i++) {
2436			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2437			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2438			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2439		}
2440
2441		for (i = 0; i < 4; i++) {
2442			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2443			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2444			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2445			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2446		}
2447	}
2448
2449	/* Start swing calculation */
2450	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2451	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2452	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2453
2454	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2455	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2456	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2457
2458	/* LRC Bypass */
2459	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2460	val |= DPIO_LRC_BYPASS;
2461	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2462
2463	mutex_unlock(&dev_priv->dpio_lock);
2464
2465	return 0;
2466}
2467
2468static void
2469intel_get_adjust_train(struct intel_dp *intel_dp,
2470		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2471{
2472	uint8_t v = 0;
2473	uint8_t p = 0;
2474	int lane;
2475	uint8_t voltage_max;
2476	uint8_t preemph_max;
2477
2478	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2479		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2480		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2481
2482		if (this_v > v)
2483			v = this_v;
2484		if (this_p > p)
2485			p = this_p;
2486	}
2487
2488	voltage_max = intel_dp_voltage_max(intel_dp);
2489	if (v >= voltage_max)
2490		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2491
2492	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2493	if (p >= preemph_max)
2494		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2495
2496	for (lane = 0; lane < 4; lane++)
2497		intel_dp->train_set[lane] = v | p;
2498}
2499
2500static uint32_t
2501intel_gen4_signal_levels(uint8_t train_set)
2502{
2503	uint32_t	signal_levels = 0;
2504
2505	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2506	case DP_TRAIN_VOLTAGE_SWING_400:
2507	default:
2508		signal_levels |= DP_VOLTAGE_0_4;
2509		break;
2510	case DP_TRAIN_VOLTAGE_SWING_600:
2511		signal_levels |= DP_VOLTAGE_0_6;
2512		break;
2513	case DP_TRAIN_VOLTAGE_SWING_800:
2514		signal_levels |= DP_VOLTAGE_0_8;
2515		break;
2516	case DP_TRAIN_VOLTAGE_SWING_1200:
2517		signal_levels |= DP_VOLTAGE_1_2;
2518		break;
2519	}
2520	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2521	case DP_TRAIN_PRE_EMPHASIS_0:
2522	default:
2523		signal_levels |= DP_PRE_EMPHASIS_0;
2524		break;
2525	case DP_TRAIN_PRE_EMPHASIS_3_5:
2526		signal_levels |= DP_PRE_EMPHASIS_3_5;
2527		break;
2528	case DP_TRAIN_PRE_EMPHASIS_6:
2529		signal_levels |= DP_PRE_EMPHASIS_6;
2530		break;
2531	case DP_TRAIN_PRE_EMPHASIS_9_5:
2532		signal_levels |= DP_PRE_EMPHASIS_9_5;
2533		break;
2534	}
2535	return signal_levels;
2536}
2537
2538/* Gen6's DP voltage swing and pre-emphasis control */
2539static uint32_t
2540intel_gen6_edp_signal_levels(uint8_t train_set)
2541{
2542	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2543					 DP_TRAIN_PRE_EMPHASIS_MASK);
2544	switch (signal_levels) {
2545	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2546	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2547		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2548	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2549		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2550	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2551	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2552		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2553	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2554	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2555		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2556	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2557	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2558		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2559	default:
2560		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2561			      "0x%x\n", signal_levels);
2562		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2563	}
2564}
2565
2566/* Gen7's DP voltage swing and pre-emphasis control */
2567static uint32_t
2568intel_gen7_edp_signal_levels(uint8_t train_set)
2569{
2570	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2571					 DP_TRAIN_PRE_EMPHASIS_MASK);
2572	switch (signal_levels) {
2573	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2574		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2575	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2576		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2577	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2578		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2579
2580	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2581		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2582	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2583		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2584
2585	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2586		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2587	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2588		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2589
2590	default:
2591		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2592			      "0x%x\n", signal_levels);
2593		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2594	}
2595}
2596
2597/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2598static uint32_t
2599intel_hsw_signal_levels(uint8_t train_set)
2600{
2601	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2602					 DP_TRAIN_PRE_EMPHASIS_MASK);
2603	switch (signal_levels) {
2604	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2605		return DDI_BUF_EMP_400MV_0DB_HSW;
2606	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2607		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2608	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2609		return DDI_BUF_EMP_400MV_6DB_HSW;
2610	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2611		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2612
2613	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2614		return DDI_BUF_EMP_600MV_0DB_HSW;
2615	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2616		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2617	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2618		return DDI_BUF_EMP_600MV_6DB_HSW;
2619
2620	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2621		return DDI_BUF_EMP_800MV_0DB_HSW;
2622	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2623		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2624	default:
2625		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2626			      "0x%x\n", signal_levels);
2627		return DDI_BUF_EMP_400MV_0DB_HSW;
2628	}
2629}
2630
2631static uint32_t
2632intel_bdw_signal_levels(uint8_t train_set)
2633{
2634	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2635					 DP_TRAIN_PRE_EMPHASIS_MASK);
2636	switch (signal_levels) {
2637	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2638		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2639	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2640		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2641	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2642		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2643
2644	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2645		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2646	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2647		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2648	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2649		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2650
2651	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2652		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2653	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2654		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2655
2656	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2657		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2658
2659	default:
2660		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2661			      "0x%x\n", signal_levels);
2662		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2663	}
2664}
2665
2666/* Properly updates "DP" with the correct signal levels. */
2667static void
2668intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2669{
2670	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2671	enum port port = intel_dig_port->port;
2672	struct drm_device *dev = intel_dig_port->base.base.dev;
2673	uint32_t signal_levels, mask;
2674	uint8_t train_set = intel_dp->train_set[0];
2675
2676	if (IS_BROADWELL(dev)) {
2677		signal_levels = intel_bdw_signal_levels(train_set);
2678		mask = DDI_BUF_EMP_MASK;
2679	} else if (IS_HASWELL(dev)) {
2680		signal_levels = intel_hsw_signal_levels(train_set);
2681		mask = DDI_BUF_EMP_MASK;
2682	} else if (IS_CHERRYVIEW(dev)) {
2683		signal_levels = intel_chv_signal_levels(intel_dp);
2684		mask = 0;
2685	} else if (IS_VALLEYVIEW(dev)) {
2686		signal_levels = intel_vlv_signal_levels(intel_dp);
2687		mask = 0;
2688	} else if (IS_GEN7(dev) && port == PORT_A) {
2689		signal_levels = intel_gen7_edp_signal_levels(train_set);
2690		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2691	} else if (IS_GEN6(dev) && port == PORT_A) {
2692		signal_levels = intel_gen6_edp_signal_levels(train_set);
2693		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2694	} else {
2695		signal_levels = intel_gen4_signal_levels(train_set);
2696		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2697	}
2698
2699	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2700
2701	*DP = (*DP & ~mask) | signal_levels;
2702}
2703
2704static bool
2705intel_dp_set_link_train(struct intel_dp *intel_dp,
2706			uint32_t *DP,
2707			uint8_t dp_train_pat)
2708{
2709	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2710	struct drm_device *dev = intel_dig_port->base.base.dev;
2711	struct drm_i915_private *dev_priv = dev->dev_private;
2712	enum port port = intel_dig_port->port;
2713	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2714	int ret, len;
2715
2716	if (HAS_DDI(dev)) {
2717		uint32_t temp = I915_READ(DP_TP_CTL(port));
2718
2719		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2720			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2721		else
2722			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2723
2724		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2725		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2726		case DP_TRAINING_PATTERN_DISABLE:
2727			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2728
2729			break;
2730		case DP_TRAINING_PATTERN_1:
2731			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2732			break;
2733		case DP_TRAINING_PATTERN_2:
2734			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2735			break;
2736		case DP_TRAINING_PATTERN_3:
2737			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2738			break;
2739		}
2740		I915_WRITE(DP_TP_CTL(port), temp);
2741
2742	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2743		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2744
2745		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2746		case DP_TRAINING_PATTERN_DISABLE:
2747			*DP |= DP_LINK_TRAIN_OFF_CPT;
2748			break;
2749		case DP_TRAINING_PATTERN_1:
2750			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2751			break;
2752		case DP_TRAINING_PATTERN_2:
2753			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2754			break;
2755		case DP_TRAINING_PATTERN_3:
2756			DRM_ERROR("DP training pattern 3 not supported\n");
2757			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2758			break;
2759		}
2760
2761	} else {
2762		*DP &= ~DP_LINK_TRAIN_MASK;
2763
2764		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2765		case DP_TRAINING_PATTERN_DISABLE:
2766			*DP |= DP_LINK_TRAIN_OFF;
2767			break;
2768		case DP_TRAINING_PATTERN_1:
2769			*DP |= DP_LINK_TRAIN_PAT_1;
2770			break;
2771		case DP_TRAINING_PATTERN_2:
2772			*DP |= DP_LINK_TRAIN_PAT_2;
2773			break;
2774		case DP_TRAINING_PATTERN_3:
2775			DRM_ERROR("DP training pattern 3 not supported\n");
2776			*DP |= DP_LINK_TRAIN_PAT_2;
2777			break;
2778		}
2779	}
2780
2781	I915_WRITE(intel_dp->output_reg, *DP);
2782	POSTING_READ(intel_dp->output_reg);
2783
2784	buf[0] = dp_train_pat;
2785	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2786	    DP_TRAINING_PATTERN_DISABLE) {
2787		/* don't write DP_TRAINING_LANEx_SET on disable */
2788		len = 1;
2789	} else {
2790		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2791		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2792		len = intel_dp->lane_count + 1;
2793	}
2794
2795	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2796				buf, len);
2797
2798	return ret == len;
2799}
2800
2801static bool
2802intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2803			uint8_t dp_train_pat)
2804{
2805	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2806	intel_dp_set_signal_levels(intel_dp, DP);
2807	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2808}
2809
2810static bool
2811intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2812			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2813{
2814	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2815	struct drm_device *dev = intel_dig_port->base.base.dev;
2816	struct drm_i915_private *dev_priv = dev->dev_private;
2817	int ret;
2818
2819	intel_get_adjust_train(intel_dp, link_status);
2820	intel_dp_set_signal_levels(intel_dp, DP);
2821
2822	I915_WRITE(intel_dp->output_reg, *DP);
2823	POSTING_READ(intel_dp->output_reg);
2824
2825	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2826				intel_dp->train_set, intel_dp->lane_count);
2827
2828	return ret == intel_dp->lane_count;
2829}
2830
2831static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2832{
2833	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2834	struct drm_device *dev = intel_dig_port->base.base.dev;
2835	struct drm_i915_private *dev_priv = dev->dev_private;
2836	enum port port = intel_dig_port->port;
2837	uint32_t val;
2838
2839	if (!HAS_DDI(dev))
2840		return;
2841
2842	val = I915_READ(DP_TP_CTL(port));
2843	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2844	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2845	I915_WRITE(DP_TP_CTL(port), val);
2846
2847	/*
2848	 * On PORT_A we can have only eDP in SST mode. There the only reason
2849	 * we need to set idle transmission mode is to work around a HW issue
2850	 * where we enable the pipe while not in idle link-training mode.
2851	 * In this case there is requirement to wait for a minimum number of
2852	 * idle patterns to be sent.
2853	 */
2854	if (port == PORT_A)
2855		return;
2856
2857	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2858		     1))
2859		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2860}
2861
2862/* Enable corresponding port and start training pattern 1 */
2863void
2864intel_dp_start_link_train(struct intel_dp *intel_dp)
2865{
2866	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2867	struct drm_device *dev = encoder->dev;
2868	int i;
2869	uint8_t voltage;
2870	int voltage_tries, loop_tries;
2871	uint32_t DP = intel_dp->DP;
2872	uint8_t link_config[2];
2873
2874	if (HAS_DDI(dev))
2875		intel_ddi_prepare_link_retrain(encoder);
2876
2877	/* Write the link configuration data */
2878	link_config[0] = intel_dp->link_bw;
2879	link_config[1] = intel_dp->lane_count;
2880	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2881		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2882	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2883
2884	link_config[0] = 0;
2885	link_config[1] = DP_SET_ANSI_8B10B;
2886	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2887
2888	DP |= DP_PORT_EN;
2889
2890	/* clock recovery */
2891	if (!intel_dp_reset_link_train(intel_dp, &DP,
2892				       DP_TRAINING_PATTERN_1 |
2893				       DP_LINK_SCRAMBLING_DISABLE)) {
2894		DRM_ERROR("failed to enable link training\n");
2895		return;
2896	}
2897
2898	voltage = 0xff;
2899	voltage_tries = 0;
2900	loop_tries = 0;
2901	for (;;) {
2902		uint8_t link_status[DP_LINK_STATUS_SIZE];
2903
2904		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2905		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2906			DRM_ERROR("failed to get link status\n");
2907			break;
2908		}
2909
2910		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2911			DRM_DEBUG_KMS("clock recovery OK\n");
2912			break;
2913		}
2914
2915		/* Check to see if we've tried the max voltage */
2916		for (i = 0; i < intel_dp->lane_count; i++)
2917			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2918				break;
2919		if (i == intel_dp->lane_count) {
2920			++loop_tries;
2921			if (loop_tries == 5) {
2922				DRM_ERROR("too many full retries, give up\n");
2923				break;
2924			}
2925			intel_dp_reset_link_train(intel_dp, &DP,
2926						  DP_TRAINING_PATTERN_1 |
2927						  DP_LINK_SCRAMBLING_DISABLE);
2928			voltage_tries = 0;
2929			continue;
2930		}
2931
2932		/* Check to see if we've tried the same voltage 5 times */
2933		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2934			++voltage_tries;
2935			if (voltage_tries == 5) {
2936				DRM_ERROR("too many voltage retries, give up\n");
2937				break;
2938			}
2939		} else
2940			voltage_tries = 0;
2941		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2942
2943		/* Update training set as requested by target */
2944		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2945			DRM_ERROR("failed to update link training\n");
2946			break;
2947		}
2948	}
2949
2950	intel_dp->DP = DP;
2951}
2952
2953void
2954intel_dp_complete_link_train(struct intel_dp *intel_dp)
2955{
2956	bool channel_eq = false;
2957	int tries, cr_tries;
2958	uint32_t DP = intel_dp->DP;
2959	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2960
2961	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2962	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2963		training_pattern = DP_TRAINING_PATTERN_3;
2964
2965	/* channel equalization */
2966	if (!intel_dp_set_link_train(intel_dp, &DP,
2967				     training_pattern |
2968				     DP_LINK_SCRAMBLING_DISABLE)) {
2969		DRM_ERROR("failed to start channel equalization\n");
2970		return;
2971	}
2972
2973	tries = 0;
2974	cr_tries = 0;
2975	channel_eq = false;
2976	for (;;) {
2977		uint8_t link_status[DP_LINK_STATUS_SIZE];
2978
2979		if (cr_tries > 5) {
2980			DRM_ERROR("failed to train DP, aborting\n");
2981			break;
2982		}
2983
2984		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2985		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2986			DRM_ERROR("failed to get link status\n");
2987			break;
2988		}
2989
2990		/* Make sure clock is still ok */
2991		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2992			intel_dp_start_link_train(intel_dp);
2993			intel_dp_set_link_train(intel_dp, &DP,
2994						training_pattern |
2995						DP_LINK_SCRAMBLING_DISABLE);
2996			cr_tries++;
2997			continue;
2998		}
2999
3000		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3001			channel_eq = true;
3002			break;
3003		}
3004
3005		/* Try 5 times, then try clock recovery if that fails */
3006		if (tries > 5) {
3007			intel_dp_link_down(intel_dp);
3008			intel_dp_start_link_train(intel_dp);
3009			intel_dp_set_link_train(intel_dp, &DP,
3010						training_pattern |
3011						DP_LINK_SCRAMBLING_DISABLE);
3012			tries = 0;
3013			cr_tries++;
3014			continue;
3015		}
3016
3017		/* Update training set as requested by target */
3018		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3019			DRM_ERROR("failed to update link training\n");
3020			break;
3021		}
3022		++tries;
3023	}
3024
3025	intel_dp_set_idle_link_train(intel_dp);
3026
3027	intel_dp->DP = DP;
3028
3029	if (channel_eq)
3030		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3031
3032}
3033
3034void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3035{
3036	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3037				DP_TRAINING_PATTERN_DISABLE);
3038}
3039
3040static void
3041intel_dp_link_down(struct intel_dp *intel_dp)
3042{
3043	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3044	enum port port = intel_dig_port->port;
3045	struct drm_device *dev = intel_dig_port->base.base.dev;
3046	struct drm_i915_private *dev_priv = dev->dev_private;
3047	struct intel_crtc *intel_crtc =
3048		to_intel_crtc(intel_dig_port->base.base.crtc);
3049	uint32_t DP = intel_dp->DP;
3050
3051	if (WARN_ON(HAS_DDI(dev)))
3052		return;
3053
3054	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3055		return;
3056
3057	DRM_DEBUG_KMS("\n");
3058
3059	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3060		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3061		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3062	} else {
3063		DP &= ~DP_LINK_TRAIN_MASK;
3064		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3065	}
3066	POSTING_READ(intel_dp->output_reg);
3067
3068	if (HAS_PCH_IBX(dev) &&
3069	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3070		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3071
3072		/* Hardware workaround: leaving our transcoder select
3073		 * set to transcoder B while it's off will prevent the
3074		 * corresponding HDMI output on transcoder A.
3075		 *
3076		 * Combine this with another hardware workaround:
3077		 * transcoder select bit can only be cleared while the
3078		 * port is enabled.
3079		 */
3080		DP &= ~DP_PIPEB_SELECT;
3081		I915_WRITE(intel_dp->output_reg, DP);
3082
3083		/* Changes to enable or select take place the vblank
3084		 * after being written.
3085		 */
3086		if (WARN_ON(crtc == NULL)) {
3087			/* We should never try to disable a port without a crtc
3088			 * attached. For paranoia keep the code around for a
3089			 * bit. */
3090			POSTING_READ(intel_dp->output_reg);
3091			msleep(50);
3092		} else
3093			intel_wait_for_vblank(dev, intel_crtc->pipe);
3094	}
3095
3096	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3097	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3098	POSTING_READ(intel_dp->output_reg);
3099	msleep(intel_dp->panel_power_down_delay);
3100}
3101
3102static bool
3103intel_dp_get_dpcd(struct intel_dp *intel_dp)
3104{
3105	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3106	struct drm_device *dev = dig_port->base.base.dev;
3107	struct drm_i915_private *dev_priv = dev->dev_private;
3108
3109	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3110
3111	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3112				    sizeof(intel_dp->dpcd)) < 0)
3113		return false; /* aux transfer failed */
3114
3115	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3116			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3117	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3118
3119	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3120		return false; /* DPCD not present */
3121
3122	/* Check if the panel supports PSR */
3123	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3124	if (is_edp(intel_dp)) {
3125		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3126					intel_dp->psr_dpcd,
3127					sizeof(intel_dp->psr_dpcd));
3128		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3129			dev_priv->psr.sink_support = true;
3130			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3131		}
3132	}
3133
3134	/* Training Pattern 3 support */
3135	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3136	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3137		intel_dp->use_tps3 = true;
3138		DRM_DEBUG_KMS("Displayport TPS3 supported");
3139	} else
3140		intel_dp->use_tps3 = false;
3141
3142	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3143	      DP_DWN_STRM_PORT_PRESENT))
3144		return true; /* native DP sink */
3145
3146	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3147		return true; /* no per-port downstream info */
3148
3149	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3150				    intel_dp->downstream_ports,
3151				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3152		return false; /* downstream port status fetch failed */
3153
3154	return true;
3155}
3156
3157static void
3158intel_dp_probe_oui(struct intel_dp *intel_dp)
3159{
3160	u8 buf[3];
3161
3162	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3163		return;
3164
3165	intel_edp_panel_vdd_on(intel_dp);
3166
3167	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3168		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3169			      buf[0], buf[1], buf[2]);
3170
3171	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3172		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3173			      buf[0], buf[1], buf[2]);
3174
3175	edp_panel_vdd_off(intel_dp, false);
3176}
3177
3178int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3179{
3180	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3181	struct drm_device *dev = intel_dig_port->base.base.dev;
3182	struct intel_crtc *intel_crtc =
3183		to_intel_crtc(intel_dig_port->base.base.crtc);
3184	u8 buf[1];
3185
3186	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3187		return -EAGAIN;
3188
3189	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3190		return -ENOTTY;
3191
3192	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3193			       DP_TEST_SINK_START) < 0)
3194		return -EAGAIN;
3195
3196	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3197	intel_wait_for_vblank(dev, intel_crtc->pipe);
3198	intel_wait_for_vblank(dev, intel_crtc->pipe);
3199
3200	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3201		return -EAGAIN;
3202
3203	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3204	return 0;
3205}
3206
3207static bool
3208intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3209{
3210	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3211				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3212				       sink_irq_vector, 1) == 1;
3213}
3214
3215static void
3216intel_dp_handle_test_request(struct intel_dp *intel_dp)
3217{
3218	/* NAK by default */
3219	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3220}
3221
3222/*
3223 * According to DP spec
3224 * 5.1.2:
3225 *  1. Read DPCD
3226 *  2. Configure link according to Receiver Capabilities
3227 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3228 *  4. Check link status on receipt of hot-plug interrupt
3229 */
3230
3231void
3232intel_dp_check_link_status(struct intel_dp *intel_dp)
3233{
3234	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3235	u8 sink_irq_vector;
3236	u8 link_status[DP_LINK_STATUS_SIZE];
3237
3238	/* FIXME: This access isn't protected by any locks. */
3239	if (!intel_encoder->connectors_active)
3240		return;
3241
3242	if (WARN_ON(!intel_encoder->base.crtc))
3243		return;
3244
3245	/* Try to read receiver status if the link appears to be up */
3246	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3247		return;
3248	}
3249
3250	/* Now read the DPCD to see if it's actually running */
3251	if (!intel_dp_get_dpcd(intel_dp)) {
3252		return;
3253	}
3254
3255	/* Try to read the source of the interrupt */
3256	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3257	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3258		/* Clear interrupt source */
3259		drm_dp_dpcd_writeb(&intel_dp->aux,
3260				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3261				   sink_irq_vector);
3262
3263		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3264			intel_dp_handle_test_request(intel_dp);
3265		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3266			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3267	}
3268
3269	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3270		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3271			      intel_encoder->base.name);
3272		intel_dp_start_link_train(intel_dp);
3273		intel_dp_complete_link_train(intel_dp);
3274		intel_dp_stop_link_train(intel_dp);
3275	}
3276}
3277
3278/* XXX this is probably wrong for multiple downstream ports */
3279static enum drm_connector_status
3280intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3281{
3282	uint8_t *dpcd = intel_dp->dpcd;
3283	uint8_t type;
3284
3285	if (!intel_dp_get_dpcd(intel_dp))
3286		return connector_status_disconnected;
3287
3288	/* if there's no downstream port, we're done */
3289	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3290		return connector_status_connected;
3291
3292	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3293	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3294	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3295		uint8_t reg;
3296
3297		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3298					    &reg, 1) < 0)
3299			return connector_status_unknown;
3300
3301		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3302					      : connector_status_disconnected;
3303	}
3304
3305	/* If no HPD, poke DDC gently */
3306	if (drm_probe_ddc(&intel_dp->aux.ddc))
3307		return connector_status_connected;
3308
3309	/* Well we tried, say unknown for unreliable port types */
3310	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3311		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3312		if (type == DP_DS_PORT_TYPE_VGA ||
3313		    type == DP_DS_PORT_TYPE_NON_EDID)
3314			return connector_status_unknown;
3315	} else {
3316		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3317			DP_DWN_STRM_PORT_TYPE_MASK;
3318		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3319		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3320			return connector_status_unknown;
3321	}
3322
3323	/* Anything else is out of spec, warn and ignore */
3324	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3325	return connector_status_disconnected;
3326}
3327
3328static enum drm_connector_status
3329ironlake_dp_detect(struct intel_dp *intel_dp)
3330{
3331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3332	struct drm_i915_private *dev_priv = dev->dev_private;
3333	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3334	enum drm_connector_status status;
3335
3336	/* Can't disconnect eDP, but you can close the lid... */
3337	if (is_edp(intel_dp)) {
3338		status = intel_panel_detect(dev);
3339		if (status == connector_status_unknown)
3340			status = connector_status_connected;
3341		return status;
3342	}
3343
3344	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3345		return connector_status_disconnected;
3346
3347	return intel_dp_detect_dpcd(intel_dp);
3348}
3349
3350static enum drm_connector_status
3351g4x_dp_detect(struct intel_dp *intel_dp)
3352{
3353	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3354	struct drm_i915_private *dev_priv = dev->dev_private;
3355	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3356	uint32_t bit;
3357
3358	/* Can't disconnect eDP, but you can close the lid... */
3359	if (is_edp(intel_dp)) {
3360		enum drm_connector_status status;
3361
3362		status = intel_panel_detect(dev);
3363		if (status == connector_status_unknown)
3364			status = connector_status_connected;
3365		return status;
3366	}
3367
3368	if (IS_VALLEYVIEW(dev)) {
3369		switch (intel_dig_port->port) {
3370		case PORT_B:
3371			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3372			break;
3373		case PORT_C:
3374			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3375			break;
3376		case PORT_D:
3377			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3378			break;
3379		default:
3380			return connector_status_unknown;
3381		}
3382	} else {
3383		switch (intel_dig_port->port) {
3384		case PORT_B:
3385			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3386			break;
3387		case PORT_C:
3388			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3389			break;
3390		case PORT_D:
3391			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3392			break;
3393		default:
3394			return connector_status_unknown;
3395		}
3396	}
3397
3398	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3399		return connector_status_disconnected;
3400
3401	return intel_dp_detect_dpcd(intel_dp);
3402}
3403
3404static struct edid *
3405intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3406{
3407	struct intel_connector *intel_connector = to_intel_connector(connector);
3408
3409	/* use cached edid if we have one */
3410	if (intel_connector->edid) {
3411		/* invalid edid */
3412		if (IS_ERR(intel_connector->edid))
3413			return NULL;
3414
3415		return drm_edid_duplicate(intel_connector->edid);
3416	}
3417
3418	return drm_get_edid(connector, adapter);
3419}
3420
3421static int
3422intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3423{
3424	struct intel_connector *intel_connector = to_intel_connector(connector);
3425
3426	/* use cached edid if we have one */
3427	if (intel_connector->edid) {
3428		/* invalid edid */
3429		if (IS_ERR(intel_connector->edid))
3430			return 0;
3431
3432		return intel_connector_update_modes(connector,
3433						    intel_connector->edid);
3434	}
3435
3436	return intel_ddc_get_modes(connector, adapter);
3437}
3438
3439static enum drm_connector_status
3440intel_dp_detect(struct drm_connector *connector, bool force)
3441{
3442	struct intel_dp *intel_dp = intel_attached_dp(connector);
3443	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3444	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3445	struct drm_device *dev = connector->dev;
3446	struct drm_i915_private *dev_priv = dev->dev_private;
3447	enum drm_connector_status status;
3448	enum intel_display_power_domain power_domain;
3449	struct edid *edid = NULL;
3450
3451	intel_runtime_pm_get(dev_priv);
3452
3453	power_domain = intel_display_port_power_domain(intel_encoder);
3454	intel_display_power_get(dev_priv, power_domain);
3455
3456	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3457		      connector->base.id, connector->name);
3458
3459	intel_dp->has_audio = false;
3460
3461	if (HAS_PCH_SPLIT(dev))
3462		status = ironlake_dp_detect(intel_dp);
3463	else
3464		status = g4x_dp_detect(intel_dp);
3465
3466	if (status != connector_status_connected)
3467		goto out;
3468
3469	intel_dp_probe_oui(intel_dp);
3470
3471	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3472		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3473	} else {
3474		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3475		if (edid) {
3476			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3477			kfree(edid);
3478		}
3479	}
3480
3481	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3482		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3483	status = connector_status_connected;
3484
3485out:
3486	intel_display_power_put(dev_priv, power_domain);
3487
3488	intel_runtime_pm_put(dev_priv);
3489
3490	return status;
3491}
3492
3493static int intel_dp_get_modes(struct drm_connector *connector)
3494{
3495	struct intel_dp *intel_dp = intel_attached_dp(connector);
3496	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3497	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3498	struct intel_connector *intel_connector = to_intel_connector(connector);
3499	struct drm_device *dev = connector->dev;
3500	struct drm_i915_private *dev_priv = dev->dev_private;
3501	enum intel_display_power_domain power_domain;
3502	int ret;
3503
3504	/* We should parse the EDID data and find out if it has an audio sink
3505	 */
3506
3507	power_domain = intel_display_port_power_domain(intel_encoder);
3508	intel_display_power_get(dev_priv, power_domain);
3509
3510	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3511	intel_display_power_put(dev_priv, power_domain);
3512	if (ret)
3513		return ret;
3514
3515	/* if eDP has no EDID, fall back to fixed mode */
3516	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3517		struct drm_display_mode *mode;
3518		mode = drm_mode_duplicate(dev,
3519					  intel_connector->panel.fixed_mode);
3520		if (mode) {
3521			drm_mode_probed_add(connector, mode);
3522			return 1;
3523		}
3524	}
3525	return 0;
3526}
3527
3528static bool
3529intel_dp_detect_audio(struct drm_connector *connector)
3530{
3531	struct intel_dp *intel_dp = intel_attached_dp(connector);
3532	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3533	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3534	struct drm_device *dev = connector->dev;
3535	struct drm_i915_private *dev_priv = dev->dev_private;
3536	enum intel_display_power_domain power_domain;
3537	struct edid *edid;
3538	bool has_audio = false;
3539
3540	power_domain = intel_display_port_power_domain(intel_encoder);
3541	intel_display_power_get(dev_priv, power_domain);
3542
3543	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3544	if (edid) {
3545		has_audio = drm_detect_monitor_audio(edid);
3546		kfree(edid);
3547	}
3548
3549	intel_display_power_put(dev_priv, power_domain);
3550
3551	return has_audio;
3552}
3553
3554static int
3555intel_dp_set_property(struct drm_connector *connector,
3556		      struct drm_property *property,
3557		      uint64_t val)
3558{
3559	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3560	struct intel_connector *intel_connector = to_intel_connector(connector);
3561	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3562	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3563	int ret;
3564
3565	ret = drm_object_property_set_value(&connector->base, property, val);
3566	if (ret)
3567		return ret;
3568
3569	if (property == dev_priv->force_audio_property) {
3570		int i = val;
3571		bool has_audio;
3572
3573		if (i == intel_dp->force_audio)
3574			return 0;
3575
3576		intel_dp->force_audio = i;
3577
3578		if (i == HDMI_AUDIO_AUTO)
3579			has_audio = intel_dp_detect_audio(connector);
3580		else
3581			has_audio = (i == HDMI_AUDIO_ON);
3582
3583		if (has_audio == intel_dp->has_audio)
3584			return 0;
3585
3586		intel_dp->has_audio = has_audio;
3587		goto done;
3588	}
3589
3590	if (property == dev_priv->broadcast_rgb_property) {
3591		bool old_auto = intel_dp->color_range_auto;
3592		uint32_t old_range = intel_dp->color_range;
3593
3594		switch (val) {
3595		case INTEL_BROADCAST_RGB_AUTO:
3596			intel_dp->color_range_auto = true;
3597			break;
3598		case INTEL_BROADCAST_RGB_FULL:
3599			intel_dp->color_range_auto = false;
3600			intel_dp->color_range = 0;
3601			break;
3602		case INTEL_BROADCAST_RGB_LIMITED:
3603			intel_dp->color_range_auto = false;
3604			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3605			break;
3606		default:
3607			return -EINVAL;
3608		}
3609
3610		if (old_auto == intel_dp->color_range_auto &&
3611		    old_range == intel_dp->color_range)
3612			return 0;
3613
3614		goto done;
3615	}
3616
3617	if (is_edp(intel_dp) &&
3618	    property == connector->dev->mode_config.scaling_mode_property) {
3619		if (val == DRM_MODE_SCALE_NONE) {
3620			DRM_DEBUG_KMS("no scaling not supported\n");
3621			return -EINVAL;
3622		}
3623
3624		if (intel_connector->panel.fitting_mode == val) {
3625			/* the eDP scaling property is not changed */
3626			return 0;
3627		}
3628		intel_connector->panel.fitting_mode = val;
3629
3630		goto done;
3631	}
3632
3633	return -EINVAL;
3634
3635done:
3636	if (intel_encoder->base.crtc)
3637		intel_crtc_restore_mode(intel_encoder->base.crtc);
3638
3639	return 0;
3640}
3641
3642static void
3643intel_dp_connector_destroy(struct drm_connector *connector)
3644{
3645	struct intel_connector *intel_connector = to_intel_connector(connector);
3646
3647	if (!IS_ERR_OR_NULL(intel_connector->edid))
3648		kfree(intel_connector->edid);
3649
3650	/* Can't call is_edp() since the encoder may have been destroyed
3651	 * already. */
3652	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3653		intel_panel_fini(&intel_connector->panel);
3654
3655	drm_connector_cleanup(connector);
3656	kfree(connector);
3657}
3658
3659void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3660{
3661	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3662	struct intel_dp *intel_dp = &intel_dig_port->dp;
3663	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3664
3665	drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3666	drm_encoder_cleanup(encoder);
3667	if (is_edp(intel_dp)) {
3668		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3669		mutex_lock(&dev->mode_config.connection_mutex);
3670		edp_panel_vdd_off_sync(intel_dp);
3671		mutex_unlock(&dev->mode_config.connection_mutex);
3672	}
3673	kfree(intel_dig_port);
3674}
3675
3676static const struct drm_connector_funcs intel_dp_connector_funcs = {
3677	.dpms = intel_connector_dpms,
3678	.detect = intel_dp_detect,
3679	.fill_modes = drm_helper_probe_single_connector_modes,
3680	.set_property = intel_dp_set_property,
3681	.destroy = intel_dp_connector_destroy,
3682};
3683
3684static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3685	.get_modes = intel_dp_get_modes,
3686	.mode_valid = intel_dp_mode_valid,
3687	.best_encoder = intel_best_encoder,
3688};
3689
3690static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3691	.destroy = intel_dp_encoder_destroy,
3692};
3693
3694static void
3695intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3696{
3697	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3698
3699	intel_dp_check_link_status(intel_dp);
3700}
3701
3702/* Return which DP Port should be selected for Transcoder DP control */
3703int
3704intel_trans_dp_port_sel(struct drm_crtc *crtc)
3705{
3706	struct drm_device *dev = crtc->dev;
3707	struct intel_encoder *intel_encoder;
3708	struct intel_dp *intel_dp;
3709
3710	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3711		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3712
3713		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3714		    intel_encoder->type == INTEL_OUTPUT_EDP)
3715			return intel_dp->output_reg;
3716	}
3717
3718	return -1;
3719}
3720
3721/* check the VBT to see whether the eDP is on DP-D port */
3722bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3723{
3724	struct drm_i915_private *dev_priv = dev->dev_private;
3725	union child_device_config *p_child;
3726	int i;
3727	static const short port_mapping[] = {
3728		[PORT_B] = PORT_IDPB,
3729		[PORT_C] = PORT_IDPC,
3730		[PORT_D] = PORT_IDPD,
3731	};
3732
3733	if (port == PORT_A)
3734		return true;
3735
3736	if (!dev_priv->vbt.child_dev_num)
3737		return false;
3738
3739	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3740		p_child = dev_priv->vbt.child_dev + i;
3741
3742		if (p_child->common.dvo_port == port_mapping[port] &&
3743		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3744		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3745			return true;
3746	}
3747	return false;
3748}
3749
3750static void
3751intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3752{
3753	struct intel_connector *intel_connector = to_intel_connector(connector);
3754
3755	intel_attach_force_audio_property(connector);
3756	intel_attach_broadcast_rgb_property(connector);
3757	intel_dp->color_range_auto = true;
3758
3759	if (is_edp(intel_dp)) {
3760		drm_mode_create_scaling_mode_property(connector->dev);
3761		drm_object_attach_property(
3762			&connector->base,
3763			connector->dev->mode_config.scaling_mode_property,
3764			DRM_MODE_SCALE_ASPECT);
3765		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3766	}
3767}
3768
3769static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3770{
3771	intel_dp->last_power_cycle = jiffies;
3772	intel_dp->last_power_on = jiffies;
3773	intel_dp->last_backlight_off = jiffies;
3774}
3775
3776static void
3777intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3778				    struct intel_dp *intel_dp,
3779				    struct edp_power_seq *out)
3780{
3781	struct drm_i915_private *dev_priv = dev->dev_private;
3782	struct edp_power_seq cur, vbt, spec, final;
3783	u32 pp_on, pp_off, pp_div, pp;
3784	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3785
3786	if (HAS_PCH_SPLIT(dev)) {
3787		pp_ctrl_reg = PCH_PP_CONTROL;
3788		pp_on_reg = PCH_PP_ON_DELAYS;
3789		pp_off_reg = PCH_PP_OFF_DELAYS;
3790		pp_div_reg = PCH_PP_DIVISOR;
3791	} else {
3792		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3793
3794		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3795		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3796		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3797		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3798	}
3799
3800	/* Workaround: Need to write PP_CONTROL with the unlock key as
3801	 * the very first thing. */
3802	pp = ironlake_get_pp_control(intel_dp);
3803	I915_WRITE(pp_ctrl_reg, pp);
3804
3805	pp_on = I915_READ(pp_on_reg);
3806	pp_off = I915_READ(pp_off_reg);
3807	pp_div = I915_READ(pp_div_reg);
3808
3809	/* Pull timing values out of registers */
3810	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3811		PANEL_POWER_UP_DELAY_SHIFT;
3812
3813	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3814		PANEL_LIGHT_ON_DELAY_SHIFT;
3815
3816	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3817		PANEL_LIGHT_OFF_DELAY_SHIFT;
3818
3819	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3820		PANEL_POWER_DOWN_DELAY_SHIFT;
3821
3822	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3823		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3824
3825	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3826		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3827
3828	vbt = dev_priv->vbt.edp_pps;
3829
3830	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3831	 * our hw here, which are all in 100usec. */
3832	spec.t1_t3 = 210 * 10;
3833	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3834	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3835	spec.t10 = 500 * 10;
3836	/* This one is special and actually in units of 100ms, but zero
3837	 * based in the hw (so we need to add 100 ms). But the sw vbt
3838	 * table multiplies it with 1000 to make it in units of 100usec,
3839	 * too. */
3840	spec.t11_t12 = (510 + 100) * 10;
3841
3842	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3843		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3844
3845	/* Use the max of the register settings and vbt. If both are
3846	 * unset, fall back to the spec limits. */
3847#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3848				       spec.field : \
3849				       max(cur.field, vbt.field))
3850	assign_final(t1_t3);
3851	assign_final(t8);
3852	assign_final(t9);
3853	assign_final(t10);
3854	assign_final(t11_t12);
3855#undef assign_final
3856
3857#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3858	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3859	intel_dp->backlight_on_delay = get_delay(t8);
3860	intel_dp->backlight_off_delay = get_delay(t9);
3861	intel_dp->panel_power_down_delay = get_delay(t10);
3862	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3863#undef get_delay
3864
3865	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3866		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3867		      intel_dp->panel_power_cycle_delay);
3868
3869	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3870		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3871
3872	if (out)
3873		*out = final;
3874}
3875
3876static void
3877intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3878					      struct intel_dp *intel_dp,
3879					      struct edp_power_seq *seq)
3880{
3881	struct drm_i915_private *dev_priv = dev->dev_private;
3882	u32 pp_on, pp_off, pp_div, port_sel = 0;
3883	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3884	int pp_on_reg, pp_off_reg, pp_div_reg;
3885
3886	if (HAS_PCH_SPLIT(dev)) {
3887		pp_on_reg = PCH_PP_ON_DELAYS;
3888		pp_off_reg = PCH_PP_OFF_DELAYS;
3889		pp_div_reg = PCH_PP_DIVISOR;
3890	} else {
3891		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3892
3893		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3894		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3895		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3896	}
3897
3898	/*
3899	 * And finally store the new values in the power sequencer. The
3900	 * backlight delays are set to 1 because we do manual waits on them. For
3901	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3902	 * we'll end up waiting for the backlight off delay twice: once when we
3903	 * do the manual sleep, and once when we disable the panel and wait for
3904	 * the PP_STATUS bit to become zero.
3905	 */
3906	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3907		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3908	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3909		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3910	/* Compute the divisor for the pp clock, simply match the Bspec
3911	 * formula. */
3912	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3913	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3914			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3915
3916	/* Haswell doesn't have any port selection bits for the panel
3917	 * power sequencer any more. */
3918	if (IS_VALLEYVIEW(dev)) {
3919		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3920			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3921		else
3922			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3923	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3924		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3925			port_sel = PANEL_PORT_SELECT_DPA;
3926		else
3927			port_sel = PANEL_PORT_SELECT_DPD;
3928	}
3929
3930	pp_on |= port_sel;
3931
3932	I915_WRITE(pp_on_reg, pp_on);
3933	I915_WRITE(pp_off_reg, pp_off);
3934	I915_WRITE(pp_div_reg, pp_div);
3935
3936	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3937		      I915_READ(pp_on_reg),
3938		      I915_READ(pp_off_reg),
3939		      I915_READ(pp_div_reg));
3940}
3941
3942void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
3943{
3944	struct drm_i915_private *dev_priv = dev->dev_private;
3945	struct intel_encoder *encoder;
3946	struct intel_dp *intel_dp = NULL;
3947	struct intel_crtc_config *config = NULL;
3948	struct intel_crtc *intel_crtc = NULL;
3949	struct intel_connector *intel_connector = dev_priv->drrs.connector;
3950	u32 reg, val;
3951	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
3952
3953	if (refresh_rate <= 0) {
3954		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
3955		return;
3956	}
3957
3958	if (intel_connector == NULL) {
3959		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
3960		return;
3961	}
3962
3963	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
3964		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
3965		return;
3966	}
3967
3968	encoder = intel_attached_encoder(&intel_connector->base);
3969	intel_dp = enc_to_intel_dp(&encoder->base);
3970	intel_crtc = encoder->new_crtc;
3971
3972	if (!intel_crtc) {
3973		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
3974		return;
3975	}
3976
3977	config = &intel_crtc->config;
3978
3979	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
3980		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
3981		return;
3982	}
3983
3984	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
3985		index = DRRS_LOW_RR;
3986
3987	if (index == intel_dp->drrs_state.refresh_rate_type) {
3988		DRM_DEBUG_KMS(
3989			"DRRS requested for previously set RR...ignoring\n");
3990		return;
3991	}
3992
3993	if (!intel_crtc->active) {
3994		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
3995		return;
3996	}
3997
3998	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
3999		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4000		val = I915_READ(reg);
4001		if (index > DRRS_HIGH_RR) {
4002			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4003			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4004		} else {
4005			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4006		}
4007		I915_WRITE(reg, val);
4008	}
4009
4010	/*
4011	 * mutex taken to ensure that there is no race between differnt
4012	 * drrs calls trying to update refresh rate. This scenario may occur
4013	 * in future when idleness detection based DRRS in kernel and
4014	 * possible calls from user space to set differnt RR are made.
4015	 */
4016
4017	mutex_lock(&intel_dp->drrs_state.mutex);
4018
4019	intel_dp->drrs_state.refresh_rate_type = index;
4020
4021	mutex_unlock(&intel_dp->drrs_state.mutex);
4022
4023	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4024}
4025
4026static struct drm_display_mode *
4027intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4028			struct intel_connector *intel_connector,
4029			struct drm_display_mode *fixed_mode)
4030{
4031	struct drm_connector *connector = &intel_connector->base;
4032	struct intel_dp *intel_dp = &intel_dig_port->dp;
4033	struct drm_device *dev = intel_dig_port->base.base.dev;
4034	struct drm_i915_private *dev_priv = dev->dev_private;
4035	struct drm_display_mode *downclock_mode = NULL;
4036
4037	if (INTEL_INFO(dev)->gen <= 6) {
4038		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4039		return NULL;
4040	}
4041
4042	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4043		DRM_INFO("VBT doesn't support DRRS\n");
4044		return NULL;
4045	}
4046
4047	downclock_mode = intel_find_panel_downclock
4048					(dev, fixed_mode, connector);
4049
4050	if (!downclock_mode) {
4051		DRM_INFO("DRRS not supported\n");
4052		return NULL;
4053	}
4054
4055	dev_priv->drrs.connector = intel_connector;
4056
4057	mutex_init(&intel_dp->drrs_state.mutex);
4058
4059	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4060
4061	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4062	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4063	return downclock_mode;
4064}
4065
4066static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4067				     struct intel_connector *intel_connector,
4068				     struct edp_power_seq *power_seq)
4069{
4070	struct drm_connector *connector = &intel_connector->base;
4071	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4072	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4073	struct drm_device *dev = intel_encoder->base.dev;
4074	struct drm_i915_private *dev_priv = dev->dev_private;
4075	struct drm_display_mode *fixed_mode = NULL;
4076	struct drm_display_mode *downclock_mode = NULL;
4077	bool has_dpcd;
4078	struct drm_display_mode *scan;
4079	struct edid *edid;
4080
4081	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4082
4083	if (!is_edp(intel_dp))
4084		return true;
4085
4086	/* The VDD bit needs a power domain reference, so if the bit is already
4087	 * enabled when we boot, grab this reference. */
4088	if (edp_have_panel_vdd(intel_dp)) {
4089		enum intel_display_power_domain power_domain;
4090		power_domain = intel_display_port_power_domain(intel_encoder);
4091		intel_display_power_get(dev_priv, power_domain);
4092	}
4093
4094	/* Cache DPCD and EDID for edp. */
4095	intel_edp_panel_vdd_on(intel_dp);
4096	has_dpcd = intel_dp_get_dpcd(intel_dp);
4097	edp_panel_vdd_off(intel_dp, false);
4098
4099	if (has_dpcd) {
4100		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4101			dev_priv->no_aux_handshake =
4102				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4103				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4104	} else {
4105		/* if this fails, presume the device is a ghost */
4106		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4107		return false;
4108	}
4109
4110	/* We now know it's not a ghost, init power sequence regs. */
4111	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4112
4113	mutex_lock(&dev->mode_config.mutex);
4114	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4115	if (edid) {
4116		if (drm_add_edid_modes(connector, edid)) {
4117			drm_mode_connector_update_edid_property(connector,
4118								edid);
4119			drm_edid_to_eld(connector, edid);
4120		} else {
4121			kfree(edid);
4122			edid = ERR_PTR(-EINVAL);
4123		}
4124	} else {
4125		edid = ERR_PTR(-ENOENT);
4126	}
4127	intel_connector->edid = edid;
4128
4129	/* prefer fixed mode from EDID if available */
4130	list_for_each_entry(scan, &connector->probed_modes, head) {
4131		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4132			fixed_mode = drm_mode_duplicate(dev, scan);
4133			downclock_mode = intel_dp_drrs_init(
4134						intel_dig_port,
4135						intel_connector, fixed_mode);
4136			break;
4137		}
4138	}
4139
4140	/* fallback to VBT if available for eDP */
4141	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4142		fixed_mode = drm_mode_duplicate(dev,
4143					dev_priv->vbt.lfp_lvds_vbt_mode);
4144		if (fixed_mode)
4145			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4146	}
4147	mutex_unlock(&dev->mode_config.mutex);
4148
4149	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4150	intel_panel_setup_backlight(connector);
4151
4152	return true;
4153}
4154
4155bool
4156intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4157			struct intel_connector *intel_connector)
4158{
4159	struct drm_connector *connector = &intel_connector->base;
4160	struct intel_dp *intel_dp = &intel_dig_port->dp;
4161	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4162	struct drm_device *dev = intel_encoder->base.dev;
4163	struct drm_i915_private *dev_priv = dev->dev_private;
4164	enum port port = intel_dig_port->port;
4165	struct edp_power_seq power_seq = { 0 };
4166	int type;
4167
4168	/* intel_dp vfuncs */
4169	if (IS_VALLEYVIEW(dev))
4170		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4171	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4172		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4173	else if (HAS_PCH_SPLIT(dev))
4174		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4175	else
4176		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4177
4178	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4179
4180	/* Preserve the current hw state. */
4181	intel_dp->DP = I915_READ(intel_dp->output_reg);
4182	intel_dp->attached_connector = intel_connector;
4183
4184	if (intel_dp_is_edp(dev, port))
4185		type = DRM_MODE_CONNECTOR_eDP;
4186	else
4187		type = DRM_MODE_CONNECTOR_DisplayPort;
4188
4189	/*
4190	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4191	 * for DP the encoder type can be set by the caller to
4192	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4193	 */
4194	if (type == DRM_MODE_CONNECTOR_eDP)
4195		intel_encoder->type = INTEL_OUTPUT_EDP;
4196
4197	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4198			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4199			port_name(port));
4200
4201	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4202	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4203
4204	connector->interlace_allowed = true;
4205	connector->doublescan_allowed = 0;
4206
4207	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4208			  edp_panel_vdd_work);
4209
4210	intel_connector_attach_encoder(intel_connector, intel_encoder);
4211	drm_sysfs_connector_add(connector);
4212
4213	if (HAS_DDI(dev))
4214		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4215	else
4216		intel_connector->get_hw_state = intel_connector_get_hw_state;
4217	intel_connector->unregister = intel_dp_connector_unregister;
4218
4219	/* Set up the hotplug pin. */
4220	switch (port) {
4221	case PORT_A:
4222		intel_encoder->hpd_pin = HPD_PORT_A;
4223		break;
4224	case PORT_B:
4225		intel_encoder->hpd_pin = HPD_PORT_B;
4226		break;
4227	case PORT_C:
4228		intel_encoder->hpd_pin = HPD_PORT_C;
4229		break;
4230	case PORT_D:
4231		intel_encoder->hpd_pin = HPD_PORT_D;
4232		break;
4233	default:
4234		BUG();
4235	}
4236
4237	if (is_edp(intel_dp)) {
4238		intel_dp_init_panel_power_timestamps(intel_dp);
4239		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4240	}
4241
4242	intel_dp_aux_init(intel_dp, intel_connector);
4243
4244	intel_dp->psr_setup_done = false;
4245
4246	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4247		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
4248		if (is_edp(intel_dp)) {
4249			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4250			mutex_lock(&dev->mode_config.connection_mutex);
4251			edp_panel_vdd_off_sync(intel_dp);
4252			mutex_unlock(&dev->mode_config.connection_mutex);
4253		}
4254		drm_sysfs_connector_remove(connector);
4255		drm_connector_cleanup(connector);
4256		return false;
4257	}
4258
4259	intel_dp_add_properties(intel_dp, connector);
4260
4261	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4262	 * 0xd.  Failure to do so will result in spurious interrupts being
4263	 * generated on the port when a cable is not attached.
4264	 */
4265	if (IS_G4X(dev) && !IS_GM45(dev)) {
4266		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4267		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4268	}
4269
4270	return true;
4271}
4272
4273void
4274intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4275{
4276	struct intel_digital_port *intel_dig_port;
4277	struct intel_encoder *intel_encoder;
4278	struct drm_encoder *encoder;
4279	struct intel_connector *intel_connector;
4280
4281	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4282	if (!intel_dig_port)
4283		return;
4284
4285	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4286	if (!intel_connector) {
4287		kfree(intel_dig_port);
4288		return;
4289	}
4290
4291	intel_encoder = &intel_dig_port->base;
4292	encoder = &intel_encoder->base;
4293
4294	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4295			 DRM_MODE_ENCODER_TMDS);
4296
4297	intel_encoder->compute_config = intel_dp_compute_config;
4298	intel_encoder->disable = intel_disable_dp;
4299	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4300	intel_encoder->get_config = intel_dp_get_config;
4301	if (IS_CHERRYVIEW(dev)) {
4302		intel_encoder->pre_enable = chv_pre_enable_dp;
4303		intel_encoder->enable = vlv_enable_dp;
4304		intel_encoder->post_disable = chv_post_disable_dp;
4305	} else if (IS_VALLEYVIEW(dev)) {
4306		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4307		intel_encoder->pre_enable = vlv_pre_enable_dp;
4308		intel_encoder->enable = vlv_enable_dp;
4309		intel_encoder->post_disable = vlv_post_disable_dp;
4310	} else {
4311		intel_encoder->pre_enable = g4x_pre_enable_dp;
4312		intel_encoder->enable = g4x_enable_dp;
4313		intel_encoder->post_disable = g4x_post_disable_dp;
4314	}
4315
4316	intel_dig_port->port = port;
4317	intel_dig_port->dp.output_reg = output_reg;
4318
4319	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4320	if (IS_CHERRYVIEW(dev)) {
4321		if (port == PORT_D)
4322			intel_encoder->crtc_mask = 1 << 2;
4323		else
4324			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4325	} else {
4326		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4327	}
4328	intel_encoder->cloneable = 0;
4329	intel_encoder->hot_plug = intel_dp_hot_plug;
4330
4331	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4332		drm_encoder_cleanup(encoder);
4333		kfree(intel_dig_port);
4334		kfree(intel_connector);
4335	}
4336}
4337