intel_dp.c revision a60f0e38d72a5e24085d6e7e27a4cadc20ae268a
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39#define DP_RECEIVER_CAP_SIZE	0xf
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE	9
44
45struct intel_dp {
46	struct intel_encoder base;
47	uint32_t output_reg;
48	uint32_t DP;
49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50	bool has_audio;
51	int force_audio;
52	uint32_t color_range;
53	int dpms_mode;
54	uint8_t link_bw;
55	uint8_t lane_count;
56	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57	struct i2c_adapter adapter;
58	struct i2c_algo_dp_aux_data algo;
59	bool is_pch_edp;
60	uint8_t	train_set[4];
61	uint8_t link_status[DP_LINK_STATUS_SIZE];
62	int panel_power_up_delay;
63	int panel_power_down_delay;
64	int panel_power_cycle_delay;
65	int backlight_on_delay;
66	int backlight_off_delay;
67	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68	struct delayed_work panel_vdd_work;
69	bool want_panel_vdd;
70	unsigned long panel_off_jiffies;
71};
72
73/**
74 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
75 * @intel_dp: DP struct
76 *
77 * If a CPU or PCH DP output is attached to an eDP panel, this function
78 * will return true, and false otherwise.
79 */
80static bool is_edp(struct intel_dp *intel_dp)
81{
82	return intel_dp->base.type == INTEL_OUTPUT_EDP;
83}
84
85/**
86 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
87 * @intel_dp: DP struct
88 *
89 * Returns true if the given DP struct corresponds to a PCH DP port attached
90 * to an eDP panel, false otherwise.  Helpful for determining whether we
91 * may need FDI resources for a given DP output or not.
92 */
93static bool is_pch_edp(struct intel_dp *intel_dp)
94{
95	return intel_dp->is_pch_edp;
96}
97
98static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
99{
100	return container_of(encoder, struct intel_dp, base.base);
101}
102
103static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
104{
105	return container_of(intel_attached_encoder(connector),
106			    struct intel_dp, base);
107}
108
109/**
110 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
111 * @encoder: DRM encoder
112 *
113 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
114 * by intel_display.c.
115 */
116bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
117{
118	struct intel_dp *intel_dp;
119
120	if (!encoder)
121		return false;
122
123	intel_dp = enc_to_intel_dp(encoder);
124
125	return is_pch_edp(intel_dp);
126}
127
128static void intel_dp_start_link_train(struct intel_dp *intel_dp);
129static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
130static void intel_dp_link_down(struct intel_dp *intel_dp);
131
132void
133intel_edp_link_config(struct intel_encoder *intel_encoder,
134		       int *lane_num, int *link_bw)
135{
136	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
137
138	*lane_num = intel_dp->lane_count;
139	if (intel_dp->link_bw == DP_LINK_BW_1_62)
140		*link_bw = 162000;
141	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
142		*link_bw = 270000;
143}
144
145static int
146intel_dp_max_lane_count(struct intel_dp *intel_dp)
147{
148	int max_lane_count = 4;
149
150	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
151		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
152		switch (max_lane_count) {
153		case 1: case 2: case 4:
154			break;
155		default:
156			max_lane_count = 4;
157		}
158	}
159	return max_lane_count;
160}
161
162static int
163intel_dp_max_link_bw(struct intel_dp *intel_dp)
164{
165	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
166
167	switch (max_link_bw) {
168	case DP_LINK_BW_1_62:
169	case DP_LINK_BW_2_7:
170		break;
171	default:
172		max_link_bw = DP_LINK_BW_1_62;
173		break;
174	}
175	return max_link_bw;
176}
177
178static int
179intel_dp_link_clock(uint8_t link_bw)
180{
181	if (link_bw == DP_LINK_BW_2_7)
182		return 270000;
183	else
184		return 162000;
185}
186
187/*
188 * The units on the numbers in the next two are... bizarre.  Examples will
189 * make it clearer; this one parallels an example in the eDP spec.
190 *
191 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
192 *
193 *     270000 * 1 * 8 / 10 == 216000
194 *
195 * The actual data capacity of that configuration is 2.16Gbit/s, so the
196 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
197 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
198 * 119000.  At 18bpp that's 2142000 kilobits per second.
199 *
200 * Thus the strange-looking division by 10 in intel_dp_link_required, to
201 * get the result in decakilobits instead of kilobits.
202 */
203
204static int
205intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
206{
207	struct drm_crtc *crtc = intel_dp->base.base.crtc;
208	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
209	int bpp = 24;
210
211	if (intel_crtc)
212		bpp = intel_crtc->bpp;
213
214	return (pixel_clock * bpp + 9) / 10;
215}
216
217static int
218intel_dp_max_data_rate(int max_link_clock, int max_lanes)
219{
220	return (max_link_clock * max_lanes * 8) / 10;
221}
222
223static int
224intel_dp_mode_valid(struct drm_connector *connector,
225		    struct drm_display_mode *mode)
226{
227	struct intel_dp *intel_dp = intel_attached_dp(connector);
228	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
229	int max_lanes = intel_dp_max_lane_count(intel_dp);
230
231	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
233			return MODE_PANEL;
234
235		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
236			return MODE_PANEL;
237	}
238
239	if (intel_dp_link_required(intel_dp, mode->clock)
240	    > intel_dp_max_data_rate(max_link_clock, max_lanes))
241		return MODE_CLOCK_HIGH;
242
243	if (mode->clock < 10000)
244		return MODE_CLOCK_LOW;
245
246	return MODE_OK;
247}
248
249static uint32_t
250pack_aux(uint8_t *src, int src_bytes)
251{
252	int	i;
253	uint32_t v = 0;
254
255	if (src_bytes > 4)
256		src_bytes = 4;
257	for (i = 0; i < src_bytes; i++)
258		v |= ((uint32_t) src[i]) << ((3-i) * 8);
259	return v;
260}
261
262static void
263unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
264{
265	int i;
266	if (dst_bytes > 4)
267		dst_bytes = 4;
268	for (i = 0; i < dst_bytes; i++)
269		dst[i] = src >> ((3-i) * 8);
270}
271
272/* hrawclock is 1/4 the FSB frequency */
273static int
274intel_hrawclk(struct drm_device *dev)
275{
276	struct drm_i915_private *dev_priv = dev->dev_private;
277	uint32_t clkcfg;
278
279	clkcfg = I915_READ(CLKCFG);
280	switch (clkcfg & CLKCFG_FSB_MASK) {
281	case CLKCFG_FSB_400:
282		return 100;
283	case CLKCFG_FSB_533:
284		return 133;
285	case CLKCFG_FSB_667:
286		return 166;
287	case CLKCFG_FSB_800:
288		return 200;
289	case CLKCFG_FSB_1067:
290		return 266;
291	case CLKCFG_FSB_1333:
292		return 333;
293	/* these two are just a guess; one of them might be right */
294	case CLKCFG_FSB_1600:
295	case CLKCFG_FSB_1600_ALT:
296		return 400;
297	default:
298		return 133;
299	}
300}
301
302static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
303{
304	struct drm_device *dev = intel_dp->base.base.dev;
305	struct drm_i915_private *dev_priv = dev->dev_private;
306
307	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
308}
309
310static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
311{
312	struct drm_device *dev = intel_dp->base.base.dev;
313	struct drm_i915_private *dev_priv = dev->dev_private;
314
315	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
316}
317
318static void
319intel_dp_check_edp(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp->base.base.dev;
322	struct drm_i915_private *dev_priv = dev->dev_private;
323
324	if (!is_edp(intel_dp))
325		return;
326	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
327		WARN(1, "eDP powered off while attempting aux channel communication.\n");
328		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
329			      I915_READ(PCH_PP_STATUS),
330			      I915_READ(PCH_PP_CONTROL));
331	}
332}
333
334static int
335intel_dp_aux_ch(struct intel_dp *intel_dp,
336		uint8_t *send, int send_bytes,
337		uint8_t *recv, int recv_size)
338{
339	uint32_t output_reg = intel_dp->output_reg;
340	struct drm_device *dev = intel_dp->base.base.dev;
341	struct drm_i915_private *dev_priv = dev->dev_private;
342	uint32_t ch_ctl = output_reg + 0x10;
343	uint32_t ch_data = ch_ctl + 4;
344	int i;
345	int recv_bytes;
346	uint32_t status;
347	uint32_t aux_clock_divider;
348	int try, precharge;
349
350	intel_dp_check_edp(intel_dp);
351	/* The clock divider is based off the hrawclk,
352	 * and would like to run at 2MHz. So, take the
353	 * hrawclk value and divide by 2 and use that
354	 *
355	 * Note that PCH attached eDP panels should use a 125MHz input
356	 * clock divider.
357	 */
358	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
359		if (IS_GEN6(dev))
360			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
361		else
362			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
363	} else if (HAS_PCH_SPLIT(dev))
364		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
365	else
366		aux_clock_divider = intel_hrawclk(dev) / 2;
367
368	if (IS_GEN6(dev))
369		precharge = 3;
370	else
371		precharge = 5;
372
373	/* Try to wait for any previous AUX channel activity */
374	for (try = 0; try < 3; try++) {
375		status = I915_READ(ch_ctl);
376		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
377			break;
378		msleep(1);
379	}
380
381	if (try == 3) {
382		WARN(1, "dp_aux_ch not started status 0x%08x\n",
383		     I915_READ(ch_ctl));
384		return -EBUSY;
385	}
386
387	/* Must try at least 3 times according to DP spec */
388	for (try = 0; try < 5; try++) {
389		/* Load the send data into the aux channel data registers */
390		for (i = 0; i < send_bytes; i += 4)
391			I915_WRITE(ch_data + i,
392				   pack_aux(send + i, send_bytes - i));
393
394		/* Send the command and wait for it to complete */
395		I915_WRITE(ch_ctl,
396			   DP_AUX_CH_CTL_SEND_BUSY |
397			   DP_AUX_CH_CTL_TIME_OUT_400us |
398			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
399			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
400			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
401			   DP_AUX_CH_CTL_DONE |
402			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
403			   DP_AUX_CH_CTL_RECEIVE_ERROR);
404		for (;;) {
405			status = I915_READ(ch_ctl);
406			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
407				break;
408			udelay(100);
409		}
410
411		/* Clear done status and any errors */
412		I915_WRITE(ch_ctl,
413			   status |
414			   DP_AUX_CH_CTL_DONE |
415			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
416			   DP_AUX_CH_CTL_RECEIVE_ERROR);
417		if (status & DP_AUX_CH_CTL_DONE)
418			break;
419	}
420
421	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
422		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
423		return -EBUSY;
424	}
425
426	/* Check for timeout or receive error.
427	 * Timeouts occur when the sink is not connected
428	 */
429	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
430		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
431		return -EIO;
432	}
433
434	/* Timeouts occur when the device isn't connected, so they're
435	 * "normal" -- don't fill the kernel log with these */
436	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
437		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
438		return -ETIMEDOUT;
439	}
440
441	/* Unload any bytes sent back from the other side */
442	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
443		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
444	if (recv_bytes > recv_size)
445		recv_bytes = recv_size;
446
447	for (i = 0; i < recv_bytes; i += 4)
448		unpack_aux(I915_READ(ch_data + i),
449			   recv + i, recv_bytes - i);
450
451	return recv_bytes;
452}
453
454/* Write data to the aux channel in native mode */
455static int
456intel_dp_aux_native_write(struct intel_dp *intel_dp,
457			  uint16_t address, uint8_t *send, int send_bytes)
458{
459	int ret;
460	uint8_t	msg[20];
461	int msg_bytes;
462	uint8_t	ack;
463
464	intel_dp_check_edp(intel_dp);
465	if (send_bytes > 16)
466		return -1;
467	msg[0] = AUX_NATIVE_WRITE << 4;
468	msg[1] = address >> 8;
469	msg[2] = address & 0xff;
470	msg[3] = send_bytes - 1;
471	memcpy(&msg[4], send, send_bytes);
472	msg_bytes = send_bytes + 4;
473	for (;;) {
474		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
475		if (ret < 0)
476			return ret;
477		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
478			break;
479		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
480			udelay(100);
481		else
482			return -EIO;
483	}
484	return send_bytes;
485}
486
487/* Write a single byte to the aux channel in native mode */
488static int
489intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
490			    uint16_t address, uint8_t byte)
491{
492	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
493}
494
495/* read bytes from a native aux channel */
496static int
497intel_dp_aux_native_read(struct intel_dp *intel_dp,
498			 uint16_t address, uint8_t *recv, int recv_bytes)
499{
500	uint8_t msg[4];
501	int msg_bytes;
502	uint8_t reply[20];
503	int reply_bytes;
504	uint8_t ack;
505	int ret;
506
507	intel_dp_check_edp(intel_dp);
508	msg[0] = AUX_NATIVE_READ << 4;
509	msg[1] = address >> 8;
510	msg[2] = address & 0xff;
511	msg[3] = recv_bytes - 1;
512
513	msg_bytes = 4;
514	reply_bytes = recv_bytes + 1;
515
516	for (;;) {
517		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
518				      reply, reply_bytes);
519		if (ret == 0)
520			return -EPROTO;
521		if (ret < 0)
522			return ret;
523		ack = reply[0];
524		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
525			memcpy(recv, reply + 1, ret - 1);
526			return ret - 1;
527		}
528		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
529			udelay(100);
530		else
531			return -EIO;
532	}
533}
534
535static int
536intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
537		    uint8_t write_byte, uint8_t *read_byte)
538{
539	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
540	struct intel_dp *intel_dp = container_of(adapter,
541						struct intel_dp,
542						adapter);
543	uint16_t address = algo_data->address;
544	uint8_t msg[5];
545	uint8_t reply[2];
546	unsigned retry;
547	int msg_bytes;
548	int reply_bytes;
549	int ret;
550
551	intel_dp_check_edp(intel_dp);
552	/* Set up the command byte */
553	if (mode & MODE_I2C_READ)
554		msg[0] = AUX_I2C_READ << 4;
555	else
556		msg[0] = AUX_I2C_WRITE << 4;
557
558	if (!(mode & MODE_I2C_STOP))
559		msg[0] |= AUX_I2C_MOT << 4;
560
561	msg[1] = address >> 8;
562	msg[2] = address;
563
564	switch (mode) {
565	case MODE_I2C_WRITE:
566		msg[3] = 0;
567		msg[4] = write_byte;
568		msg_bytes = 5;
569		reply_bytes = 1;
570		break;
571	case MODE_I2C_READ:
572		msg[3] = 0;
573		msg_bytes = 4;
574		reply_bytes = 2;
575		break;
576	default:
577		msg_bytes = 3;
578		reply_bytes = 1;
579		break;
580	}
581
582	for (retry = 0; retry < 5; retry++) {
583		ret = intel_dp_aux_ch(intel_dp,
584				      msg, msg_bytes,
585				      reply, reply_bytes);
586		if (ret < 0) {
587			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
588			return ret;
589		}
590
591		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
592		case AUX_NATIVE_REPLY_ACK:
593			/* I2C-over-AUX Reply field is only valid
594			 * when paired with AUX ACK.
595			 */
596			break;
597		case AUX_NATIVE_REPLY_NACK:
598			DRM_DEBUG_KMS("aux_ch native nack\n");
599			return -EREMOTEIO;
600		case AUX_NATIVE_REPLY_DEFER:
601			udelay(100);
602			continue;
603		default:
604			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
605				  reply[0]);
606			return -EREMOTEIO;
607		}
608
609		switch (reply[0] & AUX_I2C_REPLY_MASK) {
610		case AUX_I2C_REPLY_ACK:
611			if (mode == MODE_I2C_READ) {
612				*read_byte = reply[1];
613			}
614			return reply_bytes - 1;
615		case AUX_I2C_REPLY_NACK:
616			DRM_DEBUG_KMS("aux_i2c nack\n");
617			return -EREMOTEIO;
618		case AUX_I2C_REPLY_DEFER:
619			DRM_DEBUG_KMS("aux_i2c defer\n");
620			udelay(100);
621			break;
622		default:
623			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
624			return -EREMOTEIO;
625		}
626	}
627
628	DRM_ERROR("too many retries, giving up\n");
629	return -EREMOTEIO;
630}
631
632static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
633static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
634
635static int
636intel_dp_i2c_init(struct intel_dp *intel_dp,
637		  struct intel_connector *intel_connector, const char *name)
638{
639	int	ret;
640
641	DRM_DEBUG_KMS("i2c_init %s\n", name);
642	intel_dp->algo.running = false;
643	intel_dp->algo.address = 0;
644	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
645
646	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
647	intel_dp->adapter.owner = THIS_MODULE;
648	intel_dp->adapter.class = I2C_CLASS_DDC;
649	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
650	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
651	intel_dp->adapter.algo_data = &intel_dp->algo;
652	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
653
654	ironlake_edp_panel_vdd_on(intel_dp);
655	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
656	ironlake_edp_panel_vdd_off(intel_dp, false);
657	return ret;
658}
659
660static bool
661intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
662		    struct drm_display_mode *adjusted_mode)
663{
664	struct drm_device *dev = encoder->dev;
665	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
666	int lane_count, clock;
667	int max_lane_count = intel_dp_max_lane_count(intel_dp);
668	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
669	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
670
671	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
672		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
673		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
674					mode, adjusted_mode);
675		/*
676		 * the mode->clock is used to calculate the Data&Link M/N
677		 * of the pipe. For the eDP the fixed clock should be used.
678		 */
679		mode->clock = intel_dp->panel_fixed_mode->clock;
680	}
681
682	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
683		for (clock = 0; clock <= max_clock; clock++) {
684			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
685
686			if (intel_dp_link_required(intel_dp, mode->clock)
687					<= link_avail) {
688				intel_dp->link_bw = bws[clock];
689				intel_dp->lane_count = lane_count;
690				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
691				DRM_DEBUG_KMS("Display port link bw %02x lane "
692						"count %d clock %d\n",
693				       intel_dp->link_bw, intel_dp->lane_count,
694				       adjusted_mode->clock);
695				return true;
696			}
697		}
698	}
699
700	return false;
701}
702
703struct intel_dp_m_n {
704	uint32_t	tu;
705	uint32_t	gmch_m;
706	uint32_t	gmch_n;
707	uint32_t	link_m;
708	uint32_t	link_n;
709};
710
711static void
712intel_reduce_ratio(uint32_t *num, uint32_t *den)
713{
714	while (*num > 0xffffff || *den > 0xffffff) {
715		*num >>= 1;
716		*den >>= 1;
717	}
718}
719
720static void
721intel_dp_compute_m_n(int bpp,
722		     int nlanes,
723		     int pixel_clock,
724		     int link_clock,
725		     struct intel_dp_m_n *m_n)
726{
727	m_n->tu = 64;
728	m_n->gmch_m = (pixel_clock * bpp) >> 3;
729	m_n->gmch_n = link_clock * nlanes;
730	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
731	m_n->link_m = pixel_clock;
732	m_n->link_n = link_clock;
733	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
734}
735
736void
737intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
738		 struct drm_display_mode *adjusted_mode)
739{
740	struct drm_device *dev = crtc->dev;
741	struct drm_mode_config *mode_config = &dev->mode_config;
742	struct drm_encoder *encoder;
743	struct drm_i915_private *dev_priv = dev->dev_private;
744	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
745	int lane_count = 4;
746	struct intel_dp_m_n m_n;
747	int pipe = intel_crtc->pipe;
748
749	/*
750	 * Find the lane count in the intel_encoder private
751	 */
752	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
753		struct intel_dp *intel_dp;
754
755		if (encoder->crtc != crtc)
756			continue;
757
758		intel_dp = enc_to_intel_dp(encoder);
759		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
760			lane_count = intel_dp->lane_count;
761			break;
762		} else if (is_edp(intel_dp)) {
763			lane_count = dev_priv->edp.lanes;
764			break;
765		}
766	}
767
768	/*
769	 * Compute the GMCH and Link ratios. The '3' here is
770	 * the number of bytes_per_pixel post-LUT, which we always
771	 * set up for 8-bits of R/G/B, or 3 bytes total.
772	 */
773	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
774			     mode->clock, adjusted_mode->clock, &m_n);
775
776	if (HAS_PCH_SPLIT(dev)) {
777		I915_WRITE(TRANSDATA_M1(pipe),
778			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
779			   m_n.gmch_m);
780		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
781		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
782		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
783	} else {
784		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
785			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
786			   m_n.gmch_m);
787		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
788		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
789		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
790	}
791}
792
793static void ironlake_edp_pll_on(struct drm_encoder *encoder);
794static void ironlake_edp_pll_off(struct drm_encoder *encoder);
795
796static void
797intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
798		  struct drm_display_mode *adjusted_mode)
799{
800	struct drm_device *dev = encoder->dev;
801	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
802	struct drm_crtc *crtc = intel_dp->base.base.crtc;
803	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
804
805	/* Turn on the eDP PLL if needed */
806	if (is_edp(intel_dp)) {
807		if (!is_pch_edp(intel_dp))
808			ironlake_edp_pll_on(encoder);
809		else
810			ironlake_edp_pll_off(encoder);
811	}
812
813	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
814	intel_dp->DP |= intel_dp->color_range;
815
816	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
817		intel_dp->DP |= DP_SYNC_HS_HIGH;
818	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
819		intel_dp->DP |= DP_SYNC_VS_HIGH;
820
821	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
822		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
823	else
824		intel_dp->DP |= DP_LINK_TRAIN_OFF;
825
826	switch (intel_dp->lane_count) {
827	case 1:
828		intel_dp->DP |= DP_PORT_WIDTH_1;
829		break;
830	case 2:
831		intel_dp->DP |= DP_PORT_WIDTH_2;
832		break;
833	case 4:
834		intel_dp->DP |= DP_PORT_WIDTH_4;
835		break;
836	}
837	if (intel_dp->has_audio) {
838		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
839				 pipe_name(intel_crtc->pipe));
840		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
841		intel_write_eld(encoder, adjusted_mode);
842	}
843
844	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
845	intel_dp->link_configuration[0] = intel_dp->link_bw;
846	intel_dp->link_configuration[1] = intel_dp->lane_count;
847	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
848
849	/*
850	 * Check for DPCD version > 1.1 and enhanced framing support
851	 */
852	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
853	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
854		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
855		intel_dp->DP |= DP_ENHANCED_FRAMING;
856	}
857
858	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
859	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
860		intel_dp->DP |= DP_PIPEB_SELECT;
861
862	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
863		/* don't miss out required setting for eDP */
864		intel_dp->DP |= DP_PLL_ENABLE;
865		if (adjusted_mode->clock < 200000)
866			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
867		else
868			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
869	}
870}
871
872static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
873{
874	unsigned long	off_time;
875	unsigned long	delay;
876
877	DRM_DEBUG_KMS("Wait for panel power off time\n");
878
879	if (ironlake_edp_have_panel_power(intel_dp) ||
880	    ironlake_edp_have_panel_vdd(intel_dp))
881	{
882		DRM_DEBUG_KMS("Panel still on, no delay needed\n");
883		return;
884	}
885
886	off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
887	if (time_after(jiffies, off_time)) {
888		DRM_DEBUG_KMS("Time already passed");
889		return;
890	}
891	delay = jiffies_to_msecs(off_time - jiffies);
892	if (delay > intel_dp->panel_power_down_delay)
893		delay = intel_dp->panel_power_down_delay;
894	DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
895	msleep(delay);
896}
897
898static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
899{
900	struct drm_device *dev = intel_dp->base.base.dev;
901	struct drm_i915_private *dev_priv = dev->dev_private;
902	u32 pp;
903
904	if (!is_edp(intel_dp))
905		return;
906	DRM_DEBUG_KMS("Turn eDP VDD on\n");
907
908	WARN(intel_dp->want_panel_vdd,
909	     "eDP VDD already requested on\n");
910
911	intel_dp->want_panel_vdd = true;
912	if (ironlake_edp_have_panel_vdd(intel_dp)) {
913		DRM_DEBUG_KMS("eDP VDD already on\n");
914		return;
915	}
916
917	ironlake_wait_panel_off(intel_dp);
918	pp = I915_READ(PCH_PP_CONTROL);
919	pp &= ~PANEL_UNLOCK_MASK;
920	pp |= PANEL_UNLOCK_REGS;
921	pp |= EDP_FORCE_VDD;
922	I915_WRITE(PCH_PP_CONTROL, pp);
923	POSTING_READ(PCH_PP_CONTROL);
924	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
925		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
926
927	/*
928	 * If the panel wasn't on, delay before accessing aux channel
929	 */
930	if (!ironlake_edp_have_panel_power(intel_dp)) {
931		DRM_DEBUG_KMS("eDP was not running\n");
932		msleep(intel_dp->panel_power_up_delay);
933	}
934}
935
936static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
937{
938	struct drm_device *dev = intel_dp->base.base.dev;
939	struct drm_i915_private *dev_priv = dev->dev_private;
940	u32 pp;
941
942	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
943		pp = I915_READ(PCH_PP_CONTROL);
944		pp &= ~PANEL_UNLOCK_MASK;
945		pp |= PANEL_UNLOCK_REGS;
946		pp &= ~EDP_FORCE_VDD;
947		I915_WRITE(PCH_PP_CONTROL, pp);
948		POSTING_READ(PCH_PP_CONTROL);
949
950		/* Make sure sequencer is idle before allowing subsequent activity */
951		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
952			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
953		intel_dp->panel_off_jiffies = jiffies;
954	}
955}
956
957static void ironlake_panel_vdd_work(struct work_struct *__work)
958{
959	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
960						 struct intel_dp, panel_vdd_work);
961	struct drm_device *dev = intel_dp->base.base.dev;
962
963	mutex_lock(&dev->struct_mutex);
964	ironlake_panel_vdd_off_sync(intel_dp);
965	mutex_unlock(&dev->struct_mutex);
966}
967
968static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
969{
970	if (!is_edp(intel_dp))
971		return;
972
973	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
974	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
975
976	intel_dp->want_panel_vdd = false;
977
978	if (sync) {
979		ironlake_panel_vdd_off_sync(intel_dp);
980	} else {
981		/*
982		 * Queue the timer to fire a long
983		 * time from now (relative to the power down delay)
984		 * to keep the panel power up across a sequence of operations
985		 */
986		schedule_delayed_work(&intel_dp->panel_vdd_work,
987				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
988	}
989}
990
991/* Returns true if the panel was already on when called */
992static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
993{
994	struct drm_device *dev = intel_dp->base.base.dev;
995	struct drm_i915_private *dev_priv = dev->dev_private;
996	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
997
998	if (!is_edp(intel_dp))
999		return;
1000	if (ironlake_edp_have_panel_power(intel_dp))
1001		return;
1002
1003	ironlake_wait_panel_off(intel_dp);
1004	pp = I915_READ(PCH_PP_CONTROL);
1005	pp &= ~PANEL_UNLOCK_MASK;
1006	pp |= PANEL_UNLOCK_REGS;
1007
1008	if (IS_GEN5(dev)) {
1009		/* ILK workaround: disable reset around power sequence */
1010		pp &= ~PANEL_POWER_RESET;
1011		I915_WRITE(PCH_PP_CONTROL, pp);
1012		POSTING_READ(PCH_PP_CONTROL);
1013	}
1014
1015	pp |= POWER_TARGET_ON;
1016	I915_WRITE(PCH_PP_CONTROL, pp);
1017	POSTING_READ(PCH_PP_CONTROL);
1018
1019	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
1020		     5000))
1021		DRM_ERROR("panel on wait timed out: 0x%08x\n",
1022			  I915_READ(PCH_PP_STATUS));
1023
1024	if (IS_GEN5(dev)) {
1025		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1026		I915_WRITE(PCH_PP_CONTROL, pp);
1027		POSTING_READ(PCH_PP_CONTROL);
1028	}
1029}
1030
1031static void ironlake_edp_panel_off(struct drm_encoder *encoder)
1032{
1033	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1034	struct drm_device *dev = encoder->dev;
1035	struct drm_i915_private *dev_priv = dev->dev_private;
1036	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
1037		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
1038
1039	if (!is_edp(intel_dp))
1040		return;
1041	pp = I915_READ(PCH_PP_CONTROL);
1042	pp &= ~PANEL_UNLOCK_MASK;
1043	pp |= PANEL_UNLOCK_REGS;
1044
1045	if (IS_GEN5(dev)) {
1046		/* ILK workaround: disable reset around power sequence */
1047		pp &= ~PANEL_POWER_RESET;
1048		I915_WRITE(PCH_PP_CONTROL, pp);
1049		POSTING_READ(PCH_PP_CONTROL);
1050	}
1051
1052	intel_dp->panel_off_jiffies = jiffies;
1053
1054	if (IS_GEN5(dev)) {
1055		pp &= ~POWER_TARGET_ON;
1056		I915_WRITE(PCH_PP_CONTROL, pp);
1057		POSTING_READ(PCH_PP_CONTROL);
1058		pp &= ~POWER_TARGET_ON;
1059		I915_WRITE(PCH_PP_CONTROL, pp);
1060		POSTING_READ(PCH_PP_CONTROL);
1061		msleep(intel_dp->panel_power_cycle_delay);
1062
1063		if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
1064			DRM_ERROR("panel off wait timed out: 0x%08x\n",
1065				  I915_READ(PCH_PP_STATUS));
1066
1067		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1068		I915_WRITE(PCH_PP_CONTROL, pp);
1069		POSTING_READ(PCH_PP_CONTROL);
1070	}
1071}
1072
1073static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1074{
1075	struct drm_device *dev = intel_dp->base.base.dev;
1076	struct drm_i915_private *dev_priv = dev->dev_private;
1077	u32 pp;
1078
1079	if (!is_edp(intel_dp))
1080		return;
1081
1082	DRM_DEBUG_KMS("\n");
1083	/*
1084	 * If we enable the backlight right away following a panel power
1085	 * on, we may see slight flicker as the panel syncs with the eDP
1086	 * link.  So delay a bit to make sure the image is solid before
1087	 * allowing it to appear.
1088	 */
1089	msleep(intel_dp->backlight_on_delay);
1090	pp = I915_READ(PCH_PP_CONTROL);
1091	pp &= ~PANEL_UNLOCK_MASK;
1092	pp |= PANEL_UNLOCK_REGS;
1093	pp |= EDP_BLC_ENABLE;
1094	I915_WRITE(PCH_PP_CONTROL, pp);
1095	POSTING_READ(PCH_PP_CONTROL);
1096}
1097
1098static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1099{
1100	struct drm_device *dev = intel_dp->base.base.dev;
1101	struct drm_i915_private *dev_priv = dev->dev_private;
1102	u32 pp;
1103
1104	if (!is_edp(intel_dp))
1105		return;
1106
1107	DRM_DEBUG_KMS("\n");
1108	pp = I915_READ(PCH_PP_CONTROL);
1109	pp &= ~PANEL_UNLOCK_MASK;
1110	pp |= PANEL_UNLOCK_REGS;
1111	pp &= ~EDP_BLC_ENABLE;
1112	I915_WRITE(PCH_PP_CONTROL, pp);
1113	POSTING_READ(PCH_PP_CONTROL);
1114	msleep(intel_dp->backlight_off_delay);
1115}
1116
1117static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1118{
1119	struct drm_device *dev = encoder->dev;
1120	struct drm_i915_private *dev_priv = dev->dev_private;
1121	u32 dpa_ctl;
1122
1123	DRM_DEBUG_KMS("\n");
1124	dpa_ctl = I915_READ(DP_A);
1125	dpa_ctl |= DP_PLL_ENABLE;
1126	I915_WRITE(DP_A, dpa_ctl);
1127	POSTING_READ(DP_A);
1128	udelay(200);
1129}
1130
1131static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1132{
1133	struct drm_device *dev = encoder->dev;
1134	struct drm_i915_private *dev_priv = dev->dev_private;
1135	u32 dpa_ctl;
1136
1137	dpa_ctl = I915_READ(DP_A);
1138	dpa_ctl &= ~DP_PLL_ENABLE;
1139	I915_WRITE(DP_A, dpa_ctl);
1140	POSTING_READ(DP_A);
1141	udelay(200);
1142}
1143
1144/* If the sink supports it, try to set the power state appropriately */
1145static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1146{
1147	int ret, i;
1148
1149	/* Should have a valid DPCD by this point */
1150	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1151		return;
1152
1153	if (mode != DRM_MODE_DPMS_ON) {
1154		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1155						  DP_SET_POWER_D3);
1156		if (ret != 1)
1157			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1158	} else {
1159		/*
1160		 * When turning on, we need to retry for 1ms to give the sink
1161		 * time to wake up.
1162		 */
1163		for (i = 0; i < 3; i++) {
1164			ret = intel_dp_aux_native_write_1(intel_dp,
1165							  DP_SET_POWER,
1166							  DP_SET_POWER_D0);
1167			if (ret == 1)
1168				break;
1169			msleep(1);
1170		}
1171	}
1172}
1173
1174static void intel_dp_prepare(struct drm_encoder *encoder)
1175{
1176	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1177
1178	/* Wake up the sink first */
1179	ironlake_edp_panel_vdd_on(intel_dp);
1180	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1181	ironlake_edp_panel_vdd_off(intel_dp, false);
1182
1183	/* Make sure the panel is off before trying to
1184	 * change the mode
1185	 */
1186	ironlake_edp_backlight_off(intel_dp);
1187	intel_dp_link_down(intel_dp);
1188	ironlake_edp_panel_off(encoder);
1189}
1190
1191static void intel_dp_commit(struct drm_encoder *encoder)
1192{
1193	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1194	struct drm_device *dev = encoder->dev;
1195	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1196
1197	ironlake_edp_panel_vdd_on(intel_dp);
1198	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1199	intel_dp_start_link_train(intel_dp);
1200	ironlake_edp_panel_on(intel_dp);
1201	ironlake_edp_panel_vdd_off(intel_dp, true);
1202
1203	intel_dp_complete_link_train(intel_dp);
1204	ironlake_edp_backlight_on(intel_dp);
1205
1206	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1207
1208	if (HAS_PCH_CPT(dev))
1209		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1210}
1211
1212static void
1213intel_dp_dpms(struct drm_encoder *encoder, int mode)
1214{
1215	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1216	struct drm_device *dev = encoder->dev;
1217	struct drm_i915_private *dev_priv = dev->dev_private;
1218	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1219
1220	if (mode != DRM_MODE_DPMS_ON) {
1221		ironlake_edp_panel_vdd_on(intel_dp);
1222		if (is_edp(intel_dp))
1223			ironlake_edp_backlight_off(intel_dp);
1224		intel_dp_sink_dpms(intel_dp, mode);
1225		intel_dp_link_down(intel_dp);
1226		ironlake_edp_panel_off(encoder);
1227		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1228			ironlake_edp_pll_off(encoder);
1229		ironlake_edp_panel_vdd_off(intel_dp, false);
1230	} else {
1231		ironlake_edp_panel_vdd_on(intel_dp);
1232		intel_dp_sink_dpms(intel_dp, mode);
1233		if (!(dp_reg & DP_PORT_EN)) {
1234			intel_dp_start_link_train(intel_dp);
1235			ironlake_edp_panel_on(intel_dp);
1236			ironlake_edp_panel_vdd_off(intel_dp, true);
1237			intel_dp_complete_link_train(intel_dp);
1238			ironlake_edp_backlight_on(intel_dp);
1239		} else
1240			ironlake_edp_panel_vdd_off(intel_dp, false);
1241		ironlake_edp_backlight_on(intel_dp);
1242	}
1243	intel_dp->dpms_mode = mode;
1244}
1245
1246/*
1247 * Native read with retry for link status and receiver capability reads for
1248 * cases where the sink may still be asleep.
1249 */
1250static bool
1251intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1252			       uint8_t *recv, int recv_bytes)
1253{
1254	int ret, i;
1255
1256	/*
1257	 * Sinks are *supposed* to come up within 1ms from an off state,
1258	 * but we're also supposed to retry 3 times per the spec.
1259	 */
1260	for (i = 0; i < 3; i++) {
1261		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1262					       recv_bytes);
1263		if (ret == recv_bytes)
1264			return true;
1265		msleep(1);
1266	}
1267
1268	return false;
1269}
1270
1271/*
1272 * Fetch AUX CH registers 0x202 - 0x207 which contain
1273 * link status information
1274 */
1275static bool
1276intel_dp_get_link_status(struct intel_dp *intel_dp)
1277{
1278	return intel_dp_aux_native_read_retry(intel_dp,
1279					      DP_LANE0_1_STATUS,
1280					      intel_dp->link_status,
1281					      DP_LINK_STATUS_SIZE);
1282}
1283
1284static uint8_t
1285intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1286		     int r)
1287{
1288	return link_status[r - DP_LANE0_1_STATUS];
1289}
1290
1291static uint8_t
1292intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1293				 int lane)
1294{
1295	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1296	int	    s = ((lane & 1) ?
1297			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1298			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1299	uint8_t l = intel_dp_link_status(link_status, i);
1300
1301	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1302}
1303
1304static uint8_t
1305intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1306				      int lane)
1307{
1308	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1309	int	    s = ((lane & 1) ?
1310			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1311			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1312	uint8_t l = intel_dp_link_status(link_status, i);
1313
1314	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1315}
1316
1317
1318#if 0
1319static char	*voltage_names[] = {
1320	"0.4V", "0.6V", "0.8V", "1.2V"
1321};
1322static char	*pre_emph_names[] = {
1323	"0dB", "3.5dB", "6dB", "9.5dB"
1324};
1325static char	*link_train_names[] = {
1326	"pattern 1", "pattern 2", "idle", "off"
1327};
1328#endif
1329
1330/*
1331 * These are source-specific values; current Intel hardware supports
1332 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1333 */
1334#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1335
1336static uint8_t
1337intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1338{
1339	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1340	case DP_TRAIN_VOLTAGE_SWING_400:
1341		return DP_TRAIN_PRE_EMPHASIS_6;
1342	case DP_TRAIN_VOLTAGE_SWING_600:
1343		return DP_TRAIN_PRE_EMPHASIS_6;
1344	case DP_TRAIN_VOLTAGE_SWING_800:
1345		return DP_TRAIN_PRE_EMPHASIS_3_5;
1346	case DP_TRAIN_VOLTAGE_SWING_1200:
1347	default:
1348		return DP_TRAIN_PRE_EMPHASIS_0;
1349	}
1350}
1351
1352static void
1353intel_get_adjust_train(struct intel_dp *intel_dp)
1354{
1355	uint8_t v = 0;
1356	uint8_t p = 0;
1357	int lane;
1358
1359	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1360		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1361		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1362
1363		if (this_v > v)
1364			v = this_v;
1365		if (this_p > p)
1366			p = this_p;
1367	}
1368
1369	if (v >= I830_DP_VOLTAGE_MAX)
1370		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1371
1372	if (p >= intel_dp_pre_emphasis_max(v))
1373		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1374
1375	for (lane = 0; lane < 4; lane++)
1376		intel_dp->train_set[lane] = v | p;
1377}
1378
1379static uint32_t
1380intel_dp_signal_levels(uint8_t train_set, int lane_count)
1381{
1382	uint32_t	signal_levels = 0;
1383
1384	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385	case DP_TRAIN_VOLTAGE_SWING_400:
1386	default:
1387		signal_levels |= DP_VOLTAGE_0_4;
1388		break;
1389	case DP_TRAIN_VOLTAGE_SWING_600:
1390		signal_levels |= DP_VOLTAGE_0_6;
1391		break;
1392	case DP_TRAIN_VOLTAGE_SWING_800:
1393		signal_levels |= DP_VOLTAGE_0_8;
1394		break;
1395	case DP_TRAIN_VOLTAGE_SWING_1200:
1396		signal_levels |= DP_VOLTAGE_1_2;
1397		break;
1398	}
1399	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1400	case DP_TRAIN_PRE_EMPHASIS_0:
1401	default:
1402		signal_levels |= DP_PRE_EMPHASIS_0;
1403		break;
1404	case DP_TRAIN_PRE_EMPHASIS_3_5:
1405		signal_levels |= DP_PRE_EMPHASIS_3_5;
1406		break;
1407	case DP_TRAIN_PRE_EMPHASIS_6:
1408		signal_levels |= DP_PRE_EMPHASIS_6;
1409		break;
1410	case DP_TRAIN_PRE_EMPHASIS_9_5:
1411		signal_levels |= DP_PRE_EMPHASIS_9_5;
1412		break;
1413	}
1414	return signal_levels;
1415}
1416
1417/* Gen6's DP voltage swing and pre-emphasis control */
1418static uint32_t
1419intel_gen6_edp_signal_levels(uint8_t train_set)
1420{
1421	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1422					 DP_TRAIN_PRE_EMPHASIS_MASK);
1423	switch (signal_levels) {
1424	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1425	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1426		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1427	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1428		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1429	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1430	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1431		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1432	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1433	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1434		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1435	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1436	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1437		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1438	default:
1439		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1440			      "0x%x\n", signal_levels);
1441		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1442	}
1443}
1444
1445static uint8_t
1446intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1447		      int lane)
1448{
1449	int i = DP_LANE0_1_STATUS + (lane >> 1);
1450	int s = (lane & 1) * 4;
1451	uint8_t l = intel_dp_link_status(link_status, i);
1452
1453	return (l >> s) & 0xf;
1454}
1455
1456/* Check for clock recovery is done on all channels */
1457static bool
1458intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1459{
1460	int lane;
1461	uint8_t lane_status;
1462
1463	for (lane = 0; lane < lane_count; lane++) {
1464		lane_status = intel_get_lane_status(link_status, lane);
1465		if ((lane_status & DP_LANE_CR_DONE) == 0)
1466			return false;
1467	}
1468	return true;
1469}
1470
1471/* Check to see if channel eq is done on all channels */
1472#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1473			 DP_LANE_CHANNEL_EQ_DONE|\
1474			 DP_LANE_SYMBOL_LOCKED)
1475static bool
1476intel_channel_eq_ok(struct intel_dp *intel_dp)
1477{
1478	uint8_t lane_align;
1479	uint8_t lane_status;
1480	int lane;
1481
1482	lane_align = intel_dp_link_status(intel_dp->link_status,
1483					  DP_LANE_ALIGN_STATUS_UPDATED);
1484	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1485		return false;
1486	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1487		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1488		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1489			return false;
1490	}
1491	return true;
1492}
1493
1494static bool
1495intel_dp_set_link_train(struct intel_dp *intel_dp,
1496			uint32_t dp_reg_value,
1497			uint8_t dp_train_pat)
1498{
1499	struct drm_device *dev = intel_dp->base.base.dev;
1500	struct drm_i915_private *dev_priv = dev->dev_private;
1501	int ret;
1502
1503	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1504	POSTING_READ(intel_dp->output_reg);
1505
1506	intel_dp_aux_native_write_1(intel_dp,
1507				    DP_TRAINING_PATTERN_SET,
1508				    dp_train_pat);
1509
1510	ret = intel_dp_aux_native_write(intel_dp,
1511					DP_TRAINING_LANE0_SET,
1512					intel_dp->train_set, 4);
1513	if (ret != 4)
1514		return false;
1515
1516	return true;
1517}
1518
1519/* Enable corresponding port and start training pattern 1 */
1520static void
1521intel_dp_start_link_train(struct intel_dp *intel_dp)
1522{
1523	struct drm_device *dev = intel_dp->base.base.dev;
1524	struct drm_i915_private *dev_priv = dev->dev_private;
1525	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1526	int i;
1527	uint8_t voltage;
1528	bool clock_recovery = false;
1529	int tries;
1530	u32 reg;
1531	uint32_t DP = intel_dp->DP;
1532
1533	/*
1534	 * On CPT we have to enable the port in training pattern 1, which
1535	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1536	 * the port and wait for it to become active.
1537	 */
1538	if (!HAS_PCH_CPT(dev)) {
1539		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1540		POSTING_READ(intel_dp->output_reg);
1541		intel_wait_for_vblank(dev, intel_crtc->pipe);
1542	}
1543
1544	/* Write the link configuration data */
1545	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1546				  intel_dp->link_configuration,
1547				  DP_LINK_CONFIGURATION_SIZE);
1548
1549	DP |= DP_PORT_EN;
1550	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1551		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1552	else
1553		DP &= ~DP_LINK_TRAIN_MASK;
1554	memset(intel_dp->train_set, 0, 4);
1555	voltage = 0xff;
1556	tries = 0;
1557	clock_recovery = false;
1558	for (;;) {
1559		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1560		uint32_t    signal_levels;
1561		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1562			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1563			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1564		} else {
1565			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1566			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1567		}
1568
1569		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1570			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1571		else
1572			reg = DP | DP_LINK_TRAIN_PAT_1;
1573
1574		if (!intel_dp_set_link_train(intel_dp, reg,
1575					     DP_TRAINING_PATTERN_1 |
1576					     DP_LINK_SCRAMBLING_DISABLE))
1577			break;
1578		/* Set training pattern 1 */
1579
1580		udelay(100);
1581		if (!intel_dp_get_link_status(intel_dp))
1582			break;
1583
1584		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1585			clock_recovery = true;
1586			break;
1587		}
1588
1589		/* Check to see if we've tried the max voltage */
1590		for (i = 0; i < intel_dp->lane_count; i++)
1591			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1592				break;
1593		if (i == intel_dp->lane_count)
1594			break;
1595
1596		/* Check to see if we've tried the same voltage 5 times */
1597		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1598			++tries;
1599			if (tries == 5)
1600				break;
1601		} else
1602			tries = 0;
1603		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1604
1605		/* Compute new intel_dp->train_set as requested by target */
1606		intel_get_adjust_train(intel_dp);
1607	}
1608
1609	intel_dp->DP = DP;
1610}
1611
1612static void
1613intel_dp_complete_link_train(struct intel_dp *intel_dp)
1614{
1615	struct drm_device *dev = intel_dp->base.base.dev;
1616	struct drm_i915_private *dev_priv = dev->dev_private;
1617	bool channel_eq = false;
1618	int tries, cr_tries;
1619	u32 reg;
1620	uint32_t DP = intel_dp->DP;
1621
1622	/* channel equalization */
1623	tries = 0;
1624	cr_tries = 0;
1625	channel_eq = false;
1626	for (;;) {
1627		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1628		uint32_t    signal_levels;
1629
1630		if (cr_tries > 5) {
1631			DRM_ERROR("failed to train DP, aborting\n");
1632			intel_dp_link_down(intel_dp);
1633			break;
1634		}
1635
1636		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1637			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1638			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1639		} else {
1640			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1641			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1642		}
1643
1644		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1645			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1646		else
1647			reg = DP | DP_LINK_TRAIN_PAT_2;
1648
1649		/* channel eq pattern */
1650		if (!intel_dp_set_link_train(intel_dp, reg,
1651					     DP_TRAINING_PATTERN_2 |
1652					     DP_LINK_SCRAMBLING_DISABLE))
1653			break;
1654
1655		udelay(400);
1656		if (!intel_dp_get_link_status(intel_dp))
1657			break;
1658
1659		/* Make sure clock is still ok */
1660		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1661			intel_dp_start_link_train(intel_dp);
1662			cr_tries++;
1663			continue;
1664		}
1665
1666		if (intel_channel_eq_ok(intel_dp)) {
1667			channel_eq = true;
1668			break;
1669		}
1670
1671		/* Try 5 times, then try clock recovery if that fails */
1672		if (tries > 5) {
1673			intel_dp_link_down(intel_dp);
1674			intel_dp_start_link_train(intel_dp);
1675			tries = 0;
1676			cr_tries++;
1677			continue;
1678		}
1679
1680		/* Compute new intel_dp->train_set as requested by target */
1681		intel_get_adjust_train(intel_dp);
1682		++tries;
1683	}
1684
1685	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1686		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1687	else
1688		reg = DP | DP_LINK_TRAIN_OFF;
1689
1690	I915_WRITE(intel_dp->output_reg, reg);
1691	POSTING_READ(intel_dp->output_reg);
1692	intel_dp_aux_native_write_1(intel_dp,
1693				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1694}
1695
1696static void
1697intel_dp_link_down(struct intel_dp *intel_dp)
1698{
1699	struct drm_device *dev = intel_dp->base.base.dev;
1700	struct drm_i915_private *dev_priv = dev->dev_private;
1701	uint32_t DP = intel_dp->DP;
1702
1703	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1704		return;
1705
1706	DRM_DEBUG_KMS("\n");
1707
1708	if (is_edp(intel_dp)) {
1709		DP &= ~DP_PLL_ENABLE;
1710		I915_WRITE(intel_dp->output_reg, DP);
1711		POSTING_READ(intel_dp->output_reg);
1712		udelay(100);
1713	}
1714
1715	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1716		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1717		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1718	} else {
1719		DP &= ~DP_LINK_TRAIN_MASK;
1720		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1721	}
1722	POSTING_READ(intel_dp->output_reg);
1723
1724	msleep(17);
1725
1726	if (is_edp(intel_dp))
1727		DP |= DP_LINK_TRAIN_OFF;
1728
1729	if (!HAS_PCH_CPT(dev) &&
1730	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1731		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1732
1733		/* Hardware workaround: leaving our transcoder select
1734		 * set to transcoder B while it's off will prevent the
1735		 * corresponding HDMI output on transcoder A.
1736		 *
1737		 * Combine this with another hardware workaround:
1738		 * transcoder select bit can only be cleared while the
1739		 * port is enabled.
1740		 */
1741		DP &= ~DP_PIPEB_SELECT;
1742		I915_WRITE(intel_dp->output_reg, DP);
1743
1744		/* Changes to enable or select take place the vblank
1745		 * after being written.
1746		 */
1747		if (crtc == NULL) {
1748			/* We can arrive here never having been attached
1749			 * to a CRTC, for instance, due to inheriting
1750			 * random state from the BIOS.
1751			 *
1752			 * If the pipe is not running, play safe and
1753			 * wait for the clocks to stabilise before
1754			 * continuing.
1755			 */
1756			POSTING_READ(intel_dp->output_reg);
1757			msleep(50);
1758		} else
1759			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1760	}
1761
1762	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1763	POSTING_READ(intel_dp->output_reg);
1764	msleep(intel_dp->panel_power_down_delay);
1765}
1766
1767static bool
1768intel_dp_get_dpcd(struct intel_dp *intel_dp)
1769{
1770	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1771					   sizeof(intel_dp->dpcd)) &&
1772	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1773		return true;
1774	}
1775
1776	return false;
1777}
1778
1779static bool
1780intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1781{
1782	int ret;
1783
1784	ret = intel_dp_aux_native_read_retry(intel_dp,
1785					     DP_DEVICE_SERVICE_IRQ_VECTOR,
1786					     sink_irq_vector, 1);
1787	if (!ret)
1788		return false;
1789
1790	return true;
1791}
1792
1793static void
1794intel_dp_handle_test_request(struct intel_dp *intel_dp)
1795{
1796	/* NAK by default */
1797	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1798}
1799
1800/*
1801 * According to DP spec
1802 * 5.1.2:
1803 *  1. Read DPCD
1804 *  2. Configure link according to Receiver Capabilities
1805 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1806 *  4. Check link status on receipt of hot-plug interrupt
1807 */
1808
1809static void
1810intel_dp_check_link_status(struct intel_dp *intel_dp)
1811{
1812	u8 sink_irq_vector;
1813
1814	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1815		return;
1816
1817	if (!intel_dp->base.base.crtc)
1818		return;
1819
1820	/* Try to read receiver status if the link appears to be up */
1821	if (!intel_dp_get_link_status(intel_dp)) {
1822		intel_dp_link_down(intel_dp);
1823		return;
1824	}
1825
1826	/* Now read the DPCD to see if it's actually running */
1827	if (!intel_dp_get_dpcd(intel_dp)) {
1828		intel_dp_link_down(intel_dp);
1829		return;
1830	}
1831
1832	/* Try to read the source of the interrupt */
1833	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1834	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1835		/* Clear interrupt source */
1836		intel_dp_aux_native_write_1(intel_dp,
1837					    DP_DEVICE_SERVICE_IRQ_VECTOR,
1838					    sink_irq_vector);
1839
1840		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1841			intel_dp_handle_test_request(intel_dp);
1842		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1843			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1844	}
1845
1846	if (!intel_channel_eq_ok(intel_dp)) {
1847		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1848			      drm_get_encoder_name(&intel_dp->base.base));
1849		intel_dp_start_link_train(intel_dp);
1850		intel_dp_complete_link_train(intel_dp);
1851	}
1852}
1853
1854static enum drm_connector_status
1855intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1856{
1857	if (intel_dp_get_dpcd(intel_dp))
1858		return connector_status_connected;
1859	return connector_status_disconnected;
1860}
1861
1862static enum drm_connector_status
1863ironlake_dp_detect(struct intel_dp *intel_dp)
1864{
1865	enum drm_connector_status status;
1866
1867	/* Can't disconnect eDP, but you can close the lid... */
1868	if (is_edp(intel_dp)) {
1869		status = intel_panel_detect(intel_dp->base.base.dev);
1870		if (status == connector_status_unknown)
1871			status = connector_status_connected;
1872		return status;
1873	}
1874
1875	return intel_dp_detect_dpcd(intel_dp);
1876}
1877
1878static enum drm_connector_status
1879g4x_dp_detect(struct intel_dp *intel_dp)
1880{
1881	struct drm_device *dev = intel_dp->base.base.dev;
1882	struct drm_i915_private *dev_priv = dev->dev_private;
1883	uint32_t temp, bit;
1884
1885	switch (intel_dp->output_reg) {
1886	case DP_B:
1887		bit = DPB_HOTPLUG_INT_STATUS;
1888		break;
1889	case DP_C:
1890		bit = DPC_HOTPLUG_INT_STATUS;
1891		break;
1892	case DP_D:
1893		bit = DPD_HOTPLUG_INT_STATUS;
1894		break;
1895	default:
1896		return connector_status_unknown;
1897	}
1898
1899	temp = I915_READ(PORT_HOTPLUG_STAT);
1900
1901	if ((temp & bit) == 0)
1902		return connector_status_disconnected;
1903
1904	return intel_dp_detect_dpcd(intel_dp);
1905}
1906
1907static struct edid *
1908intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1909{
1910	struct intel_dp *intel_dp = intel_attached_dp(connector);
1911	struct edid	*edid;
1912
1913	ironlake_edp_panel_vdd_on(intel_dp);
1914	edid = drm_get_edid(connector, adapter);
1915	ironlake_edp_panel_vdd_off(intel_dp, false);
1916	return edid;
1917}
1918
1919static int
1920intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1921{
1922	struct intel_dp *intel_dp = intel_attached_dp(connector);
1923	int	ret;
1924
1925	ironlake_edp_panel_vdd_on(intel_dp);
1926	ret = intel_ddc_get_modes(connector, adapter);
1927	ironlake_edp_panel_vdd_off(intel_dp, false);
1928	return ret;
1929}
1930
1931
1932/**
1933 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1934 *
1935 * \return true if DP port is connected.
1936 * \return false if DP port is disconnected.
1937 */
1938static enum drm_connector_status
1939intel_dp_detect(struct drm_connector *connector, bool force)
1940{
1941	struct intel_dp *intel_dp = intel_attached_dp(connector);
1942	struct drm_device *dev = intel_dp->base.base.dev;
1943	enum drm_connector_status status;
1944	struct edid *edid = NULL;
1945
1946	intel_dp->has_audio = false;
1947
1948	if (HAS_PCH_SPLIT(dev))
1949		status = ironlake_dp_detect(intel_dp);
1950	else
1951		status = g4x_dp_detect(intel_dp);
1952
1953	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1954		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1955		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1956		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
1957
1958	if (status != connector_status_connected)
1959		return status;
1960
1961	if (intel_dp->force_audio) {
1962		intel_dp->has_audio = intel_dp->force_audio > 0;
1963	} else {
1964		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
1965		if (edid) {
1966			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1967			connector->display_info.raw_edid = NULL;
1968			kfree(edid);
1969		}
1970	}
1971
1972	return connector_status_connected;
1973}
1974
1975static int intel_dp_get_modes(struct drm_connector *connector)
1976{
1977	struct intel_dp *intel_dp = intel_attached_dp(connector);
1978	struct drm_device *dev = intel_dp->base.base.dev;
1979	struct drm_i915_private *dev_priv = dev->dev_private;
1980	int ret;
1981
1982	/* We should parse the EDID data and find out if it has an audio sink
1983	 */
1984
1985	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
1986	if (ret) {
1987		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
1988			struct drm_display_mode *newmode;
1989			list_for_each_entry(newmode, &connector->probed_modes,
1990					    head) {
1991				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
1992					intel_dp->panel_fixed_mode =
1993						drm_mode_duplicate(dev, newmode);
1994					break;
1995				}
1996			}
1997		}
1998		return ret;
1999	}
2000
2001	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2002	if (is_edp(intel_dp)) {
2003		/* initialize panel mode from VBT if available for eDP */
2004		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2005			intel_dp->panel_fixed_mode =
2006				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2007			if (intel_dp->panel_fixed_mode) {
2008				intel_dp->panel_fixed_mode->type |=
2009					DRM_MODE_TYPE_PREFERRED;
2010			}
2011		}
2012		if (intel_dp->panel_fixed_mode) {
2013			struct drm_display_mode *mode;
2014			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2015			drm_mode_probed_add(connector, mode);
2016			return 1;
2017		}
2018	}
2019	return 0;
2020}
2021
2022static bool
2023intel_dp_detect_audio(struct drm_connector *connector)
2024{
2025	struct intel_dp *intel_dp = intel_attached_dp(connector);
2026	struct edid *edid;
2027	bool has_audio = false;
2028
2029	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2030	if (edid) {
2031		has_audio = drm_detect_monitor_audio(edid);
2032
2033		connector->display_info.raw_edid = NULL;
2034		kfree(edid);
2035	}
2036
2037	return has_audio;
2038}
2039
2040static int
2041intel_dp_set_property(struct drm_connector *connector,
2042		      struct drm_property *property,
2043		      uint64_t val)
2044{
2045	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2046	struct intel_dp *intel_dp = intel_attached_dp(connector);
2047	int ret;
2048
2049	ret = drm_connector_property_set_value(connector, property, val);
2050	if (ret)
2051		return ret;
2052
2053	if (property == dev_priv->force_audio_property) {
2054		int i = val;
2055		bool has_audio;
2056
2057		if (i == intel_dp->force_audio)
2058			return 0;
2059
2060		intel_dp->force_audio = i;
2061
2062		if (i == 0)
2063			has_audio = intel_dp_detect_audio(connector);
2064		else
2065			has_audio = i > 0;
2066
2067		if (has_audio == intel_dp->has_audio)
2068			return 0;
2069
2070		intel_dp->has_audio = has_audio;
2071		goto done;
2072	}
2073
2074	if (property == dev_priv->broadcast_rgb_property) {
2075		if (val == !!intel_dp->color_range)
2076			return 0;
2077
2078		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2079		goto done;
2080	}
2081
2082	return -EINVAL;
2083
2084done:
2085	if (intel_dp->base.base.crtc) {
2086		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2087		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2088					 crtc->x, crtc->y,
2089					 crtc->fb);
2090	}
2091
2092	return 0;
2093}
2094
2095static void
2096intel_dp_destroy(struct drm_connector *connector)
2097{
2098	struct drm_device *dev = connector->dev;
2099
2100	if (intel_dpd_is_edp(dev))
2101		intel_panel_destroy_backlight(dev);
2102
2103	drm_sysfs_connector_remove(connector);
2104	drm_connector_cleanup(connector);
2105	kfree(connector);
2106}
2107
2108static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2109{
2110	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2111
2112	i2c_del_adapter(&intel_dp->adapter);
2113	drm_encoder_cleanup(encoder);
2114	if (is_edp(intel_dp)) {
2115		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2116		ironlake_panel_vdd_off_sync(intel_dp);
2117	}
2118	kfree(intel_dp);
2119}
2120
2121static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2122	.dpms = intel_dp_dpms,
2123	.mode_fixup = intel_dp_mode_fixup,
2124	.prepare = intel_dp_prepare,
2125	.mode_set = intel_dp_mode_set,
2126	.commit = intel_dp_commit,
2127};
2128
2129static const struct drm_connector_funcs intel_dp_connector_funcs = {
2130	.dpms = drm_helper_connector_dpms,
2131	.detect = intel_dp_detect,
2132	.fill_modes = drm_helper_probe_single_connector_modes,
2133	.set_property = intel_dp_set_property,
2134	.destroy = intel_dp_destroy,
2135};
2136
2137static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2138	.get_modes = intel_dp_get_modes,
2139	.mode_valid = intel_dp_mode_valid,
2140	.best_encoder = intel_best_encoder,
2141};
2142
2143static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2144	.destroy = intel_dp_encoder_destroy,
2145};
2146
2147static void
2148intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2149{
2150	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2151
2152	intel_dp_check_link_status(intel_dp);
2153}
2154
2155/* Return which DP Port should be selected for Transcoder DP control */
2156int
2157intel_trans_dp_port_sel(struct drm_crtc *crtc)
2158{
2159	struct drm_device *dev = crtc->dev;
2160	struct drm_mode_config *mode_config = &dev->mode_config;
2161	struct drm_encoder *encoder;
2162
2163	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2164		struct intel_dp *intel_dp;
2165
2166		if (encoder->crtc != crtc)
2167			continue;
2168
2169		intel_dp = enc_to_intel_dp(encoder);
2170		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
2171			return intel_dp->output_reg;
2172	}
2173
2174	return -1;
2175}
2176
2177/* check the VBT to see whether the eDP is on DP-D port */
2178bool intel_dpd_is_edp(struct drm_device *dev)
2179{
2180	struct drm_i915_private *dev_priv = dev->dev_private;
2181	struct child_device_config *p_child;
2182	int i;
2183
2184	if (!dev_priv->child_dev_num)
2185		return false;
2186
2187	for (i = 0; i < dev_priv->child_dev_num; i++) {
2188		p_child = dev_priv->child_dev + i;
2189
2190		if (p_child->dvo_port == PORT_IDPD &&
2191		    p_child->device_type == DEVICE_TYPE_eDP)
2192			return true;
2193	}
2194	return false;
2195}
2196
2197static void
2198intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2199{
2200	intel_attach_force_audio_property(connector);
2201	intel_attach_broadcast_rgb_property(connector);
2202}
2203
2204void
2205intel_dp_init(struct drm_device *dev, int output_reg)
2206{
2207	struct drm_i915_private *dev_priv = dev->dev_private;
2208	struct drm_connector *connector;
2209	struct intel_dp *intel_dp;
2210	struct intel_encoder *intel_encoder;
2211	struct intel_connector *intel_connector;
2212	const char *name = NULL;
2213	int type;
2214
2215	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2216	if (!intel_dp)
2217		return;
2218
2219	intel_dp->output_reg = output_reg;
2220	intel_dp->dpms_mode = -1;
2221
2222	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2223	if (!intel_connector) {
2224		kfree(intel_dp);
2225		return;
2226	}
2227	intel_encoder = &intel_dp->base;
2228
2229	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2230		if (intel_dpd_is_edp(dev))
2231			intel_dp->is_pch_edp = true;
2232
2233	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2234		type = DRM_MODE_CONNECTOR_eDP;
2235		intel_encoder->type = INTEL_OUTPUT_EDP;
2236	} else {
2237		type = DRM_MODE_CONNECTOR_DisplayPort;
2238		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2239	}
2240
2241	connector = &intel_connector->base;
2242	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2243	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2244
2245	connector->polled = DRM_CONNECTOR_POLL_HPD;
2246
2247	if (output_reg == DP_B || output_reg == PCH_DP_B)
2248		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2249	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2250		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2251	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2252		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2253
2254	if (is_edp(intel_dp)) {
2255		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2256		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2257				  ironlake_panel_vdd_work);
2258	}
2259
2260	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2261	connector->interlace_allowed = true;
2262	connector->doublescan_allowed = 0;
2263
2264	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2265			 DRM_MODE_ENCODER_TMDS);
2266	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2267
2268	intel_connector_attach_encoder(intel_connector, intel_encoder);
2269	drm_sysfs_connector_add(connector);
2270
2271	/* Set up the DDC bus. */
2272	switch (output_reg) {
2273		case DP_A:
2274			name = "DPDDC-A";
2275			break;
2276		case DP_B:
2277		case PCH_DP_B:
2278			dev_priv->hotplug_supported_mask |=
2279				HDMIB_HOTPLUG_INT_STATUS;
2280			name = "DPDDC-B";
2281			break;
2282		case DP_C:
2283		case PCH_DP_C:
2284			dev_priv->hotplug_supported_mask |=
2285				HDMIC_HOTPLUG_INT_STATUS;
2286			name = "DPDDC-C";
2287			break;
2288		case DP_D:
2289		case PCH_DP_D:
2290			dev_priv->hotplug_supported_mask |=
2291				HDMID_HOTPLUG_INT_STATUS;
2292			name = "DPDDC-D";
2293			break;
2294	}
2295
2296	/* Cache some DPCD data in the eDP case */
2297	if (is_edp(intel_dp)) {
2298		bool ret;
2299		struct edp_power_seq	cur, vbt;
2300		u32 pp_on, pp_off, pp_div;
2301
2302		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2303		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2304		pp_div = I915_READ(PCH_PP_DIVISOR);
2305
2306		/* Pull timing values out of registers */
2307		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2308			PANEL_POWER_UP_DELAY_SHIFT;
2309
2310		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2311			PANEL_LIGHT_ON_DELAY_SHIFT;
2312
2313		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2314			PANEL_LIGHT_OFF_DELAY_SHIFT;
2315
2316		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2317			PANEL_POWER_DOWN_DELAY_SHIFT;
2318
2319		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2320			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2321
2322		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2323			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2324
2325		vbt = dev_priv->edp.pps;
2326
2327		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2328			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2329
2330#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2331
2332		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2333		intel_dp->backlight_on_delay = get_delay(t8);
2334		intel_dp->backlight_off_delay = get_delay(t9);
2335		intel_dp->panel_power_down_delay = get_delay(t10);
2336		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2337
2338		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2339			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2340			      intel_dp->panel_power_cycle_delay);
2341
2342		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2343			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2344
2345		intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
2346
2347		ironlake_edp_panel_vdd_on(intel_dp);
2348		ret = intel_dp_get_dpcd(intel_dp);
2349		ironlake_edp_panel_vdd_off(intel_dp, false);
2350		if (ret) {
2351			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2352				dev_priv->no_aux_handshake =
2353					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2354					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2355		} else {
2356			/* if this fails, presume the device is a ghost */
2357			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2358			intel_dp_encoder_destroy(&intel_dp->base.base);
2359			intel_dp_destroy(&intel_connector->base);
2360			return;
2361		}
2362	}
2363
2364	intel_dp_i2c_init(intel_dp, intel_connector, name);
2365
2366	intel_encoder->hot_plug = intel_dp_hot_plug;
2367
2368	if (is_edp(intel_dp)) {
2369		dev_priv->int_edp_connector = connector;
2370		intel_panel_setup_backlight(dev);
2371	}
2372
2373	intel_dp_add_properties(intel_dp, connector);
2374
2375	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2376	 * 0xd.  Failure to do so will result in spurious interrupts being
2377	 * generated on the port when a cable is not attached.
2378	 */
2379	if (IS_G4X(dev) && !IS_GM45(dev)) {
2380		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2381		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2382	}
2383}
2384