intel_dp.c revision 750eb99e0ec12f9a13446284d493d35a60866624
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "drm_edid.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
39
40#define DP_RECEIVER_CAP_SIZE	0xf
41#define DP_LINK_STATUS_SIZE	6
42#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
43
44/**
45 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
46 * @intel_dp: DP struct
47 *
48 * If a CPU or PCH DP output is attached to an eDP panel, this function
49 * will return true, and false otherwise.
50 */
51static bool is_edp(struct intel_dp *intel_dp)
52{
53	return intel_dp->base.type == INTEL_OUTPUT_EDP;
54}
55
56/**
57 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
58 * @intel_dp: DP struct
59 *
60 * Returns true if the given DP struct corresponds to a PCH DP port attached
61 * to an eDP panel, false otherwise.  Helpful for determining whether we
62 * may need FDI resources for a given DP output or not.
63 */
64static bool is_pch_edp(struct intel_dp *intel_dp)
65{
66	return intel_dp->is_pch_edp;
67}
68
69/**
70 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
71 * @intel_dp: DP struct
72 *
73 * Returns true if the given DP struct corresponds to a CPU eDP port.
74 */
75static bool is_cpu_edp(struct intel_dp *intel_dp)
76{
77	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
78}
79
80static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
81{
82	return container_of(intel_attached_encoder(connector),
83			    struct intel_dp, base);
84}
85
86/**
87 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
88 * @encoder: DRM encoder
89 *
90 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
91 * by intel_display.c.
92 */
93bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
94{
95	struct intel_dp *intel_dp;
96
97	if (!encoder)
98		return false;
99
100	intel_dp = enc_to_intel_dp(encoder);
101
102	return is_pch_edp(intel_dp);
103}
104
105static void intel_dp_start_link_train(struct intel_dp *intel_dp);
106static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
107static void intel_dp_link_down(struct intel_dp *intel_dp);
108
109void
110intel_edp_link_config(struct intel_encoder *intel_encoder,
111		       int *lane_num, int *link_bw)
112{
113	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
114
115	*lane_num = intel_dp->lane_count;
116	if (intel_dp->link_bw == DP_LINK_BW_1_62)
117		*link_bw = 162000;
118	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
119		*link_bw = 270000;
120}
121
122int
123intel_edp_target_clock(struct intel_encoder *intel_encoder,
124		       struct drm_display_mode *mode)
125{
126	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
127
128	if (intel_dp->panel_fixed_mode)
129		return intel_dp->panel_fixed_mode->clock;
130	else
131		return mode->clock;
132}
133
134static int
135intel_dp_max_lane_count(struct intel_dp *intel_dp)
136{
137	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
138	switch (max_lane_count) {
139	case 1: case 2: case 4:
140		break;
141	default:
142		max_lane_count = 4;
143	}
144	return max_lane_count;
145}
146
147static int
148intel_dp_max_link_bw(struct intel_dp *intel_dp)
149{
150	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
151
152	switch (max_link_bw) {
153	case DP_LINK_BW_1_62:
154	case DP_LINK_BW_2_7:
155		break;
156	default:
157		max_link_bw = DP_LINK_BW_1_62;
158		break;
159	}
160	return max_link_bw;
161}
162
163static int
164intel_dp_link_clock(uint8_t link_bw)
165{
166	if (link_bw == DP_LINK_BW_2_7)
167		return 270000;
168	else
169		return 162000;
170}
171
172/*
173 * The units on the numbers in the next two are... bizarre.  Examples will
174 * make it clearer; this one parallels an example in the eDP spec.
175 *
176 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
177 *
178 *     270000 * 1 * 8 / 10 == 216000
179 *
180 * The actual data capacity of that configuration is 2.16Gbit/s, so the
181 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
182 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
183 * 119000.  At 18bpp that's 2142000 kilobits per second.
184 *
185 * Thus the strange-looking division by 10 in intel_dp_link_required, to
186 * get the result in decakilobits instead of kilobits.
187 */
188
189static int
190intel_dp_link_required(int pixel_clock, int bpp)
191{
192	return (pixel_clock * bpp + 9) / 10;
193}
194
195static int
196intel_dp_max_data_rate(int max_link_clock, int max_lanes)
197{
198	return (max_link_clock * max_lanes * 8) / 10;
199}
200
201static bool
202intel_dp_adjust_dithering(struct intel_dp *intel_dp,
203			  struct drm_display_mode *mode,
204			  bool adjust_mode)
205{
206	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
207	int max_lanes = intel_dp_max_lane_count(intel_dp);
208	int max_rate, mode_rate;
209
210	mode_rate = intel_dp_link_required(mode->clock, 24);
211	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
212
213	if (mode_rate > max_rate) {
214		mode_rate = intel_dp_link_required(mode->clock, 18);
215		if (mode_rate > max_rate)
216			return false;
217
218		if (adjust_mode)
219			mode->private_flags
220				|= INTEL_MODE_DP_FORCE_6BPC;
221
222		return true;
223	}
224
225	return true;
226}
227
228static int
229intel_dp_mode_valid(struct drm_connector *connector,
230		    struct drm_display_mode *mode)
231{
232	struct intel_dp *intel_dp = intel_attached_dp(connector);
233
234	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
235		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
236			return MODE_PANEL;
237
238		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
239			return MODE_PANEL;
240	}
241
242	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
243		return MODE_CLOCK_HIGH;
244
245	if (mode->clock < 10000)
246		return MODE_CLOCK_LOW;
247
248	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
249		return MODE_H_ILLEGAL;
250
251	return MODE_OK;
252}
253
254static uint32_t
255pack_aux(uint8_t *src, int src_bytes)
256{
257	int	i;
258	uint32_t v = 0;
259
260	if (src_bytes > 4)
261		src_bytes = 4;
262	for (i = 0; i < src_bytes; i++)
263		v |= ((uint32_t) src[i]) << ((3-i) * 8);
264	return v;
265}
266
267static void
268unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
269{
270	int i;
271	if (dst_bytes > 4)
272		dst_bytes = 4;
273	for (i = 0; i < dst_bytes; i++)
274		dst[i] = src >> ((3-i) * 8);
275}
276
277/* hrawclock is 1/4 the FSB frequency */
278static int
279intel_hrawclk(struct drm_device *dev)
280{
281	struct drm_i915_private *dev_priv = dev->dev_private;
282	uint32_t clkcfg;
283
284	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
285	if (IS_VALLEYVIEW(dev))
286		return 200;
287
288	clkcfg = I915_READ(CLKCFG);
289	switch (clkcfg & CLKCFG_FSB_MASK) {
290	case CLKCFG_FSB_400:
291		return 100;
292	case CLKCFG_FSB_533:
293		return 133;
294	case CLKCFG_FSB_667:
295		return 166;
296	case CLKCFG_FSB_800:
297		return 200;
298	case CLKCFG_FSB_1067:
299		return 266;
300	case CLKCFG_FSB_1333:
301		return 333;
302	/* these two are just a guess; one of them might be right */
303	case CLKCFG_FSB_1600:
304	case CLKCFG_FSB_1600_ALT:
305		return 400;
306	default:
307		return 133;
308	}
309}
310
311static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312{
313	struct drm_device *dev = intel_dp->base.base.dev;
314	struct drm_i915_private *dev_priv = dev->dev_private;
315
316	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317}
318
319static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp->base.base.dev;
322	struct drm_i915_private *dev_priv = dev->dev_private;
323
324	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325}
326
327static void
328intel_dp_check_edp(struct intel_dp *intel_dp)
329{
330	struct drm_device *dev = intel_dp->base.base.dev;
331	struct drm_i915_private *dev_priv = dev->dev_private;
332
333	if (!is_edp(intel_dp))
334		return;
335	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336		WARN(1, "eDP powered off while attempting aux channel communication.\n");
337		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338			      I915_READ(PCH_PP_STATUS),
339			      I915_READ(PCH_PP_CONTROL));
340	}
341}
342
343static int
344intel_dp_aux_ch(struct intel_dp *intel_dp,
345		uint8_t *send, int send_bytes,
346		uint8_t *recv, int recv_size)
347{
348	uint32_t output_reg = intel_dp->output_reg;
349	struct drm_device *dev = intel_dp->base.base.dev;
350	struct drm_i915_private *dev_priv = dev->dev_private;
351	uint32_t ch_ctl = output_reg + 0x10;
352	uint32_t ch_data = ch_ctl + 4;
353	int i;
354	int recv_bytes;
355	uint32_t status;
356	uint32_t aux_clock_divider;
357	int try, precharge;
358
359	if (IS_HASWELL(dev)) {
360		switch (intel_dp->port) {
361		case PORT_A:
362			ch_ctl = DPA_AUX_CH_CTL;
363			ch_data = DPA_AUX_CH_DATA1;
364			break;
365		case PORT_B:
366			ch_ctl = PCH_DPB_AUX_CH_CTL;
367			ch_data = PCH_DPB_AUX_CH_DATA1;
368			break;
369		case PORT_C:
370			ch_ctl = PCH_DPC_AUX_CH_CTL;
371			ch_data = PCH_DPC_AUX_CH_DATA1;
372			break;
373		case PORT_D:
374			ch_ctl = PCH_DPD_AUX_CH_CTL;
375			ch_data = PCH_DPD_AUX_CH_DATA1;
376			break;
377		default:
378			BUG();
379		}
380	}
381
382	intel_dp_check_edp(intel_dp);
383	/* The clock divider is based off the hrawclk,
384	 * and would like to run at 2MHz. So, take the
385	 * hrawclk value and divide by 2 and use that
386	 *
387	 * Note that PCH attached eDP panels should use a 125MHz input
388	 * clock divider.
389	 */
390	if (is_cpu_edp(intel_dp)) {
391		if (IS_VALLEYVIEW(dev))
392			aux_clock_divider = 100;
393		else if (IS_GEN6(dev) || IS_GEN7(dev))
394			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
395		else
396			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
397	} else if (HAS_PCH_SPLIT(dev))
398		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
399	else
400		aux_clock_divider = intel_hrawclk(dev) / 2;
401
402	if (IS_GEN6(dev))
403		precharge = 3;
404	else
405		precharge = 5;
406
407	/* Try to wait for any previous AUX channel activity */
408	for (try = 0; try < 3; try++) {
409		status = I915_READ(ch_ctl);
410		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
411			break;
412		msleep(1);
413	}
414
415	if (try == 3) {
416		WARN(1, "dp_aux_ch not started status 0x%08x\n",
417		     I915_READ(ch_ctl));
418		return -EBUSY;
419	}
420
421	/* Must try at least 3 times according to DP spec */
422	for (try = 0; try < 5; try++) {
423		/* Load the send data into the aux channel data registers */
424		for (i = 0; i < send_bytes; i += 4)
425			I915_WRITE(ch_data + i,
426				   pack_aux(send + i, send_bytes - i));
427
428		/* Send the command and wait for it to complete */
429		I915_WRITE(ch_ctl,
430			   DP_AUX_CH_CTL_SEND_BUSY |
431			   DP_AUX_CH_CTL_TIME_OUT_400us |
432			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
433			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
434			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
435			   DP_AUX_CH_CTL_DONE |
436			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
437			   DP_AUX_CH_CTL_RECEIVE_ERROR);
438		for (;;) {
439			status = I915_READ(ch_ctl);
440			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
441				break;
442			udelay(100);
443		}
444
445		/* Clear done status and any errors */
446		I915_WRITE(ch_ctl,
447			   status |
448			   DP_AUX_CH_CTL_DONE |
449			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
450			   DP_AUX_CH_CTL_RECEIVE_ERROR);
451
452		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
453			      DP_AUX_CH_CTL_RECEIVE_ERROR))
454			continue;
455		if (status & DP_AUX_CH_CTL_DONE)
456			break;
457	}
458
459	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
460		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
461		return -EBUSY;
462	}
463
464	/* Check for timeout or receive error.
465	 * Timeouts occur when the sink is not connected
466	 */
467	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
468		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
469		return -EIO;
470	}
471
472	/* Timeouts occur when the device isn't connected, so they're
473	 * "normal" -- don't fill the kernel log with these */
474	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
475		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
476		return -ETIMEDOUT;
477	}
478
479	/* Unload any bytes sent back from the other side */
480	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
481		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
482	if (recv_bytes > recv_size)
483		recv_bytes = recv_size;
484
485	for (i = 0; i < recv_bytes; i += 4)
486		unpack_aux(I915_READ(ch_data + i),
487			   recv + i, recv_bytes - i);
488
489	return recv_bytes;
490}
491
492/* Write data to the aux channel in native mode */
493static int
494intel_dp_aux_native_write(struct intel_dp *intel_dp,
495			  uint16_t address, uint8_t *send, int send_bytes)
496{
497	int ret;
498	uint8_t	msg[20];
499	int msg_bytes;
500	uint8_t	ack;
501
502	intel_dp_check_edp(intel_dp);
503	if (send_bytes > 16)
504		return -1;
505	msg[0] = AUX_NATIVE_WRITE << 4;
506	msg[1] = address >> 8;
507	msg[2] = address & 0xff;
508	msg[3] = send_bytes - 1;
509	memcpy(&msg[4], send, send_bytes);
510	msg_bytes = send_bytes + 4;
511	for (;;) {
512		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
513		if (ret < 0)
514			return ret;
515		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
516			break;
517		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
518			udelay(100);
519		else
520			return -EIO;
521	}
522	return send_bytes;
523}
524
525/* Write a single byte to the aux channel in native mode */
526static int
527intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
528			    uint16_t address, uint8_t byte)
529{
530	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
531}
532
533/* read bytes from a native aux channel */
534static int
535intel_dp_aux_native_read(struct intel_dp *intel_dp,
536			 uint16_t address, uint8_t *recv, int recv_bytes)
537{
538	uint8_t msg[4];
539	int msg_bytes;
540	uint8_t reply[20];
541	int reply_bytes;
542	uint8_t ack;
543	int ret;
544
545	intel_dp_check_edp(intel_dp);
546	msg[0] = AUX_NATIVE_READ << 4;
547	msg[1] = address >> 8;
548	msg[2] = address & 0xff;
549	msg[3] = recv_bytes - 1;
550
551	msg_bytes = 4;
552	reply_bytes = recv_bytes + 1;
553
554	for (;;) {
555		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
556				      reply, reply_bytes);
557		if (ret == 0)
558			return -EPROTO;
559		if (ret < 0)
560			return ret;
561		ack = reply[0];
562		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
563			memcpy(recv, reply + 1, ret - 1);
564			return ret - 1;
565		}
566		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
567			udelay(100);
568		else
569			return -EIO;
570	}
571}
572
573static int
574intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
575		    uint8_t write_byte, uint8_t *read_byte)
576{
577	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
578	struct intel_dp *intel_dp = container_of(adapter,
579						struct intel_dp,
580						adapter);
581	uint16_t address = algo_data->address;
582	uint8_t msg[5];
583	uint8_t reply[2];
584	unsigned retry;
585	int msg_bytes;
586	int reply_bytes;
587	int ret;
588
589	intel_dp_check_edp(intel_dp);
590	/* Set up the command byte */
591	if (mode & MODE_I2C_READ)
592		msg[0] = AUX_I2C_READ << 4;
593	else
594		msg[0] = AUX_I2C_WRITE << 4;
595
596	if (!(mode & MODE_I2C_STOP))
597		msg[0] |= AUX_I2C_MOT << 4;
598
599	msg[1] = address >> 8;
600	msg[2] = address;
601
602	switch (mode) {
603	case MODE_I2C_WRITE:
604		msg[3] = 0;
605		msg[4] = write_byte;
606		msg_bytes = 5;
607		reply_bytes = 1;
608		break;
609	case MODE_I2C_READ:
610		msg[3] = 0;
611		msg_bytes = 4;
612		reply_bytes = 2;
613		break;
614	default:
615		msg_bytes = 3;
616		reply_bytes = 1;
617		break;
618	}
619
620	for (retry = 0; retry < 5; retry++) {
621		ret = intel_dp_aux_ch(intel_dp,
622				      msg, msg_bytes,
623				      reply, reply_bytes);
624		if (ret < 0) {
625			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
626			return ret;
627		}
628
629		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
630		case AUX_NATIVE_REPLY_ACK:
631			/* I2C-over-AUX Reply field is only valid
632			 * when paired with AUX ACK.
633			 */
634			break;
635		case AUX_NATIVE_REPLY_NACK:
636			DRM_DEBUG_KMS("aux_ch native nack\n");
637			return -EREMOTEIO;
638		case AUX_NATIVE_REPLY_DEFER:
639			udelay(100);
640			continue;
641		default:
642			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
643				  reply[0]);
644			return -EREMOTEIO;
645		}
646
647		switch (reply[0] & AUX_I2C_REPLY_MASK) {
648		case AUX_I2C_REPLY_ACK:
649			if (mode == MODE_I2C_READ) {
650				*read_byte = reply[1];
651			}
652			return reply_bytes - 1;
653		case AUX_I2C_REPLY_NACK:
654			DRM_DEBUG_KMS("aux_i2c nack\n");
655			return -EREMOTEIO;
656		case AUX_I2C_REPLY_DEFER:
657			DRM_DEBUG_KMS("aux_i2c defer\n");
658			udelay(100);
659			break;
660		default:
661			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
662			return -EREMOTEIO;
663		}
664	}
665
666	DRM_ERROR("too many retries, giving up\n");
667	return -EREMOTEIO;
668}
669
670static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
671static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
672
673static int
674intel_dp_i2c_init(struct intel_dp *intel_dp,
675		  struct intel_connector *intel_connector, const char *name)
676{
677	int	ret;
678
679	DRM_DEBUG_KMS("i2c_init %s\n", name);
680	intel_dp->algo.running = false;
681	intel_dp->algo.address = 0;
682	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
683
684	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
685	intel_dp->adapter.owner = THIS_MODULE;
686	intel_dp->adapter.class = I2C_CLASS_DDC;
687	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
688	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
689	intel_dp->adapter.algo_data = &intel_dp->algo;
690	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
691
692	ironlake_edp_panel_vdd_on(intel_dp);
693	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
694	ironlake_edp_panel_vdd_off(intel_dp, false);
695	return ret;
696}
697
698static bool
699intel_dp_mode_fixup(struct drm_encoder *encoder,
700		    const struct drm_display_mode *mode,
701		    struct drm_display_mode *adjusted_mode)
702{
703	struct drm_device *dev = encoder->dev;
704	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
705	int lane_count, clock;
706	int max_lane_count = intel_dp_max_lane_count(intel_dp);
707	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
708	int bpp, mode_rate;
709	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
710
711	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
712		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
713		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
714					mode, adjusted_mode);
715	}
716
717	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
718		return false;
719
720	DRM_DEBUG_KMS("DP link computation with max lane count %i "
721		      "max bw %02x pixel clock %iKHz\n",
722		      max_lane_count, bws[max_clock], adjusted_mode->clock);
723
724	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
725		return false;
726
727	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
728	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
729
730	for (clock = 0; clock <= max_clock; clock++) {
731		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
732			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
733
734			if (mode_rate <= link_avail) {
735				intel_dp->link_bw = bws[clock];
736				intel_dp->lane_count = lane_count;
737				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
738				DRM_DEBUG_KMS("DP link bw %02x lane "
739						"count %d clock %d bpp %d\n",
740				       intel_dp->link_bw, intel_dp->lane_count,
741				       adjusted_mode->clock, bpp);
742				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
743					      mode_rate, link_avail);
744				return true;
745			}
746		}
747	}
748
749	return false;
750}
751
752struct intel_dp_m_n {
753	uint32_t	tu;
754	uint32_t	gmch_m;
755	uint32_t	gmch_n;
756	uint32_t	link_m;
757	uint32_t	link_n;
758};
759
760static void
761intel_reduce_ratio(uint32_t *num, uint32_t *den)
762{
763	while (*num > 0xffffff || *den > 0xffffff) {
764		*num >>= 1;
765		*den >>= 1;
766	}
767}
768
769static void
770intel_dp_compute_m_n(int bpp,
771		     int nlanes,
772		     int pixel_clock,
773		     int link_clock,
774		     struct intel_dp_m_n *m_n)
775{
776	m_n->tu = 64;
777	m_n->gmch_m = (pixel_clock * bpp) >> 3;
778	m_n->gmch_n = link_clock * nlanes;
779	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
780	m_n->link_m = pixel_clock;
781	m_n->link_n = link_clock;
782	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
783}
784
785void
786intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
787		 struct drm_display_mode *adjusted_mode)
788{
789	struct drm_device *dev = crtc->dev;
790	struct intel_encoder *encoder;
791	struct drm_i915_private *dev_priv = dev->dev_private;
792	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793	int lane_count = 4;
794	struct intel_dp_m_n m_n;
795	int pipe = intel_crtc->pipe;
796
797	/*
798	 * Find the lane count in the intel_encoder private
799	 */
800	for_each_encoder_on_crtc(dev, crtc, encoder) {
801		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
802
803		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
804		    intel_dp->base.type == INTEL_OUTPUT_EDP)
805		{
806			lane_count = intel_dp->lane_count;
807			break;
808		}
809	}
810
811	/*
812	 * Compute the GMCH and Link ratios. The '3' here is
813	 * the number of bytes_per_pixel post-LUT, which we always
814	 * set up for 8-bits of R/G/B, or 3 bytes total.
815	 */
816	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
817			     mode->clock, adjusted_mode->clock, &m_n);
818
819	if (HAS_PCH_SPLIT(dev)) {
820		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
821		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
822		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
823		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
824	} else if (IS_VALLEYVIEW(dev)) {
825		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
826		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
827		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
828		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
829	} else {
830		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
831			   TU_SIZE(m_n.tu) | m_n.gmch_m);
832		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
833		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
834		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
835	}
836}
837
838static void
839intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
840		  struct drm_display_mode *adjusted_mode)
841{
842	struct drm_device *dev = encoder->dev;
843	struct drm_i915_private *dev_priv = dev->dev_private;
844	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
845	struct drm_crtc *crtc = intel_dp->base.base.crtc;
846	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
847
848	/*
849	 * There are four kinds of DP registers:
850	 *
851	 * 	IBX PCH
852	 * 	SNB CPU
853	 *	IVB CPU
854	 * 	CPT PCH
855	 *
856	 * IBX PCH and CPU are the same for almost everything,
857	 * except that the CPU DP PLL is configured in this
858	 * register
859	 *
860	 * CPT PCH is quite different, having many bits moved
861	 * to the TRANS_DP_CTL register instead. That
862	 * configuration happens (oddly) in ironlake_pch_enable
863	 */
864
865	/* Preserve the BIOS-computed detected bit. This is
866	 * supposed to be read-only.
867	 */
868	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
869
870	/* Handle DP bits in common between all three register formats */
871	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
872
873	switch (intel_dp->lane_count) {
874	case 1:
875		intel_dp->DP |= DP_PORT_WIDTH_1;
876		break;
877	case 2:
878		intel_dp->DP |= DP_PORT_WIDTH_2;
879		break;
880	case 4:
881		intel_dp->DP |= DP_PORT_WIDTH_4;
882		break;
883	}
884	if (intel_dp->has_audio) {
885		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
886				 pipe_name(intel_crtc->pipe));
887		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
888		intel_write_eld(encoder, adjusted_mode);
889	}
890	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
891	intel_dp->link_configuration[0] = intel_dp->link_bw;
892	intel_dp->link_configuration[1] = intel_dp->lane_count;
893	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
894	/*
895	 * Check for DPCD version > 1.1 and enhanced framing support
896	 */
897	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
898	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
899		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
900	}
901
902	/* Split out the IBX/CPU vs CPT settings */
903
904	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
905		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
906			intel_dp->DP |= DP_SYNC_HS_HIGH;
907		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
908			intel_dp->DP |= DP_SYNC_VS_HIGH;
909		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
910
911		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
912			intel_dp->DP |= DP_ENHANCED_FRAMING;
913
914		intel_dp->DP |= intel_crtc->pipe << 29;
915
916		/* don't miss out required setting for eDP */
917		if (adjusted_mode->clock < 200000)
918			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
919		else
920			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
921	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
922		intel_dp->DP |= intel_dp->color_range;
923
924		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
925			intel_dp->DP |= DP_SYNC_HS_HIGH;
926		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
927			intel_dp->DP |= DP_SYNC_VS_HIGH;
928		intel_dp->DP |= DP_LINK_TRAIN_OFF;
929
930		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
931			intel_dp->DP |= DP_ENHANCED_FRAMING;
932
933		if (intel_crtc->pipe == 1)
934			intel_dp->DP |= DP_PIPEB_SELECT;
935
936		if (is_cpu_edp(intel_dp)) {
937			/* don't miss out required setting for eDP */
938			if (adjusted_mode->clock < 200000)
939				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
940			else
941				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
942		}
943	} else {
944		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
945	}
946}
947
948#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
949#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
950
951#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
952#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
953
954#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
955#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
956
957static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
958				       u32 mask,
959				       u32 value)
960{
961	struct drm_device *dev = intel_dp->base.base.dev;
962	struct drm_i915_private *dev_priv = dev->dev_private;
963
964	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
965		      mask, value,
966		      I915_READ(PCH_PP_STATUS),
967		      I915_READ(PCH_PP_CONTROL));
968
969	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
970		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
971			  I915_READ(PCH_PP_STATUS),
972			  I915_READ(PCH_PP_CONTROL));
973	}
974}
975
976static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
977{
978	DRM_DEBUG_KMS("Wait for panel power on\n");
979	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
980}
981
982static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
983{
984	DRM_DEBUG_KMS("Wait for panel power off time\n");
985	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
986}
987
988static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
989{
990	DRM_DEBUG_KMS("Wait for panel power cycle\n");
991	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
992}
993
994
995/* Read the current pp_control value, unlocking the register if it
996 * is locked
997 */
998
999static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1000{
1001	u32	control = I915_READ(PCH_PP_CONTROL);
1002
1003	control &= ~PANEL_UNLOCK_MASK;
1004	control |= PANEL_UNLOCK_REGS;
1005	return control;
1006}
1007
1008static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1009{
1010	struct drm_device *dev = intel_dp->base.base.dev;
1011	struct drm_i915_private *dev_priv = dev->dev_private;
1012	u32 pp;
1013
1014	if (!is_edp(intel_dp))
1015		return;
1016	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1017
1018	WARN(intel_dp->want_panel_vdd,
1019	     "eDP VDD already requested on\n");
1020
1021	intel_dp->want_panel_vdd = true;
1022
1023	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1024		DRM_DEBUG_KMS("eDP VDD already on\n");
1025		return;
1026	}
1027
1028	if (!ironlake_edp_have_panel_power(intel_dp))
1029		ironlake_wait_panel_power_cycle(intel_dp);
1030
1031	pp = ironlake_get_pp_control(dev_priv);
1032	pp |= EDP_FORCE_VDD;
1033	I915_WRITE(PCH_PP_CONTROL, pp);
1034	POSTING_READ(PCH_PP_CONTROL);
1035	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1036		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1037
1038	/*
1039	 * If the panel wasn't on, delay before accessing aux channel
1040	 */
1041	if (!ironlake_edp_have_panel_power(intel_dp)) {
1042		DRM_DEBUG_KMS("eDP was not running\n");
1043		msleep(intel_dp->panel_power_up_delay);
1044	}
1045}
1046
1047static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1048{
1049	struct drm_device *dev = intel_dp->base.base.dev;
1050	struct drm_i915_private *dev_priv = dev->dev_private;
1051	u32 pp;
1052
1053	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1054		pp = ironlake_get_pp_control(dev_priv);
1055		pp &= ~EDP_FORCE_VDD;
1056		I915_WRITE(PCH_PP_CONTROL, pp);
1057		POSTING_READ(PCH_PP_CONTROL);
1058
1059		/* Make sure sequencer is idle before allowing subsequent activity */
1060		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1061			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1062
1063		msleep(intel_dp->panel_power_down_delay);
1064	}
1065}
1066
1067static void ironlake_panel_vdd_work(struct work_struct *__work)
1068{
1069	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1070						 struct intel_dp, panel_vdd_work);
1071	struct drm_device *dev = intel_dp->base.base.dev;
1072
1073	mutex_lock(&dev->mode_config.mutex);
1074	ironlake_panel_vdd_off_sync(intel_dp);
1075	mutex_unlock(&dev->mode_config.mutex);
1076}
1077
1078static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1079{
1080	if (!is_edp(intel_dp))
1081		return;
1082
1083	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1084	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1085
1086	intel_dp->want_panel_vdd = false;
1087
1088	if (sync) {
1089		ironlake_panel_vdd_off_sync(intel_dp);
1090	} else {
1091		/*
1092		 * Queue the timer to fire a long
1093		 * time from now (relative to the power down delay)
1094		 * to keep the panel power up across a sequence of operations
1095		 */
1096		schedule_delayed_work(&intel_dp->panel_vdd_work,
1097				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1098	}
1099}
1100
1101static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1102{
1103	struct drm_device *dev = intel_dp->base.base.dev;
1104	struct drm_i915_private *dev_priv = dev->dev_private;
1105	u32 pp;
1106
1107	if (!is_edp(intel_dp))
1108		return;
1109
1110	DRM_DEBUG_KMS("Turn eDP power on\n");
1111
1112	if (ironlake_edp_have_panel_power(intel_dp)) {
1113		DRM_DEBUG_KMS("eDP power already on\n");
1114		return;
1115	}
1116
1117	ironlake_wait_panel_power_cycle(intel_dp);
1118
1119	pp = ironlake_get_pp_control(dev_priv);
1120	if (IS_GEN5(dev)) {
1121		/* ILK workaround: disable reset around power sequence */
1122		pp &= ~PANEL_POWER_RESET;
1123		I915_WRITE(PCH_PP_CONTROL, pp);
1124		POSTING_READ(PCH_PP_CONTROL);
1125	}
1126
1127	pp |= POWER_TARGET_ON;
1128	if (!IS_GEN5(dev))
1129		pp |= PANEL_POWER_RESET;
1130
1131	I915_WRITE(PCH_PP_CONTROL, pp);
1132	POSTING_READ(PCH_PP_CONTROL);
1133
1134	ironlake_wait_panel_on(intel_dp);
1135
1136	if (IS_GEN5(dev)) {
1137		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1138		I915_WRITE(PCH_PP_CONTROL, pp);
1139		POSTING_READ(PCH_PP_CONTROL);
1140	}
1141}
1142
1143static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1144{
1145	struct drm_device *dev = intel_dp->base.base.dev;
1146	struct drm_i915_private *dev_priv = dev->dev_private;
1147	u32 pp;
1148
1149	if (!is_edp(intel_dp))
1150		return;
1151
1152	DRM_DEBUG_KMS("Turn eDP power off\n");
1153
1154	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1155
1156	pp = ironlake_get_pp_control(dev_priv);
1157	/* We need to switch off panel power _and_ force vdd, for otherwise some
1158	 * panels get very unhappy and cease to work. */
1159	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1160	I915_WRITE(PCH_PP_CONTROL, pp);
1161	POSTING_READ(PCH_PP_CONTROL);
1162
1163	intel_dp->want_panel_vdd = false;
1164
1165	ironlake_wait_panel_off(intel_dp);
1166}
1167
1168static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1169{
1170	struct drm_device *dev = intel_dp->base.base.dev;
1171	struct drm_i915_private *dev_priv = dev->dev_private;
1172	u32 pp;
1173
1174	if (!is_edp(intel_dp))
1175		return;
1176
1177	DRM_DEBUG_KMS("\n");
1178	/*
1179	 * If we enable the backlight right away following a panel power
1180	 * on, we may see slight flicker as the panel syncs with the eDP
1181	 * link.  So delay a bit to make sure the image is solid before
1182	 * allowing it to appear.
1183	 */
1184	msleep(intel_dp->backlight_on_delay);
1185	pp = ironlake_get_pp_control(dev_priv);
1186	pp |= EDP_BLC_ENABLE;
1187	I915_WRITE(PCH_PP_CONTROL, pp);
1188	POSTING_READ(PCH_PP_CONTROL);
1189}
1190
1191static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1192{
1193	struct drm_device *dev = intel_dp->base.base.dev;
1194	struct drm_i915_private *dev_priv = dev->dev_private;
1195	u32 pp;
1196
1197	if (!is_edp(intel_dp))
1198		return;
1199
1200	DRM_DEBUG_KMS("\n");
1201	pp = ironlake_get_pp_control(dev_priv);
1202	pp &= ~EDP_BLC_ENABLE;
1203	I915_WRITE(PCH_PP_CONTROL, pp);
1204	POSTING_READ(PCH_PP_CONTROL);
1205	msleep(intel_dp->backlight_off_delay);
1206}
1207
1208static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1209{
1210	struct drm_device *dev = intel_dp->base.base.dev;
1211	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1212	struct drm_i915_private *dev_priv = dev->dev_private;
1213	u32 dpa_ctl;
1214
1215	assert_pipe_disabled(dev_priv,
1216			     to_intel_crtc(crtc)->pipe);
1217
1218	DRM_DEBUG_KMS("\n");
1219	dpa_ctl = I915_READ(DP_A);
1220	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1221	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1222
1223	/* We don't adjust intel_dp->DP while tearing down the link, to
1224	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1225	 * enable bits here to ensure that we don't enable too much. */
1226	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1227	intel_dp->DP |= DP_PLL_ENABLE;
1228	I915_WRITE(DP_A, intel_dp->DP);
1229	POSTING_READ(DP_A);
1230	udelay(200);
1231}
1232
1233static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1234{
1235	struct drm_device *dev = intel_dp->base.base.dev;
1236	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1237	struct drm_i915_private *dev_priv = dev->dev_private;
1238	u32 dpa_ctl;
1239
1240	assert_pipe_disabled(dev_priv,
1241			     to_intel_crtc(crtc)->pipe);
1242
1243	dpa_ctl = I915_READ(DP_A);
1244	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1245	     "dp pll off, should be on\n");
1246	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1247
1248	/* We can't rely on the value tracked for the DP register in
1249	 * intel_dp->DP because link_down must not change that (otherwise link
1250	 * re-training will fail. */
1251	dpa_ctl &= ~DP_PLL_ENABLE;
1252	I915_WRITE(DP_A, dpa_ctl);
1253	POSTING_READ(DP_A);
1254	udelay(200);
1255}
1256
1257/* If the sink supports it, try to set the power state appropriately */
1258static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1259{
1260	int ret, i;
1261
1262	/* Should have a valid DPCD by this point */
1263	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1264		return;
1265
1266	if (mode != DRM_MODE_DPMS_ON) {
1267		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1268						  DP_SET_POWER_D3);
1269		if (ret != 1)
1270			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1271	} else {
1272		/*
1273		 * When turning on, we need to retry for 1ms to give the sink
1274		 * time to wake up.
1275		 */
1276		for (i = 0; i < 3; i++) {
1277			ret = intel_dp_aux_native_write_1(intel_dp,
1278							  DP_SET_POWER,
1279							  DP_SET_POWER_D0);
1280			if (ret == 1)
1281				break;
1282			msleep(1);
1283		}
1284	}
1285}
1286
1287static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1288				  enum pipe *pipe)
1289{
1290	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1291	struct drm_device *dev = encoder->base.dev;
1292	struct drm_i915_private *dev_priv = dev->dev_private;
1293	u32 tmp = I915_READ(intel_dp->output_reg);
1294
1295	if (!(tmp & DP_PORT_EN))
1296		return false;
1297
1298	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1299		*pipe = PORT_TO_PIPE_CPT(tmp);
1300	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1301		*pipe = PORT_TO_PIPE(tmp);
1302	} else {
1303		u32 trans_sel;
1304		u32 trans_dp;
1305		int i;
1306
1307		switch (intel_dp->output_reg) {
1308		case PCH_DP_B:
1309			trans_sel = TRANS_DP_PORT_SEL_B;
1310			break;
1311		case PCH_DP_C:
1312			trans_sel = TRANS_DP_PORT_SEL_C;
1313			break;
1314		case PCH_DP_D:
1315			trans_sel = TRANS_DP_PORT_SEL_D;
1316			break;
1317		default:
1318			return true;
1319		}
1320
1321		for_each_pipe(i) {
1322			trans_dp = I915_READ(TRANS_DP_CTL(i));
1323			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1324				*pipe = i;
1325				return true;
1326			}
1327		}
1328	}
1329
1330	DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1331
1332	return true;
1333}
1334
1335static void intel_disable_dp(struct intel_encoder *encoder)
1336{
1337	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1338
1339	/* Make sure the panel is off before trying to change the mode. But also
1340	 * ensure that we have vdd while we switch off the panel. */
1341	ironlake_edp_panel_vdd_on(intel_dp);
1342	ironlake_edp_backlight_off(intel_dp);
1343	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1344	ironlake_edp_panel_off(intel_dp);
1345
1346	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1347	if (!is_cpu_edp(intel_dp))
1348		intel_dp_link_down(intel_dp);
1349}
1350
1351static void intel_post_disable_dp(struct intel_encoder *encoder)
1352{
1353	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1354
1355	if (is_cpu_edp(intel_dp)) {
1356		intel_dp_link_down(intel_dp);
1357		ironlake_edp_pll_off(intel_dp);
1358	}
1359}
1360
1361static void intel_enable_dp(struct intel_encoder *encoder)
1362{
1363	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1364	struct drm_device *dev = encoder->base.dev;
1365	struct drm_i915_private *dev_priv = dev->dev_private;
1366	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1367
1368	if (WARN_ON(dp_reg & DP_PORT_EN))
1369		return;
1370
1371	ironlake_edp_panel_vdd_on(intel_dp);
1372	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1373	intel_dp_start_link_train(intel_dp);
1374	ironlake_edp_panel_on(intel_dp);
1375	ironlake_edp_panel_vdd_off(intel_dp, true);
1376	intel_dp_complete_link_train(intel_dp);
1377	ironlake_edp_backlight_on(intel_dp);
1378}
1379
1380static void intel_pre_enable_dp(struct intel_encoder *encoder)
1381{
1382	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1383
1384	if (is_cpu_edp(intel_dp))
1385		ironlake_edp_pll_on(intel_dp);
1386}
1387
1388/*
1389 * Native read with retry for link status and receiver capability reads for
1390 * cases where the sink may still be asleep.
1391 */
1392static bool
1393intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1394			       uint8_t *recv, int recv_bytes)
1395{
1396	int ret, i;
1397
1398	/*
1399	 * Sinks are *supposed* to come up within 1ms from an off state,
1400	 * but we're also supposed to retry 3 times per the spec.
1401	 */
1402	for (i = 0; i < 3; i++) {
1403		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1404					       recv_bytes);
1405		if (ret == recv_bytes)
1406			return true;
1407		msleep(1);
1408	}
1409
1410	return false;
1411}
1412
1413/*
1414 * Fetch AUX CH registers 0x202 - 0x207 which contain
1415 * link status information
1416 */
1417static bool
1418intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1419{
1420	return intel_dp_aux_native_read_retry(intel_dp,
1421					      DP_LANE0_1_STATUS,
1422					      link_status,
1423					      DP_LINK_STATUS_SIZE);
1424}
1425
1426static uint8_t
1427intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1428		     int r)
1429{
1430	return link_status[r - DP_LANE0_1_STATUS];
1431}
1432
1433static uint8_t
1434intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1435				 int lane)
1436{
1437	int	    s = ((lane & 1) ?
1438			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1439			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1440	uint8_t l = adjust_request[lane>>1];
1441
1442	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1443}
1444
1445static uint8_t
1446intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1447				      int lane)
1448{
1449	int	    s = ((lane & 1) ?
1450			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1451			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1452	uint8_t l = adjust_request[lane>>1];
1453
1454	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1455}
1456
1457
1458#if 0
1459static char	*voltage_names[] = {
1460	"0.4V", "0.6V", "0.8V", "1.2V"
1461};
1462static char	*pre_emph_names[] = {
1463	"0dB", "3.5dB", "6dB", "9.5dB"
1464};
1465static char	*link_train_names[] = {
1466	"pattern 1", "pattern 2", "idle", "off"
1467};
1468#endif
1469
1470/*
1471 * These are source-specific values; current Intel hardware supports
1472 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1473 */
1474
1475static uint8_t
1476intel_dp_voltage_max(struct intel_dp *intel_dp)
1477{
1478	struct drm_device *dev = intel_dp->base.base.dev;
1479
1480	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1481		return DP_TRAIN_VOLTAGE_SWING_800;
1482	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1483		return DP_TRAIN_VOLTAGE_SWING_1200;
1484	else
1485		return DP_TRAIN_VOLTAGE_SWING_800;
1486}
1487
1488static uint8_t
1489intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1490{
1491	struct drm_device *dev = intel_dp->base.base.dev;
1492
1493	if (IS_HASWELL(dev)) {
1494		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1495		case DP_TRAIN_VOLTAGE_SWING_400:
1496			return DP_TRAIN_PRE_EMPHASIS_9_5;
1497		case DP_TRAIN_VOLTAGE_SWING_600:
1498			return DP_TRAIN_PRE_EMPHASIS_6;
1499		case DP_TRAIN_VOLTAGE_SWING_800:
1500			return DP_TRAIN_PRE_EMPHASIS_3_5;
1501		case DP_TRAIN_VOLTAGE_SWING_1200:
1502		default:
1503			return DP_TRAIN_PRE_EMPHASIS_0;
1504		}
1505	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1506		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1507		case DP_TRAIN_VOLTAGE_SWING_400:
1508			return DP_TRAIN_PRE_EMPHASIS_6;
1509		case DP_TRAIN_VOLTAGE_SWING_600:
1510		case DP_TRAIN_VOLTAGE_SWING_800:
1511			return DP_TRAIN_PRE_EMPHASIS_3_5;
1512		default:
1513			return DP_TRAIN_PRE_EMPHASIS_0;
1514		}
1515	} else {
1516		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1517		case DP_TRAIN_VOLTAGE_SWING_400:
1518			return DP_TRAIN_PRE_EMPHASIS_6;
1519		case DP_TRAIN_VOLTAGE_SWING_600:
1520			return DP_TRAIN_PRE_EMPHASIS_6;
1521		case DP_TRAIN_VOLTAGE_SWING_800:
1522			return DP_TRAIN_PRE_EMPHASIS_3_5;
1523		case DP_TRAIN_VOLTAGE_SWING_1200:
1524		default:
1525			return DP_TRAIN_PRE_EMPHASIS_0;
1526		}
1527	}
1528}
1529
1530static void
1531intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1532{
1533	uint8_t v = 0;
1534	uint8_t p = 0;
1535	int lane;
1536	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1537	uint8_t voltage_max;
1538	uint8_t preemph_max;
1539
1540	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1541		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1542		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1543
1544		if (this_v > v)
1545			v = this_v;
1546		if (this_p > p)
1547			p = this_p;
1548	}
1549
1550	voltage_max = intel_dp_voltage_max(intel_dp);
1551	if (v >= voltage_max)
1552		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1553
1554	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1555	if (p >= preemph_max)
1556		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1557
1558	for (lane = 0; lane < 4; lane++)
1559		intel_dp->train_set[lane] = v | p;
1560}
1561
1562static uint32_t
1563intel_dp_signal_levels(uint8_t train_set)
1564{
1565	uint32_t	signal_levels = 0;
1566
1567	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1568	case DP_TRAIN_VOLTAGE_SWING_400:
1569	default:
1570		signal_levels |= DP_VOLTAGE_0_4;
1571		break;
1572	case DP_TRAIN_VOLTAGE_SWING_600:
1573		signal_levels |= DP_VOLTAGE_0_6;
1574		break;
1575	case DP_TRAIN_VOLTAGE_SWING_800:
1576		signal_levels |= DP_VOLTAGE_0_8;
1577		break;
1578	case DP_TRAIN_VOLTAGE_SWING_1200:
1579		signal_levels |= DP_VOLTAGE_1_2;
1580		break;
1581	}
1582	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1583	case DP_TRAIN_PRE_EMPHASIS_0:
1584	default:
1585		signal_levels |= DP_PRE_EMPHASIS_0;
1586		break;
1587	case DP_TRAIN_PRE_EMPHASIS_3_5:
1588		signal_levels |= DP_PRE_EMPHASIS_3_5;
1589		break;
1590	case DP_TRAIN_PRE_EMPHASIS_6:
1591		signal_levels |= DP_PRE_EMPHASIS_6;
1592		break;
1593	case DP_TRAIN_PRE_EMPHASIS_9_5:
1594		signal_levels |= DP_PRE_EMPHASIS_9_5;
1595		break;
1596	}
1597	return signal_levels;
1598}
1599
1600/* Gen6's DP voltage swing and pre-emphasis control */
1601static uint32_t
1602intel_gen6_edp_signal_levels(uint8_t train_set)
1603{
1604	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1605					 DP_TRAIN_PRE_EMPHASIS_MASK);
1606	switch (signal_levels) {
1607	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1608	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1609		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1610	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1611		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1612	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1613	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1614		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1615	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1616	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1617		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1618	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1619	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1620		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1621	default:
1622		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1623			      "0x%x\n", signal_levels);
1624		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1625	}
1626}
1627
1628/* Gen7's DP voltage swing and pre-emphasis control */
1629static uint32_t
1630intel_gen7_edp_signal_levels(uint8_t train_set)
1631{
1632	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1633					 DP_TRAIN_PRE_EMPHASIS_MASK);
1634	switch (signal_levels) {
1635	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1636		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1637	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1638		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1639	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1640		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1641
1642	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1643		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1644	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1645		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1646
1647	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1648		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1649	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1650		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1651
1652	default:
1653		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1654			      "0x%x\n", signal_levels);
1655		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1656	}
1657}
1658
1659/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1660static uint32_t
1661intel_dp_signal_levels_hsw(uint8_t train_set)
1662{
1663	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1664					 DP_TRAIN_PRE_EMPHASIS_MASK);
1665	switch (signal_levels) {
1666	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1667		return DDI_BUF_EMP_400MV_0DB_HSW;
1668	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1669		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1670	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1671		return DDI_BUF_EMP_400MV_6DB_HSW;
1672	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1673		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1674
1675	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1676		return DDI_BUF_EMP_600MV_0DB_HSW;
1677	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1678		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1679	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1680		return DDI_BUF_EMP_600MV_6DB_HSW;
1681
1682	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1683		return DDI_BUF_EMP_800MV_0DB_HSW;
1684	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1685		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1686	default:
1687		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1688			      "0x%x\n", signal_levels);
1689		return DDI_BUF_EMP_400MV_0DB_HSW;
1690	}
1691}
1692
1693static uint8_t
1694intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1695		      int lane)
1696{
1697	int s = (lane & 1) * 4;
1698	uint8_t l = link_status[lane>>1];
1699
1700	return (l >> s) & 0xf;
1701}
1702
1703/* Check for clock recovery is done on all channels */
1704static bool
1705intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1706{
1707	int lane;
1708	uint8_t lane_status;
1709
1710	for (lane = 0; lane < lane_count; lane++) {
1711		lane_status = intel_get_lane_status(link_status, lane);
1712		if ((lane_status & DP_LANE_CR_DONE) == 0)
1713			return false;
1714	}
1715	return true;
1716}
1717
1718/* Check to see if channel eq is done on all channels */
1719#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1720			 DP_LANE_CHANNEL_EQ_DONE|\
1721			 DP_LANE_SYMBOL_LOCKED)
1722static bool
1723intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1724{
1725	uint8_t lane_align;
1726	uint8_t lane_status;
1727	int lane;
1728
1729	lane_align = intel_dp_link_status(link_status,
1730					  DP_LANE_ALIGN_STATUS_UPDATED);
1731	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1732		return false;
1733	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1734		lane_status = intel_get_lane_status(link_status, lane);
1735		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1736			return false;
1737	}
1738	return true;
1739}
1740
1741static bool
1742intel_dp_set_link_train(struct intel_dp *intel_dp,
1743			uint32_t dp_reg_value,
1744			uint8_t dp_train_pat)
1745{
1746	struct drm_device *dev = intel_dp->base.base.dev;
1747	struct drm_i915_private *dev_priv = dev->dev_private;
1748	int ret;
1749	uint32_t temp;
1750
1751	if (IS_HASWELL(dev)) {
1752		temp = I915_READ(DP_TP_CTL(intel_dp->port));
1753
1754		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1755			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1756		else
1757			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1758
1759		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1760		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1761		case DP_TRAINING_PATTERN_DISABLE:
1762			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1763			I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1764
1765			if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1766				      DP_TP_STATUS_IDLE_DONE), 1))
1767				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1768
1769			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1770			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1771
1772			break;
1773		case DP_TRAINING_PATTERN_1:
1774			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1775			break;
1776		case DP_TRAINING_PATTERN_2:
1777			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1778			break;
1779		case DP_TRAINING_PATTERN_3:
1780			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1781			break;
1782		}
1783		I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1784
1785	} else if (HAS_PCH_CPT(dev) &&
1786		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1787		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1788
1789		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1790		case DP_TRAINING_PATTERN_DISABLE:
1791			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1792			break;
1793		case DP_TRAINING_PATTERN_1:
1794			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1795			break;
1796		case DP_TRAINING_PATTERN_2:
1797			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1798			break;
1799		case DP_TRAINING_PATTERN_3:
1800			DRM_ERROR("DP training pattern 3 not supported\n");
1801			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1802			break;
1803		}
1804
1805	} else {
1806		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1807
1808		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1809		case DP_TRAINING_PATTERN_DISABLE:
1810			dp_reg_value |= DP_LINK_TRAIN_OFF;
1811			break;
1812		case DP_TRAINING_PATTERN_1:
1813			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1814			break;
1815		case DP_TRAINING_PATTERN_2:
1816			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1817			break;
1818		case DP_TRAINING_PATTERN_3:
1819			DRM_ERROR("DP training pattern 3 not supported\n");
1820			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1821			break;
1822		}
1823	}
1824
1825	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1826	POSTING_READ(intel_dp->output_reg);
1827
1828	intel_dp_aux_native_write_1(intel_dp,
1829				    DP_TRAINING_PATTERN_SET,
1830				    dp_train_pat);
1831
1832	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1833	    DP_TRAINING_PATTERN_DISABLE) {
1834		ret = intel_dp_aux_native_write(intel_dp,
1835						DP_TRAINING_LANE0_SET,
1836						intel_dp->train_set,
1837						intel_dp->lane_count);
1838		if (ret != intel_dp->lane_count)
1839			return false;
1840	}
1841
1842	return true;
1843}
1844
1845/* Enable corresponding port and start training pattern 1 */
1846static void
1847intel_dp_start_link_train(struct intel_dp *intel_dp)
1848{
1849	struct drm_device *dev = intel_dp->base.base.dev;
1850	int i;
1851	uint8_t voltage;
1852	bool clock_recovery = false;
1853	int voltage_tries, loop_tries;
1854	uint32_t DP = intel_dp->DP;
1855
1856	/* Write the link configuration data */
1857	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1858				  intel_dp->link_configuration,
1859				  DP_LINK_CONFIGURATION_SIZE);
1860
1861	DP |= DP_PORT_EN;
1862
1863	memset(intel_dp->train_set, 0, 4);
1864	voltage = 0xff;
1865	voltage_tries = 0;
1866	loop_tries = 0;
1867	clock_recovery = false;
1868	for (;;) {
1869		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1870		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1871		uint32_t    signal_levels;
1872
1873		if (IS_HASWELL(dev)) {
1874			signal_levels = intel_dp_signal_levels_hsw(
1875							intel_dp->train_set[0]);
1876			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1877		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1878			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1879			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1880		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1881			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1882			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1883		} else {
1884			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1885			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1886		}
1887		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1888			      signal_levels);
1889
1890		if (!intel_dp_set_link_train(intel_dp, DP,
1891					     DP_TRAINING_PATTERN_1 |
1892					     DP_LINK_SCRAMBLING_DISABLE))
1893			break;
1894		/* Set training pattern 1 */
1895
1896		udelay(100);
1897		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1898			DRM_ERROR("failed to get link status\n");
1899			break;
1900		}
1901
1902		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1903			DRM_DEBUG_KMS("clock recovery OK\n");
1904			clock_recovery = true;
1905			break;
1906		}
1907
1908		/* Check to see if we've tried the max voltage */
1909		for (i = 0; i < intel_dp->lane_count; i++)
1910			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1911				break;
1912		if (i == intel_dp->lane_count && voltage_tries == 5) {
1913			++loop_tries;
1914			if (loop_tries == 5) {
1915				DRM_DEBUG_KMS("too many full retries, give up\n");
1916				break;
1917			}
1918			memset(intel_dp->train_set, 0, 4);
1919			voltage_tries = 0;
1920			continue;
1921		}
1922
1923		/* Check to see if we've tried the same voltage 5 times */
1924		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1925			++voltage_tries;
1926			if (voltage_tries == 5) {
1927				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1928				break;
1929			}
1930		} else
1931			voltage_tries = 0;
1932		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1933
1934		/* Compute new intel_dp->train_set as requested by target */
1935		intel_get_adjust_train(intel_dp, link_status);
1936	}
1937
1938	intel_dp->DP = DP;
1939}
1940
1941static void
1942intel_dp_complete_link_train(struct intel_dp *intel_dp)
1943{
1944	struct drm_device *dev = intel_dp->base.base.dev;
1945	bool channel_eq = false;
1946	int tries, cr_tries;
1947	uint32_t DP = intel_dp->DP;
1948
1949	/* channel equalization */
1950	tries = 0;
1951	cr_tries = 0;
1952	channel_eq = false;
1953	for (;;) {
1954		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1955		uint32_t    signal_levels;
1956		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1957
1958		if (cr_tries > 5) {
1959			DRM_ERROR("failed to train DP, aborting\n");
1960			intel_dp_link_down(intel_dp);
1961			break;
1962		}
1963
1964		if (IS_HASWELL(dev)) {
1965			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1966			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1967		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1968			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1969			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1970		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1971			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1972			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1973		} else {
1974			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1975			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1976		}
1977
1978		/* channel eq pattern */
1979		if (!intel_dp_set_link_train(intel_dp, DP,
1980					     DP_TRAINING_PATTERN_2 |
1981					     DP_LINK_SCRAMBLING_DISABLE))
1982			break;
1983
1984		udelay(400);
1985		if (!intel_dp_get_link_status(intel_dp, link_status))
1986			break;
1987
1988		/* Make sure clock is still ok */
1989		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1990			intel_dp_start_link_train(intel_dp);
1991			cr_tries++;
1992			continue;
1993		}
1994
1995		if (intel_channel_eq_ok(intel_dp, link_status)) {
1996			channel_eq = true;
1997			break;
1998		}
1999
2000		/* Try 5 times, then try clock recovery if that fails */
2001		if (tries > 5) {
2002			intel_dp_link_down(intel_dp);
2003			intel_dp_start_link_train(intel_dp);
2004			tries = 0;
2005			cr_tries++;
2006			continue;
2007		}
2008
2009		/* Compute new intel_dp->train_set as requested by target */
2010		intel_get_adjust_train(intel_dp, link_status);
2011		++tries;
2012	}
2013
2014	if (channel_eq)
2015		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2016
2017	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2018}
2019
2020static void
2021intel_dp_link_down(struct intel_dp *intel_dp)
2022{
2023	struct drm_device *dev = intel_dp->base.base.dev;
2024	struct drm_i915_private *dev_priv = dev->dev_private;
2025	uint32_t DP = intel_dp->DP;
2026
2027	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2028		return;
2029
2030	DRM_DEBUG_KMS("\n");
2031
2032	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2033		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2034		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2035	} else {
2036		DP &= ~DP_LINK_TRAIN_MASK;
2037		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2038	}
2039	POSTING_READ(intel_dp->output_reg);
2040
2041	msleep(17);
2042
2043	if (HAS_PCH_IBX(dev) &&
2044	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2045		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2046
2047		/* Hardware workaround: leaving our transcoder select
2048		 * set to transcoder B while it's off will prevent the
2049		 * corresponding HDMI output on transcoder A.
2050		 *
2051		 * Combine this with another hardware workaround:
2052		 * transcoder select bit can only be cleared while the
2053		 * port is enabled.
2054		 */
2055		DP &= ~DP_PIPEB_SELECT;
2056		I915_WRITE(intel_dp->output_reg, DP);
2057
2058		/* Changes to enable or select take place the vblank
2059		 * after being written.
2060		 */
2061		if (crtc == NULL) {
2062			/* We can arrive here never having been attached
2063			 * to a CRTC, for instance, due to inheriting
2064			 * random state from the BIOS.
2065			 *
2066			 * If the pipe is not running, play safe and
2067			 * wait for the clocks to stabilise before
2068			 * continuing.
2069			 */
2070			POSTING_READ(intel_dp->output_reg);
2071			msleep(50);
2072		} else
2073			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2074	}
2075
2076	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2077	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2078	POSTING_READ(intel_dp->output_reg);
2079	msleep(intel_dp->panel_power_down_delay);
2080}
2081
2082static bool
2083intel_dp_get_dpcd(struct intel_dp *intel_dp)
2084{
2085	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2086					   sizeof(intel_dp->dpcd)) == 0)
2087		return false; /* aux transfer failed */
2088
2089	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2090		return false; /* DPCD not present */
2091
2092	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2093	      DP_DWN_STRM_PORT_PRESENT))
2094		return true; /* native DP sink */
2095
2096	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2097		return true; /* no per-port downstream info */
2098
2099	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2100					   intel_dp->downstream_ports,
2101					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2102		return false; /* downstream port status fetch failed */
2103
2104	return true;
2105}
2106
2107static void
2108intel_dp_probe_oui(struct intel_dp *intel_dp)
2109{
2110	u8 buf[3];
2111
2112	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2113		return;
2114
2115	ironlake_edp_panel_vdd_on(intel_dp);
2116
2117	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2118		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2119			      buf[0], buf[1], buf[2]);
2120
2121	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2122		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2123			      buf[0], buf[1], buf[2]);
2124
2125	ironlake_edp_panel_vdd_off(intel_dp, false);
2126}
2127
2128static bool
2129intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2130{
2131	int ret;
2132
2133	ret = intel_dp_aux_native_read_retry(intel_dp,
2134					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2135					     sink_irq_vector, 1);
2136	if (!ret)
2137		return false;
2138
2139	return true;
2140}
2141
2142static void
2143intel_dp_handle_test_request(struct intel_dp *intel_dp)
2144{
2145	/* NAK by default */
2146	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2147}
2148
2149/*
2150 * According to DP spec
2151 * 5.1.2:
2152 *  1. Read DPCD
2153 *  2. Configure link according to Receiver Capabilities
2154 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2155 *  4. Check link status on receipt of hot-plug interrupt
2156 */
2157
2158static void
2159intel_dp_check_link_status(struct intel_dp *intel_dp)
2160{
2161	u8 sink_irq_vector;
2162	u8 link_status[DP_LINK_STATUS_SIZE];
2163
2164	if (!intel_dp->base.connectors_active)
2165		return;
2166
2167	if (WARN_ON(!intel_dp->base.base.crtc))
2168		return;
2169
2170	/* Try to read receiver status if the link appears to be up */
2171	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2172		intel_dp_link_down(intel_dp);
2173		return;
2174	}
2175
2176	/* Now read the DPCD to see if it's actually running */
2177	if (!intel_dp_get_dpcd(intel_dp)) {
2178		intel_dp_link_down(intel_dp);
2179		return;
2180	}
2181
2182	/* Try to read the source of the interrupt */
2183	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2184	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2185		/* Clear interrupt source */
2186		intel_dp_aux_native_write_1(intel_dp,
2187					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2188					    sink_irq_vector);
2189
2190		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2191			intel_dp_handle_test_request(intel_dp);
2192		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2193			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2194	}
2195
2196	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2197		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2198			      drm_get_encoder_name(&intel_dp->base.base));
2199		intel_dp_start_link_train(intel_dp);
2200		intel_dp_complete_link_train(intel_dp);
2201	}
2202}
2203
2204/* XXX this is probably wrong for multiple downstream ports */
2205static enum drm_connector_status
2206intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2207{
2208	uint8_t *dpcd = intel_dp->dpcd;
2209	bool hpd;
2210	uint8_t type;
2211
2212	if (!intel_dp_get_dpcd(intel_dp))
2213		return connector_status_disconnected;
2214
2215	/* if there's no downstream port, we're done */
2216	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2217		return connector_status_connected;
2218
2219	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2220	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2221	if (hpd) {
2222		uint8_t reg;
2223		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2224						    &reg, 1))
2225			return connector_status_unknown;
2226		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2227					      : connector_status_disconnected;
2228	}
2229
2230	/* If no HPD, poke DDC gently */
2231	if (drm_probe_ddc(&intel_dp->adapter))
2232		return connector_status_connected;
2233
2234	/* Well we tried, say unknown for unreliable port types */
2235	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2236	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2237		return connector_status_unknown;
2238
2239	/* Anything else is out of spec, warn and ignore */
2240	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2241	return connector_status_disconnected;
2242}
2243
2244static enum drm_connector_status
2245ironlake_dp_detect(struct intel_dp *intel_dp)
2246{
2247	enum drm_connector_status status;
2248
2249	/* Can't disconnect eDP, but you can close the lid... */
2250	if (is_edp(intel_dp)) {
2251		status = intel_panel_detect(intel_dp->base.base.dev);
2252		if (status == connector_status_unknown)
2253			status = connector_status_connected;
2254		return status;
2255	}
2256
2257	return intel_dp_detect_dpcd(intel_dp);
2258}
2259
2260static enum drm_connector_status
2261g4x_dp_detect(struct intel_dp *intel_dp)
2262{
2263	struct drm_device *dev = intel_dp->base.base.dev;
2264	struct drm_i915_private *dev_priv = dev->dev_private;
2265	uint32_t bit;
2266
2267	switch (intel_dp->output_reg) {
2268	case DP_B:
2269		bit = DPB_HOTPLUG_LIVE_STATUS;
2270		break;
2271	case DP_C:
2272		bit = DPC_HOTPLUG_LIVE_STATUS;
2273		break;
2274	case DP_D:
2275		bit = DPD_HOTPLUG_LIVE_STATUS;
2276		break;
2277	default:
2278		return connector_status_unknown;
2279	}
2280
2281	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2282		return connector_status_disconnected;
2283
2284	return intel_dp_detect_dpcd(intel_dp);
2285}
2286
2287static struct edid *
2288intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2289{
2290	struct intel_dp *intel_dp = intel_attached_dp(connector);
2291	struct edid	*edid;
2292	int size;
2293
2294	if (is_edp(intel_dp)) {
2295		if (!intel_dp->edid)
2296			return NULL;
2297
2298		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2299		edid = kmalloc(size, GFP_KERNEL);
2300		if (!edid)
2301			return NULL;
2302
2303		memcpy(edid, intel_dp->edid, size);
2304		return edid;
2305	}
2306
2307	edid = drm_get_edid(connector, adapter);
2308	return edid;
2309}
2310
2311static int
2312intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2313{
2314	struct intel_dp *intel_dp = intel_attached_dp(connector);
2315	int	ret;
2316
2317	if (is_edp(intel_dp)) {
2318		drm_mode_connector_update_edid_property(connector,
2319							intel_dp->edid);
2320		ret = drm_add_edid_modes(connector, intel_dp->edid);
2321		drm_edid_to_eld(connector,
2322				intel_dp->edid);
2323		return intel_dp->edid_mode_count;
2324	}
2325
2326	ret = intel_ddc_get_modes(connector, adapter);
2327	return ret;
2328}
2329
2330
2331/**
2332 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2333 *
2334 * \return true if DP port is connected.
2335 * \return false if DP port is disconnected.
2336 */
2337static enum drm_connector_status
2338intel_dp_detect(struct drm_connector *connector, bool force)
2339{
2340	struct intel_dp *intel_dp = intel_attached_dp(connector);
2341	struct drm_device *dev = intel_dp->base.base.dev;
2342	enum drm_connector_status status;
2343	struct edid *edid = NULL;
2344
2345	intel_dp->has_audio = false;
2346
2347	if (HAS_PCH_SPLIT(dev))
2348		status = ironlake_dp_detect(intel_dp);
2349	else
2350		status = g4x_dp_detect(intel_dp);
2351
2352	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2353		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2354		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2355		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2356
2357	if (status != connector_status_connected)
2358		return status;
2359
2360	intel_dp_probe_oui(intel_dp);
2361
2362	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2363		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2364	} else {
2365		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2366		if (edid) {
2367			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2368			kfree(edid);
2369		}
2370	}
2371
2372	return connector_status_connected;
2373}
2374
2375static int intel_dp_get_modes(struct drm_connector *connector)
2376{
2377	struct intel_dp *intel_dp = intel_attached_dp(connector);
2378	struct drm_device *dev = intel_dp->base.base.dev;
2379	struct drm_i915_private *dev_priv = dev->dev_private;
2380	int ret;
2381
2382	/* We should parse the EDID data and find out if it has an audio sink
2383	 */
2384
2385	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2386	if (ret) {
2387		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2388			struct drm_display_mode *newmode;
2389			list_for_each_entry(newmode, &connector->probed_modes,
2390					    head) {
2391				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2392					intel_dp->panel_fixed_mode =
2393						drm_mode_duplicate(dev, newmode);
2394					break;
2395				}
2396			}
2397		}
2398		return ret;
2399	}
2400
2401	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2402	if (is_edp(intel_dp)) {
2403		/* initialize panel mode from VBT if available for eDP */
2404		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2405			intel_dp->panel_fixed_mode =
2406				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2407			if (intel_dp->panel_fixed_mode) {
2408				intel_dp->panel_fixed_mode->type |=
2409					DRM_MODE_TYPE_PREFERRED;
2410			}
2411		}
2412		if (intel_dp->panel_fixed_mode) {
2413			struct drm_display_mode *mode;
2414			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2415			drm_mode_probed_add(connector, mode);
2416			return 1;
2417		}
2418	}
2419	return 0;
2420}
2421
2422static bool
2423intel_dp_detect_audio(struct drm_connector *connector)
2424{
2425	struct intel_dp *intel_dp = intel_attached_dp(connector);
2426	struct edid *edid;
2427	bool has_audio = false;
2428
2429	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2430	if (edid) {
2431		has_audio = drm_detect_monitor_audio(edid);
2432		kfree(edid);
2433	}
2434
2435	return has_audio;
2436}
2437
2438static int
2439intel_dp_set_property(struct drm_connector *connector,
2440		      struct drm_property *property,
2441		      uint64_t val)
2442{
2443	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2444	struct intel_dp *intel_dp = intel_attached_dp(connector);
2445	int ret;
2446
2447	ret = drm_connector_property_set_value(connector, property, val);
2448	if (ret)
2449		return ret;
2450
2451	if (property == dev_priv->force_audio_property) {
2452		int i = val;
2453		bool has_audio;
2454
2455		if (i == intel_dp->force_audio)
2456			return 0;
2457
2458		intel_dp->force_audio = i;
2459
2460		if (i == HDMI_AUDIO_AUTO)
2461			has_audio = intel_dp_detect_audio(connector);
2462		else
2463			has_audio = (i == HDMI_AUDIO_ON);
2464
2465		if (has_audio == intel_dp->has_audio)
2466			return 0;
2467
2468		intel_dp->has_audio = has_audio;
2469		goto done;
2470	}
2471
2472	if (property == dev_priv->broadcast_rgb_property) {
2473		if (val == !!intel_dp->color_range)
2474			return 0;
2475
2476		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2477		goto done;
2478	}
2479
2480	return -EINVAL;
2481
2482done:
2483	if (intel_dp->base.base.crtc) {
2484		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2485		intel_set_mode(crtc, &crtc->mode,
2486			       crtc->x, crtc->y, crtc->fb);
2487	}
2488
2489	return 0;
2490}
2491
2492static void
2493intel_dp_destroy(struct drm_connector *connector)
2494{
2495	struct drm_device *dev = connector->dev;
2496
2497	if (intel_dpd_is_edp(dev))
2498		intel_panel_destroy_backlight(dev);
2499
2500	drm_sysfs_connector_remove(connector);
2501	drm_connector_cleanup(connector);
2502	kfree(connector);
2503}
2504
2505static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2506{
2507	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2508
2509	i2c_del_adapter(&intel_dp->adapter);
2510	drm_encoder_cleanup(encoder);
2511	if (is_edp(intel_dp)) {
2512		kfree(intel_dp->edid);
2513		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2514		ironlake_panel_vdd_off_sync(intel_dp);
2515	}
2516	kfree(intel_dp);
2517}
2518
2519static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2520	.mode_fixup = intel_dp_mode_fixup,
2521	.mode_set = intel_dp_mode_set,
2522	.disable = intel_encoder_noop,
2523};
2524
2525static const struct drm_connector_funcs intel_dp_connector_funcs = {
2526	.dpms = intel_connector_dpms,
2527	.detect = intel_dp_detect,
2528	.fill_modes = drm_helper_probe_single_connector_modes,
2529	.set_property = intel_dp_set_property,
2530	.destroy = intel_dp_destroy,
2531};
2532
2533static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2534	.get_modes = intel_dp_get_modes,
2535	.mode_valid = intel_dp_mode_valid,
2536	.best_encoder = intel_best_encoder,
2537};
2538
2539static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2540	.destroy = intel_dp_encoder_destroy,
2541};
2542
2543static void
2544intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2545{
2546	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2547
2548	intel_dp_check_link_status(intel_dp);
2549}
2550
2551/* Return which DP Port should be selected for Transcoder DP control */
2552int
2553intel_trans_dp_port_sel(struct drm_crtc *crtc)
2554{
2555	struct drm_device *dev = crtc->dev;
2556	struct intel_encoder *encoder;
2557
2558	for_each_encoder_on_crtc(dev, crtc, encoder) {
2559		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2560
2561		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2562		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2563			return intel_dp->output_reg;
2564	}
2565
2566	return -1;
2567}
2568
2569/* check the VBT to see whether the eDP is on DP-D port */
2570bool intel_dpd_is_edp(struct drm_device *dev)
2571{
2572	struct drm_i915_private *dev_priv = dev->dev_private;
2573	struct child_device_config *p_child;
2574	int i;
2575
2576	if (!dev_priv->child_dev_num)
2577		return false;
2578
2579	for (i = 0; i < dev_priv->child_dev_num; i++) {
2580		p_child = dev_priv->child_dev + i;
2581
2582		if (p_child->dvo_port == PORT_IDPD &&
2583		    p_child->device_type == DEVICE_TYPE_eDP)
2584			return true;
2585	}
2586	return false;
2587}
2588
2589static void
2590intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2591{
2592	intel_attach_force_audio_property(connector);
2593	intel_attach_broadcast_rgb_property(connector);
2594}
2595
2596void
2597intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2598{
2599	struct drm_i915_private *dev_priv = dev->dev_private;
2600	struct drm_connector *connector;
2601	struct intel_dp *intel_dp;
2602	struct intel_encoder *intel_encoder;
2603	struct intel_connector *intel_connector;
2604	const char *name = NULL;
2605	int type;
2606
2607	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2608	if (!intel_dp)
2609		return;
2610
2611	intel_dp->output_reg = output_reg;
2612	intel_dp->port = port;
2613	/* Preserve the current hw state. */
2614	intel_dp->DP = I915_READ(intel_dp->output_reg);
2615
2616	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2617	if (!intel_connector) {
2618		kfree(intel_dp);
2619		return;
2620	}
2621	intel_encoder = &intel_dp->base;
2622
2623	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2624		if (intel_dpd_is_edp(dev))
2625			intel_dp->is_pch_edp = true;
2626
2627	/*
2628	 * FIXME : We need to initialize built-in panels before external panels.
2629	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2630	 */
2631	if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2632		type = DRM_MODE_CONNECTOR_eDP;
2633		intel_encoder->type = INTEL_OUTPUT_EDP;
2634	} else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2635		type = DRM_MODE_CONNECTOR_eDP;
2636		intel_encoder->type = INTEL_OUTPUT_EDP;
2637	} else {
2638		type = DRM_MODE_CONNECTOR_DisplayPort;
2639		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2640	}
2641
2642	connector = &intel_connector->base;
2643	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2644	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2645
2646	connector->polled = DRM_CONNECTOR_POLL_HPD;
2647
2648	intel_encoder->cloneable = false;
2649
2650	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2651			  ironlake_panel_vdd_work);
2652
2653	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2654
2655	connector->interlace_allowed = true;
2656	connector->doublescan_allowed = 0;
2657
2658	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2659			 DRM_MODE_ENCODER_TMDS);
2660	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2661
2662	intel_connector_attach_encoder(intel_connector, intel_encoder);
2663	drm_sysfs_connector_add(connector);
2664
2665	intel_encoder->enable = intel_enable_dp;
2666	intel_encoder->pre_enable = intel_pre_enable_dp;
2667	intel_encoder->disable = intel_disable_dp;
2668	intel_encoder->post_disable = intel_post_disable_dp;
2669	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2670	intel_connector->get_hw_state = intel_connector_get_hw_state;
2671
2672	/* Set up the DDC bus. */
2673	switch (port) {
2674	case PORT_A:
2675		name = "DPDDC-A";
2676		break;
2677	case PORT_B:
2678		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2679		name = "DPDDC-B";
2680		break;
2681	case PORT_C:
2682		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2683		name = "DPDDC-C";
2684		break;
2685	case PORT_D:
2686		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2687		name = "DPDDC-D";
2688		break;
2689	default:
2690		WARN(1, "Invalid port %c\n", port_name(port));
2691		break;
2692	}
2693
2694	/* Cache some DPCD data in the eDP case */
2695	if (is_edp(intel_dp)) {
2696		struct edp_power_seq	cur, vbt;
2697		u32 pp_on, pp_off, pp_div;
2698
2699		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2700		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2701		pp_div = I915_READ(PCH_PP_DIVISOR);
2702
2703		if (!pp_on || !pp_off || !pp_div) {
2704			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2705			intel_dp_encoder_destroy(&intel_dp->base.base);
2706			intel_dp_destroy(&intel_connector->base);
2707			return;
2708		}
2709
2710		/* Pull timing values out of registers */
2711		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2712			PANEL_POWER_UP_DELAY_SHIFT;
2713
2714		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2715			PANEL_LIGHT_ON_DELAY_SHIFT;
2716
2717		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2718			PANEL_LIGHT_OFF_DELAY_SHIFT;
2719
2720		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2721			PANEL_POWER_DOWN_DELAY_SHIFT;
2722
2723		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2724			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2725
2726		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2727			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2728
2729		vbt = dev_priv->edp.pps;
2730
2731		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2732			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2733
2734#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2735
2736		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2737		intel_dp->backlight_on_delay = get_delay(t8);
2738		intel_dp->backlight_off_delay = get_delay(t9);
2739		intel_dp->panel_power_down_delay = get_delay(t10);
2740		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2741
2742		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2743			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2744			      intel_dp->panel_power_cycle_delay);
2745
2746		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2747			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2748	}
2749
2750	intel_dp_i2c_init(intel_dp, intel_connector, name);
2751
2752	if (is_edp(intel_dp)) {
2753		bool ret;
2754		struct edid *edid;
2755
2756		ironlake_edp_panel_vdd_on(intel_dp);
2757		ret = intel_dp_get_dpcd(intel_dp);
2758		ironlake_edp_panel_vdd_off(intel_dp, false);
2759
2760		if (ret) {
2761			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2762				dev_priv->no_aux_handshake =
2763					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2764					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2765		} else {
2766			/* if this fails, presume the device is a ghost */
2767			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2768			intel_dp_encoder_destroy(&intel_dp->base.base);
2769			intel_dp_destroy(&intel_connector->base);
2770			return;
2771		}
2772
2773		ironlake_edp_panel_vdd_on(intel_dp);
2774		edid = drm_get_edid(connector, &intel_dp->adapter);
2775		if (edid) {
2776			drm_mode_connector_update_edid_property(connector,
2777								edid);
2778			intel_dp->edid_mode_count =
2779				drm_add_edid_modes(connector, edid);
2780			drm_edid_to_eld(connector, edid);
2781			intel_dp->edid = edid;
2782		}
2783		ironlake_edp_panel_vdd_off(intel_dp, false);
2784	}
2785
2786	intel_encoder->hot_plug = intel_dp_hot_plug;
2787
2788	if (is_edp(intel_dp)) {
2789		dev_priv->int_edp_connector = connector;
2790		intel_panel_setup_backlight(dev);
2791	}
2792
2793	intel_dp_add_properties(intel_dp, connector);
2794
2795	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2796	 * 0xd.  Failure to do so will result in spurious interrupts being
2797	 * generated on the port when a cable is not attached.
2798	 */
2799	if (IS_G4X(dev) && !IS_GM45(dev)) {
2800		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2801		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2802	}
2803}
2804