intel_dp.c revision 752aa88a1e784c22d514db3b440e49427b58259e
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41struct dp_link_dpll {
42	int link_bw;
43	struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47	{ DP_LINK_BW_1_62,
48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49	{ DP_LINK_BW_2_7,
50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54	{ DP_LINK_BW_1_62,
55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56	{ DP_LINK_BW_2_7,
57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61	{ DP_LINK_BW_1_62,
62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63	{ DP_LINK_BW_2_7,
64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74static bool is_edp(struct intel_dp *intel_dp)
75{
76	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79}
80
81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82{
83	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85	return intel_dig_port->base.base.dev;
86}
87
88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89{
90	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91}
92
93static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95static int
96intel_dp_max_link_bw(struct intel_dp *intel_dp)
97{
98	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100	switch (max_link_bw) {
101	case DP_LINK_BW_1_62:
102	case DP_LINK_BW_2_7:
103		break;
104	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105		max_link_bw = DP_LINK_BW_2_7;
106		break;
107	default:
108		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109		     max_link_bw);
110		max_link_bw = DP_LINK_BW_1_62;
111		break;
112	}
113	return max_link_bw;
114}
115
116/*
117 * The units on the numbers in the next two are... bizarre.  Examples will
118 * make it clearer; this one parallels an example in the eDP spec.
119 *
120 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121 *
122 *     270000 * 1 * 8 / 10 == 216000
123 *
124 * The actual data capacity of that configuration is 2.16Gbit/s, so the
125 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127 * 119000.  At 18bpp that's 2142000 kilobits per second.
128 *
129 * Thus the strange-looking division by 10 in intel_dp_link_required, to
130 * get the result in decakilobits instead of kilobits.
131 */
132
133static int
134intel_dp_link_required(int pixel_clock, int bpp)
135{
136	return (pixel_clock * bpp + 9) / 10;
137}
138
139static int
140intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141{
142	return (max_link_clock * max_lanes * 8) / 10;
143}
144
145static int
146intel_dp_mode_valid(struct drm_connector *connector,
147		    struct drm_display_mode *mode)
148{
149	struct intel_dp *intel_dp = intel_attached_dp(connector);
150	struct intel_connector *intel_connector = to_intel_connector(connector);
151	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152	int target_clock = mode->clock;
153	int max_rate, mode_rate, max_lanes, max_link_clock;
154
155	if (is_edp(intel_dp) && fixed_mode) {
156		if (mode->hdisplay > fixed_mode->hdisplay)
157			return MODE_PANEL;
158
159		if (mode->vdisplay > fixed_mode->vdisplay)
160			return MODE_PANEL;
161
162		target_clock = fixed_mode->clock;
163	}
164
165	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166	max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169	mode_rate = intel_dp_link_required(target_clock, 18);
170
171	if (mode_rate > max_rate)
172		return MODE_CLOCK_HIGH;
173
174	if (mode->clock < 10000)
175		return MODE_CLOCK_LOW;
176
177	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178		return MODE_H_ILLEGAL;
179
180	return MODE_OK;
181}
182
183static uint32_t
184pack_aux(uint8_t *src, int src_bytes)
185{
186	int	i;
187	uint32_t v = 0;
188
189	if (src_bytes > 4)
190		src_bytes = 4;
191	for (i = 0; i < src_bytes; i++)
192		v |= ((uint32_t) src[i]) << ((3-i) * 8);
193	return v;
194}
195
196static void
197unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198{
199	int i;
200	if (dst_bytes > 4)
201		dst_bytes = 4;
202	for (i = 0; i < dst_bytes; i++)
203		dst[i] = src >> ((3-i) * 8);
204}
205
206/* hrawclock is 1/4 the FSB frequency */
207static int
208intel_hrawclk(struct drm_device *dev)
209{
210	struct drm_i915_private *dev_priv = dev->dev_private;
211	uint32_t clkcfg;
212
213	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214	if (IS_VALLEYVIEW(dev))
215		return 200;
216
217	clkcfg = I915_READ(CLKCFG);
218	switch (clkcfg & CLKCFG_FSB_MASK) {
219	case CLKCFG_FSB_400:
220		return 100;
221	case CLKCFG_FSB_533:
222		return 133;
223	case CLKCFG_FSB_667:
224		return 166;
225	case CLKCFG_FSB_800:
226		return 200;
227	case CLKCFG_FSB_1067:
228		return 266;
229	case CLKCFG_FSB_1333:
230		return 333;
231	/* these two are just a guess; one of them might be right */
232	case CLKCFG_FSB_1600:
233	case CLKCFG_FSB_1600_ALT:
234		return 400;
235	default:
236		return 133;
237	}
238}
239
240static void
241intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242				    struct intel_dp *intel_dp,
243				    struct edp_power_seq *out);
244static void
245intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246					      struct intel_dp *intel_dp,
247					      struct edp_power_seq *out);
248
249static enum pipe
250vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251{
252	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254	struct drm_device *dev = intel_dig_port->base.base.dev;
255	struct drm_i915_private *dev_priv = dev->dev_private;
256	enum port port = intel_dig_port->port;
257	enum pipe pipe;
258
259	/* modeset should have pipe */
260	if (crtc)
261		return to_intel_crtc(crtc)->pipe;
262
263	/* init time, try to find a pipe with this port selected */
264	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266			PANEL_PORT_SELECT_MASK;
267		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268			return pipe;
269		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270			return pipe;
271	}
272
273	/* shrug */
274	return PIPE_A;
275}
276
277static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278{
279	struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281	if (HAS_PCH_SPLIT(dev))
282		return PCH_PP_CONTROL;
283	else
284		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285}
286
287static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288{
289	struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291	if (HAS_PCH_SPLIT(dev))
292		return PCH_PP_STATUS;
293	else
294		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295}
296
297static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298{
299	struct drm_device *dev = intel_dp_to_dev(intel_dp);
300	struct drm_i915_private *dev_priv = dev->dev_private;
301
302	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303}
304
305static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306{
307	struct drm_device *dev = intel_dp_to_dev(intel_dp);
308	struct drm_i915_private *dev_priv = dev->dev_private;
309
310	return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311}
312
313static void
314intel_dp_check_edp(struct intel_dp *intel_dp)
315{
316	struct drm_device *dev = intel_dp_to_dev(intel_dp);
317	struct drm_i915_private *dev_priv = dev->dev_private;
318
319	if (!is_edp(intel_dp))
320		return;
321
322	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323		WARN(1, "eDP powered off while attempting aux channel communication.\n");
324		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325			      I915_READ(_pp_stat_reg(intel_dp)),
326			      I915_READ(_pp_ctrl_reg(intel_dp)));
327	}
328}
329
330static uint32_t
331intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332{
333	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334	struct drm_device *dev = intel_dig_port->base.base.dev;
335	struct drm_i915_private *dev_priv = dev->dev_private;
336	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337	uint32_t status;
338	bool done;
339
340#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341	if (has_aux_irq)
342		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343					  msecs_to_jiffies_timeout(10));
344	else
345		done = wait_for_atomic(C, 10) == 0;
346	if (!done)
347		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348			  has_aux_irq);
349#undef C
350
351	return status;
352}
353
354static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355				      int index)
356{
357	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358	struct drm_device *dev = intel_dig_port->base.base.dev;
359	struct drm_i915_private *dev_priv = dev->dev_private;
360
361	/* The clock divider is based off the hrawclk,
362	 * and would like to run at 2MHz. So, take the
363	 * hrawclk value and divide by 2 and use that
364	 *
365	 * Note that PCH attached eDP panels should use a 125MHz input
366	 * clock divider.
367	 */
368	if (IS_VALLEYVIEW(dev)) {
369		return index ? 0 : 100;
370	} else if (intel_dig_port->port == PORT_A) {
371		if (index)
372			return 0;
373		if (HAS_DDI(dev))
374			return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375		else if (IS_GEN6(dev) || IS_GEN7(dev))
376			return 200; /* SNB & IVB eDP input clock at 400Mhz */
377		else
378			return 225; /* eDP input clock at 450Mhz */
379	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380		/* Workaround for non-ULT HSW */
381		switch (index) {
382		case 0: return 63;
383		case 1: return 72;
384		default: return 0;
385		}
386	} else if (HAS_PCH_SPLIT(dev)) {
387		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388	} else {
389		return index ? 0 :intel_hrawclk(dev) / 2;
390	}
391}
392
393static int
394intel_dp_aux_ch(struct intel_dp *intel_dp,
395		uint8_t *send, int send_bytes,
396		uint8_t *recv, int recv_size)
397{
398	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399	struct drm_device *dev = intel_dig_port->base.base.dev;
400	struct drm_i915_private *dev_priv = dev->dev_private;
401	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402	uint32_t ch_data = ch_ctl + 4;
403	uint32_t aux_clock_divider;
404	int i, ret, recv_bytes;
405	uint32_t status;
406	int try, precharge, clock = 0;
407	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
408
409	/* dp aux is extremely sensitive to irq latency, hence request the
410	 * lowest possible wakeup latency and so prevent the cpu from going into
411	 * deep sleep states.
412	 */
413	pm_qos_update_request(&dev_priv->pm_qos, 0);
414
415	intel_dp_check_edp(intel_dp);
416
417	if (IS_GEN6(dev))
418		precharge = 3;
419	else
420		precharge = 5;
421
422	intel_aux_display_runtime_get(dev_priv);
423
424	/* Try to wait for any previous AUX channel activity */
425	for (try = 0; try < 3; try++) {
426		status = I915_READ_NOTRACE(ch_ctl);
427		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428			break;
429		msleep(1);
430	}
431
432	if (try == 3) {
433		WARN(1, "dp_aux_ch not started status 0x%08x\n",
434		     I915_READ(ch_ctl));
435		ret = -EBUSY;
436		goto out;
437	}
438
439	/* Only 5 data registers! */
440	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
441		ret = -E2BIG;
442		goto out;
443	}
444
445	while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
446		/* Must try at least 3 times according to DP spec */
447		for (try = 0; try < 5; try++) {
448			/* Load the send data into the aux channel data registers */
449			for (i = 0; i < send_bytes; i += 4)
450				I915_WRITE(ch_data + i,
451					   pack_aux(send + i, send_bytes - i));
452
453			/* Send the command and wait for it to complete */
454			I915_WRITE(ch_ctl,
455				   DP_AUX_CH_CTL_SEND_BUSY |
456				   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
457				   DP_AUX_CH_CTL_TIME_OUT_400us |
458				   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
459				   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
460				   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
461				   DP_AUX_CH_CTL_DONE |
462				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
463				   DP_AUX_CH_CTL_RECEIVE_ERROR);
464
465			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
466
467			/* Clear done status and any errors */
468			I915_WRITE(ch_ctl,
469				   status |
470				   DP_AUX_CH_CTL_DONE |
471				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
472				   DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
475				      DP_AUX_CH_CTL_RECEIVE_ERROR))
476				continue;
477			if (status & DP_AUX_CH_CTL_DONE)
478				break;
479		}
480		if (status & DP_AUX_CH_CTL_DONE)
481			break;
482	}
483
484	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
485		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
486		ret = -EBUSY;
487		goto out;
488	}
489
490	/* Check for timeout or receive error.
491	 * Timeouts occur when the sink is not connected
492	 */
493	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
494		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
495		ret = -EIO;
496		goto out;
497	}
498
499	/* Timeouts occur when the device isn't connected, so they're
500	 * "normal" -- don't fill the kernel log with these */
501	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
502		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
503		ret = -ETIMEDOUT;
504		goto out;
505	}
506
507	/* Unload any bytes sent back from the other side */
508	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
509		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
510	if (recv_bytes > recv_size)
511		recv_bytes = recv_size;
512
513	for (i = 0; i < recv_bytes; i += 4)
514		unpack_aux(I915_READ(ch_data + i),
515			   recv + i, recv_bytes - i);
516
517	ret = recv_bytes;
518out:
519	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
520	intel_aux_display_runtime_put(dev_priv);
521
522	return ret;
523}
524
525/* Write data to the aux channel in native mode */
526static int
527intel_dp_aux_native_write(struct intel_dp *intel_dp,
528			  uint16_t address, uint8_t *send, int send_bytes)
529{
530	int ret;
531	uint8_t	msg[20];
532	int msg_bytes;
533	uint8_t	ack;
534
535	if (WARN_ON(send_bytes > 16))
536		return -E2BIG;
537
538	intel_dp_check_edp(intel_dp);
539	msg[0] = AUX_NATIVE_WRITE << 4;
540	msg[1] = address >> 8;
541	msg[2] = address & 0xff;
542	msg[3] = send_bytes - 1;
543	memcpy(&msg[4], send, send_bytes);
544	msg_bytes = send_bytes + 4;
545	for (;;) {
546		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
547		if (ret < 0)
548			return ret;
549		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
550			break;
551		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552			udelay(100);
553		else
554			return -EIO;
555	}
556	return send_bytes;
557}
558
559/* Write a single byte to the aux channel in native mode */
560static int
561intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
562			    uint16_t address, uint8_t byte)
563{
564	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
565}
566
567/* read bytes from a native aux channel */
568static int
569intel_dp_aux_native_read(struct intel_dp *intel_dp,
570			 uint16_t address, uint8_t *recv, int recv_bytes)
571{
572	uint8_t msg[4];
573	int msg_bytes;
574	uint8_t reply[20];
575	int reply_bytes;
576	uint8_t ack;
577	int ret;
578
579	if (WARN_ON(recv_bytes > 19))
580		return -E2BIG;
581
582	intel_dp_check_edp(intel_dp);
583	msg[0] = AUX_NATIVE_READ << 4;
584	msg[1] = address >> 8;
585	msg[2] = address & 0xff;
586	msg[3] = recv_bytes - 1;
587
588	msg_bytes = 4;
589	reply_bytes = recv_bytes + 1;
590
591	for (;;) {
592		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
593				      reply, reply_bytes);
594		if (ret == 0)
595			return -EPROTO;
596		if (ret < 0)
597			return ret;
598		ack = reply[0];
599		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
600			memcpy(recv, reply + 1, ret - 1);
601			return ret - 1;
602		}
603		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
604			udelay(100);
605		else
606			return -EIO;
607	}
608}
609
610static int
611intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
612		    uint8_t write_byte, uint8_t *read_byte)
613{
614	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
615	struct intel_dp *intel_dp = container_of(adapter,
616						struct intel_dp,
617						adapter);
618	uint16_t address = algo_data->address;
619	uint8_t msg[5];
620	uint8_t reply[2];
621	unsigned retry;
622	int msg_bytes;
623	int reply_bytes;
624	int ret;
625
626	ironlake_edp_panel_vdd_on(intel_dp);
627	intel_dp_check_edp(intel_dp);
628	/* Set up the command byte */
629	if (mode & MODE_I2C_READ)
630		msg[0] = AUX_I2C_READ << 4;
631	else
632		msg[0] = AUX_I2C_WRITE << 4;
633
634	if (!(mode & MODE_I2C_STOP))
635		msg[0] |= AUX_I2C_MOT << 4;
636
637	msg[1] = address >> 8;
638	msg[2] = address;
639
640	switch (mode) {
641	case MODE_I2C_WRITE:
642		msg[3] = 0;
643		msg[4] = write_byte;
644		msg_bytes = 5;
645		reply_bytes = 1;
646		break;
647	case MODE_I2C_READ:
648		msg[3] = 0;
649		msg_bytes = 4;
650		reply_bytes = 2;
651		break;
652	default:
653		msg_bytes = 3;
654		reply_bytes = 1;
655		break;
656	}
657
658	/*
659	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
660	 * required to retry at least seven times upon receiving AUX_DEFER
661	 * before giving up the AUX transaction.
662	 */
663	for (retry = 0; retry < 7; retry++) {
664		ret = intel_dp_aux_ch(intel_dp,
665				      msg, msg_bytes,
666				      reply, reply_bytes);
667		if (ret < 0) {
668			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
669			goto out;
670		}
671
672		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
673		case AUX_NATIVE_REPLY_ACK:
674			/* I2C-over-AUX Reply field is only valid
675			 * when paired with AUX ACK.
676			 */
677			break;
678		case AUX_NATIVE_REPLY_NACK:
679			DRM_DEBUG_KMS("aux_ch native nack\n");
680			ret = -EREMOTEIO;
681			goto out;
682		case AUX_NATIVE_REPLY_DEFER:
683			/*
684			 * For now, just give more slack to branch devices. We
685			 * could check the DPCD for I2C bit rate capabilities,
686			 * and if available, adjust the interval. We could also
687			 * be more careful with DP-to-Legacy adapters where a
688			 * long legacy cable may force very low I2C bit rates.
689			 */
690			if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
691			    DP_DWN_STRM_PORT_PRESENT)
692				usleep_range(500, 600);
693			else
694				usleep_range(300, 400);
695			continue;
696		default:
697			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
698				  reply[0]);
699			ret = -EREMOTEIO;
700			goto out;
701		}
702
703		switch (reply[0] & AUX_I2C_REPLY_MASK) {
704		case AUX_I2C_REPLY_ACK:
705			if (mode == MODE_I2C_READ) {
706				*read_byte = reply[1];
707			}
708			ret = reply_bytes - 1;
709			goto out;
710		case AUX_I2C_REPLY_NACK:
711			DRM_DEBUG_KMS("aux_i2c nack\n");
712			ret = -EREMOTEIO;
713			goto out;
714		case AUX_I2C_REPLY_DEFER:
715			DRM_DEBUG_KMS("aux_i2c defer\n");
716			udelay(100);
717			break;
718		default:
719			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
720			ret = -EREMOTEIO;
721			goto out;
722		}
723	}
724
725	DRM_ERROR("too many retries, giving up\n");
726	ret = -EREMOTEIO;
727
728out:
729	ironlake_edp_panel_vdd_off(intel_dp, false);
730	return ret;
731}
732
733static int
734intel_dp_i2c_init(struct intel_dp *intel_dp,
735		  struct intel_connector *intel_connector, const char *name)
736{
737	int	ret;
738
739	DRM_DEBUG_KMS("i2c_init %s\n", name);
740	intel_dp->algo.running = false;
741	intel_dp->algo.address = 0;
742	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
743
744	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
745	intel_dp->adapter.owner = THIS_MODULE;
746	intel_dp->adapter.class = I2C_CLASS_DDC;
747	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
748	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
749	intel_dp->adapter.algo_data = &intel_dp->algo;
750	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
751
752	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
753	return ret;
754}
755
756static void
757intel_dp_set_clock(struct intel_encoder *encoder,
758		   struct intel_crtc_config *pipe_config, int link_bw)
759{
760	struct drm_device *dev = encoder->base.dev;
761	const struct dp_link_dpll *divisor = NULL;
762	int i, count = 0;
763
764	if (IS_G4X(dev)) {
765		divisor = gen4_dpll;
766		count = ARRAY_SIZE(gen4_dpll);
767	} else if (IS_HASWELL(dev)) {
768		/* Haswell has special-purpose DP DDI clocks. */
769	} else if (HAS_PCH_SPLIT(dev)) {
770		divisor = pch_dpll;
771		count = ARRAY_SIZE(pch_dpll);
772	} else if (IS_VALLEYVIEW(dev)) {
773		divisor = vlv_dpll;
774		count = ARRAY_SIZE(vlv_dpll);
775	}
776
777	if (divisor && count) {
778		for (i = 0; i < count; i++) {
779			if (link_bw == divisor[i].link_bw) {
780				pipe_config->dpll = divisor[i].dpll;
781				pipe_config->clock_set = true;
782				break;
783			}
784		}
785	}
786}
787
788bool
789intel_dp_compute_config(struct intel_encoder *encoder,
790			struct intel_crtc_config *pipe_config)
791{
792	struct drm_device *dev = encoder->base.dev;
793	struct drm_i915_private *dev_priv = dev->dev_private;
794	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
795	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
796	enum port port = dp_to_dig_port(intel_dp)->port;
797	struct intel_crtc *intel_crtc = encoder->new_crtc;
798	struct intel_connector *intel_connector = intel_dp->attached_connector;
799	int lane_count, clock;
800	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
801	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
802	int bpp, mode_rate;
803	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
804	int link_avail, link_clock;
805
806	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
807		pipe_config->has_pch_encoder = true;
808
809	pipe_config->has_dp_encoder = true;
810
811	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
812		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
813				       adjusted_mode);
814		if (!HAS_PCH_SPLIT(dev))
815			intel_gmch_panel_fitting(intel_crtc, pipe_config,
816						 intel_connector->panel.fitting_mode);
817		else
818			intel_pch_panel_fitting(intel_crtc, pipe_config,
819						intel_connector->panel.fitting_mode);
820	}
821
822	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
823		return false;
824
825	DRM_DEBUG_KMS("DP link computation with max lane count %i "
826		      "max bw %02x pixel clock %iKHz\n",
827		      max_lane_count, bws[max_clock],
828		      adjusted_mode->crtc_clock);
829
830	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
831	 * bpc in between. */
832	bpp = pipe_config->pipe_bpp;
833	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
834	    dev_priv->vbt.edp_bpp < bpp) {
835		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
836			      dev_priv->vbt.edp_bpp);
837		bpp = dev_priv->vbt.edp_bpp;
838	}
839
840	for (; bpp >= 6*3; bpp -= 2*3) {
841		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
842						   bpp);
843
844		for (clock = 0; clock <= max_clock; clock++) {
845			for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
846				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
847				link_avail = intel_dp_max_data_rate(link_clock,
848								    lane_count);
849
850				if (mode_rate <= link_avail) {
851					goto found;
852				}
853			}
854		}
855	}
856
857	return false;
858
859found:
860	if (intel_dp->color_range_auto) {
861		/*
862		 * See:
863		 * CEA-861-E - 5.1 Default Encoding Parameters
864		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
865		 */
866		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
867			intel_dp->color_range = DP_COLOR_RANGE_16_235;
868		else
869			intel_dp->color_range = 0;
870	}
871
872	if (intel_dp->color_range)
873		pipe_config->limited_color_range = true;
874
875	intel_dp->link_bw = bws[clock];
876	intel_dp->lane_count = lane_count;
877	pipe_config->pipe_bpp = bpp;
878	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
879
880	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
881		      intel_dp->link_bw, intel_dp->lane_count,
882		      pipe_config->port_clock, bpp);
883	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
884		      mode_rate, link_avail);
885
886	intel_link_compute_m_n(bpp, lane_count,
887			       adjusted_mode->crtc_clock,
888			       pipe_config->port_clock,
889			       &pipe_config->dp_m_n);
890
891	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
892
893	return true;
894}
895
896static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
897{
898	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
899	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
900	struct drm_device *dev = crtc->base.dev;
901	struct drm_i915_private *dev_priv = dev->dev_private;
902	u32 dpa_ctl;
903
904	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
905	dpa_ctl = I915_READ(DP_A);
906	dpa_ctl &= ~DP_PLL_FREQ_MASK;
907
908	if (crtc->config.port_clock == 162000) {
909		/* For a long time we've carried around a ILK-DevA w/a for the
910		 * 160MHz clock. If we're really unlucky, it's still required.
911		 */
912		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
913		dpa_ctl |= DP_PLL_FREQ_160MHZ;
914		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
915	} else {
916		dpa_ctl |= DP_PLL_FREQ_270MHZ;
917		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918	}
919
920	I915_WRITE(DP_A, dpa_ctl);
921
922	POSTING_READ(DP_A);
923	udelay(500);
924}
925
926static void intel_dp_mode_set(struct intel_encoder *encoder)
927{
928	struct drm_device *dev = encoder->base.dev;
929	struct drm_i915_private *dev_priv = dev->dev_private;
930	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
931	enum port port = dp_to_dig_port(intel_dp)->port;
932	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
933	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
934
935	/*
936	 * There are four kinds of DP registers:
937	 *
938	 * 	IBX PCH
939	 * 	SNB CPU
940	 *	IVB CPU
941	 * 	CPT PCH
942	 *
943	 * IBX PCH and CPU are the same for almost everything,
944	 * except that the CPU DP PLL is configured in this
945	 * register
946	 *
947	 * CPT PCH is quite different, having many bits moved
948	 * to the TRANS_DP_CTL register instead. That
949	 * configuration happens (oddly) in ironlake_pch_enable
950	 */
951
952	/* Preserve the BIOS-computed detected bit. This is
953	 * supposed to be read-only.
954	 */
955	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
956
957	/* Handle DP bits in common between all three register formats */
958	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
959	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
960
961	if (intel_dp->has_audio) {
962		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
963				 pipe_name(crtc->pipe));
964		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
965		intel_write_eld(&encoder->base, adjusted_mode);
966	}
967
968	/* Split out the IBX/CPU vs CPT settings */
969
970	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
971		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
972			intel_dp->DP |= DP_SYNC_HS_HIGH;
973		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
974			intel_dp->DP |= DP_SYNC_VS_HIGH;
975		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
976
977		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
978			intel_dp->DP |= DP_ENHANCED_FRAMING;
979
980		intel_dp->DP |= crtc->pipe << 29;
981	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
982		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
983			intel_dp->DP |= intel_dp->color_range;
984
985		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
986			intel_dp->DP |= DP_SYNC_HS_HIGH;
987		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
988			intel_dp->DP |= DP_SYNC_VS_HIGH;
989		intel_dp->DP |= DP_LINK_TRAIN_OFF;
990
991		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
992			intel_dp->DP |= DP_ENHANCED_FRAMING;
993
994		if (crtc->pipe == 1)
995			intel_dp->DP |= DP_PIPEB_SELECT;
996	} else {
997		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
998	}
999
1000	if (port == PORT_A && !IS_VALLEYVIEW(dev))
1001		ironlake_set_pll_cpu_edp(intel_dp);
1002}
1003
1004#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1005#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1006
1007#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1008#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1009
1010#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1011#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1012
1013static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1014				       u32 mask,
1015				       u32 value)
1016{
1017	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1018	struct drm_i915_private *dev_priv = dev->dev_private;
1019	u32 pp_stat_reg, pp_ctrl_reg;
1020
1021	pp_stat_reg = _pp_stat_reg(intel_dp);
1022	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1023
1024	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1025			mask, value,
1026			I915_READ(pp_stat_reg),
1027			I915_READ(pp_ctrl_reg));
1028
1029	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1030		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1031				I915_READ(pp_stat_reg),
1032				I915_READ(pp_ctrl_reg));
1033	}
1034}
1035
1036static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1037{
1038	DRM_DEBUG_KMS("Wait for panel power on\n");
1039	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1040}
1041
1042static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1043{
1044	DRM_DEBUG_KMS("Wait for panel power off time\n");
1045	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1046}
1047
1048static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1049{
1050	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1051	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052}
1053
1054
1055/* Read the current pp_control value, unlocking the register if it
1056 * is locked
1057 */
1058
1059static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1060{
1061	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1062	struct drm_i915_private *dev_priv = dev->dev_private;
1063	u32 control;
1064
1065	control = I915_READ(_pp_ctrl_reg(intel_dp));
1066	control &= ~PANEL_UNLOCK_MASK;
1067	control |= PANEL_UNLOCK_REGS;
1068	return control;
1069}
1070
1071void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1072{
1073	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1074	struct drm_i915_private *dev_priv = dev->dev_private;
1075	u32 pp;
1076	u32 pp_stat_reg, pp_ctrl_reg;
1077
1078	if (!is_edp(intel_dp))
1079		return;
1080
1081	WARN(intel_dp->want_panel_vdd,
1082	     "eDP VDD already requested on\n");
1083
1084	intel_dp->want_panel_vdd = true;
1085
1086	if (ironlake_edp_have_panel_vdd(intel_dp))
1087		return;
1088
1089	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1090
1091	if (!ironlake_edp_have_panel_power(intel_dp))
1092		ironlake_wait_panel_power_cycle(intel_dp);
1093
1094	pp = ironlake_get_pp_control(intel_dp);
1095	pp |= EDP_FORCE_VDD;
1096
1097	pp_stat_reg = _pp_stat_reg(intel_dp);
1098	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1099
1100	I915_WRITE(pp_ctrl_reg, pp);
1101	POSTING_READ(pp_ctrl_reg);
1102	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1103			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1104	/*
1105	 * If the panel wasn't on, delay before accessing aux channel
1106	 */
1107	if (!ironlake_edp_have_panel_power(intel_dp)) {
1108		DRM_DEBUG_KMS("eDP was not running\n");
1109		msleep(intel_dp->panel_power_up_delay);
1110	}
1111}
1112
1113static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1114{
1115	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1116	struct drm_i915_private *dev_priv = dev->dev_private;
1117	u32 pp;
1118	u32 pp_stat_reg, pp_ctrl_reg;
1119
1120	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1121
1122	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1123		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1124
1125		pp = ironlake_get_pp_control(intel_dp);
1126		pp &= ~EDP_FORCE_VDD;
1127
1128		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1129		pp_stat_reg = _pp_stat_reg(intel_dp);
1130
1131		I915_WRITE(pp_ctrl_reg, pp);
1132		POSTING_READ(pp_ctrl_reg);
1133
1134		/* Make sure sequencer is idle before allowing subsequent activity */
1135		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1136		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1137		msleep(intel_dp->panel_power_down_delay);
1138	}
1139}
1140
1141static void ironlake_panel_vdd_work(struct work_struct *__work)
1142{
1143	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1144						 struct intel_dp, panel_vdd_work);
1145	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1146
1147	mutex_lock(&dev->mode_config.mutex);
1148	ironlake_panel_vdd_off_sync(intel_dp);
1149	mutex_unlock(&dev->mode_config.mutex);
1150}
1151
1152void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1153{
1154	if (!is_edp(intel_dp))
1155		return;
1156
1157	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1158
1159	intel_dp->want_panel_vdd = false;
1160
1161	if (sync) {
1162		ironlake_panel_vdd_off_sync(intel_dp);
1163	} else {
1164		/*
1165		 * Queue the timer to fire a long
1166		 * time from now (relative to the power down delay)
1167		 * to keep the panel power up across a sequence of operations
1168		 */
1169		schedule_delayed_work(&intel_dp->panel_vdd_work,
1170				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1171	}
1172}
1173
1174void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1175{
1176	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177	struct drm_i915_private *dev_priv = dev->dev_private;
1178	u32 pp;
1179	u32 pp_ctrl_reg;
1180
1181	if (!is_edp(intel_dp))
1182		return;
1183
1184	DRM_DEBUG_KMS("Turn eDP power on\n");
1185
1186	if (ironlake_edp_have_panel_power(intel_dp)) {
1187		DRM_DEBUG_KMS("eDP power already on\n");
1188		return;
1189	}
1190
1191	ironlake_wait_panel_power_cycle(intel_dp);
1192
1193	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1194	pp = ironlake_get_pp_control(intel_dp);
1195	if (IS_GEN5(dev)) {
1196		/* ILK workaround: disable reset around power sequence */
1197		pp &= ~PANEL_POWER_RESET;
1198		I915_WRITE(pp_ctrl_reg, pp);
1199		POSTING_READ(pp_ctrl_reg);
1200	}
1201
1202	pp |= POWER_TARGET_ON;
1203	if (!IS_GEN5(dev))
1204		pp |= PANEL_POWER_RESET;
1205
1206	I915_WRITE(pp_ctrl_reg, pp);
1207	POSTING_READ(pp_ctrl_reg);
1208
1209	ironlake_wait_panel_on(intel_dp);
1210
1211	if (IS_GEN5(dev)) {
1212		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1213		I915_WRITE(pp_ctrl_reg, pp);
1214		POSTING_READ(pp_ctrl_reg);
1215	}
1216}
1217
1218void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1219{
1220	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1221	struct drm_i915_private *dev_priv = dev->dev_private;
1222	u32 pp;
1223	u32 pp_ctrl_reg;
1224
1225	if (!is_edp(intel_dp))
1226		return;
1227
1228	DRM_DEBUG_KMS("Turn eDP power off\n");
1229
1230	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1231
1232	pp = ironlake_get_pp_control(intel_dp);
1233	/* We need to switch off panel power _and_ force vdd, for otherwise some
1234	 * panels get very unhappy and cease to work. */
1235	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1236
1237	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1238
1239	I915_WRITE(pp_ctrl_reg, pp);
1240	POSTING_READ(pp_ctrl_reg);
1241
1242	intel_dp->want_panel_vdd = false;
1243
1244	ironlake_wait_panel_off(intel_dp);
1245}
1246
1247void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1248{
1249	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1250	struct drm_device *dev = intel_dig_port->base.base.dev;
1251	struct drm_i915_private *dev_priv = dev->dev_private;
1252	u32 pp;
1253	u32 pp_ctrl_reg;
1254
1255	if (!is_edp(intel_dp))
1256		return;
1257
1258	DRM_DEBUG_KMS("\n");
1259	/*
1260	 * If we enable the backlight right away following a panel power
1261	 * on, we may see slight flicker as the panel syncs with the eDP
1262	 * link.  So delay a bit to make sure the image is solid before
1263	 * allowing it to appear.
1264	 */
1265	msleep(intel_dp->backlight_on_delay);
1266	pp = ironlake_get_pp_control(intel_dp);
1267	pp |= EDP_BLC_ENABLE;
1268
1269	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1270
1271	I915_WRITE(pp_ctrl_reg, pp);
1272	POSTING_READ(pp_ctrl_reg);
1273
1274	intel_panel_enable_backlight(intel_dp->attached_connector);
1275}
1276
1277void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1278{
1279	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1280	struct drm_i915_private *dev_priv = dev->dev_private;
1281	u32 pp;
1282	u32 pp_ctrl_reg;
1283
1284	if (!is_edp(intel_dp))
1285		return;
1286
1287	intel_panel_disable_backlight(intel_dp->attached_connector);
1288
1289	DRM_DEBUG_KMS("\n");
1290	pp = ironlake_get_pp_control(intel_dp);
1291	pp &= ~EDP_BLC_ENABLE;
1292
1293	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1294
1295	I915_WRITE(pp_ctrl_reg, pp);
1296	POSTING_READ(pp_ctrl_reg);
1297	msleep(intel_dp->backlight_off_delay);
1298}
1299
1300static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1301{
1302	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1303	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1304	struct drm_device *dev = crtc->dev;
1305	struct drm_i915_private *dev_priv = dev->dev_private;
1306	u32 dpa_ctl;
1307
1308	assert_pipe_disabled(dev_priv,
1309			     to_intel_crtc(crtc)->pipe);
1310
1311	DRM_DEBUG_KMS("\n");
1312	dpa_ctl = I915_READ(DP_A);
1313	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1314	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1315
1316	/* We don't adjust intel_dp->DP while tearing down the link, to
1317	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1318	 * enable bits here to ensure that we don't enable too much. */
1319	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1320	intel_dp->DP |= DP_PLL_ENABLE;
1321	I915_WRITE(DP_A, intel_dp->DP);
1322	POSTING_READ(DP_A);
1323	udelay(200);
1324}
1325
1326static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1327{
1328	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1329	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1330	struct drm_device *dev = crtc->dev;
1331	struct drm_i915_private *dev_priv = dev->dev_private;
1332	u32 dpa_ctl;
1333
1334	assert_pipe_disabled(dev_priv,
1335			     to_intel_crtc(crtc)->pipe);
1336
1337	dpa_ctl = I915_READ(DP_A);
1338	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1339	     "dp pll off, should be on\n");
1340	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1341
1342	/* We can't rely on the value tracked for the DP register in
1343	 * intel_dp->DP because link_down must not change that (otherwise link
1344	 * re-training will fail. */
1345	dpa_ctl &= ~DP_PLL_ENABLE;
1346	I915_WRITE(DP_A, dpa_ctl);
1347	POSTING_READ(DP_A);
1348	udelay(200);
1349}
1350
1351/* If the sink supports it, try to set the power state appropriately */
1352void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1353{
1354	int ret, i;
1355
1356	/* Should have a valid DPCD by this point */
1357	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1358		return;
1359
1360	if (mode != DRM_MODE_DPMS_ON) {
1361		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1362						  DP_SET_POWER_D3);
1363		if (ret != 1)
1364			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1365	} else {
1366		/*
1367		 * When turning on, we need to retry for 1ms to give the sink
1368		 * time to wake up.
1369		 */
1370		for (i = 0; i < 3; i++) {
1371			ret = intel_dp_aux_native_write_1(intel_dp,
1372							  DP_SET_POWER,
1373							  DP_SET_POWER_D0);
1374			if (ret == 1)
1375				break;
1376			msleep(1);
1377		}
1378	}
1379}
1380
1381static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1382				  enum pipe *pipe)
1383{
1384	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1385	enum port port = dp_to_dig_port(intel_dp)->port;
1386	struct drm_device *dev = encoder->base.dev;
1387	struct drm_i915_private *dev_priv = dev->dev_private;
1388	u32 tmp = I915_READ(intel_dp->output_reg);
1389
1390	if (!(tmp & DP_PORT_EN))
1391		return false;
1392
1393	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1394		*pipe = PORT_TO_PIPE_CPT(tmp);
1395	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1396		*pipe = PORT_TO_PIPE(tmp);
1397	} else {
1398		u32 trans_sel;
1399		u32 trans_dp;
1400		int i;
1401
1402		switch (intel_dp->output_reg) {
1403		case PCH_DP_B:
1404			trans_sel = TRANS_DP_PORT_SEL_B;
1405			break;
1406		case PCH_DP_C:
1407			trans_sel = TRANS_DP_PORT_SEL_C;
1408			break;
1409		case PCH_DP_D:
1410			trans_sel = TRANS_DP_PORT_SEL_D;
1411			break;
1412		default:
1413			return true;
1414		}
1415
1416		for_each_pipe(i) {
1417			trans_dp = I915_READ(TRANS_DP_CTL(i));
1418			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1419				*pipe = i;
1420				return true;
1421			}
1422		}
1423
1424		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1425			      intel_dp->output_reg);
1426	}
1427
1428	return true;
1429}
1430
1431static void intel_dp_get_config(struct intel_encoder *encoder,
1432				struct intel_crtc_config *pipe_config)
1433{
1434	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1435	u32 tmp, flags = 0;
1436	struct drm_device *dev = encoder->base.dev;
1437	struct drm_i915_private *dev_priv = dev->dev_private;
1438	enum port port = dp_to_dig_port(intel_dp)->port;
1439	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1440	int dotclock;
1441
1442	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1443		tmp = I915_READ(intel_dp->output_reg);
1444		if (tmp & DP_SYNC_HS_HIGH)
1445			flags |= DRM_MODE_FLAG_PHSYNC;
1446		else
1447			flags |= DRM_MODE_FLAG_NHSYNC;
1448
1449		if (tmp & DP_SYNC_VS_HIGH)
1450			flags |= DRM_MODE_FLAG_PVSYNC;
1451		else
1452			flags |= DRM_MODE_FLAG_NVSYNC;
1453	} else {
1454		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1455		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1456			flags |= DRM_MODE_FLAG_PHSYNC;
1457		else
1458			flags |= DRM_MODE_FLAG_NHSYNC;
1459
1460		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1461			flags |= DRM_MODE_FLAG_PVSYNC;
1462		else
1463			flags |= DRM_MODE_FLAG_NVSYNC;
1464	}
1465
1466	pipe_config->adjusted_mode.flags |= flags;
1467
1468	pipe_config->has_dp_encoder = true;
1469
1470	intel_dp_get_m_n(crtc, pipe_config);
1471
1472	if (port == PORT_A) {
1473		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1474			pipe_config->port_clock = 162000;
1475		else
1476			pipe_config->port_clock = 270000;
1477	}
1478
1479	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1480					    &pipe_config->dp_m_n);
1481
1482	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1483		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1484
1485	pipe_config->adjusted_mode.crtc_clock = dotclock;
1486
1487	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1488	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1489		/*
1490		 * This is a big fat ugly hack.
1491		 *
1492		 * Some machines in UEFI boot mode provide us a VBT that has 18
1493		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1494		 * unknown we fail to light up. Yet the same BIOS boots up with
1495		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1496		 * max, not what it tells us to use.
1497		 *
1498		 * Note: This will still be broken if the eDP panel is not lit
1499		 * up by the BIOS, and thus we can't get the mode at module
1500		 * load.
1501		 */
1502		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1503			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1504		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1505	}
1506}
1507
1508static bool is_edp_psr(struct drm_device *dev)
1509{
1510	struct drm_i915_private *dev_priv = dev->dev_private;
1511
1512	return dev_priv->psr.sink_support;
1513}
1514
1515static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1516{
1517	struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519	if (!HAS_PSR(dev))
1520		return false;
1521
1522	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1523}
1524
1525static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1526				    struct edp_vsc_psr *vsc_psr)
1527{
1528	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1529	struct drm_device *dev = dig_port->base.base.dev;
1530	struct drm_i915_private *dev_priv = dev->dev_private;
1531	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1532	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1533	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1534	uint32_t *data = (uint32_t *) vsc_psr;
1535	unsigned int i;
1536
1537	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1538	   the video DIP being updated before program video DIP data buffer
1539	   registers for DIP being updated. */
1540	I915_WRITE(ctl_reg, 0);
1541	POSTING_READ(ctl_reg);
1542
1543	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1544		if (i < sizeof(struct edp_vsc_psr))
1545			I915_WRITE(data_reg + i, *data++);
1546		else
1547			I915_WRITE(data_reg + i, 0);
1548	}
1549
1550	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1551	POSTING_READ(ctl_reg);
1552}
1553
1554static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1555{
1556	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1557	struct drm_i915_private *dev_priv = dev->dev_private;
1558	struct edp_vsc_psr psr_vsc;
1559
1560	if (intel_dp->psr_setup_done)
1561		return;
1562
1563	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1564	memset(&psr_vsc, 0, sizeof(psr_vsc));
1565	psr_vsc.sdp_header.HB0 = 0;
1566	psr_vsc.sdp_header.HB1 = 0x7;
1567	psr_vsc.sdp_header.HB2 = 0x2;
1568	psr_vsc.sdp_header.HB3 = 0x8;
1569	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1570
1571	/* Avoid continuous PSR exit by masking memup and hpd */
1572	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1573		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1574
1575	intel_dp->psr_setup_done = true;
1576}
1577
1578static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1579{
1580	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1581	struct drm_i915_private *dev_priv = dev->dev_private;
1582	uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1583	int precharge = 0x3;
1584	int msg_size = 5;       /* Header(4) + Message(1) */
1585
1586	/* Enable PSR in sink */
1587	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1588		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1589					    DP_PSR_ENABLE &
1590					    ~DP_PSR_MAIN_LINK_ACTIVE);
1591	else
1592		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1593					    DP_PSR_ENABLE |
1594					    DP_PSR_MAIN_LINK_ACTIVE);
1595
1596	/* Setup AUX registers */
1597	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1598	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1599	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1600		   DP_AUX_CH_CTL_TIME_OUT_400us |
1601		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1602		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1603		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1604}
1605
1606static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1607{
1608	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1609	struct drm_i915_private *dev_priv = dev->dev_private;
1610	uint32_t max_sleep_time = 0x1f;
1611	uint32_t idle_frames = 1;
1612	uint32_t val = 0x0;
1613
1614	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1615		val |= EDP_PSR_LINK_STANDBY;
1616		val |= EDP_PSR_TP2_TP3_TIME_0us;
1617		val |= EDP_PSR_TP1_TIME_0us;
1618		val |= EDP_PSR_SKIP_AUX_EXIT;
1619	} else
1620		val |= EDP_PSR_LINK_DISABLE;
1621
1622	I915_WRITE(EDP_PSR_CTL(dev), val |
1623		   EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1624		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1625		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1626		   EDP_PSR_ENABLE);
1627}
1628
1629static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1630{
1631	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1632	struct drm_device *dev = dig_port->base.base.dev;
1633	struct drm_i915_private *dev_priv = dev->dev_private;
1634	struct drm_crtc *crtc = dig_port->base.base.crtc;
1635	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1637	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1638
1639	dev_priv->psr.source_ok = false;
1640
1641	if (!HAS_PSR(dev)) {
1642		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1643		return false;
1644	}
1645
1646	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1647	    (dig_port->port != PORT_A)) {
1648		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1649		return false;
1650	}
1651
1652	if (!i915_enable_psr) {
1653		DRM_DEBUG_KMS("PSR disable by flag\n");
1654		return false;
1655	}
1656
1657	crtc = dig_port->base.base.crtc;
1658	if (crtc == NULL) {
1659		DRM_DEBUG_KMS("crtc not active for PSR\n");
1660		return false;
1661	}
1662
1663	intel_crtc = to_intel_crtc(crtc);
1664	if (!intel_crtc_active(crtc)) {
1665		DRM_DEBUG_KMS("crtc not active for PSR\n");
1666		return false;
1667	}
1668
1669	obj = to_intel_framebuffer(crtc->fb)->obj;
1670	if (obj->tiling_mode != I915_TILING_X ||
1671	    obj->fence_reg == I915_FENCE_REG_NONE) {
1672		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1673		return false;
1674	}
1675
1676	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1677		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1678		return false;
1679	}
1680
1681	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1682	    S3D_ENABLE) {
1683		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1684		return false;
1685	}
1686
1687	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1688		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1689		return false;
1690	}
1691
1692	dev_priv->psr.source_ok = true;
1693	return true;
1694}
1695
1696static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1697{
1698	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1699
1700	if (!intel_edp_psr_match_conditions(intel_dp) ||
1701	    intel_edp_is_psr_enabled(dev))
1702		return;
1703
1704	/* Setup PSR once */
1705	intel_edp_psr_setup(intel_dp);
1706
1707	/* Enable PSR on the panel */
1708	intel_edp_psr_enable_sink(intel_dp);
1709
1710	/* Enable PSR on the host */
1711	intel_edp_psr_enable_source(intel_dp);
1712}
1713
1714void intel_edp_psr_enable(struct intel_dp *intel_dp)
1715{
1716	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1717
1718	if (intel_edp_psr_match_conditions(intel_dp) &&
1719	    !intel_edp_is_psr_enabled(dev))
1720		intel_edp_psr_do_enable(intel_dp);
1721}
1722
1723void intel_edp_psr_disable(struct intel_dp *intel_dp)
1724{
1725	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1726	struct drm_i915_private *dev_priv = dev->dev_private;
1727
1728	if (!intel_edp_is_psr_enabled(dev))
1729		return;
1730
1731	I915_WRITE(EDP_PSR_CTL(dev),
1732		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1733
1734	/* Wait till PSR is idle */
1735	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1736		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1737		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1738}
1739
1740void intel_edp_psr_update(struct drm_device *dev)
1741{
1742	struct intel_encoder *encoder;
1743	struct intel_dp *intel_dp = NULL;
1744
1745	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1746		if (encoder->type == INTEL_OUTPUT_EDP) {
1747			intel_dp = enc_to_intel_dp(&encoder->base);
1748
1749			if (!is_edp_psr(dev))
1750				return;
1751
1752			if (!intel_edp_psr_match_conditions(intel_dp))
1753				intel_edp_psr_disable(intel_dp);
1754			else
1755				if (!intel_edp_is_psr_enabled(dev))
1756					intel_edp_psr_do_enable(intel_dp);
1757		}
1758}
1759
1760static void intel_disable_dp(struct intel_encoder *encoder)
1761{
1762	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1763	enum port port = dp_to_dig_port(intel_dp)->port;
1764	struct drm_device *dev = encoder->base.dev;
1765
1766	/* Make sure the panel is off before trying to change the mode. But also
1767	 * ensure that we have vdd while we switch off the panel. */
1768	ironlake_edp_panel_vdd_on(intel_dp);
1769	ironlake_edp_backlight_off(intel_dp);
1770	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1771	ironlake_edp_panel_off(intel_dp);
1772
1773	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1774	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1775		intel_dp_link_down(intel_dp);
1776}
1777
1778static void intel_post_disable_dp(struct intel_encoder *encoder)
1779{
1780	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1781	enum port port = dp_to_dig_port(intel_dp)->port;
1782	struct drm_device *dev = encoder->base.dev;
1783
1784	if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1785		intel_dp_link_down(intel_dp);
1786		if (!IS_VALLEYVIEW(dev))
1787			ironlake_edp_pll_off(intel_dp);
1788	}
1789}
1790
1791static void intel_enable_dp(struct intel_encoder *encoder)
1792{
1793	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1794	struct drm_device *dev = encoder->base.dev;
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1797
1798	if (WARN_ON(dp_reg & DP_PORT_EN))
1799		return;
1800
1801	ironlake_edp_panel_vdd_on(intel_dp);
1802	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1803	intel_dp_start_link_train(intel_dp);
1804	ironlake_edp_panel_on(intel_dp);
1805	ironlake_edp_panel_vdd_off(intel_dp, true);
1806	intel_dp_complete_link_train(intel_dp);
1807	intel_dp_stop_link_train(intel_dp);
1808}
1809
1810static void g4x_enable_dp(struct intel_encoder *encoder)
1811{
1812	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1813
1814	intel_enable_dp(encoder);
1815	ironlake_edp_backlight_on(intel_dp);
1816}
1817
1818static void vlv_enable_dp(struct intel_encoder *encoder)
1819{
1820	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1821
1822	ironlake_edp_backlight_on(intel_dp);
1823}
1824
1825static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1826{
1827	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1828	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1829
1830	if (dport->port == PORT_A)
1831		ironlake_edp_pll_on(intel_dp);
1832}
1833
1834static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1835{
1836	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1837	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1838	struct drm_device *dev = encoder->base.dev;
1839	struct drm_i915_private *dev_priv = dev->dev_private;
1840	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1841	int port = vlv_dport_to_channel(dport);
1842	int pipe = intel_crtc->pipe;
1843	struct edp_power_seq power_seq;
1844	u32 val;
1845
1846	mutex_lock(&dev_priv->dpio_lock);
1847
1848	val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1849	val = 0;
1850	if (pipe)
1851		val |= (1<<21);
1852	else
1853		val &= ~(1<<21);
1854	val |= 0x001000c4;
1855	vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1856	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1857	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1858
1859	mutex_unlock(&dev_priv->dpio_lock);
1860
1861	/* init power sequencer on this pipe and port */
1862	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1863	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1864						      &power_seq);
1865
1866	intel_enable_dp(encoder);
1867
1868	vlv_wait_port_ready(dev_priv, port);
1869}
1870
1871static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1872{
1873	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1874	struct drm_device *dev = encoder->base.dev;
1875	struct drm_i915_private *dev_priv = dev->dev_private;
1876	struct intel_crtc *intel_crtc =
1877		to_intel_crtc(encoder->base.crtc);
1878	int port = vlv_dport_to_channel(dport);
1879	int pipe = intel_crtc->pipe;
1880
1881	/* Program Tx lane resets to default */
1882	mutex_lock(&dev_priv->dpio_lock);
1883	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1884			 DPIO_PCS_TX_LANE2_RESET |
1885			 DPIO_PCS_TX_LANE1_RESET);
1886	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1887			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1888			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1889			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1890				 DPIO_PCS_CLK_SOFT_RESET);
1891
1892	/* Fix up inter-pair skew failure */
1893	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1894	vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1895	vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1896	mutex_unlock(&dev_priv->dpio_lock);
1897}
1898
1899/*
1900 * Native read with retry for link status and receiver capability reads for
1901 * cases where the sink may still be asleep.
1902 */
1903static bool
1904intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1905			       uint8_t *recv, int recv_bytes)
1906{
1907	int ret, i;
1908
1909	/*
1910	 * Sinks are *supposed* to come up within 1ms from an off state,
1911	 * but we're also supposed to retry 3 times per the spec.
1912	 */
1913	for (i = 0; i < 3; i++) {
1914		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1915					       recv_bytes);
1916		if (ret == recv_bytes)
1917			return true;
1918		msleep(1);
1919	}
1920
1921	return false;
1922}
1923
1924/*
1925 * Fetch AUX CH registers 0x202 - 0x207 which contain
1926 * link status information
1927 */
1928static bool
1929intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1930{
1931	return intel_dp_aux_native_read_retry(intel_dp,
1932					      DP_LANE0_1_STATUS,
1933					      link_status,
1934					      DP_LINK_STATUS_SIZE);
1935}
1936
1937#if 0
1938static char	*voltage_names[] = {
1939	"0.4V", "0.6V", "0.8V", "1.2V"
1940};
1941static char	*pre_emph_names[] = {
1942	"0dB", "3.5dB", "6dB", "9.5dB"
1943};
1944static char	*link_train_names[] = {
1945	"pattern 1", "pattern 2", "idle", "off"
1946};
1947#endif
1948
1949/*
1950 * These are source-specific values; current Intel hardware supports
1951 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1952 */
1953
1954static uint8_t
1955intel_dp_voltage_max(struct intel_dp *intel_dp)
1956{
1957	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1958	enum port port = dp_to_dig_port(intel_dp)->port;
1959
1960	if (IS_VALLEYVIEW(dev))
1961		return DP_TRAIN_VOLTAGE_SWING_1200;
1962	else if (IS_GEN7(dev) && port == PORT_A)
1963		return DP_TRAIN_VOLTAGE_SWING_800;
1964	else if (HAS_PCH_CPT(dev) && port != PORT_A)
1965		return DP_TRAIN_VOLTAGE_SWING_1200;
1966	else
1967		return DP_TRAIN_VOLTAGE_SWING_800;
1968}
1969
1970static uint8_t
1971intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1972{
1973	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1974	enum port port = dp_to_dig_port(intel_dp)->port;
1975
1976	if (HAS_DDI(dev)) {
1977		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1978		case DP_TRAIN_VOLTAGE_SWING_400:
1979			return DP_TRAIN_PRE_EMPHASIS_9_5;
1980		case DP_TRAIN_VOLTAGE_SWING_600:
1981			return DP_TRAIN_PRE_EMPHASIS_6;
1982		case DP_TRAIN_VOLTAGE_SWING_800:
1983			return DP_TRAIN_PRE_EMPHASIS_3_5;
1984		case DP_TRAIN_VOLTAGE_SWING_1200:
1985		default:
1986			return DP_TRAIN_PRE_EMPHASIS_0;
1987		}
1988	} else if (IS_VALLEYVIEW(dev)) {
1989		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1990		case DP_TRAIN_VOLTAGE_SWING_400:
1991			return DP_TRAIN_PRE_EMPHASIS_9_5;
1992		case DP_TRAIN_VOLTAGE_SWING_600:
1993			return DP_TRAIN_PRE_EMPHASIS_6;
1994		case DP_TRAIN_VOLTAGE_SWING_800:
1995			return DP_TRAIN_PRE_EMPHASIS_3_5;
1996		case DP_TRAIN_VOLTAGE_SWING_1200:
1997		default:
1998			return DP_TRAIN_PRE_EMPHASIS_0;
1999		}
2000	} else if (IS_GEN7(dev) && port == PORT_A) {
2001		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2002		case DP_TRAIN_VOLTAGE_SWING_400:
2003			return DP_TRAIN_PRE_EMPHASIS_6;
2004		case DP_TRAIN_VOLTAGE_SWING_600:
2005		case DP_TRAIN_VOLTAGE_SWING_800:
2006			return DP_TRAIN_PRE_EMPHASIS_3_5;
2007		default:
2008			return DP_TRAIN_PRE_EMPHASIS_0;
2009		}
2010	} else {
2011		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2012		case DP_TRAIN_VOLTAGE_SWING_400:
2013			return DP_TRAIN_PRE_EMPHASIS_6;
2014		case DP_TRAIN_VOLTAGE_SWING_600:
2015			return DP_TRAIN_PRE_EMPHASIS_6;
2016		case DP_TRAIN_VOLTAGE_SWING_800:
2017			return DP_TRAIN_PRE_EMPHASIS_3_5;
2018		case DP_TRAIN_VOLTAGE_SWING_1200:
2019		default:
2020			return DP_TRAIN_PRE_EMPHASIS_0;
2021		}
2022	}
2023}
2024
2025static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2026{
2027	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2028	struct drm_i915_private *dev_priv = dev->dev_private;
2029	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2030	struct intel_crtc *intel_crtc =
2031		to_intel_crtc(dport->base.base.crtc);
2032	unsigned long demph_reg_value, preemph_reg_value,
2033		uniqtranscale_reg_value;
2034	uint8_t train_set = intel_dp->train_set[0];
2035	int port = vlv_dport_to_channel(dport);
2036	int pipe = intel_crtc->pipe;
2037
2038	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2039	case DP_TRAIN_PRE_EMPHASIS_0:
2040		preemph_reg_value = 0x0004000;
2041		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2042		case DP_TRAIN_VOLTAGE_SWING_400:
2043			demph_reg_value = 0x2B405555;
2044			uniqtranscale_reg_value = 0x552AB83A;
2045			break;
2046		case DP_TRAIN_VOLTAGE_SWING_600:
2047			demph_reg_value = 0x2B404040;
2048			uniqtranscale_reg_value = 0x5548B83A;
2049			break;
2050		case DP_TRAIN_VOLTAGE_SWING_800:
2051			demph_reg_value = 0x2B245555;
2052			uniqtranscale_reg_value = 0x5560B83A;
2053			break;
2054		case DP_TRAIN_VOLTAGE_SWING_1200:
2055			demph_reg_value = 0x2B405555;
2056			uniqtranscale_reg_value = 0x5598DA3A;
2057			break;
2058		default:
2059			return 0;
2060		}
2061		break;
2062	case DP_TRAIN_PRE_EMPHASIS_3_5:
2063		preemph_reg_value = 0x0002000;
2064		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2065		case DP_TRAIN_VOLTAGE_SWING_400:
2066			demph_reg_value = 0x2B404040;
2067			uniqtranscale_reg_value = 0x5552B83A;
2068			break;
2069		case DP_TRAIN_VOLTAGE_SWING_600:
2070			demph_reg_value = 0x2B404848;
2071			uniqtranscale_reg_value = 0x5580B83A;
2072			break;
2073		case DP_TRAIN_VOLTAGE_SWING_800:
2074			demph_reg_value = 0x2B404040;
2075			uniqtranscale_reg_value = 0x55ADDA3A;
2076			break;
2077		default:
2078			return 0;
2079		}
2080		break;
2081	case DP_TRAIN_PRE_EMPHASIS_6:
2082		preemph_reg_value = 0x0000000;
2083		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2084		case DP_TRAIN_VOLTAGE_SWING_400:
2085			demph_reg_value = 0x2B305555;
2086			uniqtranscale_reg_value = 0x5570B83A;
2087			break;
2088		case DP_TRAIN_VOLTAGE_SWING_600:
2089			demph_reg_value = 0x2B2B4040;
2090			uniqtranscale_reg_value = 0x55ADDA3A;
2091			break;
2092		default:
2093			return 0;
2094		}
2095		break;
2096	case DP_TRAIN_PRE_EMPHASIS_9_5:
2097		preemph_reg_value = 0x0006000;
2098		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2099		case DP_TRAIN_VOLTAGE_SWING_400:
2100			demph_reg_value = 0x1B405555;
2101			uniqtranscale_reg_value = 0x55ADDA3A;
2102			break;
2103		default:
2104			return 0;
2105		}
2106		break;
2107	default:
2108		return 0;
2109	}
2110
2111	mutex_lock(&dev_priv->dpio_lock);
2112	vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2113	vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2114	vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2115			 uniqtranscale_reg_value);
2116	vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2117	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2118	vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2119	vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2120	mutex_unlock(&dev_priv->dpio_lock);
2121
2122	return 0;
2123}
2124
2125static void
2126intel_get_adjust_train(struct intel_dp *intel_dp,
2127		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2128{
2129	uint8_t v = 0;
2130	uint8_t p = 0;
2131	int lane;
2132	uint8_t voltage_max;
2133	uint8_t preemph_max;
2134
2135	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2136		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2137		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2138
2139		if (this_v > v)
2140			v = this_v;
2141		if (this_p > p)
2142			p = this_p;
2143	}
2144
2145	voltage_max = intel_dp_voltage_max(intel_dp);
2146	if (v >= voltage_max)
2147		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2148
2149	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2150	if (p >= preemph_max)
2151		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2152
2153	for (lane = 0; lane < 4; lane++)
2154		intel_dp->train_set[lane] = v | p;
2155}
2156
2157static uint32_t
2158intel_gen4_signal_levels(uint8_t train_set)
2159{
2160	uint32_t	signal_levels = 0;
2161
2162	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2163	case DP_TRAIN_VOLTAGE_SWING_400:
2164	default:
2165		signal_levels |= DP_VOLTAGE_0_4;
2166		break;
2167	case DP_TRAIN_VOLTAGE_SWING_600:
2168		signal_levels |= DP_VOLTAGE_0_6;
2169		break;
2170	case DP_TRAIN_VOLTAGE_SWING_800:
2171		signal_levels |= DP_VOLTAGE_0_8;
2172		break;
2173	case DP_TRAIN_VOLTAGE_SWING_1200:
2174		signal_levels |= DP_VOLTAGE_1_2;
2175		break;
2176	}
2177	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2178	case DP_TRAIN_PRE_EMPHASIS_0:
2179	default:
2180		signal_levels |= DP_PRE_EMPHASIS_0;
2181		break;
2182	case DP_TRAIN_PRE_EMPHASIS_3_5:
2183		signal_levels |= DP_PRE_EMPHASIS_3_5;
2184		break;
2185	case DP_TRAIN_PRE_EMPHASIS_6:
2186		signal_levels |= DP_PRE_EMPHASIS_6;
2187		break;
2188	case DP_TRAIN_PRE_EMPHASIS_9_5:
2189		signal_levels |= DP_PRE_EMPHASIS_9_5;
2190		break;
2191	}
2192	return signal_levels;
2193}
2194
2195/* Gen6's DP voltage swing and pre-emphasis control */
2196static uint32_t
2197intel_gen6_edp_signal_levels(uint8_t train_set)
2198{
2199	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2200					 DP_TRAIN_PRE_EMPHASIS_MASK);
2201	switch (signal_levels) {
2202	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2203	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2204		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2205	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2206		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2207	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2208	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2209		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2210	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2211	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2212		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2213	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2214	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2215		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2216	default:
2217		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2218			      "0x%x\n", signal_levels);
2219		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2220	}
2221}
2222
2223/* Gen7's DP voltage swing and pre-emphasis control */
2224static uint32_t
2225intel_gen7_edp_signal_levels(uint8_t train_set)
2226{
2227	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2228					 DP_TRAIN_PRE_EMPHASIS_MASK);
2229	switch (signal_levels) {
2230	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2231		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2232	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2233		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2234	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2235		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2236
2237	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2238		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2239	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2240		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2241
2242	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2243		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2244	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2245		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2246
2247	default:
2248		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2249			      "0x%x\n", signal_levels);
2250		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2251	}
2252}
2253
2254/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2255static uint32_t
2256intel_hsw_signal_levels(uint8_t train_set)
2257{
2258	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2259					 DP_TRAIN_PRE_EMPHASIS_MASK);
2260	switch (signal_levels) {
2261	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2262		return DDI_BUF_EMP_400MV_0DB_HSW;
2263	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2264		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2265	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2266		return DDI_BUF_EMP_400MV_6DB_HSW;
2267	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2268		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2269
2270	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2271		return DDI_BUF_EMP_600MV_0DB_HSW;
2272	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2273		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2274	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2275		return DDI_BUF_EMP_600MV_6DB_HSW;
2276
2277	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2278		return DDI_BUF_EMP_800MV_0DB_HSW;
2279	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2280		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2281	default:
2282		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2283			      "0x%x\n", signal_levels);
2284		return DDI_BUF_EMP_400MV_0DB_HSW;
2285	}
2286}
2287
2288/* Properly updates "DP" with the correct signal levels. */
2289static void
2290intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2291{
2292	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2293	enum port port = intel_dig_port->port;
2294	struct drm_device *dev = intel_dig_port->base.base.dev;
2295	uint32_t signal_levels, mask;
2296	uint8_t train_set = intel_dp->train_set[0];
2297
2298	if (HAS_DDI(dev)) {
2299		signal_levels = intel_hsw_signal_levels(train_set);
2300		mask = DDI_BUF_EMP_MASK;
2301	} else if (IS_VALLEYVIEW(dev)) {
2302		signal_levels = intel_vlv_signal_levels(intel_dp);
2303		mask = 0;
2304	} else if (IS_GEN7(dev) && port == PORT_A) {
2305		signal_levels = intel_gen7_edp_signal_levels(train_set);
2306		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2307	} else if (IS_GEN6(dev) && port == PORT_A) {
2308		signal_levels = intel_gen6_edp_signal_levels(train_set);
2309		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2310	} else {
2311		signal_levels = intel_gen4_signal_levels(train_set);
2312		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2313	}
2314
2315	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2316
2317	*DP = (*DP & ~mask) | signal_levels;
2318}
2319
2320static bool
2321intel_dp_set_link_train(struct intel_dp *intel_dp,
2322			uint32_t *DP,
2323			uint8_t dp_train_pat)
2324{
2325	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2326	struct drm_device *dev = intel_dig_port->base.base.dev;
2327	struct drm_i915_private *dev_priv = dev->dev_private;
2328	enum port port = intel_dig_port->port;
2329	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2330	int ret, len;
2331
2332	if (HAS_DDI(dev)) {
2333		uint32_t temp = I915_READ(DP_TP_CTL(port));
2334
2335		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2336			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2337		else
2338			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2339
2340		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2341		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2342		case DP_TRAINING_PATTERN_DISABLE:
2343			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2344
2345			break;
2346		case DP_TRAINING_PATTERN_1:
2347			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2348			break;
2349		case DP_TRAINING_PATTERN_2:
2350			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2351			break;
2352		case DP_TRAINING_PATTERN_3:
2353			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2354			break;
2355		}
2356		I915_WRITE(DP_TP_CTL(port), temp);
2357
2358	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2359		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2360
2361		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2362		case DP_TRAINING_PATTERN_DISABLE:
2363			*DP |= DP_LINK_TRAIN_OFF_CPT;
2364			break;
2365		case DP_TRAINING_PATTERN_1:
2366			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2367			break;
2368		case DP_TRAINING_PATTERN_2:
2369			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2370			break;
2371		case DP_TRAINING_PATTERN_3:
2372			DRM_ERROR("DP training pattern 3 not supported\n");
2373			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2374			break;
2375		}
2376
2377	} else {
2378		*DP &= ~DP_LINK_TRAIN_MASK;
2379
2380		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2381		case DP_TRAINING_PATTERN_DISABLE:
2382			*DP |= DP_LINK_TRAIN_OFF;
2383			break;
2384		case DP_TRAINING_PATTERN_1:
2385			*DP |= DP_LINK_TRAIN_PAT_1;
2386			break;
2387		case DP_TRAINING_PATTERN_2:
2388			*DP |= DP_LINK_TRAIN_PAT_2;
2389			break;
2390		case DP_TRAINING_PATTERN_3:
2391			DRM_ERROR("DP training pattern 3 not supported\n");
2392			*DP |= DP_LINK_TRAIN_PAT_2;
2393			break;
2394		}
2395	}
2396
2397	I915_WRITE(intel_dp->output_reg, *DP);
2398	POSTING_READ(intel_dp->output_reg);
2399
2400	buf[0] = dp_train_pat;
2401	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2402	    DP_TRAINING_PATTERN_DISABLE) {
2403		/* don't write DP_TRAINING_LANEx_SET on disable */
2404		len = 1;
2405	} else {
2406		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2407		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2408		len = intel_dp->lane_count + 1;
2409	}
2410
2411	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2412					buf, len);
2413
2414	return ret == len;
2415}
2416
2417static bool
2418intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2419			uint8_t dp_train_pat)
2420{
2421	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2422	intel_dp_set_signal_levels(intel_dp, DP);
2423	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2424}
2425
2426static bool
2427intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2428			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2429{
2430	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2431	struct drm_device *dev = intel_dig_port->base.base.dev;
2432	struct drm_i915_private *dev_priv = dev->dev_private;
2433	int ret;
2434
2435	intel_get_adjust_train(intel_dp, link_status);
2436	intel_dp_set_signal_levels(intel_dp, DP);
2437
2438	I915_WRITE(intel_dp->output_reg, *DP);
2439	POSTING_READ(intel_dp->output_reg);
2440
2441	ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2442					intel_dp->train_set,
2443					intel_dp->lane_count);
2444
2445	return ret == intel_dp->lane_count;
2446}
2447
2448static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2449{
2450	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2451	struct drm_device *dev = intel_dig_port->base.base.dev;
2452	struct drm_i915_private *dev_priv = dev->dev_private;
2453	enum port port = intel_dig_port->port;
2454	uint32_t val;
2455
2456	if (!HAS_DDI(dev))
2457		return;
2458
2459	val = I915_READ(DP_TP_CTL(port));
2460	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2461	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2462	I915_WRITE(DP_TP_CTL(port), val);
2463
2464	/*
2465	 * On PORT_A we can have only eDP in SST mode. There the only reason
2466	 * we need to set idle transmission mode is to work around a HW issue
2467	 * where we enable the pipe while not in idle link-training mode.
2468	 * In this case there is requirement to wait for a minimum number of
2469	 * idle patterns to be sent.
2470	 */
2471	if (port == PORT_A)
2472		return;
2473
2474	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2475		     1))
2476		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2477}
2478
2479/* Enable corresponding port and start training pattern 1 */
2480void
2481intel_dp_start_link_train(struct intel_dp *intel_dp)
2482{
2483	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2484	struct drm_device *dev = encoder->dev;
2485	int i;
2486	uint8_t voltage;
2487	int voltage_tries, loop_tries;
2488	uint32_t DP = intel_dp->DP;
2489	uint8_t link_config[2];
2490
2491	if (HAS_DDI(dev))
2492		intel_ddi_prepare_link_retrain(encoder);
2493
2494	/* Write the link configuration data */
2495	link_config[0] = intel_dp->link_bw;
2496	link_config[1] = intel_dp->lane_count;
2497	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2498		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2499	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2500
2501	link_config[0] = 0;
2502	link_config[1] = DP_SET_ANSI_8B10B;
2503	intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2504
2505	DP |= DP_PORT_EN;
2506
2507	/* clock recovery */
2508	if (!intel_dp_reset_link_train(intel_dp, &DP,
2509				       DP_TRAINING_PATTERN_1 |
2510				       DP_LINK_SCRAMBLING_DISABLE)) {
2511		DRM_ERROR("failed to enable link training\n");
2512		return;
2513	}
2514
2515	voltage = 0xff;
2516	voltage_tries = 0;
2517	loop_tries = 0;
2518	for (;;) {
2519		uint8_t link_status[DP_LINK_STATUS_SIZE];
2520
2521		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2522		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2523			DRM_ERROR("failed to get link status\n");
2524			break;
2525		}
2526
2527		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2528			DRM_DEBUG_KMS("clock recovery OK\n");
2529			break;
2530		}
2531
2532		/* Check to see if we've tried the max voltage */
2533		for (i = 0; i < intel_dp->lane_count; i++)
2534			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2535				break;
2536		if (i == intel_dp->lane_count) {
2537			++loop_tries;
2538			if (loop_tries == 5) {
2539				DRM_ERROR("too many full retries, give up\n");
2540				break;
2541			}
2542			intel_dp_reset_link_train(intel_dp, &DP,
2543						  DP_TRAINING_PATTERN_1 |
2544						  DP_LINK_SCRAMBLING_DISABLE);
2545			voltage_tries = 0;
2546			continue;
2547		}
2548
2549		/* Check to see if we've tried the same voltage 5 times */
2550		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2551			++voltage_tries;
2552			if (voltage_tries == 5) {
2553				DRM_ERROR("too many voltage retries, give up\n");
2554				break;
2555			}
2556		} else
2557			voltage_tries = 0;
2558		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2559
2560		/* Update training set as requested by target */
2561		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2562			DRM_ERROR("failed to update link training\n");
2563			break;
2564		}
2565	}
2566
2567	intel_dp->DP = DP;
2568}
2569
2570void
2571intel_dp_complete_link_train(struct intel_dp *intel_dp)
2572{
2573	bool channel_eq = false;
2574	int tries, cr_tries;
2575	uint32_t DP = intel_dp->DP;
2576
2577	/* channel equalization */
2578	if (!intel_dp_set_link_train(intel_dp, &DP,
2579				     DP_TRAINING_PATTERN_2 |
2580				     DP_LINK_SCRAMBLING_DISABLE)) {
2581		DRM_ERROR("failed to start channel equalization\n");
2582		return;
2583	}
2584
2585	tries = 0;
2586	cr_tries = 0;
2587	channel_eq = false;
2588	for (;;) {
2589		uint8_t link_status[DP_LINK_STATUS_SIZE];
2590
2591		if (cr_tries > 5) {
2592			DRM_ERROR("failed to train DP, aborting\n");
2593			intel_dp_link_down(intel_dp);
2594			break;
2595		}
2596
2597		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2598		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2599			DRM_ERROR("failed to get link status\n");
2600			break;
2601		}
2602
2603		/* Make sure clock is still ok */
2604		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2605			intel_dp_start_link_train(intel_dp);
2606			intel_dp_set_link_train(intel_dp, &DP,
2607						DP_TRAINING_PATTERN_2 |
2608						DP_LINK_SCRAMBLING_DISABLE);
2609			cr_tries++;
2610			continue;
2611		}
2612
2613		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2614			channel_eq = true;
2615			break;
2616		}
2617
2618		/* Try 5 times, then try clock recovery if that fails */
2619		if (tries > 5) {
2620			intel_dp_link_down(intel_dp);
2621			intel_dp_start_link_train(intel_dp);
2622			intel_dp_set_link_train(intel_dp, &DP,
2623						DP_TRAINING_PATTERN_2 |
2624						DP_LINK_SCRAMBLING_DISABLE);
2625			tries = 0;
2626			cr_tries++;
2627			continue;
2628		}
2629
2630		/* Update training set as requested by target */
2631		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2632			DRM_ERROR("failed to update link training\n");
2633			break;
2634		}
2635		++tries;
2636	}
2637
2638	intel_dp_set_idle_link_train(intel_dp);
2639
2640	intel_dp->DP = DP;
2641
2642	if (channel_eq)
2643		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2644
2645}
2646
2647void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2648{
2649	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2650				DP_TRAINING_PATTERN_DISABLE);
2651}
2652
2653static void
2654intel_dp_link_down(struct intel_dp *intel_dp)
2655{
2656	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2657	enum port port = intel_dig_port->port;
2658	struct drm_device *dev = intel_dig_port->base.base.dev;
2659	struct drm_i915_private *dev_priv = dev->dev_private;
2660	struct intel_crtc *intel_crtc =
2661		to_intel_crtc(intel_dig_port->base.base.crtc);
2662	uint32_t DP = intel_dp->DP;
2663
2664	/*
2665	 * DDI code has a strict mode set sequence and we should try to respect
2666	 * it, otherwise we might hang the machine in many different ways. So we
2667	 * really should be disabling the port only on a complete crtc_disable
2668	 * sequence. This function is just called under two conditions on DDI
2669	 * code:
2670	 * - Link train failed while doing crtc_enable, and on this case we
2671	 *   really should respect the mode set sequence and wait for a
2672	 *   crtc_disable.
2673	 * - Someone turned the monitor off and intel_dp_check_link_status
2674	 *   called us. We don't need to disable the whole port on this case, so
2675	 *   when someone turns the monitor on again,
2676	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2677	 *   train.
2678	 */
2679	if (HAS_DDI(dev))
2680		return;
2681
2682	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2683		return;
2684
2685	DRM_DEBUG_KMS("\n");
2686
2687	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2688		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2689		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2690	} else {
2691		DP &= ~DP_LINK_TRAIN_MASK;
2692		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2693	}
2694	POSTING_READ(intel_dp->output_reg);
2695
2696	/* We don't really know why we're doing this */
2697	intel_wait_for_vblank(dev, intel_crtc->pipe);
2698
2699	if (HAS_PCH_IBX(dev) &&
2700	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2701		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2702
2703		/* Hardware workaround: leaving our transcoder select
2704		 * set to transcoder B while it's off will prevent the
2705		 * corresponding HDMI output on transcoder A.
2706		 *
2707		 * Combine this with another hardware workaround:
2708		 * transcoder select bit can only be cleared while the
2709		 * port is enabled.
2710		 */
2711		DP &= ~DP_PIPEB_SELECT;
2712		I915_WRITE(intel_dp->output_reg, DP);
2713
2714		/* Changes to enable or select take place the vblank
2715		 * after being written.
2716		 */
2717		if (WARN_ON(crtc == NULL)) {
2718			/* We should never try to disable a port without a crtc
2719			 * attached. For paranoia keep the code around for a
2720			 * bit. */
2721			POSTING_READ(intel_dp->output_reg);
2722			msleep(50);
2723		} else
2724			intel_wait_for_vblank(dev, intel_crtc->pipe);
2725	}
2726
2727	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2728	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2729	POSTING_READ(intel_dp->output_reg);
2730	msleep(intel_dp->panel_power_down_delay);
2731}
2732
2733static bool
2734intel_dp_get_dpcd(struct intel_dp *intel_dp)
2735{
2736	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2737	struct drm_device *dev = dig_port->base.base.dev;
2738	struct drm_i915_private *dev_priv = dev->dev_private;
2739
2740	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2741
2742	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2743					   sizeof(intel_dp->dpcd)) == 0)
2744		return false; /* aux transfer failed */
2745
2746	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2747			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2748	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2749
2750	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2751		return false; /* DPCD not present */
2752
2753	/* Check if the panel supports PSR */
2754	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2755	if (is_edp(intel_dp)) {
2756		intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2757					       intel_dp->psr_dpcd,
2758					       sizeof(intel_dp->psr_dpcd));
2759		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2760			dev_priv->psr.sink_support = true;
2761			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2762		}
2763	}
2764
2765	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2766	      DP_DWN_STRM_PORT_PRESENT))
2767		return true; /* native DP sink */
2768
2769	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2770		return true; /* no per-port downstream info */
2771
2772	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2773					   intel_dp->downstream_ports,
2774					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2775		return false; /* downstream port status fetch failed */
2776
2777	return true;
2778}
2779
2780static void
2781intel_dp_probe_oui(struct intel_dp *intel_dp)
2782{
2783	u8 buf[3];
2784
2785	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2786		return;
2787
2788	ironlake_edp_panel_vdd_on(intel_dp);
2789
2790	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2791		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2792			      buf[0], buf[1], buf[2]);
2793
2794	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2795		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2796			      buf[0], buf[1], buf[2]);
2797
2798	ironlake_edp_panel_vdd_off(intel_dp, false);
2799}
2800
2801static bool
2802intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2803{
2804	int ret;
2805
2806	ret = intel_dp_aux_native_read_retry(intel_dp,
2807					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2808					     sink_irq_vector, 1);
2809	if (!ret)
2810		return false;
2811
2812	return true;
2813}
2814
2815static void
2816intel_dp_handle_test_request(struct intel_dp *intel_dp)
2817{
2818	/* NAK by default */
2819	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2820}
2821
2822/*
2823 * According to DP spec
2824 * 5.1.2:
2825 *  1. Read DPCD
2826 *  2. Configure link according to Receiver Capabilities
2827 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2828 *  4. Check link status on receipt of hot-plug interrupt
2829 */
2830
2831void
2832intel_dp_check_link_status(struct intel_dp *intel_dp)
2833{
2834	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2835	u8 sink_irq_vector;
2836	u8 link_status[DP_LINK_STATUS_SIZE];
2837
2838	if (!intel_encoder->connectors_active)
2839		return;
2840
2841	if (WARN_ON(!intel_encoder->base.crtc))
2842		return;
2843
2844	/* Try to read receiver status if the link appears to be up */
2845	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2846		intel_dp_link_down(intel_dp);
2847		return;
2848	}
2849
2850	/* Now read the DPCD to see if it's actually running */
2851	if (!intel_dp_get_dpcd(intel_dp)) {
2852		intel_dp_link_down(intel_dp);
2853		return;
2854	}
2855
2856	/* Try to read the source of the interrupt */
2857	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2858	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2859		/* Clear interrupt source */
2860		intel_dp_aux_native_write_1(intel_dp,
2861					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2862					    sink_irq_vector);
2863
2864		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2865			intel_dp_handle_test_request(intel_dp);
2866		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2867			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2868	}
2869
2870	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2871		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2872			      drm_get_encoder_name(&intel_encoder->base));
2873		intel_dp_start_link_train(intel_dp);
2874		intel_dp_complete_link_train(intel_dp);
2875		intel_dp_stop_link_train(intel_dp);
2876	}
2877}
2878
2879/* XXX this is probably wrong for multiple downstream ports */
2880static enum drm_connector_status
2881intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2882{
2883	uint8_t *dpcd = intel_dp->dpcd;
2884	uint8_t type;
2885
2886	if (!intel_dp_get_dpcd(intel_dp))
2887		return connector_status_disconnected;
2888
2889	/* if there's no downstream port, we're done */
2890	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2891		return connector_status_connected;
2892
2893	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2894	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2895	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2896		uint8_t reg;
2897		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2898						    &reg, 1))
2899			return connector_status_unknown;
2900		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2901					      : connector_status_disconnected;
2902	}
2903
2904	/* If no HPD, poke DDC gently */
2905	if (drm_probe_ddc(&intel_dp->adapter))
2906		return connector_status_connected;
2907
2908	/* Well we tried, say unknown for unreliable port types */
2909	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2910		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2911		if (type == DP_DS_PORT_TYPE_VGA ||
2912		    type == DP_DS_PORT_TYPE_NON_EDID)
2913			return connector_status_unknown;
2914	} else {
2915		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2916			DP_DWN_STRM_PORT_TYPE_MASK;
2917		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2918		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
2919			return connector_status_unknown;
2920	}
2921
2922	/* Anything else is out of spec, warn and ignore */
2923	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2924	return connector_status_disconnected;
2925}
2926
2927static enum drm_connector_status
2928ironlake_dp_detect(struct intel_dp *intel_dp)
2929{
2930	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2931	struct drm_i915_private *dev_priv = dev->dev_private;
2932	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2933	enum drm_connector_status status;
2934
2935	/* Can't disconnect eDP, but you can close the lid... */
2936	if (is_edp(intel_dp)) {
2937		status = intel_panel_detect(dev);
2938		if (status == connector_status_unknown)
2939			status = connector_status_connected;
2940		return status;
2941	}
2942
2943	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2944		return connector_status_disconnected;
2945
2946	return intel_dp_detect_dpcd(intel_dp);
2947}
2948
2949static enum drm_connector_status
2950g4x_dp_detect(struct intel_dp *intel_dp)
2951{
2952	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2953	struct drm_i915_private *dev_priv = dev->dev_private;
2954	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2955	uint32_t bit;
2956
2957	/* Can't disconnect eDP, but you can close the lid... */
2958	if (is_edp(intel_dp)) {
2959		enum drm_connector_status status;
2960
2961		status = intel_panel_detect(dev);
2962		if (status == connector_status_unknown)
2963			status = connector_status_connected;
2964		return status;
2965	}
2966
2967	switch (intel_dig_port->port) {
2968	case PORT_B:
2969		bit = PORTB_HOTPLUG_LIVE_STATUS;
2970		break;
2971	case PORT_C:
2972		bit = PORTC_HOTPLUG_LIVE_STATUS;
2973		break;
2974	case PORT_D:
2975		bit = PORTD_HOTPLUG_LIVE_STATUS;
2976		break;
2977	default:
2978		return connector_status_unknown;
2979	}
2980
2981	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2982		return connector_status_disconnected;
2983
2984	return intel_dp_detect_dpcd(intel_dp);
2985}
2986
2987static struct edid *
2988intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2989{
2990	struct intel_connector *intel_connector = to_intel_connector(connector);
2991
2992	/* use cached edid if we have one */
2993	if (intel_connector->edid) {
2994		/* invalid edid */
2995		if (IS_ERR(intel_connector->edid))
2996			return NULL;
2997
2998		return drm_edid_duplicate(intel_connector->edid);
2999	}
3000
3001	return drm_get_edid(connector, adapter);
3002}
3003
3004static int
3005intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3006{
3007	struct intel_connector *intel_connector = to_intel_connector(connector);
3008
3009	/* use cached edid if we have one */
3010	if (intel_connector->edid) {
3011		/* invalid edid */
3012		if (IS_ERR(intel_connector->edid))
3013			return 0;
3014
3015		return intel_connector_update_modes(connector,
3016						    intel_connector->edid);
3017	}
3018
3019	return intel_ddc_get_modes(connector, adapter);
3020}
3021
3022static enum drm_connector_status
3023intel_dp_detect(struct drm_connector *connector, bool force)
3024{
3025	struct intel_dp *intel_dp = intel_attached_dp(connector);
3026	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3027	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3028	struct drm_device *dev = connector->dev;
3029	enum drm_connector_status status;
3030	struct edid *edid = NULL;
3031
3032	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3033		      connector->base.id, drm_get_connector_name(connector));
3034
3035	intel_dp->has_audio = false;
3036
3037	if (HAS_PCH_SPLIT(dev))
3038		status = ironlake_dp_detect(intel_dp);
3039	else
3040		status = g4x_dp_detect(intel_dp);
3041
3042	if (status != connector_status_connected)
3043		return status;
3044
3045	intel_dp_probe_oui(intel_dp);
3046
3047	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3048		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3049	} else {
3050		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3051		if (edid) {
3052			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3053			kfree(edid);
3054		}
3055	}
3056
3057	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3058		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3059	return connector_status_connected;
3060}
3061
3062static int intel_dp_get_modes(struct drm_connector *connector)
3063{
3064	struct intel_dp *intel_dp = intel_attached_dp(connector);
3065	struct intel_connector *intel_connector = to_intel_connector(connector);
3066	struct drm_device *dev = connector->dev;
3067	int ret;
3068
3069	/* We should parse the EDID data and find out if it has an audio sink
3070	 */
3071
3072	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3073	if (ret)
3074		return ret;
3075
3076	/* if eDP has no EDID, fall back to fixed mode */
3077	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3078		struct drm_display_mode *mode;
3079		mode = drm_mode_duplicate(dev,
3080					  intel_connector->panel.fixed_mode);
3081		if (mode) {
3082			drm_mode_probed_add(connector, mode);
3083			return 1;
3084		}
3085	}
3086	return 0;
3087}
3088
3089static bool
3090intel_dp_detect_audio(struct drm_connector *connector)
3091{
3092	struct intel_dp *intel_dp = intel_attached_dp(connector);
3093	struct edid *edid;
3094	bool has_audio = false;
3095
3096	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3097	if (edid) {
3098		has_audio = drm_detect_monitor_audio(edid);
3099		kfree(edid);
3100	}
3101
3102	return has_audio;
3103}
3104
3105static int
3106intel_dp_set_property(struct drm_connector *connector,
3107		      struct drm_property *property,
3108		      uint64_t val)
3109{
3110	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3111	struct intel_connector *intel_connector = to_intel_connector(connector);
3112	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3113	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3114	int ret;
3115
3116	ret = drm_object_property_set_value(&connector->base, property, val);
3117	if (ret)
3118		return ret;
3119
3120	if (property == dev_priv->force_audio_property) {
3121		int i = val;
3122		bool has_audio;
3123
3124		if (i == intel_dp->force_audio)
3125			return 0;
3126
3127		intel_dp->force_audio = i;
3128
3129		if (i == HDMI_AUDIO_AUTO)
3130			has_audio = intel_dp_detect_audio(connector);
3131		else
3132			has_audio = (i == HDMI_AUDIO_ON);
3133
3134		if (has_audio == intel_dp->has_audio)
3135			return 0;
3136
3137		intel_dp->has_audio = has_audio;
3138		goto done;
3139	}
3140
3141	if (property == dev_priv->broadcast_rgb_property) {
3142		bool old_auto = intel_dp->color_range_auto;
3143		uint32_t old_range = intel_dp->color_range;
3144
3145		switch (val) {
3146		case INTEL_BROADCAST_RGB_AUTO:
3147			intel_dp->color_range_auto = true;
3148			break;
3149		case INTEL_BROADCAST_RGB_FULL:
3150			intel_dp->color_range_auto = false;
3151			intel_dp->color_range = 0;
3152			break;
3153		case INTEL_BROADCAST_RGB_LIMITED:
3154			intel_dp->color_range_auto = false;
3155			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3156			break;
3157		default:
3158			return -EINVAL;
3159		}
3160
3161		if (old_auto == intel_dp->color_range_auto &&
3162		    old_range == intel_dp->color_range)
3163			return 0;
3164
3165		goto done;
3166	}
3167
3168	if (is_edp(intel_dp) &&
3169	    property == connector->dev->mode_config.scaling_mode_property) {
3170		if (val == DRM_MODE_SCALE_NONE) {
3171			DRM_DEBUG_KMS("no scaling not supported\n");
3172			return -EINVAL;
3173		}
3174
3175		if (intel_connector->panel.fitting_mode == val) {
3176			/* the eDP scaling property is not changed */
3177			return 0;
3178		}
3179		intel_connector->panel.fitting_mode = val;
3180
3181		goto done;
3182	}
3183
3184	return -EINVAL;
3185
3186done:
3187	if (intel_encoder->base.crtc)
3188		intel_crtc_restore_mode(intel_encoder->base.crtc);
3189
3190	return 0;
3191}
3192
3193static void
3194intel_dp_connector_destroy(struct drm_connector *connector)
3195{
3196	struct intel_connector *intel_connector = to_intel_connector(connector);
3197
3198	if (!IS_ERR_OR_NULL(intel_connector->edid))
3199		kfree(intel_connector->edid);
3200
3201	/* Can't call is_edp() since the encoder may have been destroyed
3202	 * already. */
3203	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3204		intel_panel_fini(&intel_connector->panel);
3205
3206	drm_connector_cleanup(connector);
3207	kfree(connector);
3208}
3209
3210void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3211{
3212	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3213	struct intel_dp *intel_dp = &intel_dig_port->dp;
3214	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3215
3216	i2c_del_adapter(&intel_dp->adapter);
3217	drm_encoder_cleanup(encoder);
3218	if (is_edp(intel_dp)) {
3219		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3220		mutex_lock(&dev->mode_config.mutex);
3221		ironlake_panel_vdd_off_sync(intel_dp);
3222		mutex_unlock(&dev->mode_config.mutex);
3223	}
3224	kfree(intel_dig_port);
3225}
3226
3227static const struct drm_connector_funcs intel_dp_connector_funcs = {
3228	.dpms = intel_connector_dpms,
3229	.detect = intel_dp_detect,
3230	.fill_modes = drm_helper_probe_single_connector_modes,
3231	.set_property = intel_dp_set_property,
3232	.destroy = intel_dp_connector_destroy,
3233};
3234
3235static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3236	.get_modes = intel_dp_get_modes,
3237	.mode_valid = intel_dp_mode_valid,
3238	.best_encoder = intel_best_encoder,
3239};
3240
3241static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3242	.destroy = intel_dp_encoder_destroy,
3243};
3244
3245static void
3246intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3247{
3248	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3249
3250	intel_dp_check_link_status(intel_dp);
3251}
3252
3253/* Return which DP Port should be selected for Transcoder DP control */
3254int
3255intel_trans_dp_port_sel(struct drm_crtc *crtc)
3256{
3257	struct drm_device *dev = crtc->dev;
3258	struct intel_encoder *intel_encoder;
3259	struct intel_dp *intel_dp;
3260
3261	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3262		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3263
3264		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3265		    intel_encoder->type == INTEL_OUTPUT_EDP)
3266			return intel_dp->output_reg;
3267	}
3268
3269	return -1;
3270}
3271
3272/* check the VBT to see whether the eDP is on DP-D port */
3273bool intel_dpd_is_edp(struct drm_device *dev)
3274{
3275	struct drm_i915_private *dev_priv = dev->dev_private;
3276	union child_device_config *p_child;
3277	int i;
3278
3279	if (!dev_priv->vbt.child_dev_num)
3280		return false;
3281
3282	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3283		p_child = dev_priv->vbt.child_dev + i;
3284
3285		if (p_child->common.dvo_port == PORT_IDPD &&
3286		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3287		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3288			return true;
3289	}
3290	return false;
3291}
3292
3293static void
3294intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3295{
3296	struct intel_connector *intel_connector = to_intel_connector(connector);
3297
3298	intel_attach_force_audio_property(connector);
3299	intel_attach_broadcast_rgb_property(connector);
3300	intel_dp->color_range_auto = true;
3301
3302	if (is_edp(intel_dp)) {
3303		drm_mode_create_scaling_mode_property(connector->dev);
3304		drm_object_attach_property(
3305			&connector->base,
3306			connector->dev->mode_config.scaling_mode_property,
3307			DRM_MODE_SCALE_ASPECT);
3308		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3309	}
3310}
3311
3312static void
3313intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3314				    struct intel_dp *intel_dp,
3315				    struct edp_power_seq *out)
3316{
3317	struct drm_i915_private *dev_priv = dev->dev_private;
3318	struct edp_power_seq cur, vbt, spec, final;
3319	u32 pp_on, pp_off, pp_div, pp;
3320	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3321
3322	if (HAS_PCH_SPLIT(dev)) {
3323		pp_ctrl_reg = PCH_PP_CONTROL;
3324		pp_on_reg = PCH_PP_ON_DELAYS;
3325		pp_off_reg = PCH_PP_OFF_DELAYS;
3326		pp_div_reg = PCH_PP_DIVISOR;
3327	} else {
3328		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3329
3330		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3331		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3332		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3333		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3334	}
3335
3336	/* Workaround: Need to write PP_CONTROL with the unlock key as
3337	 * the very first thing. */
3338	pp = ironlake_get_pp_control(intel_dp);
3339	I915_WRITE(pp_ctrl_reg, pp);
3340
3341	pp_on = I915_READ(pp_on_reg);
3342	pp_off = I915_READ(pp_off_reg);
3343	pp_div = I915_READ(pp_div_reg);
3344
3345	/* Pull timing values out of registers */
3346	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3347		PANEL_POWER_UP_DELAY_SHIFT;
3348
3349	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3350		PANEL_LIGHT_ON_DELAY_SHIFT;
3351
3352	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3353		PANEL_LIGHT_OFF_DELAY_SHIFT;
3354
3355	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3356		PANEL_POWER_DOWN_DELAY_SHIFT;
3357
3358	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3359		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3360
3361	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3362		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3363
3364	vbt = dev_priv->vbt.edp_pps;
3365
3366	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3367	 * our hw here, which are all in 100usec. */
3368	spec.t1_t3 = 210 * 10;
3369	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3370	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3371	spec.t10 = 500 * 10;
3372	/* This one is special and actually in units of 100ms, but zero
3373	 * based in the hw (so we need to add 100 ms). But the sw vbt
3374	 * table multiplies it with 1000 to make it in units of 100usec,
3375	 * too. */
3376	spec.t11_t12 = (510 + 100) * 10;
3377
3378	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3379		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3380
3381	/* Use the max of the register settings and vbt. If both are
3382	 * unset, fall back to the spec limits. */
3383#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3384				       spec.field : \
3385				       max(cur.field, vbt.field))
3386	assign_final(t1_t3);
3387	assign_final(t8);
3388	assign_final(t9);
3389	assign_final(t10);
3390	assign_final(t11_t12);
3391#undef assign_final
3392
3393#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3394	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3395	intel_dp->backlight_on_delay = get_delay(t8);
3396	intel_dp->backlight_off_delay = get_delay(t9);
3397	intel_dp->panel_power_down_delay = get_delay(t10);
3398	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3399#undef get_delay
3400
3401	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3402		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3403		      intel_dp->panel_power_cycle_delay);
3404
3405	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3406		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3407
3408	if (out)
3409		*out = final;
3410}
3411
3412static void
3413intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3414					      struct intel_dp *intel_dp,
3415					      struct edp_power_seq *seq)
3416{
3417	struct drm_i915_private *dev_priv = dev->dev_private;
3418	u32 pp_on, pp_off, pp_div, port_sel = 0;
3419	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3420	int pp_on_reg, pp_off_reg, pp_div_reg;
3421
3422	if (HAS_PCH_SPLIT(dev)) {
3423		pp_on_reg = PCH_PP_ON_DELAYS;
3424		pp_off_reg = PCH_PP_OFF_DELAYS;
3425		pp_div_reg = PCH_PP_DIVISOR;
3426	} else {
3427		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3428
3429		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3430		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3431		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3432	}
3433
3434	/* And finally store the new values in the power sequencer. */
3435	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3436		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3437	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3438		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3439	/* Compute the divisor for the pp clock, simply match the Bspec
3440	 * formula. */
3441	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3442	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3443			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3444
3445	/* Haswell doesn't have any port selection bits for the panel
3446	 * power sequencer any more. */
3447	if (IS_VALLEYVIEW(dev)) {
3448		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3449			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3450		else
3451			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3452	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3453		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3454			port_sel = PANEL_PORT_SELECT_DPA;
3455		else
3456			port_sel = PANEL_PORT_SELECT_DPD;
3457	}
3458
3459	pp_on |= port_sel;
3460
3461	I915_WRITE(pp_on_reg, pp_on);
3462	I915_WRITE(pp_off_reg, pp_off);
3463	I915_WRITE(pp_div_reg, pp_div);
3464
3465	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3466		      I915_READ(pp_on_reg),
3467		      I915_READ(pp_off_reg),
3468		      I915_READ(pp_div_reg));
3469}
3470
3471static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3472				     struct intel_connector *intel_connector)
3473{
3474	struct drm_connector *connector = &intel_connector->base;
3475	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3476	struct drm_device *dev = intel_dig_port->base.base.dev;
3477	struct drm_i915_private *dev_priv = dev->dev_private;
3478	struct drm_display_mode *fixed_mode = NULL;
3479	struct edp_power_seq power_seq = { 0 };
3480	bool has_dpcd;
3481	struct drm_display_mode *scan;
3482	struct edid *edid;
3483
3484	if (!is_edp(intel_dp))
3485		return true;
3486
3487	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3488
3489	/* Cache DPCD and EDID for edp. */
3490	ironlake_edp_panel_vdd_on(intel_dp);
3491	has_dpcd = intel_dp_get_dpcd(intel_dp);
3492	ironlake_edp_panel_vdd_off(intel_dp, false);
3493
3494	if (has_dpcd) {
3495		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3496			dev_priv->no_aux_handshake =
3497				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3498				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3499	} else {
3500		/* if this fails, presume the device is a ghost */
3501		DRM_INFO("failed to retrieve link info, disabling eDP\n");
3502		return false;
3503	}
3504
3505	/* We now know it's not a ghost, init power sequence regs. */
3506	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3507						      &power_seq);
3508
3509	edid = drm_get_edid(connector, &intel_dp->adapter);
3510	if (edid) {
3511		if (drm_add_edid_modes(connector, edid)) {
3512			drm_mode_connector_update_edid_property(connector,
3513								edid);
3514			drm_edid_to_eld(connector, edid);
3515		} else {
3516			kfree(edid);
3517			edid = ERR_PTR(-EINVAL);
3518		}
3519	} else {
3520		edid = ERR_PTR(-ENOENT);
3521	}
3522	intel_connector->edid = edid;
3523
3524	/* prefer fixed mode from EDID if available */
3525	list_for_each_entry(scan, &connector->probed_modes, head) {
3526		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3527			fixed_mode = drm_mode_duplicate(dev, scan);
3528			break;
3529		}
3530	}
3531
3532	/* fallback to VBT if available for eDP */
3533	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3534		fixed_mode = drm_mode_duplicate(dev,
3535					dev_priv->vbt.lfp_lvds_vbt_mode);
3536		if (fixed_mode)
3537			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3538	}
3539
3540	intel_panel_init(&intel_connector->panel, fixed_mode);
3541	intel_panel_setup_backlight(connector);
3542
3543	return true;
3544}
3545
3546bool
3547intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3548			struct intel_connector *intel_connector)
3549{
3550	struct drm_connector *connector = &intel_connector->base;
3551	struct intel_dp *intel_dp = &intel_dig_port->dp;
3552	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3553	struct drm_device *dev = intel_encoder->base.dev;
3554	struct drm_i915_private *dev_priv = dev->dev_private;
3555	enum port port = intel_dig_port->port;
3556	const char *name = NULL;
3557	int type, error;
3558
3559	/* Preserve the current hw state. */
3560	intel_dp->DP = I915_READ(intel_dp->output_reg);
3561	intel_dp->attached_connector = intel_connector;
3562
3563	type = DRM_MODE_CONNECTOR_DisplayPort;
3564	/*
3565	 * FIXME : We need to initialize built-in panels before external panels.
3566	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3567	 */
3568	switch (port) {
3569	case PORT_A:
3570		type = DRM_MODE_CONNECTOR_eDP;
3571		break;
3572	case PORT_C:
3573		if (IS_VALLEYVIEW(dev))
3574			type = DRM_MODE_CONNECTOR_eDP;
3575		break;
3576	case PORT_D:
3577		if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3578			type = DRM_MODE_CONNECTOR_eDP;
3579		break;
3580	default:	/* silence GCC warning */
3581		break;
3582	}
3583
3584	/*
3585	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3586	 * for DP the encoder type can be set by the caller to
3587	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3588	 */
3589	if (type == DRM_MODE_CONNECTOR_eDP)
3590		intel_encoder->type = INTEL_OUTPUT_EDP;
3591
3592	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3593			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3594			port_name(port));
3595
3596	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3597	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3598
3599	connector->interlace_allowed = true;
3600	connector->doublescan_allowed = 0;
3601
3602	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3603			  ironlake_panel_vdd_work);
3604
3605	intel_connector_attach_encoder(intel_connector, intel_encoder);
3606	drm_sysfs_connector_add(connector);
3607
3608	if (HAS_DDI(dev))
3609		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3610	else
3611		intel_connector->get_hw_state = intel_connector_get_hw_state;
3612
3613	intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3614	if (HAS_DDI(dev)) {
3615		switch (intel_dig_port->port) {
3616		case PORT_A:
3617			intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3618			break;
3619		case PORT_B:
3620			intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3621			break;
3622		case PORT_C:
3623			intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3624			break;
3625		case PORT_D:
3626			intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3627			break;
3628		default:
3629			BUG();
3630		}
3631	}
3632
3633	/* Set up the DDC bus. */
3634	switch (port) {
3635	case PORT_A:
3636		intel_encoder->hpd_pin = HPD_PORT_A;
3637		name = "DPDDC-A";
3638		break;
3639	case PORT_B:
3640		intel_encoder->hpd_pin = HPD_PORT_B;
3641		name = "DPDDC-B";
3642		break;
3643	case PORT_C:
3644		intel_encoder->hpd_pin = HPD_PORT_C;
3645		name = "DPDDC-C";
3646		break;
3647	case PORT_D:
3648		intel_encoder->hpd_pin = HPD_PORT_D;
3649		name = "DPDDC-D";
3650		break;
3651	default:
3652		BUG();
3653	}
3654
3655	error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3656	WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3657	     error, port_name(port));
3658
3659	intel_dp->psr_setup_done = false;
3660
3661	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3662		i2c_del_adapter(&intel_dp->adapter);
3663		if (is_edp(intel_dp)) {
3664			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3665			mutex_lock(&dev->mode_config.mutex);
3666			ironlake_panel_vdd_off_sync(intel_dp);
3667			mutex_unlock(&dev->mode_config.mutex);
3668		}
3669		drm_sysfs_connector_remove(connector);
3670		drm_connector_cleanup(connector);
3671		return false;
3672	}
3673
3674	intel_dp_add_properties(intel_dp, connector);
3675
3676	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3677	 * 0xd.  Failure to do so will result in spurious interrupts being
3678	 * generated on the port when a cable is not attached.
3679	 */
3680	if (IS_G4X(dev) && !IS_GM45(dev)) {
3681		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3682		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3683	}
3684
3685	return true;
3686}
3687
3688void
3689intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3690{
3691	struct intel_digital_port *intel_dig_port;
3692	struct intel_encoder *intel_encoder;
3693	struct drm_encoder *encoder;
3694	struct intel_connector *intel_connector;
3695
3696	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3697	if (!intel_dig_port)
3698		return;
3699
3700	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3701	if (!intel_connector) {
3702		kfree(intel_dig_port);
3703		return;
3704	}
3705
3706	intel_encoder = &intel_dig_port->base;
3707	encoder = &intel_encoder->base;
3708
3709	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3710			 DRM_MODE_ENCODER_TMDS);
3711
3712	intel_encoder->compute_config = intel_dp_compute_config;
3713	intel_encoder->mode_set = intel_dp_mode_set;
3714	intel_encoder->disable = intel_disable_dp;
3715	intel_encoder->post_disable = intel_post_disable_dp;
3716	intel_encoder->get_hw_state = intel_dp_get_hw_state;
3717	intel_encoder->get_config = intel_dp_get_config;
3718	if (IS_VALLEYVIEW(dev)) {
3719		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3720		intel_encoder->pre_enable = vlv_pre_enable_dp;
3721		intel_encoder->enable = vlv_enable_dp;
3722	} else {
3723		intel_encoder->pre_enable = g4x_pre_enable_dp;
3724		intel_encoder->enable = g4x_enable_dp;
3725	}
3726
3727	intel_dig_port->port = port;
3728	intel_dig_port->dp.output_reg = output_reg;
3729
3730	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3731	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3732	intel_encoder->cloneable = false;
3733	intel_encoder->hot_plug = intel_dp_hot_plug;
3734
3735	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3736		drm_encoder_cleanup(encoder);
3737		kfree(intel_dig_port);
3738		kfree(intel_connector);
3739	}
3740}
3741