intel_dp.c revision b18ac466956c7e7b5abf7a2d6adf8c626267d0ae
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41/**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48static bool is_edp(struct intel_dp *intel_dp)
49{
50	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53}
54
55/**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise.  Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63static bool is_pch_edp(struct intel_dp *intel_dp)
64{
65	return intel_dp->is_pch_edp;
66}
67
68/**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74static bool is_cpu_edp(struct intel_dp *intel_dp)
75{
76	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77}
78
79static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80{
81	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83	return intel_dig_port->base.base.dev;
84}
85
86static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87{
88	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89}
90
91/**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96 * by intel_display.c.
97 */
98bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99{
100	struct intel_dp *intel_dp;
101
102	if (!encoder)
103		return false;
104
105	intel_dp = enc_to_intel_dp(encoder);
106
107	return is_pch_edp(intel_dp);
108}
109
110static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112void
113intel_edp_link_config(struct intel_encoder *intel_encoder,
114		       int *lane_num, int *link_bw)
115{
116	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118	*lane_num = intel_dp->lane_count;
119	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120}
121
122int
123intel_edp_target_clock(struct intel_encoder *intel_encoder,
124		       struct drm_display_mode *mode)
125{
126	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127	struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129	if (intel_connector->panel.fixed_mode)
130		return intel_connector->panel.fixed_mode->clock;
131	else
132		return mode->clock;
133}
134
135static int
136intel_dp_max_link_bw(struct intel_dp *intel_dp)
137{
138	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140	switch (max_link_bw) {
141	case DP_LINK_BW_1_62:
142	case DP_LINK_BW_2_7:
143		break;
144	default:
145		max_link_bw = DP_LINK_BW_1_62;
146		break;
147	}
148	return max_link_bw;
149}
150
151/*
152 * The units on the numbers in the next two are... bizarre.  Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 *     270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000.  At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168static int
169intel_dp_link_required(int pixel_clock, int bpp)
170{
171	return (pixel_clock * bpp + 9) / 10;
172}
173
174static int
175intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176{
177	return (max_link_clock * max_lanes * 8) / 10;
178}
179
180static bool
181intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182			  struct drm_display_mode *mode,
183			  bool adjust_mode)
184{
185	int max_link_clock =
186		drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188	int max_rate, mode_rate;
189
190	mode_rate = intel_dp_link_required(mode->clock, 24);
191	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193	if (mode_rate > max_rate) {
194		mode_rate = intel_dp_link_required(mode->clock, 18);
195		if (mode_rate > max_rate)
196			return false;
197
198		if (adjust_mode)
199			mode->private_flags
200				|= INTEL_MODE_DP_FORCE_6BPC;
201
202		return true;
203	}
204
205	return true;
206}
207
208static int
209intel_dp_mode_valid(struct drm_connector *connector,
210		    struct drm_display_mode *mode)
211{
212	struct intel_dp *intel_dp = intel_attached_dp(connector);
213	struct intel_connector *intel_connector = to_intel_connector(connector);
214	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216	if (is_edp(intel_dp) && fixed_mode) {
217		if (mode->hdisplay > fixed_mode->hdisplay)
218			return MODE_PANEL;
219
220		if (mode->vdisplay > fixed_mode->vdisplay)
221			return MODE_PANEL;
222	}
223
224	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225		return MODE_CLOCK_HIGH;
226
227	if (mode->clock < 10000)
228		return MODE_CLOCK_LOW;
229
230	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231		return MODE_H_ILLEGAL;
232
233	return MODE_OK;
234}
235
236static uint32_t
237pack_aux(uint8_t *src, int src_bytes)
238{
239	int	i;
240	uint32_t v = 0;
241
242	if (src_bytes > 4)
243		src_bytes = 4;
244	for (i = 0; i < src_bytes; i++)
245		v |= ((uint32_t) src[i]) << ((3-i) * 8);
246	return v;
247}
248
249static void
250unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251{
252	int i;
253	if (dst_bytes > 4)
254		dst_bytes = 4;
255	for (i = 0; i < dst_bytes; i++)
256		dst[i] = src >> ((3-i) * 8);
257}
258
259/* hrawclock is 1/4 the FSB frequency */
260static int
261intel_hrawclk(struct drm_device *dev)
262{
263	struct drm_i915_private *dev_priv = dev->dev_private;
264	uint32_t clkcfg;
265
266	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267	if (IS_VALLEYVIEW(dev))
268		return 200;
269
270	clkcfg = I915_READ(CLKCFG);
271	switch (clkcfg & CLKCFG_FSB_MASK) {
272	case CLKCFG_FSB_400:
273		return 100;
274	case CLKCFG_FSB_533:
275		return 133;
276	case CLKCFG_FSB_667:
277		return 166;
278	case CLKCFG_FSB_800:
279		return 200;
280	case CLKCFG_FSB_1067:
281		return 266;
282	case CLKCFG_FSB_1333:
283		return 333;
284	/* these two are just a guess; one of them might be right */
285	case CLKCFG_FSB_1600:
286	case CLKCFG_FSB_1600_ALT:
287		return 400;
288	default:
289		return 133;
290	}
291}
292
293static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294{
295	struct drm_device *dev = intel_dp_to_dev(intel_dp);
296	struct drm_i915_private *dev_priv = dev->dev_private;
297
298	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299}
300
301static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302{
303	struct drm_device *dev = intel_dp_to_dev(intel_dp);
304	struct drm_i915_private *dev_priv = dev->dev_private;
305
306	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307}
308
309static void
310intel_dp_check_edp(struct intel_dp *intel_dp)
311{
312	struct drm_device *dev = intel_dp_to_dev(intel_dp);
313	struct drm_i915_private *dev_priv = dev->dev_private;
314
315	if (!is_edp(intel_dp))
316		return;
317	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318		WARN(1, "eDP powered off while attempting aux channel communication.\n");
319		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320			      I915_READ(PCH_PP_STATUS),
321			      I915_READ(PCH_PP_CONTROL));
322	}
323}
324
325static uint32_t
326intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327{
328	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329	struct drm_device *dev = intel_dig_port->base.base.dev;
330	struct drm_i915_private *dev_priv = dev->dev_private;
331	uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332	uint32_t status;
333	bool done;
334
335	if (IS_HASWELL(dev)) {
336		switch (intel_dig_port->port) {
337		case PORT_A:
338			ch_ctl = DPA_AUX_CH_CTL;
339			break;
340		case PORT_B:
341			ch_ctl = PCH_DPB_AUX_CH_CTL;
342			break;
343		case PORT_C:
344			ch_ctl = PCH_DPC_AUX_CH_CTL;
345			break;
346		case PORT_D:
347			ch_ctl = PCH_DPD_AUX_CH_CTL;
348			break;
349		default:
350			BUG();
351		}
352	}
353
354#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355	if (has_aux_irq)
356		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
357					  msecs_to_jiffies(10));
358	else
359		done = wait_for_atomic(C, 10) == 0;
360	if (!done)
361		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
362			  has_aux_irq);
363#undef C
364
365	return status;
366}
367
368static int
369intel_dp_aux_ch(struct intel_dp *intel_dp,
370		uint8_t *send, int send_bytes,
371		uint8_t *recv, int recv_size)
372{
373	uint32_t output_reg = intel_dp->output_reg;
374	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375	struct drm_device *dev = intel_dig_port->base.base.dev;
376	struct drm_i915_private *dev_priv = dev->dev_private;
377	uint32_t ch_ctl = output_reg + 0x10;
378	uint32_t ch_data = ch_ctl + 4;
379	int i, ret, recv_bytes;
380	uint32_t status;
381	uint32_t aux_clock_divider;
382	int try, precharge;
383	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
384
385	/* dp aux is extremely sensitive to irq latency, hence request the
386	 * lowest possible wakeup latency and so prevent the cpu from going into
387	 * deep sleep states.
388	 */
389	pm_qos_update_request(&dev_priv->pm_qos, 0);
390
391	if (IS_HASWELL(dev)) {
392		switch (intel_dig_port->port) {
393		case PORT_A:
394			ch_ctl = DPA_AUX_CH_CTL;
395			ch_data = DPA_AUX_CH_DATA1;
396			break;
397		case PORT_B:
398			ch_ctl = PCH_DPB_AUX_CH_CTL;
399			ch_data = PCH_DPB_AUX_CH_DATA1;
400			break;
401		case PORT_C:
402			ch_ctl = PCH_DPC_AUX_CH_CTL;
403			ch_data = PCH_DPC_AUX_CH_DATA1;
404			break;
405		case PORT_D:
406			ch_ctl = PCH_DPD_AUX_CH_CTL;
407			ch_data = PCH_DPD_AUX_CH_DATA1;
408			break;
409		default:
410			BUG();
411		}
412	}
413
414	intel_dp_check_edp(intel_dp);
415	/* The clock divider is based off the hrawclk,
416	 * and would like to run at 2MHz. So, take the
417	 * hrawclk value and divide by 2 and use that
418	 *
419	 * Note that PCH attached eDP panels should use a 125MHz input
420	 * clock divider.
421	 */
422	if (is_cpu_edp(intel_dp)) {
423		if (HAS_DDI(dev))
424			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
425		else if (IS_VALLEYVIEW(dev))
426			aux_clock_divider = 100;
427		else if (IS_GEN6(dev) || IS_GEN7(dev))
428			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
429		else
430			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
431	} else if (HAS_PCH_SPLIT(dev))
432		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433	else
434		aux_clock_divider = intel_hrawclk(dev) / 2;
435
436	if (IS_GEN6(dev))
437		precharge = 3;
438	else
439		precharge = 5;
440
441	/* Try to wait for any previous AUX channel activity */
442	for (try = 0; try < 3; try++) {
443		status = I915_READ_NOTRACE(ch_ctl);
444		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
445			break;
446		msleep(1);
447	}
448
449	if (try == 3) {
450		WARN(1, "dp_aux_ch not started status 0x%08x\n",
451		     I915_READ(ch_ctl));
452		ret = -EBUSY;
453		goto out;
454	}
455
456	/* Must try at least 3 times according to DP spec */
457	for (try = 0; try < 5; try++) {
458		/* Load the send data into the aux channel data registers */
459		for (i = 0; i < send_bytes; i += 4)
460			I915_WRITE(ch_data + i,
461				   pack_aux(send + i, send_bytes - i));
462
463		/* Send the command and wait for it to complete */
464		I915_WRITE(ch_ctl,
465			   DP_AUX_CH_CTL_SEND_BUSY |
466			   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
467			   DP_AUX_CH_CTL_TIME_OUT_400us |
468			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
469			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
470			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
471			   DP_AUX_CH_CTL_DONE |
472			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
473			   DP_AUX_CH_CTL_RECEIVE_ERROR);
474
475		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
476
477		/* Clear done status and any errors */
478		I915_WRITE(ch_ctl,
479			   status |
480			   DP_AUX_CH_CTL_DONE |
481			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
482			   DP_AUX_CH_CTL_RECEIVE_ERROR);
483
484		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
485			      DP_AUX_CH_CTL_RECEIVE_ERROR))
486			continue;
487		if (status & DP_AUX_CH_CTL_DONE)
488			break;
489	}
490
491	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
492		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
493		ret = -EBUSY;
494		goto out;
495	}
496
497	/* Check for timeout or receive error.
498	 * Timeouts occur when the sink is not connected
499	 */
500	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
501		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
502		ret = -EIO;
503		goto out;
504	}
505
506	/* Timeouts occur when the device isn't connected, so they're
507	 * "normal" -- don't fill the kernel log with these */
508	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
509		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
510		ret = -ETIMEDOUT;
511		goto out;
512	}
513
514	/* Unload any bytes sent back from the other side */
515	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
516		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
517	if (recv_bytes > recv_size)
518		recv_bytes = recv_size;
519
520	for (i = 0; i < recv_bytes; i += 4)
521		unpack_aux(I915_READ(ch_data + i),
522			   recv + i, recv_bytes - i);
523
524	ret = recv_bytes;
525out:
526	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
527
528	return ret;
529}
530
531/* Write data to the aux channel in native mode */
532static int
533intel_dp_aux_native_write(struct intel_dp *intel_dp,
534			  uint16_t address, uint8_t *send, int send_bytes)
535{
536	int ret;
537	uint8_t	msg[20];
538	int msg_bytes;
539	uint8_t	ack;
540
541	intel_dp_check_edp(intel_dp);
542	if (send_bytes > 16)
543		return -1;
544	msg[0] = AUX_NATIVE_WRITE << 4;
545	msg[1] = address >> 8;
546	msg[2] = address & 0xff;
547	msg[3] = send_bytes - 1;
548	memcpy(&msg[4], send, send_bytes);
549	msg_bytes = send_bytes + 4;
550	for (;;) {
551		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
552		if (ret < 0)
553			return ret;
554		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
555			break;
556		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
557			udelay(100);
558		else
559			return -EIO;
560	}
561	return send_bytes;
562}
563
564/* Write a single byte to the aux channel in native mode */
565static int
566intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
567			    uint16_t address, uint8_t byte)
568{
569	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
570}
571
572/* read bytes from a native aux channel */
573static int
574intel_dp_aux_native_read(struct intel_dp *intel_dp,
575			 uint16_t address, uint8_t *recv, int recv_bytes)
576{
577	uint8_t msg[4];
578	int msg_bytes;
579	uint8_t reply[20];
580	int reply_bytes;
581	uint8_t ack;
582	int ret;
583
584	intel_dp_check_edp(intel_dp);
585	msg[0] = AUX_NATIVE_READ << 4;
586	msg[1] = address >> 8;
587	msg[2] = address & 0xff;
588	msg[3] = recv_bytes - 1;
589
590	msg_bytes = 4;
591	reply_bytes = recv_bytes + 1;
592
593	for (;;) {
594		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
595				      reply, reply_bytes);
596		if (ret == 0)
597			return -EPROTO;
598		if (ret < 0)
599			return ret;
600		ack = reply[0];
601		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
602			memcpy(recv, reply + 1, ret - 1);
603			return ret - 1;
604		}
605		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
606			udelay(100);
607		else
608			return -EIO;
609	}
610}
611
612static int
613intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
614		    uint8_t write_byte, uint8_t *read_byte)
615{
616	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
617	struct intel_dp *intel_dp = container_of(adapter,
618						struct intel_dp,
619						adapter);
620	uint16_t address = algo_data->address;
621	uint8_t msg[5];
622	uint8_t reply[2];
623	unsigned retry;
624	int msg_bytes;
625	int reply_bytes;
626	int ret;
627
628	intel_dp_check_edp(intel_dp);
629	/* Set up the command byte */
630	if (mode & MODE_I2C_READ)
631		msg[0] = AUX_I2C_READ << 4;
632	else
633		msg[0] = AUX_I2C_WRITE << 4;
634
635	if (!(mode & MODE_I2C_STOP))
636		msg[0] |= AUX_I2C_MOT << 4;
637
638	msg[1] = address >> 8;
639	msg[2] = address;
640
641	switch (mode) {
642	case MODE_I2C_WRITE:
643		msg[3] = 0;
644		msg[4] = write_byte;
645		msg_bytes = 5;
646		reply_bytes = 1;
647		break;
648	case MODE_I2C_READ:
649		msg[3] = 0;
650		msg_bytes = 4;
651		reply_bytes = 2;
652		break;
653	default:
654		msg_bytes = 3;
655		reply_bytes = 1;
656		break;
657	}
658
659	for (retry = 0; retry < 5; retry++) {
660		ret = intel_dp_aux_ch(intel_dp,
661				      msg, msg_bytes,
662				      reply, reply_bytes);
663		if (ret < 0) {
664			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
665			return ret;
666		}
667
668		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
669		case AUX_NATIVE_REPLY_ACK:
670			/* I2C-over-AUX Reply field is only valid
671			 * when paired with AUX ACK.
672			 */
673			break;
674		case AUX_NATIVE_REPLY_NACK:
675			DRM_DEBUG_KMS("aux_ch native nack\n");
676			return -EREMOTEIO;
677		case AUX_NATIVE_REPLY_DEFER:
678			udelay(100);
679			continue;
680		default:
681			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
682				  reply[0]);
683			return -EREMOTEIO;
684		}
685
686		switch (reply[0] & AUX_I2C_REPLY_MASK) {
687		case AUX_I2C_REPLY_ACK:
688			if (mode == MODE_I2C_READ) {
689				*read_byte = reply[1];
690			}
691			return reply_bytes - 1;
692		case AUX_I2C_REPLY_NACK:
693			DRM_DEBUG_KMS("aux_i2c nack\n");
694			return -EREMOTEIO;
695		case AUX_I2C_REPLY_DEFER:
696			DRM_DEBUG_KMS("aux_i2c defer\n");
697			udelay(100);
698			break;
699		default:
700			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
701			return -EREMOTEIO;
702		}
703	}
704
705	DRM_ERROR("too many retries, giving up\n");
706	return -EREMOTEIO;
707}
708
709static int
710intel_dp_i2c_init(struct intel_dp *intel_dp,
711		  struct intel_connector *intel_connector, const char *name)
712{
713	int	ret;
714
715	DRM_DEBUG_KMS("i2c_init %s\n", name);
716	intel_dp->algo.running = false;
717	intel_dp->algo.address = 0;
718	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
719
720	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
721	intel_dp->adapter.owner = THIS_MODULE;
722	intel_dp->adapter.class = I2C_CLASS_DDC;
723	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
724	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
725	intel_dp->adapter.algo_data = &intel_dp->algo;
726	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
727
728	ironlake_edp_panel_vdd_on(intel_dp);
729	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
730	ironlake_edp_panel_vdd_off(intel_dp, false);
731	return ret;
732}
733
734bool
735intel_dp_mode_fixup(struct drm_encoder *encoder,
736		    const struct drm_display_mode *mode,
737		    struct drm_display_mode *adjusted_mode)
738{
739	struct drm_device *dev = encoder->dev;
740	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
741	struct intel_connector *intel_connector = intel_dp->attached_connector;
742	int lane_count, clock;
743	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
744	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
745	int bpp, mode_rate;
746	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
747
748	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
749		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
750				       adjusted_mode);
751		intel_pch_panel_fitting(dev,
752					intel_connector->panel.fitting_mode,
753					mode, adjusted_mode);
754	}
755
756	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
757		return false;
758
759	DRM_DEBUG_KMS("DP link computation with max lane count %i "
760		      "max bw %02x pixel clock %iKHz\n",
761		      max_lane_count, bws[max_clock], adjusted_mode->clock);
762
763	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
764		return false;
765
766	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
767
768	if (intel_dp->color_range_auto) {
769		/*
770		 * See:
771		 * CEA-861-E - 5.1 Default Encoding Parameters
772		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
773		 */
774		if (bpp != 18 && drm_mode_cea_vic(adjusted_mode) > 1)
775			intel_dp->color_range = DP_COLOR_RANGE_16_235;
776		else
777			intel_dp->color_range = 0;
778	}
779
780	if (intel_dp->color_range)
781		adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
782
783	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
784
785	for (clock = 0; clock <= max_clock; clock++) {
786		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
787			int link_bw_clock =
788				drm_dp_bw_code_to_link_rate(bws[clock]);
789			int link_avail = intel_dp_max_data_rate(link_bw_clock,
790								lane_count);
791
792			if (mode_rate <= link_avail) {
793				intel_dp->link_bw = bws[clock];
794				intel_dp->lane_count = lane_count;
795				adjusted_mode->clock = link_bw_clock;
796				DRM_DEBUG_KMS("DP link bw %02x lane "
797						"count %d clock %d bpp %d\n",
798				       intel_dp->link_bw, intel_dp->lane_count,
799				       adjusted_mode->clock, bpp);
800				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
801					      mode_rate, link_avail);
802				return true;
803			}
804		}
805	}
806
807	return false;
808}
809
810void
811intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
812		 struct drm_display_mode *adjusted_mode)
813{
814	struct drm_device *dev = crtc->dev;
815	struct intel_encoder *intel_encoder;
816	struct intel_dp *intel_dp;
817	struct drm_i915_private *dev_priv = dev->dev_private;
818	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
819	int lane_count = 4;
820	struct intel_link_m_n m_n;
821	int pipe = intel_crtc->pipe;
822	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
823
824	/*
825	 * Find the lane count in the intel_encoder private
826	 */
827	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
828		intel_dp = enc_to_intel_dp(&intel_encoder->base);
829
830		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
831		    intel_encoder->type == INTEL_OUTPUT_EDP)
832		{
833			lane_count = intel_dp->lane_count;
834			break;
835		}
836	}
837
838	/*
839	 * Compute the GMCH and Link ratios. The '3' here is
840	 * the number of bytes_per_pixel post-LUT, which we always
841	 * set up for 8-bits of R/G/B, or 3 bytes total.
842	 */
843	intel_link_compute_m_n(intel_crtc->bpp, lane_count,
844			       mode->clock, adjusted_mode->clock, &m_n);
845
846	if (IS_HASWELL(dev)) {
847		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
848			   TU_SIZE(m_n.tu) | m_n.gmch_m);
849		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
850		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
851		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
852	} else if (HAS_PCH_SPLIT(dev)) {
853		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
854		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
855		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
856		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
857	} else if (IS_VALLEYVIEW(dev)) {
858		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
859		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
860		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
861		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
862	} else {
863		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
864			   TU_SIZE(m_n.tu) | m_n.gmch_m);
865		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
866		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
867		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
868	}
869}
870
871void intel_dp_init_link_config(struct intel_dp *intel_dp)
872{
873	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
874	intel_dp->link_configuration[0] = intel_dp->link_bw;
875	intel_dp->link_configuration[1] = intel_dp->lane_count;
876	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
877	/*
878	 * Check for DPCD version > 1.1 and enhanced framing support
879	 */
880	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
881	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
882		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
883	}
884}
885
886static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
887{
888	struct drm_device *dev = crtc->dev;
889	struct drm_i915_private *dev_priv = dev->dev_private;
890	u32 dpa_ctl;
891
892	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
893	dpa_ctl = I915_READ(DP_A);
894	dpa_ctl &= ~DP_PLL_FREQ_MASK;
895
896	if (clock < 200000) {
897		/* For a long time we've carried around a ILK-DevA w/a for the
898		 * 160MHz clock. If we're really unlucky, it's still required.
899		 */
900		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
901		dpa_ctl |= DP_PLL_FREQ_160MHZ;
902	} else {
903		dpa_ctl |= DP_PLL_FREQ_270MHZ;
904	}
905
906	I915_WRITE(DP_A, dpa_ctl);
907
908	POSTING_READ(DP_A);
909	udelay(500);
910}
911
912static void
913intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
914		  struct drm_display_mode *adjusted_mode)
915{
916	struct drm_device *dev = encoder->dev;
917	struct drm_i915_private *dev_priv = dev->dev_private;
918	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
919	struct drm_crtc *crtc = encoder->crtc;
920	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
921
922	/*
923	 * There are four kinds of DP registers:
924	 *
925	 * 	IBX PCH
926	 * 	SNB CPU
927	 *	IVB CPU
928	 * 	CPT PCH
929	 *
930	 * IBX PCH and CPU are the same for almost everything,
931	 * except that the CPU DP PLL is configured in this
932	 * register
933	 *
934	 * CPT PCH is quite different, having many bits moved
935	 * to the TRANS_DP_CTL register instead. That
936	 * configuration happens (oddly) in ironlake_pch_enable
937	 */
938
939	/* Preserve the BIOS-computed detected bit. This is
940	 * supposed to be read-only.
941	 */
942	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
943
944	/* Handle DP bits in common between all three register formats */
945	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
946
947	switch (intel_dp->lane_count) {
948	case 1:
949		intel_dp->DP |= DP_PORT_WIDTH_1;
950		break;
951	case 2:
952		intel_dp->DP |= DP_PORT_WIDTH_2;
953		break;
954	case 4:
955		intel_dp->DP |= DP_PORT_WIDTH_4;
956		break;
957	}
958	if (intel_dp->has_audio) {
959		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
960				 pipe_name(intel_crtc->pipe));
961		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
962		intel_write_eld(encoder, adjusted_mode);
963	}
964
965	intel_dp_init_link_config(intel_dp);
966
967	/* Split out the IBX/CPU vs CPT settings */
968
969	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
970		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
971			intel_dp->DP |= DP_SYNC_HS_HIGH;
972		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
973			intel_dp->DP |= DP_SYNC_VS_HIGH;
974		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
975
976		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
977			intel_dp->DP |= DP_ENHANCED_FRAMING;
978
979		intel_dp->DP |= intel_crtc->pipe << 29;
980
981		/* don't miss out required setting for eDP */
982		if (adjusted_mode->clock < 200000)
983			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
984		else
985			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
986	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
987		if (!HAS_PCH_SPLIT(dev))
988			intel_dp->DP |= intel_dp->color_range;
989
990		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
991			intel_dp->DP |= DP_SYNC_HS_HIGH;
992		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
993			intel_dp->DP |= DP_SYNC_VS_HIGH;
994		intel_dp->DP |= DP_LINK_TRAIN_OFF;
995
996		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
997			intel_dp->DP |= DP_ENHANCED_FRAMING;
998
999		if (intel_crtc->pipe == 1)
1000			intel_dp->DP |= DP_PIPEB_SELECT;
1001
1002		if (is_cpu_edp(intel_dp)) {
1003			/* don't miss out required setting for eDP */
1004			if (adjusted_mode->clock < 200000)
1005				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006			else
1007				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1008		}
1009	} else {
1010		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1011	}
1012
1013	if (is_cpu_edp(intel_dp))
1014		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
1015}
1016
1017#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1018#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1019
1020#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1021#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1022
1023#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1024#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1025
1026static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1027				       u32 mask,
1028				       u32 value)
1029{
1030	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1031	struct drm_i915_private *dev_priv = dev->dev_private;
1032
1033	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1034		      mask, value,
1035		      I915_READ(PCH_PP_STATUS),
1036		      I915_READ(PCH_PP_CONTROL));
1037
1038	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1039		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1040			  I915_READ(PCH_PP_STATUS),
1041			  I915_READ(PCH_PP_CONTROL));
1042	}
1043}
1044
1045static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1046{
1047	DRM_DEBUG_KMS("Wait for panel power on\n");
1048	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1049}
1050
1051static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1052{
1053	DRM_DEBUG_KMS("Wait for panel power off time\n");
1054	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1055}
1056
1057static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1058{
1059	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1060	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1061}
1062
1063
1064/* Read the current pp_control value, unlocking the register if it
1065 * is locked
1066 */
1067
1068static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1069{
1070	u32	control = I915_READ(PCH_PP_CONTROL);
1071
1072	control &= ~PANEL_UNLOCK_MASK;
1073	control |= PANEL_UNLOCK_REGS;
1074	return control;
1075}
1076
1077void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1078{
1079	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1080	struct drm_i915_private *dev_priv = dev->dev_private;
1081	u32 pp;
1082
1083	if (!is_edp(intel_dp))
1084		return;
1085	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1086
1087	WARN(intel_dp->want_panel_vdd,
1088	     "eDP VDD already requested on\n");
1089
1090	intel_dp->want_panel_vdd = true;
1091
1092	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1093		DRM_DEBUG_KMS("eDP VDD already on\n");
1094		return;
1095	}
1096
1097	if (!ironlake_edp_have_panel_power(intel_dp))
1098		ironlake_wait_panel_power_cycle(intel_dp);
1099
1100	pp = ironlake_get_pp_control(dev_priv);
1101	pp |= EDP_FORCE_VDD;
1102	I915_WRITE(PCH_PP_CONTROL, pp);
1103	POSTING_READ(PCH_PP_CONTROL);
1104	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1105		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1106
1107	/*
1108	 * If the panel wasn't on, delay before accessing aux channel
1109	 */
1110	if (!ironlake_edp_have_panel_power(intel_dp)) {
1111		DRM_DEBUG_KMS("eDP was not running\n");
1112		msleep(intel_dp->panel_power_up_delay);
1113	}
1114}
1115
1116static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1117{
1118	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1119	struct drm_i915_private *dev_priv = dev->dev_private;
1120	u32 pp;
1121
1122	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1123
1124	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1125		pp = ironlake_get_pp_control(dev_priv);
1126		pp &= ~EDP_FORCE_VDD;
1127		I915_WRITE(PCH_PP_CONTROL, pp);
1128		POSTING_READ(PCH_PP_CONTROL);
1129
1130		/* Make sure sequencer is idle before allowing subsequent activity */
1131		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1132			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1133
1134		msleep(intel_dp->panel_power_down_delay);
1135	}
1136}
1137
1138static void ironlake_panel_vdd_work(struct work_struct *__work)
1139{
1140	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1141						 struct intel_dp, panel_vdd_work);
1142	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1143
1144	mutex_lock(&dev->mode_config.mutex);
1145	ironlake_panel_vdd_off_sync(intel_dp);
1146	mutex_unlock(&dev->mode_config.mutex);
1147}
1148
1149void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1150{
1151	if (!is_edp(intel_dp))
1152		return;
1153
1154	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1155	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1156
1157	intel_dp->want_panel_vdd = false;
1158
1159	if (sync) {
1160		ironlake_panel_vdd_off_sync(intel_dp);
1161	} else {
1162		/*
1163		 * Queue the timer to fire a long
1164		 * time from now (relative to the power down delay)
1165		 * to keep the panel power up across a sequence of operations
1166		 */
1167		schedule_delayed_work(&intel_dp->panel_vdd_work,
1168				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1169	}
1170}
1171
1172void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1173{
1174	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1175	struct drm_i915_private *dev_priv = dev->dev_private;
1176	u32 pp;
1177
1178	if (!is_edp(intel_dp))
1179		return;
1180
1181	DRM_DEBUG_KMS("Turn eDP power on\n");
1182
1183	if (ironlake_edp_have_panel_power(intel_dp)) {
1184		DRM_DEBUG_KMS("eDP power already on\n");
1185		return;
1186	}
1187
1188	ironlake_wait_panel_power_cycle(intel_dp);
1189
1190	pp = ironlake_get_pp_control(dev_priv);
1191	if (IS_GEN5(dev)) {
1192		/* ILK workaround: disable reset around power sequence */
1193		pp &= ~PANEL_POWER_RESET;
1194		I915_WRITE(PCH_PP_CONTROL, pp);
1195		POSTING_READ(PCH_PP_CONTROL);
1196	}
1197
1198	pp |= POWER_TARGET_ON;
1199	if (!IS_GEN5(dev))
1200		pp |= PANEL_POWER_RESET;
1201
1202	I915_WRITE(PCH_PP_CONTROL, pp);
1203	POSTING_READ(PCH_PP_CONTROL);
1204
1205	ironlake_wait_panel_on(intel_dp);
1206
1207	if (IS_GEN5(dev)) {
1208		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1209		I915_WRITE(PCH_PP_CONTROL, pp);
1210		POSTING_READ(PCH_PP_CONTROL);
1211	}
1212}
1213
1214void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1215{
1216	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1217	struct drm_i915_private *dev_priv = dev->dev_private;
1218	u32 pp;
1219
1220	if (!is_edp(intel_dp))
1221		return;
1222
1223	DRM_DEBUG_KMS("Turn eDP power off\n");
1224
1225	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1226
1227	pp = ironlake_get_pp_control(dev_priv);
1228	/* We need to switch off panel power _and_ force vdd, for otherwise some
1229	 * panels get very unhappy and cease to work. */
1230	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1231	I915_WRITE(PCH_PP_CONTROL, pp);
1232	POSTING_READ(PCH_PP_CONTROL);
1233
1234	intel_dp->want_panel_vdd = false;
1235
1236	ironlake_wait_panel_off(intel_dp);
1237}
1238
1239void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1240{
1241	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242	struct drm_device *dev = intel_dig_port->base.base.dev;
1243	struct drm_i915_private *dev_priv = dev->dev_private;
1244	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1245	u32 pp;
1246
1247	if (!is_edp(intel_dp))
1248		return;
1249
1250	DRM_DEBUG_KMS("\n");
1251	/*
1252	 * If we enable the backlight right away following a panel power
1253	 * on, we may see slight flicker as the panel syncs with the eDP
1254	 * link.  So delay a bit to make sure the image is solid before
1255	 * allowing it to appear.
1256	 */
1257	msleep(intel_dp->backlight_on_delay);
1258	pp = ironlake_get_pp_control(dev_priv);
1259	pp |= EDP_BLC_ENABLE;
1260	I915_WRITE(PCH_PP_CONTROL, pp);
1261	POSTING_READ(PCH_PP_CONTROL);
1262
1263	intel_panel_enable_backlight(dev, pipe);
1264}
1265
1266void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1267{
1268	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1269	struct drm_i915_private *dev_priv = dev->dev_private;
1270	u32 pp;
1271
1272	if (!is_edp(intel_dp))
1273		return;
1274
1275	intel_panel_disable_backlight(dev);
1276
1277	DRM_DEBUG_KMS("\n");
1278	pp = ironlake_get_pp_control(dev_priv);
1279	pp &= ~EDP_BLC_ENABLE;
1280	I915_WRITE(PCH_PP_CONTROL, pp);
1281	POSTING_READ(PCH_PP_CONTROL);
1282	msleep(intel_dp->backlight_off_delay);
1283}
1284
1285static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1286{
1287	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1288	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1289	struct drm_device *dev = crtc->dev;
1290	struct drm_i915_private *dev_priv = dev->dev_private;
1291	u32 dpa_ctl;
1292
1293	assert_pipe_disabled(dev_priv,
1294			     to_intel_crtc(crtc)->pipe);
1295
1296	DRM_DEBUG_KMS("\n");
1297	dpa_ctl = I915_READ(DP_A);
1298	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1299	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1300
1301	/* We don't adjust intel_dp->DP while tearing down the link, to
1302	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1303	 * enable bits here to ensure that we don't enable too much. */
1304	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1305	intel_dp->DP |= DP_PLL_ENABLE;
1306	I915_WRITE(DP_A, intel_dp->DP);
1307	POSTING_READ(DP_A);
1308	udelay(200);
1309}
1310
1311static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1312{
1313	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1314	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1315	struct drm_device *dev = crtc->dev;
1316	struct drm_i915_private *dev_priv = dev->dev_private;
1317	u32 dpa_ctl;
1318
1319	assert_pipe_disabled(dev_priv,
1320			     to_intel_crtc(crtc)->pipe);
1321
1322	dpa_ctl = I915_READ(DP_A);
1323	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1324	     "dp pll off, should be on\n");
1325	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1326
1327	/* We can't rely on the value tracked for the DP register in
1328	 * intel_dp->DP because link_down must not change that (otherwise link
1329	 * re-training will fail. */
1330	dpa_ctl &= ~DP_PLL_ENABLE;
1331	I915_WRITE(DP_A, dpa_ctl);
1332	POSTING_READ(DP_A);
1333	udelay(200);
1334}
1335
1336/* If the sink supports it, try to set the power state appropriately */
1337void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1338{
1339	int ret, i;
1340
1341	/* Should have a valid DPCD by this point */
1342	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1343		return;
1344
1345	if (mode != DRM_MODE_DPMS_ON) {
1346		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1347						  DP_SET_POWER_D3);
1348		if (ret != 1)
1349			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1350	} else {
1351		/*
1352		 * When turning on, we need to retry for 1ms to give the sink
1353		 * time to wake up.
1354		 */
1355		for (i = 0; i < 3; i++) {
1356			ret = intel_dp_aux_native_write_1(intel_dp,
1357							  DP_SET_POWER,
1358							  DP_SET_POWER_D0);
1359			if (ret == 1)
1360				break;
1361			msleep(1);
1362		}
1363	}
1364}
1365
1366static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1367				  enum pipe *pipe)
1368{
1369	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1370	struct drm_device *dev = encoder->base.dev;
1371	struct drm_i915_private *dev_priv = dev->dev_private;
1372	u32 tmp = I915_READ(intel_dp->output_reg);
1373
1374	if (!(tmp & DP_PORT_EN))
1375		return false;
1376
1377	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1378		*pipe = PORT_TO_PIPE_CPT(tmp);
1379	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1380		*pipe = PORT_TO_PIPE(tmp);
1381	} else {
1382		u32 trans_sel;
1383		u32 trans_dp;
1384		int i;
1385
1386		switch (intel_dp->output_reg) {
1387		case PCH_DP_B:
1388			trans_sel = TRANS_DP_PORT_SEL_B;
1389			break;
1390		case PCH_DP_C:
1391			trans_sel = TRANS_DP_PORT_SEL_C;
1392			break;
1393		case PCH_DP_D:
1394			trans_sel = TRANS_DP_PORT_SEL_D;
1395			break;
1396		default:
1397			return true;
1398		}
1399
1400		for_each_pipe(i) {
1401			trans_dp = I915_READ(TRANS_DP_CTL(i));
1402			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1403				*pipe = i;
1404				return true;
1405			}
1406		}
1407
1408		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1409			      intel_dp->output_reg);
1410	}
1411
1412	return true;
1413}
1414
1415static void intel_disable_dp(struct intel_encoder *encoder)
1416{
1417	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418
1419	/* Make sure the panel is off before trying to change the mode. But also
1420	 * ensure that we have vdd while we switch off the panel. */
1421	ironlake_edp_panel_vdd_on(intel_dp);
1422	ironlake_edp_backlight_off(intel_dp);
1423	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1424	ironlake_edp_panel_off(intel_dp);
1425
1426	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1427	if (!is_cpu_edp(intel_dp))
1428		intel_dp_link_down(intel_dp);
1429}
1430
1431static void intel_post_disable_dp(struct intel_encoder *encoder)
1432{
1433	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1434
1435	if (is_cpu_edp(intel_dp)) {
1436		intel_dp_link_down(intel_dp);
1437		ironlake_edp_pll_off(intel_dp);
1438	}
1439}
1440
1441static void intel_enable_dp(struct intel_encoder *encoder)
1442{
1443	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1444	struct drm_device *dev = encoder->base.dev;
1445	struct drm_i915_private *dev_priv = dev->dev_private;
1446	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1447
1448	if (WARN_ON(dp_reg & DP_PORT_EN))
1449		return;
1450
1451	ironlake_edp_panel_vdd_on(intel_dp);
1452	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1453	intel_dp_start_link_train(intel_dp);
1454	ironlake_edp_panel_on(intel_dp);
1455	ironlake_edp_panel_vdd_off(intel_dp, true);
1456	intel_dp_complete_link_train(intel_dp);
1457	ironlake_edp_backlight_on(intel_dp);
1458}
1459
1460static void intel_pre_enable_dp(struct intel_encoder *encoder)
1461{
1462	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1463
1464	if (is_cpu_edp(intel_dp))
1465		ironlake_edp_pll_on(intel_dp);
1466}
1467
1468/*
1469 * Native read with retry for link status and receiver capability reads for
1470 * cases where the sink may still be asleep.
1471 */
1472static bool
1473intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1474			       uint8_t *recv, int recv_bytes)
1475{
1476	int ret, i;
1477
1478	/*
1479	 * Sinks are *supposed* to come up within 1ms from an off state,
1480	 * but we're also supposed to retry 3 times per the spec.
1481	 */
1482	for (i = 0; i < 3; i++) {
1483		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1484					       recv_bytes);
1485		if (ret == recv_bytes)
1486			return true;
1487		msleep(1);
1488	}
1489
1490	return false;
1491}
1492
1493/*
1494 * Fetch AUX CH registers 0x202 - 0x207 which contain
1495 * link status information
1496 */
1497static bool
1498intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1499{
1500	return intel_dp_aux_native_read_retry(intel_dp,
1501					      DP_LANE0_1_STATUS,
1502					      link_status,
1503					      DP_LINK_STATUS_SIZE);
1504}
1505
1506#if 0
1507static char	*voltage_names[] = {
1508	"0.4V", "0.6V", "0.8V", "1.2V"
1509};
1510static char	*pre_emph_names[] = {
1511	"0dB", "3.5dB", "6dB", "9.5dB"
1512};
1513static char	*link_train_names[] = {
1514	"pattern 1", "pattern 2", "idle", "off"
1515};
1516#endif
1517
1518/*
1519 * These are source-specific values; current Intel hardware supports
1520 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1521 */
1522
1523static uint8_t
1524intel_dp_voltage_max(struct intel_dp *intel_dp)
1525{
1526	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1527
1528	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1529		return DP_TRAIN_VOLTAGE_SWING_800;
1530	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1531		return DP_TRAIN_VOLTAGE_SWING_1200;
1532	else
1533		return DP_TRAIN_VOLTAGE_SWING_800;
1534}
1535
1536static uint8_t
1537intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1538{
1539	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1540
1541	if (IS_HASWELL(dev)) {
1542		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1543		case DP_TRAIN_VOLTAGE_SWING_400:
1544			return DP_TRAIN_PRE_EMPHASIS_9_5;
1545		case DP_TRAIN_VOLTAGE_SWING_600:
1546			return DP_TRAIN_PRE_EMPHASIS_6;
1547		case DP_TRAIN_VOLTAGE_SWING_800:
1548			return DP_TRAIN_PRE_EMPHASIS_3_5;
1549		case DP_TRAIN_VOLTAGE_SWING_1200:
1550		default:
1551			return DP_TRAIN_PRE_EMPHASIS_0;
1552		}
1553	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1554		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1555		case DP_TRAIN_VOLTAGE_SWING_400:
1556			return DP_TRAIN_PRE_EMPHASIS_6;
1557		case DP_TRAIN_VOLTAGE_SWING_600:
1558		case DP_TRAIN_VOLTAGE_SWING_800:
1559			return DP_TRAIN_PRE_EMPHASIS_3_5;
1560		default:
1561			return DP_TRAIN_PRE_EMPHASIS_0;
1562		}
1563	} else {
1564		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1565		case DP_TRAIN_VOLTAGE_SWING_400:
1566			return DP_TRAIN_PRE_EMPHASIS_6;
1567		case DP_TRAIN_VOLTAGE_SWING_600:
1568			return DP_TRAIN_PRE_EMPHASIS_6;
1569		case DP_TRAIN_VOLTAGE_SWING_800:
1570			return DP_TRAIN_PRE_EMPHASIS_3_5;
1571		case DP_TRAIN_VOLTAGE_SWING_1200:
1572		default:
1573			return DP_TRAIN_PRE_EMPHASIS_0;
1574		}
1575	}
1576}
1577
1578static void
1579intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1580{
1581	uint8_t v = 0;
1582	uint8_t p = 0;
1583	int lane;
1584	uint8_t voltage_max;
1585	uint8_t preemph_max;
1586
1587	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1588		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1589		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1590
1591		if (this_v > v)
1592			v = this_v;
1593		if (this_p > p)
1594			p = this_p;
1595	}
1596
1597	voltage_max = intel_dp_voltage_max(intel_dp);
1598	if (v >= voltage_max)
1599		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1600
1601	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1602	if (p >= preemph_max)
1603		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1604
1605	for (lane = 0; lane < 4; lane++)
1606		intel_dp->train_set[lane] = v | p;
1607}
1608
1609static uint32_t
1610intel_gen4_signal_levels(uint8_t train_set)
1611{
1612	uint32_t	signal_levels = 0;
1613
1614	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1615	case DP_TRAIN_VOLTAGE_SWING_400:
1616	default:
1617		signal_levels |= DP_VOLTAGE_0_4;
1618		break;
1619	case DP_TRAIN_VOLTAGE_SWING_600:
1620		signal_levels |= DP_VOLTAGE_0_6;
1621		break;
1622	case DP_TRAIN_VOLTAGE_SWING_800:
1623		signal_levels |= DP_VOLTAGE_0_8;
1624		break;
1625	case DP_TRAIN_VOLTAGE_SWING_1200:
1626		signal_levels |= DP_VOLTAGE_1_2;
1627		break;
1628	}
1629	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1630	case DP_TRAIN_PRE_EMPHASIS_0:
1631	default:
1632		signal_levels |= DP_PRE_EMPHASIS_0;
1633		break;
1634	case DP_TRAIN_PRE_EMPHASIS_3_5:
1635		signal_levels |= DP_PRE_EMPHASIS_3_5;
1636		break;
1637	case DP_TRAIN_PRE_EMPHASIS_6:
1638		signal_levels |= DP_PRE_EMPHASIS_6;
1639		break;
1640	case DP_TRAIN_PRE_EMPHASIS_9_5:
1641		signal_levels |= DP_PRE_EMPHASIS_9_5;
1642		break;
1643	}
1644	return signal_levels;
1645}
1646
1647/* Gen6's DP voltage swing and pre-emphasis control */
1648static uint32_t
1649intel_gen6_edp_signal_levels(uint8_t train_set)
1650{
1651	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1652					 DP_TRAIN_PRE_EMPHASIS_MASK);
1653	switch (signal_levels) {
1654	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1655	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1656		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1657	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1658		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1659	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1660	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1661		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1662	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1663	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1664		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1665	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1666	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1667		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1668	default:
1669		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1670			      "0x%x\n", signal_levels);
1671		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1672	}
1673}
1674
1675/* Gen7's DP voltage swing and pre-emphasis control */
1676static uint32_t
1677intel_gen7_edp_signal_levels(uint8_t train_set)
1678{
1679	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1680					 DP_TRAIN_PRE_EMPHASIS_MASK);
1681	switch (signal_levels) {
1682	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1683		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1684	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1685		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1686	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1687		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1688
1689	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1690		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1691	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1692		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1693
1694	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1695		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1696	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1697		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1698
1699	default:
1700		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1701			      "0x%x\n", signal_levels);
1702		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1703	}
1704}
1705
1706/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1707static uint32_t
1708intel_hsw_signal_levels(uint8_t train_set)
1709{
1710	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1711					 DP_TRAIN_PRE_EMPHASIS_MASK);
1712	switch (signal_levels) {
1713	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1714		return DDI_BUF_EMP_400MV_0DB_HSW;
1715	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1716		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1717	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1718		return DDI_BUF_EMP_400MV_6DB_HSW;
1719	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1720		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1721
1722	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1723		return DDI_BUF_EMP_600MV_0DB_HSW;
1724	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1725		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1726	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1727		return DDI_BUF_EMP_600MV_6DB_HSW;
1728
1729	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1730		return DDI_BUF_EMP_800MV_0DB_HSW;
1731	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1732		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1733	default:
1734		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1735			      "0x%x\n", signal_levels);
1736		return DDI_BUF_EMP_400MV_0DB_HSW;
1737	}
1738}
1739
1740/* Properly updates "DP" with the correct signal levels. */
1741static void
1742intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1743{
1744	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1745	struct drm_device *dev = intel_dig_port->base.base.dev;
1746	uint32_t signal_levels, mask;
1747	uint8_t train_set = intel_dp->train_set[0];
1748
1749	if (IS_HASWELL(dev)) {
1750		signal_levels = intel_hsw_signal_levels(train_set);
1751		mask = DDI_BUF_EMP_MASK;
1752	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1753		signal_levels = intel_gen7_edp_signal_levels(train_set);
1754		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1755	} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1756		signal_levels = intel_gen6_edp_signal_levels(train_set);
1757		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1758	} else {
1759		signal_levels = intel_gen4_signal_levels(train_set);
1760		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1761	}
1762
1763	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1764
1765	*DP = (*DP & ~mask) | signal_levels;
1766}
1767
1768static bool
1769intel_dp_set_link_train(struct intel_dp *intel_dp,
1770			uint32_t dp_reg_value,
1771			uint8_t dp_train_pat)
1772{
1773	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1774	struct drm_device *dev = intel_dig_port->base.base.dev;
1775	struct drm_i915_private *dev_priv = dev->dev_private;
1776	enum port port = intel_dig_port->port;
1777	int ret;
1778	uint32_t temp;
1779
1780	if (IS_HASWELL(dev)) {
1781		temp = I915_READ(DP_TP_CTL(port));
1782
1783		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1784			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1785		else
1786			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1787
1788		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1789		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1790		case DP_TRAINING_PATTERN_DISABLE:
1791
1792			if (port != PORT_A) {
1793				temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1794				I915_WRITE(DP_TP_CTL(port), temp);
1795
1796				if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1797					      DP_TP_STATUS_IDLE_DONE), 1))
1798					DRM_ERROR("Timed out waiting for DP idle patterns\n");
1799
1800				temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1801			}
1802
1803			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1804
1805			break;
1806		case DP_TRAINING_PATTERN_1:
1807			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1808			break;
1809		case DP_TRAINING_PATTERN_2:
1810			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1811			break;
1812		case DP_TRAINING_PATTERN_3:
1813			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1814			break;
1815		}
1816		I915_WRITE(DP_TP_CTL(port), temp);
1817
1818	} else if (HAS_PCH_CPT(dev) &&
1819		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1820		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1821
1822		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1823		case DP_TRAINING_PATTERN_DISABLE:
1824			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1825			break;
1826		case DP_TRAINING_PATTERN_1:
1827			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1828			break;
1829		case DP_TRAINING_PATTERN_2:
1830			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1831			break;
1832		case DP_TRAINING_PATTERN_3:
1833			DRM_ERROR("DP training pattern 3 not supported\n");
1834			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1835			break;
1836		}
1837
1838	} else {
1839		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1840
1841		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1842		case DP_TRAINING_PATTERN_DISABLE:
1843			dp_reg_value |= DP_LINK_TRAIN_OFF;
1844			break;
1845		case DP_TRAINING_PATTERN_1:
1846			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1847			break;
1848		case DP_TRAINING_PATTERN_2:
1849			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1850			break;
1851		case DP_TRAINING_PATTERN_3:
1852			DRM_ERROR("DP training pattern 3 not supported\n");
1853			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1854			break;
1855		}
1856	}
1857
1858	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1859	POSTING_READ(intel_dp->output_reg);
1860
1861	intel_dp_aux_native_write_1(intel_dp,
1862				    DP_TRAINING_PATTERN_SET,
1863				    dp_train_pat);
1864
1865	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1866	    DP_TRAINING_PATTERN_DISABLE) {
1867		ret = intel_dp_aux_native_write(intel_dp,
1868						DP_TRAINING_LANE0_SET,
1869						intel_dp->train_set,
1870						intel_dp->lane_count);
1871		if (ret != intel_dp->lane_count)
1872			return false;
1873	}
1874
1875	return true;
1876}
1877
1878/* Enable corresponding port and start training pattern 1 */
1879void
1880intel_dp_start_link_train(struct intel_dp *intel_dp)
1881{
1882	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1883	struct drm_device *dev = encoder->dev;
1884	int i;
1885	uint8_t voltage;
1886	bool clock_recovery = false;
1887	int voltage_tries, loop_tries;
1888	uint32_t DP = intel_dp->DP;
1889
1890	if (HAS_DDI(dev))
1891		intel_ddi_prepare_link_retrain(encoder);
1892
1893	/* Write the link configuration data */
1894	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1895				  intel_dp->link_configuration,
1896				  DP_LINK_CONFIGURATION_SIZE);
1897
1898	DP |= DP_PORT_EN;
1899
1900	memset(intel_dp->train_set, 0, 4);
1901	voltage = 0xff;
1902	voltage_tries = 0;
1903	loop_tries = 0;
1904	clock_recovery = false;
1905	for (;;) {
1906		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1907		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1908
1909		intel_dp_set_signal_levels(intel_dp, &DP);
1910
1911		/* Set training pattern 1 */
1912		if (!intel_dp_set_link_train(intel_dp, DP,
1913					     DP_TRAINING_PATTERN_1 |
1914					     DP_LINK_SCRAMBLING_DISABLE))
1915			break;
1916
1917		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1918		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1919			DRM_ERROR("failed to get link status\n");
1920			break;
1921		}
1922
1923		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1924			DRM_DEBUG_KMS("clock recovery OK\n");
1925			clock_recovery = true;
1926			break;
1927		}
1928
1929		/* Check to see if we've tried the max voltage */
1930		for (i = 0; i < intel_dp->lane_count; i++)
1931			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1932				break;
1933		if (i == intel_dp->lane_count && voltage_tries == 5) {
1934			++loop_tries;
1935			if (loop_tries == 5) {
1936				DRM_DEBUG_KMS("too many full retries, give up\n");
1937				break;
1938			}
1939			memset(intel_dp->train_set, 0, 4);
1940			voltage_tries = 0;
1941			continue;
1942		}
1943
1944		/* Check to see if we've tried the same voltage 5 times */
1945		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1946			++voltage_tries;
1947			if (voltage_tries == 5) {
1948				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1949				break;
1950			}
1951		} else
1952			voltage_tries = 0;
1953		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1954
1955		/* Compute new intel_dp->train_set as requested by target */
1956		intel_get_adjust_train(intel_dp, link_status);
1957	}
1958
1959	intel_dp->DP = DP;
1960}
1961
1962void
1963intel_dp_complete_link_train(struct intel_dp *intel_dp)
1964{
1965	bool channel_eq = false;
1966	int tries, cr_tries;
1967	uint32_t DP = intel_dp->DP;
1968
1969	/* channel equalization */
1970	tries = 0;
1971	cr_tries = 0;
1972	channel_eq = false;
1973	for (;;) {
1974		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1975
1976		if (cr_tries > 5) {
1977			DRM_ERROR("failed to train DP, aborting\n");
1978			intel_dp_link_down(intel_dp);
1979			break;
1980		}
1981
1982		intel_dp_set_signal_levels(intel_dp, &DP);
1983
1984		/* channel eq pattern */
1985		if (!intel_dp_set_link_train(intel_dp, DP,
1986					     DP_TRAINING_PATTERN_2 |
1987					     DP_LINK_SCRAMBLING_DISABLE))
1988			break;
1989
1990		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1991		if (!intel_dp_get_link_status(intel_dp, link_status))
1992			break;
1993
1994		/* Make sure clock is still ok */
1995		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1996			intel_dp_start_link_train(intel_dp);
1997			cr_tries++;
1998			continue;
1999		}
2000
2001		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2002			channel_eq = true;
2003			break;
2004		}
2005
2006		/* Try 5 times, then try clock recovery if that fails */
2007		if (tries > 5) {
2008			intel_dp_link_down(intel_dp);
2009			intel_dp_start_link_train(intel_dp);
2010			tries = 0;
2011			cr_tries++;
2012			continue;
2013		}
2014
2015		/* Compute new intel_dp->train_set as requested by target */
2016		intel_get_adjust_train(intel_dp, link_status);
2017		++tries;
2018	}
2019
2020	if (channel_eq)
2021		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2022
2023	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2024}
2025
2026static void
2027intel_dp_link_down(struct intel_dp *intel_dp)
2028{
2029	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2030	struct drm_device *dev = intel_dig_port->base.base.dev;
2031	struct drm_i915_private *dev_priv = dev->dev_private;
2032	struct intel_crtc *intel_crtc =
2033		to_intel_crtc(intel_dig_port->base.base.crtc);
2034	uint32_t DP = intel_dp->DP;
2035
2036	/*
2037	 * DDI code has a strict mode set sequence and we should try to respect
2038	 * it, otherwise we might hang the machine in many different ways. So we
2039	 * really should be disabling the port only on a complete crtc_disable
2040	 * sequence. This function is just called under two conditions on DDI
2041	 * code:
2042	 * - Link train failed while doing crtc_enable, and on this case we
2043	 *   really should respect the mode set sequence and wait for a
2044	 *   crtc_disable.
2045	 * - Someone turned the monitor off and intel_dp_check_link_status
2046	 *   called us. We don't need to disable the whole port on this case, so
2047	 *   when someone turns the monitor on again,
2048	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2049	 *   train.
2050	 */
2051	if (HAS_DDI(dev))
2052		return;
2053
2054	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2055		return;
2056
2057	DRM_DEBUG_KMS("\n");
2058
2059	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2060		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2061		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2062	} else {
2063		DP &= ~DP_LINK_TRAIN_MASK;
2064		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2065	}
2066	POSTING_READ(intel_dp->output_reg);
2067
2068	/* We don't really know why we're doing this */
2069	intel_wait_for_vblank(dev, intel_crtc->pipe);
2070
2071	if (HAS_PCH_IBX(dev) &&
2072	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2073		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2074
2075		/* Hardware workaround: leaving our transcoder select
2076		 * set to transcoder B while it's off will prevent the
2077		 * corresponding HDMI output on transcoder A.
2078		 *
2079		 * Combine this with another hardware workaround:
2080		 * transcoder select bit can only be cleared while the
2081		 * port is enabled.
2082		 */
2083		DP &= ~DP_PIPEB_SELECT;
2084		I915_WRITE(intel_dp->output_reg, DP);
2085
2086		/* Changes to enable or select take place the vblank
2087		 * after being written.
2088		 */
2089		if (WARN_ON(crtc == NULL)) {
2090			/* We should never try to disable a port without a crtc
2091			 * attached. For paranoia keep the code around for a
2092			 * bit. */
2093			POSTING_READ(intel_dp->output_reg);
2094			msleep(50);
2095		} else
2096			intel_wait_for_vblank(dev, intel_crtc->pipe);
2097	}
2098
2099	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2100	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2101	POSTING_READ(intel_dp->output_reg);
2102	msleep(intel_dp->panel_power_down_delay);
2103}
2104
2105static bool
2106intel_dp_get_dpcd(struct intel_dp *intel_dp)
2107{
2108	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2109
2110	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2111					   sizeof(intel_dp->dpcd)) == 0)
2112		return false; /* aux transfer failed */
2113
2114	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2115			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2116	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2117
2118	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2119		return false; /* DPCD not present */
2120
2121	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2122	      DP_DWN_STRM_PORT_PRESENT))
2123		return true; /* native DP sink */
2124
2125	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2126		return true; /* no per-port downstream info */
2127
2128	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2129					   intel_dp->downstream_ports,
2130					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2131		return false; /* downstream port status fetch failed */
2132
2133	return true;
2134}
2135
2136static void
2137intel_dp_probe_oui(struct intel_dp *intel_dp)
2138{
2139	u8 buf[3];
2140
2141	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2142		return;
2143
2144	ironlake_edp_panel_vdd_on(intel_dp);
2145
2146	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2147		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2148			      buf[0], buf[1], buf[2]);
2149
2150	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2151		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2152			      buf[0], buf[1], buf[2]);
2153
2154	ironlake_edp_panel_vdd_off(intel_dp, false);
2155}
2156
2157static bool
2158intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2159{
2160	int ret;
2161
2162	ret = intel_dp_aux_native_read_retry(intel_dp,
2163					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2164					     sink_irq_vector, 1);
2165	if (!ret)
2166		return false;
2167
2168	return true;
2169}
2170
2171static void
2172intel_dp_handle_test_request(struct intel_dp *intel_dp)
2173{
2174	/* NAK by default */
2175	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2176}
2177
2178/*
2179 * According to DP spec
2180 * 5.1.2:
2181 *  1. Read DPCD
2182 *  2. Configure link according to Receiver Capabilities
2183 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2184 *  4. Check link status on receipt of hot-plug interrupt
2185 */
2186
2187void
2188intel_dp_check_link_status(struct intel_dp *intel_dp)
2189{
2190	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2191	u8 sink_irq_vector;
2192	u8 link_status[DP_LINK_STATUS_SIZE];
2193
2194	if (!intel_encoder->connectors_active)
2195		return;
2196
2197	if (WARN_ON(!intel_encoder->base.crtc))
2198		return;
2199
2200	/* Try to read receiver status if the link appears to be up */
2201	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2202		intel_dp_link_down(intel_dp);
2203		return;
2204	}
2205
2206	/* Now read the DPCD to see if it's actually running */
2207	if (!intel_dp_get_dpcd(intel_dp)) {
2208		intel_dp_link_down(intel_dp);
2209		return;
2210	}
2211
2212	/* Try to read the source of the interrupt */
2213	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2214	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2215		/* Clear interrupt source */
2216		intel_dp_aux_native_write_1(intel_dp,
2217					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2218					    sink_irq_vector);
2219
2220		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2221			intel_dp_handle_test_request(intel_dp);
2222		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2223			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2224	}
2225
2226	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2227		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2228			      drm_get_encoder_name(&intel_encoder->base));
2229		intel_dp_start_link_train(intel_dp);
2230		intel_dp_complete_link_train(intel_dp);
2231	}
2232}
2233
2234/* XXX this is probably wrong for multiple downstream ports */
2235static enum drm_connector_status
2236intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2237{
2238	uint8_t *dpcd = intel_dp->dpcd;
2239	bool hpd;
2240	uint8_t type;
2241
2242	if (!intel_dp_get_dpcd(intel_dp))
2243		return connector_status_disconnected;
2244
2245	/* if there's no downstream port, we're done */
2246	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2247		return connector_status_connected;
2248
2249	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2250	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2251	if (hpd) {
2252		uint8_t reg;
2253		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2254						    &reg, 1))
2255			return connector_status_unknown;
2256		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2257					      : connector_status_disconnected;
2258	}
2259
2260	/* If no HPD, poke DDC gently */
2261	if (drm_probe_ddc(&intel_dp->adapter))
2262		return connector_status_connected;
2263
2264	/* Well we tried, say unknown for unreliable port types */
2265	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2266	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2267		return connector_status_unknown;
2268
2269	/* Anything else is out of spec, warn and ignore */
2270	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2271	return connector_status_disconnected;
2272}
2273
2274static enum drm_connector_status
2275ironlake_dp_detect(struct intel_dp *intel_dp)
2276{
2277	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2278	struct drm_i915_private *dev_priv = dev->dev_private;
2279	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2280	enum drm_connector_status status;
2281
2282	/* Can't disconnect eDP, but you can close the lid... */
2283	if (is_edp(intel_dp)) {
2284		status = intel_panel_detect(dev);
2285		if (status == connector_status_unknown)
2286			status = connector_status_connected;
2287		return status;
2288	}
2289
2290	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2291		return connector_status_disconnected;
2292
2293	return intel_dp_detect_dpcd(intel_dp);
2294}
2295
2296static enum drm_connector_status
2297g4x_dp_detect(struct intel_dp *intel_dp)
2298{
2299	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2300	struct drm_i915_private *dev_priv = dev->dev_private;
2301	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2302	uint32_t bit;
2303
2304	switch (intel_dig_port->port) {
2305	case PORT_B:
2306		bit = PORTB_HOTPLUG_LIVE_STATUS;
2307		break;
2308	case PORT_C:
2309		bit = PORTC_HOTPLUG_LIVE_STATUS;
2310		break;
2311	case PORT_D:
2312		bit = PORTD_HOTPLUG_LIVE_STATUS;
2313		break;
2314	default:
2315		return connector_status_unknown;
2316	}
2317
2318	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2319		return connector_status_disconnected;
2320
2321	return intel_dp_detect_dpcd(intel_dp);
2322}
2323
2324static struct edid *
2325intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2326{
2327	struct intel_connector *intel_connector = to_intel_connector(connector);
2328
2329	/* use cached edid if we have one */
2330	if (intel_connector->edid) {
2331		struct edid *edid;
2332		int size;
2333
2334		/* invalid edid */
2335		if (IS_ERR(intel_connector->edid))
2336			return NULL;
2337
2338		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2339		edid = kmalloc(size, GFP_KERNEL);
2340		if (!edid)
2341			return NULL;
2342
2343		memcpy(edid, intel_connector->edid, size);
2344		return edid;
2345	}
2346
2347	return drm_get_edid(connector, adapter);
2348}
2349
2350static int
2351intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2352{
2353	struct intel_connector *intel_connector = to_intel_connector(connector);
2354
2355	/* use cached edid if we have one */
2356	if (intel_connector->edid) {
2357		/* invalid edid */
2358		if (IS_ERR(intel_connector->edid))
2359			return 0;
2360
2361		return intel_connector_update_modes(connector,
2362						    intel_connector->edid);
2363	}
2364
2365	return intel_ddc_get_modes(connector, adapter);
2366}
2367
2368static enum drm_connector_status
2369intel_dp_detect(struct drm_connector *connector, bool force)
2370{
2371	struct intel_dp *intel_dp = intel_attached_dp(connector);
2372	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2373	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2374	struct drm_device *dev = connector->dev;
2375	enum drm_connector_status status;
2376	struct edid *edid = NULL;
2377
2378	intel_dp->has_audio = false;
2379
2380	if (HAS_PCH_SPLIT(dev))
2381		status = ironlake_dp_detect(intel_dp);
2382	else
2383		status = g4x_dp_detect(intel_dp);
2384
2385	if (status != connector_status_connected)
2386		return status;
2387
2388	intel_dp_probe_oui(intel_dp);
2389
2390	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2391		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2392	} else {
2393		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2394		if (edid) {
2395			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2396			kfree(edid);
2397		}
2398	}
2399
2400	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2401		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2402	return connector_status_connected;
2403}
2404
2405static int intel_dp_get_modes(struct drm_connector *connector)
2406{
2407	struct intel_dp *intel_dp = intel_attached_dp(connector);
2408	struct intel_connector *intel_connector = to_intel_connector(connector);
2409	struct drm_device *dev = connector->dev;
2410	int ret;
2411
2412	/* We should parse the EDID data and find out if it has an audio sink
2413	 */
2414
2415	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2416	if (ret)
2417		return ret;
2418
2419	/* if eDP has no EDID, fall back to fixed mode */
2420	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2421		struct drm_display_mode *mode;
2422		mode = drm_mode_duplicate(dev,
2423					  intel_connector->panel.fixed_mode);
2424		if (mode) {
2425			drm_mode_probed_add(connector, mode);
2426			return 1;
2427		}
2428	}
2429	return 0;
2430}
2431
2432static bool
2433intel_dp_detect_audio(struct drm_connector *connector)
2434{
2435	struct intel_dp *intel_dp = intel_attached_dp(connector);
2436	struct edid *edid;
2437	bool has_audio = false;
2438
2439	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2440	if (edid) {
2441		has_audio = drm_detect_monitor_audio(edid);
2442		kfree(edid);
2443	}
2444
2445	return has_audio;
2446}
2447
2448static int
2449intel_dp_set_property(struct drm_connector *connector,
2450		      struct drm_property *property,
2451		      uint64_t val)
2452{
2453	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2454	struct intel_connector *intel_connector = to_intel_connector(connector);
2455	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2456	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2457	int ret;
2458
2459	ret = drm_object_property_set_value(&connector->base, property, val);
2460	if (ret)
2461		return ret;
2462
2463	if (property == dev_priv->force_audio_property) {
2464		int i = val;
2465		bool has_audio;
2466
2467		if (i == intel_dp->force_audio)
2468			return 0;
2469
2470		intel_dp->force_audio = i;
2471
2472		if (i == HDMI_AUDIO_AUTO)
2473			has_audio = intel_dp_detect_audio(connector);
2474		else
2475			has_audio = (i == HDMI_AUDIO_ON);
2476
2477		if (has_audio == intel_dp->has_audio)
2478			return 0;
2479
2480		intel_dp->has_audio = has_audio;
2481		goto done;
2482	}
2483
2484	if (property == dev_priv->broadcast_rgb_property) {
2485		switch (val) {
2486		case INTEL_BROADCAST_RGB_AUTO:
2487			intel_dp->color_range_auto = true;
2488			break;
2489		case INTEL_BROADCAST_RGB_FULL:
2490			intel_dp->color_range_auto = false;
2491			intel_dp->color_range = 0;
2492			break;
2493		case INTEL_BROADCAST_RGB_LIMITED:
2494			intel_dp->color_range_auto = false;
2495			intel_dp->color_range = DP_COLOR_RANGE_16_235;
2496			break;
2497		default:
2498			return -EINVAL;
2499		}
2500		goto done;
2501	}
2502
2503	if (is_edp(intel_dp) &&
2504	    property == connector->dev->mode_config.scaling_mode_property) {
2505		if (val == DRM_MODE_SCALE_NONE) {
2506			DRM_DEBUG_KMS("no scaling not supported\n");
2507			return -EINVAL;
2508		}
2509
2510		if (intel_connector->panel.fitting_mode == val) {
2511			/* the eDP scaling property is not changed */
2512			return 0;
2513		}
2514		intel_connector->panel.fitting_mode = val;
2515
2516		goto done;
2517	}
2518
2519	return -EINVAL;
2520
2521done:
2522	if (intel_encoder->base.crtc)
2523		intel_crtc_restore_mode(intel_encoder->base.crtc);
2524
2525	return 0;
2526}
2527
2528static void
2529intel_dp_destroy(struct drm_connector *connector)
2530{
2531	struct drm_device *dev = connector->dev;
2532	struct intel_dp *intel_dp = intel_attached_dp(connector);
2533	struct intel_connector *intel_connector = to_intel_connector(connector);
2534
2535	if (!IS_ERR_OR_NULL(intel_connector->edid))
2536		kfree(intel_connector->edid);
2537
2538	if (is_edp(intel_dp)) {
2539		intel_panel_destroy_backlight(dev);
2540		intel_panel_fini(&intel_connector->panel);
2541	}
2542
2543	drm_sysfs_connector_remove(connector);
2544	drm_connector_cleanup(connector);
2545	kfree(connector);
2546}
2547
2548void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2549{
2550	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2551	struct intel_dp *intel_dp = &intel_dig_port->dp;
2552
2553	i2c_del_adapter(&intel_dp->adapter);
2554	drm_encoder_cleanup(encoder);
2555	if (is_edp(intel_dp)) {
2556		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2557		ironlake_panel_vdd_off_sync(intel_dp);
2558	}
2559	kfree(intel_dig_port);
2560}
2561
2562static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2563	.mode_fixup = intel_dp_mode_fixup,
2564	.mode_set = intel_dp_mode_set,
2565	.disable = intel_encoder_noop,
2566};
2567
2568static const struct drm_connector_funcs intel_dp_connector_funcs = {
2569	.dpms = intel_connector_dpms,
2570	.detect = intel_dp_detect,
2571	.fill_modes = drm_helper_probe_single_connector_modes,
2572	.set_property = intel_dp_set_property,
2573	.destroy = intel_dp_destroy,
2574};
2575
2576static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2577	.get_modes = intel_dp_get_modes,
2578	.mode_valid = intel_dp_mode_valid,
2579	.best_encoder = intel_best_encoder,
2580};
2581
2582static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2583	.destroy = intel_dp_encoder_destroy,
2584};
2585
2586static void
2587intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2588{
2589	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2590
2591	intel_dp_check_link_status(intel_dp);
2592}
2593
2594/* Return which DP Port should be selected for Transcoder DP control */
2595int
2596intel_trans_dp_port_sel(struct drm_crtc *crtc)
2597{
2598	struct drm_device *dev = crtc->dev;
2599	struct intel_encoder *intel_encoder;
2600	struct intel_dp *intel_dp;
2601
2602	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2603		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2604
2605		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2606		    intel_encoder->type == INTEL_OUTPUT_EDP)
2607			return intel_dp->output_reg;
2608	}
2609
2610	return -1;
2611}
2612
2613/* check the VBT to see whether the eDP is on DP-D port */
2614bool intel_dpd_is_edp(struct drm_device *dev)
2615{
2616	struct drm_i915_private *dev_priv = dev->dev_private;
2617	struct child_device_config *p_child;
2618	int i;
2619
2620	if (!dev_priv->child_dev_num)
2621		return false;
2622
2623	for (i = 0; i < dev_priv->child_dev_num; i++) {
2624		p_child = dev_priv->child_dev + i;
2625
2626		if (p_child->dvo_port == PORT_IDPD &&
2627		    p_child->device_type == DEVICE_TYPE_eDP)
2628			return true;
2629	}
2630	return false;
2631}
2632
2633static void
2634intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2635{
2636	struct intel_connector *intel_connector = to_intel_connector(connector);
2637
2638	intel_attach_force_audio_property(connector);
2639	intel_attach_broadcast_rgb_property(connector);
2640	intel_dp->color_range_auto = true;
2641
2642	if (is_edp(intel_dp)) {
2643		drm_mode_create_scaling_mode_property(connector->dev);
2644		drm_object_attach_property(
2645			&connector->base,
2646			connector->dev->mode_config.scaling_mode_property,
2647			DRM_MODE_SCALE_ASPECT);
2648		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2649	}
2650}
2651
2652static void
2653intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2654				    struct intel_dp *intel_dp,
2655				    struct edp_power_seq *out)
2656{
2657	struct drm_i915_private *dev_priv = dev->dev_private;
2658	struct edp_power_seq cur, vbt, spec, final;
2659	u32 pp_on, pp_off, pp_div, pp;
2660
2661	/* Workaround: Need to write PP_CONTROL with the unlock key as
2662	 * the very first thing. */
2663	pp = ironlake_get_pp_control(dev_priv);
2664	I915_WRITE(PCH_PP_CONTROL, pp);
2665
2666	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2667	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2668	pp_div = I915_READ(PCH_PP_DIVISOR);
2669
2670	/* Pull timing values out of registers */
2671	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2672		PANEL_POWER_UP_DELAY_SHIFT;
2673
2674	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2675		PANEL_LIGHT_ON_DELAY_SHIFT;
2676
2677	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2678		PANEL_LIGHT_OFF_DELAY_SHIFT;
2679
2680	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2681		PANEL_POWER_DOWN_DELAY_SHIFT;
2682
2683	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2684		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2685
2686	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2687		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2688
2689	vbt = dev_priv->edp.pps;
2690
2691	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2692	 * our hw here, which are all in 100usec. */
2693	spec.t1_t3 = 210 * 10;
2694	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2695	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2696	spec.t10 = 500 * 10;
2697	/* This one is special and actually in units of 100ms, but zero
2698	 * based in the hw (so we need to add 100 ms). But the sw vbt
2699	 * table multiplies it with 1000 to make it in units of 100usec,
2700	 * too. */
2701	spec.t11_t12 = (510 + 100) * 10;
2702
2703	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2704		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2705
2706	/* Use the max of the register settings and vbt. If both are
2707	 * unset, fall back to the spec limits. */
2708#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2709				       spec.field : \
2710				       max(cur.field, vbt.field))
2711	assign_final(t1_t3);
2712	assign_final(t8);
2713	assign_final(t9);
2714	assign_final(t10);
2715	assign_final(t11_t12);
2716#undef assign_final
2717
2718#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2719	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2720	intel_dp->backlight_on_delay = get_delay(t8);
2721	intel_dp->backlight_off_delay = get_delay(t9);
2722	intel_dp->panel_power_down_delay = get_delay(t10);
2723	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2724#undef get_delay
2725
2726	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2727		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2728		      intel_dp->panel_power_cycle_delay);
2729
2730	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2731		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2732
2733	if (out)
2734		*out = final;
2735}
2736
2737static void
2738intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2739					      struct intel_dp *intel_dp,
2740					      struct edp_power_seq *seq)
2741{
2742	struct drm_i915_private *dev_priv = dev->dev_private;
2743	u32 pp_on, pp_off, pp_div;
2744
2745	/* And finally store the new values in the power sequencer. */
2746	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2747		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2748	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2749		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2750	/* Compute the divisor for the pp clock, simply match the Bspec
2751	 * formula. */
2752	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2753			<< PP_REFERENCE_DIVIDER_SHIFT;
2754	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2755			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2756
2757	/* Haswell doesn't have any port selection bits for the panel
2758	 * power sequencer any more. */
2759	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2760		if (is_cpu_edp(intel_dp))
2761			pp_on |= PANEL_POWER_PORT_DP_A;
2762		else
2763			pp_on |= PANEL_POWER_PORT_DP_D;
2764	}
2765
2766	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2767	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2768	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2769
2770	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2771		      I915_READ(PCH_PP_ON_DELAYS),
2772		      I915_READ(PCH_PP_OFF_DELAYS),
2773		      I915_READ(PCH_PP_DIVISOR));
2774}
2775
2776void
2777intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2778			struct intel_connector *intel_connector)
2779{
2780	struct drm_connector *connector = &intel_connector->base;
2781	struct intel_dp *intel_dp = &intel_dig_port->dp;
2782	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2783	struct drm_device *dev = intel_encoder->base.dev;
2784	struct drm_i915_private *dev_priv = dev->dev_private;
2785	struct drm_display_mode *fixed_mode = NULL;
2786	struct edp_power_seq power_seq = { 0 };
2787	enum port port = intel_dig_port->port;
2788	const char *name = NULL;
2789	int type;
2790
2791	/* Preserve the current hw state. */
2792	intel_dp->DP = I915_READ(intel_dp->output_reg);
2793	intel_dp->attached_connector = intel_connector;
2794
2795	if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2796		if (intel_dpd_is_edp(dev))
2797			intel_dp->is_pch_edp = true;
2798
2799	/*
2800	 * FIXME : We need to initialize built-in panels before external panels.
2801	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2802	 */
2803	if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2804		type = DRM_MODE_CONNECTOR_eDP;
2805		intel_encoder->type = INTEL_OUTPUT_EDP;
2806	} else if (port == PORT_A || is_pch_edp(intel_dp)) {
2807		type = DRM_MODE_CONNECTOR_eDP;
2808		intel_encoder->type = INTEL_OUTPUT_EDP;
2809	} else {
2810		/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2811		 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2812		 * rewrite it.
2813		 */
2814		type = DRM_MODE_CONNECTOR_DisplayPort;
2815	}
2816
2817	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2818	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2819
2820	connector->polled = DRM_CONNECTOR_POLL_HPD;
2821	connector->interlace_allowed = true;
2822	connector->doublescan_allowed = 0;
2823
2824	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2825			  ironlake_panel_vdd_work);
2826
2827	intel_connector_attach_encoder(intel_connector, intel_encoder);
2828	drm_sysfs_connector_add(connector);
2829
2830	if (HAS_DDI(dev))
2831		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2832	else
2833		intel_connector->get_hw_state = intel_connector_get_hw_state;
2834
2835
2836	/* Set up the DDC bus. */
2837	switch (port) {
2838	case PORT_A:
2839		name = "DPDDC-A";
2840		break;
2841	case PORT_B:
2842		dev_priv->hotplug_supported_mask |= PORTB_HOTPLUG_INT_STATUS;
2843		name = "DPDDC-B";
2844		break;
2845	case PORT_C:
2846		dev_priv->hotplug_supported_mask |= PORTC_HOTPLUG_INT_STATUS;
2847		name = "DPDDC-C";
2848		break;
2849	case PORT_D:
2850		dev_priv->hotplug_supported_mask |= PORTD_HOTPLUG_INT_STATUS;
2851		name = "DPDDC-D";
2852		break;
2853	default:
2854		WARN(1, "Invalid port %c\n", port_name(port));
2855		break;
2856	}
2857
2858	if (is_edp(intel_dp))
2859		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2860
2861	intel_dp_i2c_init(intel_dp, intel_connector, name);
2862
2863	/* Cache DPCD and EDID for edp. */
2864	if (is_edp(intel_dp)) {
2865		bool ret;
2866		struct drm_display_mode *scan;
2867		struct edid *edid;
2868
2869		ironlake_edp_panel_vdd_on(intel_dp);
2870		ret = intel_dp_get_dpcd(intel_dp);
2871		ironlake_edp_panel_vdd_off(intel_dp, false);
2872
2873		if (ret) {
2874			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2875				dev_priv->no_aux_handshake =
2876					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2877					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2878		} else {
2879			/* if this fails, presume the device is a ghost */
2880			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2881			intel_dp_encoder_destroy(&intel_encoder->base);
2882			intel_dp_destroy(connector);
2883			return;
2884		}
2885
2886		/* We now know it's not a ghost, init power sequence regs. */
2887		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2888							      &power_seq);
2889
2890		ironlake_edp_panel_vdd_on(intel_dp);
2891		edid = drm_get_edid(connector, &intel_dp->adapter);
2892		if (edid) {
2893			if (drm_add_edid_modes(connector, edid)) {
2894				drm_mode_connector_update_edid_property(connector, edid);
2895				drm_edid_to_eld(connector, edid);
2896			} else {
2897				kfree(edid);
2898				edid = ERR_PTR(-EINVAL);
2899			}
2900		} else {
2901			edid = ERR_PTR(-ENOENT);
2902		}
2903		intel_connector->edid = edid;
2904
2905		/* prefer fixed mode from EDID if available */
2906		list_for_each_entry(scan, &connector->probed_modes, head) {
2907			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2908				fixed_mode = drm_mode_duplicate(dev, scan);
2909				break;
2910			}
2911		}
2912
2913		/* fallback to VBT if available for eDP */
2914		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2915			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2916			if (fixed_mode)
2917				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2918		}
2919
2920		ironlake_edp_panel_vdd_off(intel_dp, false);
2921	}
2922
2923	if (is_edp(intel_dp)) {
2924		intel_panel_init(&intel_connector->panel, fixed_mode);
2925		intel_panel_setup_backlight(connector);
2926	}
2927
2928	intel_dp_add_properties(intel_dp, connector);
2929
2930	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2931	 * 0xd.  Failure to do so will result in spurious interrupts being
2932	 * generated on the port when a cable is not attached.
2933	 */
2934	if (IS_G4X(dev) && !IS_GM45(dev)) {
2935		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2936		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2937	}
2938}
2939
2940void
2941intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2942{
2943	struct intel_digital_port *intel_dig_port;
2944	struct intel_encoder *intel_encoder;
2945	struct drm_encoder *encoder;
2946	struct intel_connector *intel_connector;
2947
2948	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2949	if (!intel_dig_port)
2950		return;
2951
2952	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2953	if (!intel_connector) {
2954		kfree(intel_dig_port);
2955		return;
2956	}
2957
2958	intel_encoder = &intel_dig_port->base;
2959	encoder = &intel_encoder->base;
2960
2961	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2962			 DRM_MODE_ENCODER_TMDS);
2963	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2964
2965	intel_encoder->enable = intel_enable_dp;
2966	intel_encoder->pre_enable = intel_pre_enable_dp;
2967	intel_encoder->disable = intel_disable_dp;
2968	intel_encoder->post_disable = intel_post_disable_dp;
2969	intel_encoder->get_hw_state = intel_dp_get_hw_state;
2970
2971	intel_dig_port->port = port;
2972	intel_dig_port->dp.output_reg = output_reg;
2973
2974	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2975	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2976	intel_encoder->cloneable = false;
2977	intel_encoder->hot_plug = intel_dp_hot_plug;
2978
2979	intel_dp_init_connector(intel_dig_port, intel_connector);
2980}
2981