intel_dp.c revision 987a709e1589cf10e250e04ce9df910b735d4f60
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE	9
44
45struct intel_dp {
46	struct intel_encoder base;
47	uint32_t output_reg;
48	uint32_t DP;
49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50	bool has_audio;
51	int force_audio;
52	int dpms_mode;
53	uint8_t link_bw;
54	uint8_t lane_count;
55	uint8_t dpcd[4];
56	struct i2c_adapter adapter;
57	struct i2c_algo_dp_aux_data algo;
58	bool is_pch_edp;
59	uint8_t	train_set[4];
60	uint8_t link_status[DP_LINK_STATUS_SIZE];
61
62	struct drm_property *force_audio_property;
63};
64
65/**
66 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
67 * @intel_dp: DP struct
68 *
69 * If a CPU or PCH DP output is attached to an eDP panel, this function
70 * will return true, and false otherwise.
71 */
72static bool is_edp(struct intel_dp *intel_dp)
73{
74	return intel_dp->base.type == INTEL_OUTPUT_EDP;
75}
76
77/**
78 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
79 * @intel_dp: DP struct
80 *
81 * Returns true if the given DP struct corresponds to a PCH DP port attached
82 * to an eDP panel, false otherwise.  Helpful for determining whether we
83 * may need FDI resources for a given DP output or not.
84 */
85static bool is_pch_edp(struct intel_dp *intel_dp)
86{
87	return intel_dp->is_pch_edp;
88}
89
90static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
91{
92	return container_of(encoder, struct intel_dp, base.base);
93}
94
95static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
96{
97	return container_of(intel_attached_encoder(connector),
98			    struct intel_dp, base);
99}
100
101/**
102 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
103 * @encoder: DRM encoder
104 *
105 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
106 * by intel_display.c.
107 */
108bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
109{
110	struct intel_dp *intel_dp;
111
112	if (!encoder)
113		return false;
114
115	intel_dp = enc_to_intel_dp(encoder);
116
117	return is_pch_edp(intel_dp);
118}
119
120static void intel_dp_start_link_train(struct intel_dp *intel_dp);
121static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
122static void intel_dp_link_down(struct intel_dp *intel_dp);
123
124void
125intel_edp_link_config (struct intel_encoder *intel_encoder,
126		       int *lane_num, int *link_bw)
127{
128	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
129
130	*lane_num = intel_dp->lane_count;
131	if (intel_dp->link_bw == DP_LINK_BW_1_62)
132		*link_bw = 162000;
133	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
134		*link_bw = 270000;
135}
136
137static int
138intel_dp_max_lane_count(struct intel_dp *intel_dp)
139{
140	int max_lane_count = 4;
141
142	if (intel_dp->dpcd[0] >= 0x11) {
143		max_lane_count = intel_dp->dpcd[2] & 0x1f;
144		switch (max_lane_count) {
145		case 1: case 2: case 4:
146			break;
147		default:
148			max_lane_count = 4;
149		}
150	}
151	return max_lane_count;
152}
153
154static int
155intel_dp_max_link_bw(struct intel_dp *intel_dp)
156{
157	int max_link_bw = intel_dp->dpcd[1];
158
159	switch (max_link_bw) {
160	case DP_LINK_BW_1_62:
161	case DP_LINK_BW_2_7:
162		break;
163	default:
164		max_link_bw = DP_LINK_BW_1_62;
165		break;
166	}
167	return max_link_bw;
168}
169
170static int
171intel_dp_link_clock(uint8_t link_bw)
172{
173	if (link_bw == DP_LINK_BW_2_7)
174		return 270000;
175	else
176		return 162000;
177}
178
179/* I think this is a fiction */
180static int
181intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
182{
183	struct drm_i915_private *dev_priv = dev->dev_private;
184
185	if (is_edp(intel_dp))
186		return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
187	else
188		return pixel_clock * 3;
189}
190
191static int
192intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193{
194	return (max_link_clock * max_lanes * 8) / 10;
195}
196
197static int
198intel_dp_mode_valid(struct drm_connector *connector,
199		    struct drm_display_mode *mode)
200{
201	struct intel_dp *intel_dp = intel_attached_dp(connector);
202	struct drm_device *dev = connector->dev;
203	struct drm_i915_private *dev_priv = dev->dev_private;
204	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
205	int max_lanes = intel_dp_max_lane_count(intel_dp);
206
207	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
208		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
209			return MODE_PANEL;
210
211		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
212			return MODE_PANEL;
213	}
214
215	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
216	   which are outside spec tolerances but somehow work by magic */
217	if (!is_edp(intel_dp) &&
218	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
219	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
220		return MODE_CLOCK_HIGH;
221
222	if (mode->clock < 10000)
223		return MODE_CLOCK_LOW;
224
225	return MODE_OK;
226}
227
228static uint32_t
229pack_aux(uint8_t *src, int src_bytes)
230{
231	int	i;
232	uint32_t v = 0;
233
234	if (src_bytes > 4)
235		src_bytes = 4;
236	for (i = 0; i < src_bytes; i++)
237		v |= ((uint32_t) src[i]) << ((3-i) * 8);
238	return v;
239}
240
241static void
242unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243{
244	int i;
245	if (dst_bytes > 4)
246		dst_bytes = 4;
247	for (i = 0; i < dst_bytes; i++)
248		dst[i] = src >> ((3-i) * 8);
249}
250
251/* hrawclock is 1/4 the FSB frequency */
252static int
253intel_hrawclk(struct drm_device *dev)
254{
255	struct drm_i915_private *dev_priv = dev->dev_private;
256	uint32_t clkcfg;
257
258	clkcfg = I915_READ(CLKCFG);
259	switch (clkcfg & CLKCFG_FSB_MASK) {
260	case CLKCFG_FSB_400:
261		return 100;
262	case CLKCFG_FSB_533:
263		return 133;
264	case CLKCFG_FSB_667:
265		return 166;
266	case CLKCFG_FSB_800:
267		return 200;
268	case CLKCFG_FSB_1067:
269		return 266;
270	case CLKCFG_FSB_1333:
271		return 333;
272	/* these two are just a guess; one of them might be right */
273	case CLKCFG_FSB_1600:
274	case CLKCFG_FSB_1600_ALT:
275		return 400;
276	default:
277		return 133;
278	}
279}
280
281static int
282intel_dp_aux_ch(struct intel_dp *intel_dp,
283		uint8_t *send, int send_bytes,
284		uint8_t *recv, int recv_size)
285{
286	uint32_t output_reg = intel_dp->output_reg;
287	struct drm_device *dev = intel_dp->base.base.dev;
288	struct drm_i915_private *dev_priv = dev->dev_private;
289	uint32_t ch_ctl = output_reg + 0x10;
290	uint32_t ch_data = ch_ctl + 4;
291	int i;
292	int recv_bytes;
293	uint32_t status;
294	uint32_t aux_clock_divider;
295	int try, precharge;
296
297	/* The clock divider is based off the hrawclk,
298	 * and would like to run at 2MHz. So, take the
299	 * hrawclk value and divide by 2 and use that
300	 *
301	 * Note that PCH attached eDP panels should use a 125MHz input
302	 * clock divider.
303	 */
304	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
305		if (IS_GEN6(dev))
306			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
307		else
308			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
309	} else if (HAS_PCH_SPLIT(dev))
310		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
311	else
312		aux_clock_divider = intel_hrawclk(dev) / 2;
313
314	if (IS_GEN6(dev))
315		precharge = 3;
316	else
317		precharge = 5;
318
319	if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
320		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
321			  I915_READ(ch_ctl));
322		return -EBUSY;
323	}
324
325	/* Must try at least 3 times according to DP spec */
326	for (try = 0; try < 5; try++) {
327		/* Load the send data into the aux channel data registers */
328		for (i = 0; i < send_bytes; i += 4)
329			I915_WRITE(ch_data + i,
330				   pack_aux(send + i, send_bytes - i));
331
332		/* Send the command and wait for it to complete */
333		I915_WRITE(ch_ctl,
334			   DP_AUX_CH_CTL_SEND_BUSY |
335			   DP_AUX_CH_CTL_TIME_OUT_400us |
336			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
337			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
338			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
339			   DP_AUX_CH_CTL_DONE |
340			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
341			   DP_AUX_CH_CTL_RECEIVE_ERROR);
342		for (;;) {
343			status = I915_READ(ch_ctl);
344			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
345				break;
346			udelay(100);
347		}
348
349		/* Clear done status and any errors */
350		I915_WRITE(ch_ctl,
351			   status |
352			   DP_AUX_CH_CTL_DONE |
353			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
354			   DP_AUX_CH_CTL_RECEIVE_ERROR);
355		if (status & DP_AUX_CH_CTL_DONE)
356			break;
357	}
358
359	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
360		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
361		return -EBUSY;
362	}
363
364	/* Check for timeout or receive error.
365	 * Timeouts occur when the sink is not connected
366	 */
367	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
368		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
369		return -EIO;
370	}
371
372	/* Timeouts occur when the device isn't connected, so they're
373	 * "normal" -- don't fill the kernel log with these */
374	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
375		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
376		return -ETIMEDOUT;
377	}
378
379	/* Unload any bytes sent back from the other side */
380	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
381		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
382	if (recv_bytes > recv_size)
383		recv_bytes = recv_size;
384
385	for (i = 0; i < recv_bytes; i += 4)
386		unpack_aux(I915_READ(ch_data + i),
387			   recv + i, recv_bytes - i);
388
389	return recv_bytes;
390}
391
392/* Write data to the aux channel in native mode */
393static int
394intel_dp_aux_native_write(struct intel_dp *intel_dp,
395			  uint16_t address, uint8_t *send, int send_bytes)
396{
397	int ret;
398	uint8_t	msg[20];
399	int msg_bytes;
400	uint8_t	ack;
401
402	if (send_bytes > 16)
403		return -1;
404	msg[0] = AUX_NATIVE_WRITE << 4;
405	msg[1] = address >> 8;
406	msg[2] = address & 0xff;
407	msg[3] = send_bytes - 1;
408	memcpy(&msg[4], send, send_bytes);
409	msg_bytes = send_bytes + 4;
410	for (;;) {
411		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
412		if (ret < 0)
413			return ret;
414		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
415			break;
416		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
417			udelay(100);
418		else
419			return -EIO;
420	}
421	return send_bytes;
422}
423
424/* Write a single byte to the aux channel in native mode */
425static int
426intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
427			    uint16_t address, uint8_t byte)
428{
429	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
430}
431
432/* read bytes from a native aux channel */
433static int
434intel_dp_aux_native_read(struct intel_dp *intel_dp,
435			 uint16_t address, uint8_t *recv, int recv_bytes)
436{
437	uint8_t msg[4];
438	int msg_bytes;
439	uint8_t reply[20];
440	int reply_bytes;
441	uint8_t ack;
442	int ret;
443
444	msg[0] = AUX_NATIVE_READ << 4;
445	msg[1] = address >> 8;
446	msg[2] = address & 0xff;
447	msg[3] = recv_bytes - 1;
448
449	msg_bytes = 4;
450	reply_bytes = recv_bytes + 1;
451
452	for (;;) {
453		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
454				      reply, reply_bytes);
455		if (ret == 0)
456			return -EPROTO;
457		if (ret < 0)
458			return ret;
459		ack = reply[0];
460		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
461			memcpy(recv, reply + 1, ret - 1);
462			return ret - 1;
463		}
464		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
465			udelay(100);
466		else
467			return -EIO;
468	}
469}
470
471static int
472intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
473		    uint8_t write_byte, uint8_t *read_byte)
474{
475	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
476	struct intel_dp *intel_dp = container_of(adapter,
477						struct intel_dp,
478						adapter);
479	uint16_t address = algo_data->address;
480	uint8_t msg[5];
481	uint8_t reply[2];
482	unsigned retry;
483	int msg_bytes;
484	int reply_bytes;
485	int ret;
486
487	/* Set up the command byte */
488	if (mode & MODE_I2C_READ)
489		msg[0] = AUX_I2C_READ << 4;
490	else
491		msg[0] = AUX_I2C_WRITE << 4;
492
493	if (!(mode & MODE_I2C_STOP))
494		msg[0] |= AUX_I2C_MOT << 4;
495
496	msg[1] = address >> 8;
497	msg[2] = address;
498
499	switch (mode) {
500	case MODE_I2C_WRITE:
501		msg[3] = 0;
502		msg[4] = write_byte;
503		msg_bytes = 5;
504		reply_bytes = 1;
505		break;
506	case MODE_I2C_READ:
507		msg[3] = 0;
508		msg_bytes = 4;
509		reply_bytes = 2;
510		break;
511	default:
512		msg_bytes = 3;
513		reply_bytes = 1;
514		break;
515	}
516
517	for (retry = 0; retry < 5; retry++) {
518		ret = intel_dp_aux_ch(intel_dp,
519				      msg, msg_bytes,
520				      reply, reply_bytes);
521		if (ret < 0) {
522			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
523			return ret;
524		}
525
526		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
527		case AUX_NATIVE_REPLY_ACK:
528			/* I2C-over-AUX Reply field is only valid
529			 * when paired with AUX ACK.
530			 */
531			break;
532		case AUX_NATIVE_REPLY_NACK:
533			DRM_DEBUG_KMS("aux_ch native nack\n");
534			return -EREMOTEIO;
535		case AUX_NATIVE_REPLY_DEFER:
536			udelay(100);
537			continue;
538		default:
539			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
540				  reply[0]);
541			return -EREMOTEIO;
542		}
543
544		switch (reply[0] & AUX_I2C_REPLY_MASK) {
545		case AUX_I2C_REPLY_ACK:
546			if (mode == MODE_I2C_READ) {
547				*read_byte = reply[1];
548			}
549			return reply_bytes - 1;
550		case AUX_I2C_REPLY_NACK:
551			DRM_DEBUG_KMS("aux_i2c nack\n");
552			return -EREMOTEIO;
553		case AUX_I2C_REPLY_DEFER:
554			DRM_DEBUG_KMS("aux_i2c defer\n");
555			udelay(100);
556			break;
557		default:
558			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
559			return -EREMOTEIO;
560		}
561	}
562
563	DRM_ERROR("too many retries, giving up\n");
564	return -EREMOTEIO;
565}
566
567static int
568intel_dp_i2c_init(struct intel_dp *intel_dp,
569		  struct intel_connector *intel_connector, const char *name)
570{
571	DRM_DEBUG_KMS("i2c_init %s\n", name);
572	intel_dp->algo.running = false;
573	intel_dp->algo.address = 0;
574	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
575
576	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
577	intel_dp->adapter.owner = THIS_MODULE;
578	intel_dp->adapter.class = I2C_CLASS_DDC;
579	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
580	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
581	intel_dp->adapter.algo_data = &intel_dp->algo;
582	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
583
584	return i2c_dp_aux_add_bus(&intel_dp->adapter);
585}
586
587static bool
588intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
589		    struct drm_display_mode *adjusted_mode)
590{
591	struct drm_device *dev = encoder->dev;
592	struct drm_i915_private *dev_priv = dev->dev_private;
593	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
594	int lane_count, clock;
595	int max_lane_count = intel_dp_max_lane_count(intel_dp);
596	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
597	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
598
599	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
600		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
601		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
602					mode, adjusted_mode);
603		/*
604		 * the mode->clock is used to calculate the Data&Link M/N
605		 * of the pipe. For the eDP the fixed clock should be used.
606		 */
607		mode->clock = dev_priv->panel_fixed_mode->clock;
608	}
609
610	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
611		for (clock = 0; clock <= max_clock; clock++) {
612			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
613
614			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
615					<= link_avail) {
616				intel_dp->link_bw = bws[clock];
617				intel_dp->lane_count = lane_count;
618				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
619				DRM_DEBUG_KMS("Display port link bw %02x lane "
620						"count %d clock %d\n",
621				       intel_dp->link_bw, intel_dp->lane_count,
622				       adjusted_mode->clock);
623				return true;
624			}
625		}
626	}
627
628	if (is_edp(intel_dp)) {
629		/* okay we failed just pick the highest */
630		intel_dp->lane_count = max_lane_count;
631		intel_dp->link_bw = bws[max_clock];
632		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
633		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
634			      "count %d clock %d\n",
635			      intel_dp->link_bw, intel_dp->lane_count,
636			      adjusted_mode->clock);
637
638		return true;
639	}
640
641	return false;
642}
643
644struct intel_dp_m_n {
645	uint32_t	tu;
646	uint32_t	gmch_m;
647	uint32_t	gmch_n;
648	uint32_t	link_m;
649	uint32_t	link_n;
650};
651
652static void
653intel_reduce_ratio(uint32_t *num, uint32_t *den)
654{
655	while (*num > 0xffffff || *den > 0xffffff) {
656		*num >>= 1;
657		*den >>= 1;
658	}
659}
660
661static void
662intel_dp_compute_m_n(int bpp,
663		     int nlanes,
664		     int pixel_clock,
665		     int link_clock,
666		     struct intel_dp_m_n *m_n)
667{
668	m_n->tu = 64;
669	m_n->gmch_m = (pixel_clock * bpp) >> 3;
670	m_n->gmch_n = link_clock * nlanes;
671	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
672	m_n->link_m = pixel_clock;
673	m_n->link_n = link_clock;
674	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
675}
676
677void
678intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
679		 struct drm_display_mode *adjusted_mode)
680{
681	struct drm_device *dev = crtc->dev;
682	struct drm_mode_config *mode_config = &dev->mode_config;
683	struct drm_encoder *encoder;
684	struct drm_i915_private *dev_priv = dev->dev_private;
685	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
686	int lane_count = 4, bpp = 24;
687	struct intel_dp_m_n m_n;
688
689	/*
690	 * Find the lane count in the intel_encoder private
691	 */
692	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
693		struct intel_dp *intel_dp;
694
695		if (encoder->crtc != crtc)
696			continue;
697
698		intel_dp = enc_to_intel_dp(encoder);
699		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
700			lane_count = intel_dp->lane_count;
701			break;
702		} else if (is_edp(intel_dp)) {
703			lane_count = dev_priv->edp.lanes;
704			bpp = dev_priv->edp.bpp;
705			break;
706		}
707	}
708
709	/*
710	 * Compute the GMCH and Link ratios. The '3' here is
711	 * the number of bytes_per_pixel post-LUT, which we always
712	 * set up for 8-bits of R/G/B, or 3 bytes total.
713	 */
714	intel_dp_compute_m_n(bpp, lane_count,
715			     mode->clock, adjusted_mode->clock, &m_n);
716
717	if (HAS_PCH_SPLIT(dev)) {
718		if (intel_crtc->pipe == 0) {
719			I915_WRITE(TRANSA_DATA_M1,
720				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
721				   m_n.gmch_m);
722			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
723			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
724			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
725		} else {
726			I915_WRITE(TRANSB_DATA_M1,
727				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
728				   m_n.gmch_m);
729			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
730			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
731			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
732		}
733	} else {
734		if (intel_crtc->pipe == 0) {
735			I915_WRITE(PIPEA_GMCH_DATA_M,
736				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
737				   m_n.gmch_m);
738			I915_WRITE(PIPEA_GMCH_DATA_N,
739				   m_n.gmch_n);
740			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
741			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
742		} else {
743			I915_WRITE(PIPEB_GMCH_DATA_M,
744				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
745				   m_n.gmch_m);
746			I915_WRITE(PIPEB_GMCH_DATA_N,
747					m_n.gmch_n);
748			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
749			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
750		}
751	}
752}
753
754static void
755intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
756		  struct drm_display_mode *adjusted_mode)
757{
758	struct drm_device *dev = encoder->dev;
759	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
760	struct drm_crtc *crtc = intel_dp->base.base.crtc;
761	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
762
763	intel_dp->DP = (DP_VOLTAGE_0_4 |
764		       DP_PRE_EMPHASIS_0);
765
766	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
767		intel_dp->DP |= DP_SYNC_HS_HIGH;
768	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
769		intel_dp->DP |= DP_SYNC_VS_HIGH;
770
771	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
772		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
773	else
774		intel_dp->DP |= DP_LINK_TRAIN_OFF;
775
776	switch (intel_dp->lane_count) {
777	case 1:
778		intel_dp->DP |= DP_PORT_WIDTH_1;
779		break;
780	case 2:
781		intel_dp->DP |= DP_PORT_WIDTH_2;
782		break;
783	case 4:
784		intel_dp->DP |= DP_PORT_WIDTH_4;
785		break;
786	}
787	if (intel_dp->has_audio)
788		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
789
790	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
791	intel_dp->link_configuration[0] = intel_dp->link_bw;
792	intel_dp->link_configuration[1] = intel_dp->lane_count;
793
794	/*
795	 * Check for DPCD version > 1.1 and enhanced framing support
796	 */
797	if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
798		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
799		intel_dp->DP |= DP_ENHANCED_FRAMING;
800	}
801
802	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
803	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
804		intel_dp->DP |= DP_PIPEB_SELECT;
805
806	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
807		/* don't miss out required setting for eDP */
808		intel_dp->DP |= DP_PLL_ENABLE;
809		if (adjusted_mode->clock < 200000)
810			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
811		else
812			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
813	}
814}
815
816/* Returns true if the panel was already on when called */
817static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
818{
819	struct drm_device *dev = intel_dp->base.base.dev;
820	struct drm_i915_private *dev_priv = dev->dev_private;
821	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
822
823	if (I915_READ(PCH_PP_STATUS) & PP_ON)
824		return true;
825
826	pp = I915_READ(PCH_PP_CONTROL);
827
828	/* ILK workaround: disable reset around power sequence */
829	pp &= ~PANEL_POWER_RESET;
830	I915_WRITE(PCH_PP_CONTROL, pp);
831	POSTING_READ(PCH_PP_CONTROL);
832
833	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
834	I915_WRITE(PCH_PP_CONTROL, pp);
835	POSTING_READ(PCH_PP_CONTROL);
836
837	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
838		     5000))
839		DRM_ERROR("panel on wait timed out: 0x%08x\n",
840			  I915_READ(PCH_PP_STATUS));
841
842	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
843	I915_WRITE(PCH_PP_CONTROL, pp);
844	POSTING_READ(PCH_PP_CONTROL);
845
846	return false;
847}
848
849static void ironlake_edp_panel_off (struct drm_device *dev)
850{
851	struct drm_i915_private *dev_priv = dev->dev_private;
852	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
853		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
854
855	pp = I915_READ(PCH_PP_CONTROL);
856
857	/* ILK workaround: disable reset around power sequence */
858	pp &= ~PANEL_POWER_RESET;
859	I915_WRITE(PCH_PP_CONTROL, pp);
860	POSTING_READ(PCH_PP_CONTROL);
861
862	pp &= ~POWER_TARGET_ON;
863	I915_WRITE(PCH_PP_CONTROL, pp);
864	POSTING_READ(PCH_PP_CONTROL);
865
866	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
867		DRM_ERROR("panel off wait timed out: 0x%08x\n",
868			  I915_READ(PCH_PP_STATUS));
869
870	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
871	I915_WRITE(PCH_PP_CONTROL, pp);
872	POSTING_READ(PCH_PP_CONTROL);
873}
874
875static void ironlake_edp_backlight_on (struct drm_device *dev)
876{
877	struct drm_i915_private *dev_priv = dev->dev_private;
878	u32 pp;
879
880	DRM_DEBUG_KMS("\n");
881	/*
882	 * If we enable the backlight right away following a panel power
883	 * on, we may see slight flicker as the panel syncs with the eDP
884	 * link.  So delay a bit to make sure the image is solid before
885	 * allowing it to appear.
886	 */
887	msleep(300);
888	pp = I915_READ(PCH_PP_CONTROL);
889	pp |= EDP_BLC_ENABLE;
890	I915_WRITE(PCH_PP_CONTROL, pp);
891}
892
893static void ironlake_edp_backlight_off (struct drm_device *dev)
894{
895	struct drm_i915_private *dev_priv = dev->dev_private;
896	u32 pp;
897
898	DRM_DEBUG_KMS("\n");
899	pp = I915_READ(PCH_PP_CONTROL);
900	pp &= ~EDP_BLC_ENABLE;
901	I915_WRITE(PCH_PP_CONTROL, pp);
902}
903
904static void ironlake_edp_pll_on(struct drm_encoder *encoder)
905{
906	struct drm_device *dev = encoder->dev;
907	struct drm_i915_private *dev_priv = dev->dev_private;
908	u32 dpa_ctl;
909
910	DRM_DEBUG_KMS("\n");
911	dpa_ctl = I915_READ(DP_A);
912	dpa_ctl |= DP_PLL_ENABLE;
913	I915_WRITE(DP_A, dpa_ctl);
914	POSTING_READ(DP_A);
915	udelay(200);
916}
917
918static void ironlake_edp_pll_off(struct drm_encoder *encoder)
919{
920	struct drm_device *dev = encoder->dev;
921	struct drm_i915_private *dev_priv = dev->dev_private;
922	u32 dpa_ctl;
923
924	dpa_ctl = I915_READ(DP_A);
925	dpa_ctl &= ~DP_PLL_ENABLE;
926	I915_WRITE(DP_A, dpa_ctl);
927	POSTING_READ(DP_A);
928	udelay(200);
929}
930
931static void intel_dp_prepare(struct drm_encoder *encoder)
932{
933	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
934	struct drm_device *dev = encoder->dev;
935
936	if (is_edp(intel_dp)) {
937		ironlake_edp_backlight_off(dev);
938		ironlake_edp_panel_on(intel_dp);
939		if (!is_pch_edp(intel_dp))
940			ironlake_edp_pll_on(encoder);
941		else
942			ironlake_edp_pll_off(encoder);
943	}
944	intel_dp_link_down(intel_dp);
945}
946
947static void intel_dp_commit(struct drm_encoder *encoder)
948{
949	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
950	struct drm_device *dev = encoder->dev;
951
952	intel_dp_start_link_train(intel_dp);
953
954	if (is_edp(intel_dp))
955		ironlake_edp_panel_on(intel_dp);
956
957	intel_dp_complete_link_train(intel_dp);
958
959	if (is_edp(intel_dp))
960		ironlake_edp_backlight_on(dev);
961}
962
963static void
964intel_dp_dpms(struct drm_encoder *encoder, int mode)
965{
966	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
967	struct drm_device *dev = encoder->dev;
968	struct drm_i915_private *dev_priv = dev->dev_private;
969	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
970
971	if (mode != DRM_MODE_DPMS_ON) {
972		if (is_edp(intel_dp))
973			ironlake_edp_backlight_off(dev);
974		intel_dp_link_down(intel_dp);
975		if (is_edp(intel_dp))
976			ironlake_edp_panel_off(dev);
977		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
978			ironlake_edp_pll_off(encoder);
979	} else {
980		if (is_edp(intel_dp))
981			ironlake_edp_panel_on(intel_dp);
982		if (!(dp_reg & DP_PORT_EN)) {
983			intel_dp_start_link_train(intel_dp);
984			intel_dp_complete_link_train(intel_dp);
985		}
986		if (is_edp(intel_dp))
987			ironlake_edp_backlight_on(dev);
988	}
989	intel_dp->dpms_mode = mode;
990}
991
992/*
993 * Fetch AUX CH registers 0x202 - 0x207 which contain
994 * link status information
995 */
996static bool
997intel_dp_get_link_status(struct intel_dp *intel_dp)
998{
999	int ret;
1000
1001	ret = intel_dp_aux_native_read(intel_dp,
1002				       DP_LANE0_1_STATUS,
1003				       intel_dp->link_status, DP_LINK_STATUS_SIZE);
1004	if (ret != DP_LINK_STATUS_SIZE)
1005		return false;
1006	return true;
1007}
1008
1009static uint8_t
1010intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1011		     int r)
1012{
1013	return link_status[r - DP_LANE0_1_STATUS];
1014}
1015
1016static uint8_t
1017intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1018				 int lane)
1019{
1020	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1021	int	    s = ((lane & 1) ?
1022			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1023			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1024	uint8_t l = intel_dp_link_status(link_status, i);
1025
1026	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1027}
1028
1029static uint8_t
1030intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1031				      int lane)
1032{
1033	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1034	int	    s = ((lane & 1) ?
1035			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1036			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1037	uint8_t l = intel_dp_link_status(link_status, i);
1038
1039	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1040}
1041
1042
1043#if 0
1044static char	*voltage_names[] = {
1045	"0.4V", "0.6V", "0.8V", "1.2V"
1046};
1047static char	*pre_emph_names[] = {
1048	"0dB", "3.5dB", "6dB", "9.5dB"
1049};
1050static char	*link_train_names[] = {
1051	"pattern 1", "pattern 2", "idle", "off"
1052};
1053#endif
1054
1055/*
1056 * These are source-specific values; current Intel hardware supports
1057 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1058 */
1059#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1060
1061static uint8_t
1062intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1063{
1064	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1065	case DP_TRAIN_VOLTAGE_SWING_400:
1066		return DP_TRAIN_PRE_EMPHASIS_6;
1067	case DP_TRAIN_VOLTAGE_SWING_600:
1068		return DP_TRAIN_PRE_EMPHASIS_6;
1069	case DP_TRAIN_VOLTAGE_SWING_800:
1070		return DP_TRAIN_PRE_EMPHASIS_3_5;
1071	case DP_TRAIN_VOLTAGE_SWING_1200:
1072	default:
1073		return DP_TRAIN_PRE_EMPHASIS_0;
1074	}
1075}
1076
1077static void
1078intel_get_adjust_train(struct intel_dp *intel_dp)
1079{
1080	uint8_t v = 0;
1081	uint8_t p = 0;
1082	int lane;
1083
1084	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1085		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1086		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1087
1088		if (this_v > v)
1089			v = this_v;
1090		if (this_p > p)
1091			p = this_p;
1092	}
1093
1094	if (v >= I830_DP_VOLTAGE_MAX)
1095		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1096
1097	if (p >= intel_dp_pre_emphasis_max(v))
1098		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1099
1100	for (lane = 0; lane < 4; lane++)
1101		intel_dp->train_set[lane] = v | p;
1102}
1103
1104static uint32_t
1105intel_dp_signal_levels(uint8_t train_set, int lane_count)
1106{
1107	uint32_t	signal_levels = 0;
1108
1109	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1110	case DP_TRAIN_VOLTAGE_SWING_400:
1111	default:
1112		signal_levels |= DP_VOLTAGE_0_4;
1113		break;
1114	case DP_TRAIN_VOLTAGE_SWING_600:
1115		signal_levels |= DP_VOLTAGE_0_6;
1116		break;
1117	case DP_TRAIN_VOLTAGE_SWING_800:
1118		signal_levels |= DP_VOLTAGE_0_8;
1119		break;
1120	case DP_TRAIN_VOLTAGE_SWING_1200:
1121		signal_levels |= DP_VOLTAGE_1_2;
1122		break;
1123	}
1124	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1125	case DP_TRAIN_PRE_EMPHASIS_0:
1126	default:
1127		signal_levels |= DP_PRE_EMPHASIS_0;
1128		break;
1129	case DP_TRAIN_PRE_EMPHASIS_3_5:
1130		signal_levels |= DP_PRE_EMPHASIS_3_5;
1131		break;
1132	case DP_TRAIN_PRE_EMPHASIS_6:
1133		signal_levels |= DP_PRE_EMPHASIS_6;
1134		break;
1135	case DP_TRAIN_PRE_EMPHASIS_9_5:
1136		signal_levels |= DP_PRE_EMPHASIS_9_5;
1137		break;
1138	}
1139	return signal_levels;
1140}
1141
1142/* Gen6's DP voltage swing and pre-emphasis control */
1143static uint32_t
1144intel_gen6_edp_signal_levels(uint8_t train_set)
1145{
1146	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1147					 DP_TRAIN_PRE_EMPHASIS_MASK);
1148	switch (signal_levels) {
1149	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1150	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1151		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1152	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1153		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1154	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1155	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1156		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1157	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1158	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1159		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1160	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1161	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1162		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1163	default:
1164		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1165			      "0x%x\n", signal_levels);
1166		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1167	}
1168}
1169
1170static uint8_t
1171intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1172		      int lane)
1173{
1174	int i = DP_LANE0_1_STATUS + (lane >> 1);
1175	int s = (lane & 1) * 4;
1176	uint8_t l = intel_dp_link_status(link_status, i);
1177
1178	return (l >> s) & 0xf;
1179}
1180
1181/* Check for clock recovery is done on all channels */
1182static bool
1183intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1184{
1185	int lane;
1186	uint8_t lane_status;
1187
1188	for (lane = 0; lane < lane_count; lane++) {
1189		lane_status = intel_get_lane_status(link_status, lane);
1190		if ((lane_status & DP_LANE_CR_DONE) == 0)
1191			return false;
1192	}
1193	return true;
1194}
1195
1196/* Check to see if channel eq is done on all channels */
1197#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1198			 DP_LANE_CHANNEL_EQ_DONE|\
1199			 DP_LANE_SYMBOL_LOCKED)
1200static bool
1201intel_channel_eq_ok(struct intel_dp *intel_dp)
1202{
1203	uint8_t lane_align;
1204	uint8_t lane_status;
1205	int lane;
1206
1207	lane_align = intel_dp_link_status(intel_dp->link_status,
1208					  DP_LANE_ALIGN_STATUS_UPDATED);
1209	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1210		return false;
1211	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1212		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1213		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1214			return false;
1215	}
1216	return true;
1217}
1218
1219static bool
1220intel_dp_set_link_train(struct intel_dp *intel_dp,
1221			uint32_t dp_reg_value,
1222			uint8_t dp_train_pat)
1223{
1224	struct drm_device *dev = intel_dp->base.base.dev;
1225	struct drm_i915_private *dev_priv = dev->dev_private;
1226	int ret;
1227
1228	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1229	POSTING_READ(intel_dp->output_reg);
1230
1231	intel_dp_aux_native_write_1(intel_dp,
1232				    DP_TRAINING_PATTERN_SET,
1233				    dp_train_pat);
1234
1235	ret = intel_dp_aux_native_write(intel_dp,
1236					DP_TRAINING_LANE0_SET,
1237					intel_dp->train_set, 4);
1238	if (ret != 4)
1239		return false;
1240
1241	return true;
1242}
1243
1244/* Enable corresponding port and start training pattern 1 */
1245static void
1246intel_dp_start_link_train(struct intel_dp *intel_dp)
1247{
1248	struct drm_device *dev = intel_dp->base.base.dev;
1249	struct drm_i915_private *dev_priv = dev->dev_private;
1250	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1251	int i;
1252	uint8_t voltage;
1253	bool clock_recovery = false;
1254	int tries;
1255	u32 reg;
1256	uint32_t DP = intel_dp->DP;
1257
1258	/* Enable output, wait for it to become active */
1259	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1260	POSTING_READ(intel_dp->output_reg);
1261	intel_wait_for_vblank(dev, intel_crtc->pipe);
1262
1263	/* Write the link configuration data */
1264	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1265				  intel_dp->link_configuration,
1266				  DP_LINK_CONFIGURATION_SIZE);
1267
1268	DP |= DP_PORT_EN;
1269	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1270		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1271	else
1272		DP &= ~DP_LINK_TRAIN_MASK;
1273	memset(intel_dp->train_set, 0, 4);
1274	voltage = 0xff;
1275	tries = 0;
1276	clock_recovery = false;
1277	for (;;) {
1278		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1279		uint32_t    signal_levels;
1280		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1281			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1282			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1283		} else {
1284			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1285			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1286		}
1287
1288		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1289			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1290		else
1291			reg = DP | DP_LINK_TRAIN_PAT_1;
1292
1293		if (!intel_dp_set_link_train(intel_dp, reg,
1294					     DP_TRAINING_PATTERN_1))
1295			break;
1296		/* Set training pattern 1 */
1297
1298		udelay(100);
1299		if (!intel_dp_get_link_status(intel_dp))
1300			break;
1301
1302		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1303			clock_recovery = true;
1304			break;
1305		}
1306
1307		/* Check to see if we've tried the max voltage */
1308		for (i = 0; i < intel_dp->lane_count; i++)
1309			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1310				break;
1311		if (i == intel_dp->lane_count)
1312			break;
1313
1314		/* Check to see if we've tried the same voltage 5 times */
1315		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1316			++tries;
1317			if (tries == 5)
1318				break;
1319		} else
1320			tries = 0;
1321		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1322
1323		/* Compute new intel_dp->train_set as requested by target */
1324		intel_get_adjust_train(intel_dp);
1325	}
1326
1327	intel_dp->DP = DP;
1328}
1329
1330static void
1331intel_dp_complete_link_train(struct intel_dp *intel_dp)
1332{
1333	struct drm_device *dev = intel_dp->base.base.dev;
1334	struct drm_i915_private *dev_priv = dev->dev_private;
1335	bool channel_eq = false;
1336	int tries, cr_tries;
1337	u32 reg;
1338	uint32_t DP = intel_dp->DP;
1339
1340	/* channel equalization */
1341	tries = 0;
1342	cr_tries = 0;
1343	channel_eq = false;
1344	for (;;) {
1345		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1346		uint32_t    signal_levels;
1347
1348		if (cr_tries > 5) {
1349			DRM_ERROR("failed to train DP, aborting\n");
1350			intel_dp_link_down(intel_dp);
1351			break;
1352		}
1353
1354		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1355			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1356			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1357		} else {
1358			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1359			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1360		}
1361
1362		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1363			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1364		else
1365			reg = DP | DP_LINK_TRAIN_PAT_2;
1366
1367		/* channel eq pattern */
1368		if (!intel_dp_set_link_train(intel_dp, reg,
1369					     DP_TRAINING_PATTERN_2))
1370			break;
1371
1372		udelay(400);
1373		if (!intel_dp_get_link_status(intel_dp))
1374			break;
1375
1376		/* Make sure clock is still ok */
1377		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1378			intel_dp_start_link_train(intel_dp);
1379			cr_tries++;
1380			continue;
1381		}
1382
1383		if (intel_channel_eq_ok(intel_dp)) {
1384			channel_eq = true;
1385			break;
1386		}
1387
1388		/* Try 5 times, then try clock recovery if that fails */
1389		if (tries > 5) {
1390			intel_dp_link_down(intel_dp);
1391			intel_dp_start_link_train(intel_dp);
1392			tries = 0;
1393			cr_tries++;
1394			continue;
1395		}
1396
1397		/* Compute new intel_dp->train_set as requested by target */
1398		intel_get_adjust_train(intel_dp);
1399		++tries;
1400	}
1401
1402	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1403		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1404	else
1405		reg = DP | DP_LINK_TRAIN_OFF;
1406
1407	I915_WRITE(intel_dp->output_reg, reg);
1408	POSTING_READ(intel_dp->output_reg);
1409	intel_dp_aux_native_write_1(intel_dp,
1410				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1411}
1412
1413static void
1414intel_dp_link_down(struct intel_dp *intel_dp)
1415{
1416	struct drm_device *dev = intel_dp->base.base.dev;
1417	struct drm_i915_private *dev_priv = dev->dev_private;
1418	uint32_t DP = intel_dp->DP;
1419
1420	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1421		return;
1422
1423	DRM_DEBUG_KMS("\n");
1424
1425	if (is_edp(intel_dp)) {
1426		DP &= ~DP_PLL_ENABLE;
1427		I915_WRITE(intel_dp->output_reg, DP);
1428		POSTING_READ(intel_dp->output_reg);
1429		udelay(100);
1430	}
1431
1432	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1433		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1434		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1435	} else {
1436		DP &= ~DP_LINK_TRAIN_MASK;
1437		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1438	}
1439	POSTING_READ(intel_dp->output_reg);
1440
1441	msleep(17);
1442
1443	if (is_edp(intel_dp))
1444		DP |= DP_LINK_TRAIN_OFF;
1445
1446	if (!HAS_PCH_CPT(dev) &&
1447	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1448		struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1449		/* Hardware workaround: leaving our transcoder select
1450		 * set to transcoder B while it's off will prevent the
1451		 * corresponding HDMI output on transcoder A.
1452		 *
1453		 * Combine this with another hardware workaround:
1454		 * transcoder select bit can only be cleared while the
1455		 * port is enabled.
1456		 */
1457		DP &= ~DP_PIPEB_SELECT;
1458		I915_WRITE(intel_dp->output_reg, DP);
1459
1460		/* Changes to enable or select take place the vblank
1461		 * after being written.
1462		 */
1463		intel_wait_for_vblank(dev, intel_crtc->pipe);
1464	}
1465
1466	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1467	POSTING_READ(intel_dp->output_reg);
1468}
1469
1470/*
1471 * According to DP spec
1472 * 5.1.2:
1473 *  1. Read DPCD
1474 *  2. Configure link according to Receiver Capabilities
1475 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1476 *  4. Check link status on receipt of hot-plug interrupt
1477 */
1478
1479static void
1480intel_dp_check_link_status(struct intel_dp *intel_dp)
1481{
1482	if (!intel_dp->base.base.crtc)
1483		return;
1484
1485	if (!intel_dp_get_link_status(intel_dp)) {
1486		intel_dp_link_down(intel_dp);
1487		return;
1488	}
1489
1490	if (!intel_channel_eq_ok(intel_dp)) {
1491		intel_dp_start_link_train(intel_dp);
1492		intel_dp_complete_link_train(intel_dp);
1493	}
1494}
1495
1496static enum drm_connector_status
1497ironlake_dp_detect(struct intel_dp *intel_dp)
1498{
1499	enum drm_connector_status status;
1500
1501	/* Can't disconnect eDP */
1502	if (is_edp(intel_dp))
1503		return connector_status_connected;
1504
1505	status = connector_status_disconnected;
1506	if (intel_dp_aux_native_read(intel_dp,
1507				     0x000, intel_dp->dpcd,
1508				     sizeof (intel_dp->dpcd))
1509	    == sizeof(intel_dp->dpcd)) {
1510		if (intel_dp->dpcd[0] != 0)
1511			status = connector_status_connected;
1512	}
1513	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1514		      intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1515	return status;
1516}
1517
1518static enum drm_connector_status
1519g4x_dp_detect(struct intel_dp *intel_dp)
1520{
1521	struct drm_device *dev = intel_dp->base.base.dev;
1522	struct drm_i915_private *dev_priv = dev->dev_private;
1523	enum drm_connector_status status;
1524	uint32_t temp, bit;
1525
1526	switch (intel_dp->output_reg) {
1527	case DP_B:
1528		bit = DPB_HOTPLUG_INT_STATUS;
1529		break;
1530	case DP_C:
1531		bit = DPC_HOTPLUG_INT_STATUS;
1532		break;
1533	case DP_D:
1534		bit = DPD_HOTPLUG_INT_STATUS;
1535		break;
1536	default:
1537		return connector_status_unknown;
1538	}
1539
1540	temp = I915_READ(PORT_HOTPLUG_STAT);
1541
1542	if ((temp & bit) == 0)
1543		return connector_status_disconnected;
1544
1545	status = connector_status_disconnected;
1546	if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1547				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1548	{
1549		if (intel_dp->dpcd[0] != 0)
1550			status = connector_status_connected;
1551	}
1552
1553	return status;
1554}
1555
1556/**
1557 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1558 *
1559 * \return true if DP port is connected.
1560 * \return false if DP port is disconnected.
1561 */
1562static enum drm_connector_status
1563intel_dp_detect(struct drm_connector *connector, bool force)
1564{
1565	struct intel_dp *intel_dp = intel_attached_dp(connector);
1566	struct drm_device *dev = intel_dp->base.base.dev;
1567	enum drm_connector_status status;
1568	struct edid *edid = NULL;
1569
1570	intel_dp->has_audio = false;
1571
1572	if (HAS_PCH_SPLIT(dev))
1573		status = ironlake_dp_detect(intel_dp);
1574	else
1575		status = g4x_dp_detect(intel_dp);
1576	if (status != connector_status_connected)
1577		return status;
1578
1579	if (intel_dp->force_audio) {
1580		intel_dp->has_audio = intel_dp->force_audio > 0;
1581	} else {
1582		edid = drm_get_edid(connector, &intel_dp->adapter);
1583		if (edid) {
1584			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1585			connector->display_info.raw_edid = NULL;
1586			kfree(edid);
1587		}
1588	}
1589
1590	return connector_status_connected;
1591}
1592
1593static int intel_dp_get_modes(struct drm_connector *connector)
1594{
1595	struct intel_dp *intel_dp = intel_attached_dp(connector);
1596	struct drm_device *dev = intel_dp->base.base.dev;
1597	struct drm_i915_private *dev_priv = dev->dev_private;
1598	int ret;
1599
1600	/* We should parse the EDID data and find out if it has an audio sink
1601	 */
1602
1603	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1604	if (ret) {
1605		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1606			struct drm_display_mode *newmode;
1607			list_for_each_entry(newmode, &connector->probed_modes,
1608					    head) {
1609				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1610					dev_priv->panel_fixed_mode =
1611						drm_mode_duplicate(dev, newmode);
1612					break;
1613				}
1614			}
1615		}
1616
1617		return ret;
1618	}
1619
1620	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1621	if (is_edp(intel_dp)) {
1622		if (dev_priv->panel_fixed_mode != NULL) {
1623			struct drm_display_mode *mode;
1624			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1625			drm_mode_probed_add(connector, mode);
1626			return 1;
1627		}
1628	}
1629	return 0;
1630}
1631
1632static int
1633intel_dp_set_property(struct drm_connector *connector,
1634		      struct drm_property *property,
1635		      uint64_t val)
1636{
1637	struct intel_dp *intel_dp = intel_attached_dp(connector);
1638	int ret;
1639
1640	ret = drm_connector_property_set_value(connector, property, val);
1641	if (ret)
1642		return ret;
1643
1644	if (property == intel_dp->force_audio_property) {
1645		if (val == intel_dp->force_audio)
1646			return 0;
1647
1648		intel_dp->force_audio = val;
1649
1650		if (val > 0 && intel_dp->has_audio)
1651			return 0;
1652		if (val < 0 && !intel_dp->has_audio)
1653			return 0;
1654
1655		intel_dp->has_audio = val > 0;
1656		goto done;
1657	}
1658
1659	return -EINVAL;
1660
1661done:
1662	if (intel_dp->base.base.crtc) {
1663		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1664		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1665					 crtc->x, crtc->y,
1666					 crtc->fb);
1667	}
1668
1669	return 0;
1670}
1671
1672static void
1673intel_dp_destroy (struct drm_connector *connector)
1674{
1675	drm_sysfs_connector_remove(connector);
1676	drm_connector_cleanup(connector);
1677	kfree(connector);
1678}
1679
1680static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1681{
1682	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1683
1684	i2c_del_adapter(&intel_dp->adapter);
1685	drm_encoder_cleanup(encoder);
1686	kfree(intel_dp);
1687}
1688
1689static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1690	.dpms = intel_dp_dpms,
1691	.mode_fixup = intel_dp_mode_fixup,
1692	.prepare = intel_dp_prepare,
1693	.mode_set = intel_dp_mode_set,
1694	.commit = intel_dp_commit,
1695};
1696
1697static const struct drm_connector_funcs intel_dp_connector_funcs = {
1698	.dpms = drm_helper_connector_dpms,
1699	.detect = intel_dp_detect,
1700	.fill_modes = drm_helper_probe_single_connector_modes,
1701	.set_property = intel_dp_set_property,
1702	.destroy = intel_dp_destroy,
1703};
1704
1705static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1706	.get_modes = intel_dp_get_modes,
1707	.mode_valid = intel_dp_mode_valid,
1708	.best_encoder = intel_best_encoder,
1709};
1710
1711static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1712	.destroy = intel_dp_encoder_destroy,
1713};
1714
1715static void
1716intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1717{
1718	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1719
1720	if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1721		intel_dp_check_link_status(intel_dp);
1722}
1723
1724/* Return which DP Port should be selected for Transcoder DP control */
1725int
1726intel_trans_dp_port_sel (struct drm_crtc *crtc)
1727{
1728	struct drm_device *dev = crtc->dev;
1729	struct drm_mode_config *mode_config = &dev->mode_config;
1730	struct drm_encoder *encoder;
1731
1732	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1733		struct intel_dp *intel_dp;
1734
1735		if (encoder->crtc != crtc)
1736			continue;
1737
1738		intel_dp = enc_to_intel_dp(encoder);
1739		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1740			return intel_dp->output_reg;
1741	}
1742
1743	return -1;
1744}
1745
1746/* check the VBT to see whether the eDP is on DP-D port */
1747bool intel_dpd_is_edp(struct drm_device *dev)
1748{
1749	struct drm_i915_private *dev_priv = dev->dev_private;
1750	struct child_device_config *p_child;
1751	int i;
1752
1753	if (!dev_priv->child_dev_num)
1754		return false;
1755
1756	for (i = 0; i < dev_priv->child_dev_num; i++) {
1757		p_child = dev_priv->child_dev + i;
1758
1759		if (p_child->dvo_port == PORT_IDPD &&
1760		    p_child->device_type == DEVICE_TYPE_eDP)
1761			return true;
1762	}
1763	return false;
1764}
1765
1766static void
1767intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1768{
1769	struct drm_device *dev = connector->dev;
1770
1771	intel_dp->force_audio_property =
1772		drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1773	if (intel_dp->force_audio_property) {
1774		intel_dp->force_audio_property->values[0] = -1;
1775		intel_dp->force_audio_property->values[1] = 1;
1776		drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1777	}
1778}
1779
1780void
1781intel_dp_init(struct drm_device *dev, int output_reg)
1782{
1783	struct drm_i915_private *dev_priv = dev->dev_private;
1784	struct drm_connector *connector;
1785	struct intel_dp *intel_dp;
1786	struct intel_encoder *intel_encoder;
1787	struct intel_connector *intel_connector;
1788	const char *name = NULL;
1789	int type;
1790
1791	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1792	if (!intel_dp)
1793		return;
1794
1795	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1796	if (!intel_connector) {
1797		kfree(intel_dp);
1798		return;
1799	}
1800	intel_encoder = &intel_dp->base;
1801
1802	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1803		if (intel_dpd_is_edp(dev))
1804			intel_dp->is_pch_edp = true;
1805
1806	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1807		type = DRM_MODE_CONNECTOR_eDP;
1808		intel_encoder->type = INTEL_OUTPUT_EDP;
1809	} else {
1810		type = DRM_MODE_CONNECTOR_DisplayPort;
1811		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1812	}
1813
1814	connector = &intel_connector->base;
1815	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1816	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1817
1818	connector->polled = DRM_CONNECTOR_POLL_HPD;
1819
1820	if (output_reg == DP_B || output_reg == PCH_DP_B)
1821		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1822	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1823		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1824	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1825		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1826
1827	if (is_edp(intel_dp))
1828		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1829
1830	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1831	connector->interlace_allowed = true;
1832	connector->doublescan_allowed = 0;
1833
1834	intel_dp->output_reg = output_reg;
1835	intel_dp->has_audio = false;
1836	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1837
1838	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1839			 DRM_MODE_ENCODER_TMDS);
1840	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1841
1842	intel_connector_attach_encoder(intel_connector, intel_encoder);
1843	drm_sysfs_connector_add(connector);
1844
1845	/* Set up the DDC bus. */
1846	switch (output_reg) {
1847		case DP_A:
1848			name = "DPDDC-A";
1849			break;
1850		case DP_B:
1851		case PCH_DP_B:
1852			dev_priv->hotplug_supported_mask |=
1853				HDMIB_HOTPLUG_INT_STATUS;
1854			name = "DPDDC-B";
1855			break;
1856		case DP_C:
1857		case PCH_DP_C:
1858			dev_priv->hotplug_supported_mask |=
1859				HDMIC_HOTPLUG_INT_STATUS;
1860			name = "DPDDC-C";
1861			break;
1862		case DP_D:
1863		case PCH_DP_D:
1864			dev_priv->hotplug_supported_mask |=
1865				HDMID_HOTPLUG_INT_STATUS;
1866			name = "DPDDC-D";
1867			break;
1868	}
1869
1870	intel_dp_i2c_init(intel_dp, intel_connector, name);
1871
1872	/* Cache some DPCD data in the eDP case */
1873	if (is_edp(intel_dp)) {
1874		int ret;
1875		bool was_on;
1876
1877		was_on = ironlake_edp_panel_on(intel_dp);
1878		ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1879					       intel_dp->dpcd,
1880					       sizeof(intel_dp->dpcd));
1881		if (ret == sizeof(intel_dp->dpcd)) {
1882			if (intel_dp->dpcd[0] >= 0x11)
1883				dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1884					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1885		} else {
1886			DRM_ERROR("failed to retrieve link info\n");
1887		}
1888		if (!was_on)
1889			ironlake_edp_panel_off(dev);
1890	}
1891
1892	intel_encoder->hot_plug = intel_dp_hot_plug;
1893
1894	if (is_edp(intel_dp)) {
1895		/* initialize panel mode from VBT if available for eDP */
1896		if (dev_priv->lfp_lvds_vbt_mode) {
1897			dev_priv->panel_fixed_mode =
1898				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1899			if (dev_priv->panel_fixed_mode) {
1900				dev_priv->panel_fixed_mode->type |=
1901					DRM_MODE_TYPE_PREFERRED;
1902			}
1903		}
1904	}
1905
1906	intel_dp_add_properties(intel_dp, connector);
1907
1908	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1909	 * 0xd.  Failure to do so will result in spurious interrupts being
1910	 * generated on the port when a cable is not attached.
1911	 */
1912	if (IS_G4X(dev) && !IS_GM45(dev)) {
1913		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1914		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1915	}
1916}
1917