intel_dp.c revision c619eed4b2ee1b2bde3e02464eb81632a08bb976
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include "drmP.h"
30#include "drm.h"
31#include "drm_crtc.h"
32#include "drm_crtc_helper.h"
33#include "intel_drv.h"
34#include "i915_drm.h"
35#include "i915_drv.h"
36#include "drm_dp_helper.h"
37
38
39#define DP_LINK_STATUS_SIZE	6
40#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
41
42#define DP_LINK_CONFIGURATION_SIZE	9
43
44#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
45
46struct intel_dp_priv {
47	uint32_t output_reg;
48	uint32_t DP;
49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50	uint32_t save_DP;
51	uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
52	bool has_audio;
53	int dpms_mode;
54	uint8_t link_bw;
55	uint8_t lane_count;
56	uint8_t dpcd[4];
57	struct intel_output *intel_output;
58	struct i2c_adapter adapter;
59	struct i2c_algo_dp_aux_data algo;
60};
61
62static void
63intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
64		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
65
66static void
67intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
68
69void
70intel_edp_link_config (struct intel_output *intel_output,
71		int *lane_num, int *link_bw)
72{
73	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
74
75	*lane_num = dp_priv->lane_count;
76	if (dp_priv->link_bw == DP_LINK_BW_1_62)
77		*link_bw = 162000;
78	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
79		*link_bw = 270000;
80}
81
82static int
83intel_dp_max_lane_count(struct intel_output *intel_output)
84{
85	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
86	int max_lane_count = 4;
87
88	if (dp_priv->dpcd[0] >= 0x11) {
89		max_lane_count = dp_priv->dpcd[2] & 0x1f;
90		switch (max_lane_count) {
91		case 1: case 2: case 4:
92			break;
93		default:
94			max_lane_count = 4;
95		}
96	}
97	return max_lane_count;
98}
99
100static int
101intel_dp_max_link_bw(struct intel_output *intel_output)
102{
103	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
104	int max_link_bw = dp_priv->dpcd[1];
105
106	switch (max_link_bw) {
107	case DP_LINK_BW_1_62:
108	case DP_LINK_BW_2_7:
109		break;
110	default:
111		max_link_bw = DP_LINK_BW_1_62;
112		break;
113	}
114	return max_link_bw;
115}
116
117static int
118intel_dp_link_clock(uint8_t link_bw)
119{
120	if (link_bw == DP_LINK_BW_2_7)
121		return 270000;
122	else
123		return 162000;
124}
125
126/* I think this is a fiction */
127static int
128intel_dp_link_required(struct drm_device *dev,
129		       struct intel_output *intel_output, int pixel_clock)
130{
131	struct drm_i915_private *dev_priv = dev->dev_private;
132
133	if (IS_eDP(intel_output))
134		return (pixel_clock * dev_priv->edp_bpp) / 8;
135	else
136		return pixel_clock * 3;
137}
138
139static int
140intel_dp_mode_valid(struct drm_connector *connector,
141		    struct drm_display_mode *mode)
142{
143	struct intel_output *intel_output = to_intel_output(connector);
144	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
145	int max_lanes = intel_dp_max_lane_count(intel_output);
146
147	if (intel_dp_link_required(connector->dev, intel_output, mode->clock)
148			> max_link_clock * max_lanes)
149		return MODE_CLOCK_HIGH;
150
151	if (mode->clock < 10000)
152		return MODE_CLOCK_LOW;
153
154	return MODE_OK;
155}
156
157static uint32_t
158pack_aux(uint8_t *src, int src_bytes)
159{
160	int	i;
161	uint32_t v = 0;
162
163	if (src_bytes > 4)
164		src_bytes = 4;
165	for (i = 0; i < src_bytes; i++)
166		v |= ((uint32_t) src[i]) << ((3-i) * 8);
167	return v;
168}
169
170static void
171unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172{
173	int i;
174	if (dst_bytes > 4)
175		dst_bytes = 4;
176	for (i = 0; i < dst_bytes; i++)
177		dst[i] = src >> ((3-i) * 8);
178}
179
180/* hrawclock is 1/4 the FSB frequency */
181static int
182intel_hrawclk(struct drm_device *dev)
183{
184	struct drm_i915_private *dev_priv = dev->dev_private;
185	uint32_t clkcfg;
186
187	clkcfg = I915_READ(CLKCFG);
188	switch (clkcfg & CLKCFG_FSB_MASK) {
189	case CLKCFG_FSB_400:
190		return 100;
191	case CLKCFG_FSB_533:
192		return 133;
193	case CLKCFG_FSB_667:
194		return 166;
195	case CLKCFG_FSB_800:
196		return 200;
197	case CLKCFG_FSB_1067:
198		return 266;
199	case CLKCFG_FSB_1333:
200		return 333;
201	/* these two are just a guess; one of them might be right */
202	case CLKCFG_FSB_1600:
203	case CLKCFG_FSB_1600_ALT:
204		return 400;
205	default:
206		return 133;
207	}
208}
209
210static int
211intel_dp_aux_ch(struct intel_output *intel_output,
212		uint8_t *send, int send_bytes,
213		uint8_t *recv, int recv_size)
214{
215	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
216	uint32_t output_reg = dp_priv->output_reg;
217	struct drm_device *dev = intel_output->base.dev;
218	struct drm_i915_private *dev_priv = dev->dev_private;
219	uint32_t ch_ctl = output_reg + 0x10;
220	uint32_t ch_data = ch_ctl + 4;
221	int i;
222	int recv_bytes;
223	uint32_t ctl;
224	uint32_t status;
225	uint32_t aux_clock_divider;
226	int try;
227
228	/* The clock divider is based off the hrawclk,
229	 * and would like to run at 2MHz. So, take the
230	 * hrawclk value and divide by 2 and use that
231	 */
232	if (IS_eDP(intel_output))
233		aux_clock_divider = 225; /* eDP input clock at 450Mhz */
234	else if (HAS_PCH_SPLIT(dev))
235		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
236	else
237		aux_clock_divider = intel_hrawclk(dev) / 2;
238
239	/* Must try at least 3 times according to DP spec */
240	for (try = 0; try < 5; try++) {
241		/* Load the send data into the aux channel data registers */
242		for (i = 0; i < send_bytes; i += 4) {
243			uint32_t    d = pack_aux(send + i, send_bytes - i);
244
245			I915_WRITE(ch_data + i, d);
246		}
247
248		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
249		       DP_AUX_CH_CTL_TIME_OUT_400us |
250		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
251		       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
252		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
253		       DP_AUX_CH_CTL_DONE |
254		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
255		       DP_AUX_CH_CTL_RECEIVE_ERROR);
256
257		/* Send the command and wait for it to complete */
258		I915_WRITE(ch_ctl, ctl);
259		(void) I915_READ(ch_ctl);
260		for (;;) {
261			udelay(100);
262			status = I915_READ(ch_ctl);
263			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
264				break;
265		}
266
267		/* Clear done status and any errors */
268		I915_WRITE(ch_ctl, (status |
269				DP_AUX_CH_CTL_DONE |
270				DP_AUX_CH_CTL_TIME_OUT_ERROR |
271				DP_AUX_CH_CTL_RECEIVE_ERROR));
272		(void) I915_READ(ch_ctl);
273		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
274			break;
275	}
276
277	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
278		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
279		return -EBUSY;
280	}
281
282	/* Check for timeout or receive error.
283	 * Timeouts occur when the sink is not connected
284	 */
285	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
286		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
287		return -EIO;
288	}
289
290	/* Timeouts occur when the device isn't connected, so they're
291	 * "normal" -- don't fill the kernel log with these */
292	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
293		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
294		return -ETIMEDOUT;
295	}
296
297	/* Unload any bytes sent back from the other side */
298	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
299		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
300
301	if (recv_bytes > recv_size)
302		recv_bytes = recv_size;
303
304	for (i = 0; i < recv_bytes; i += 4) {
305		uint32_t    d = I915_READ(ch_data + i);
306
307		unpack_aux(d, recv + i, recv_bytes - i);
308	}
309
310	return recv_bytes;
311}
312
313/* Write data to the aux channel in native mode */
314static int
315intel_dp_aux_native_write(struct intel_output *intel_output,
316			  uint16_t address, uint8_t *send, int send_bytes)
317{
318	int ret;
319	uint8_t	msg[20];
320	int msg_bytes;
321	uint8_t	ack;
322
323	if (send_bytes > 16)
324		return -1;
325	msg[0] = AUX_NATIVE_WRITE << 4;
326	msg[1] = address >> 8;
327	msg[2] = address & 0xff;
328	msg[3] = send_bytes - 1;
329	memcpy(&msg[4], send, send_bytes);
330	msg_bytes = send_bytes + 4;
331	for (;;) {
332		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
333		if (ret < 0)
334			return ret;
335		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
336			break;
337		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
338			udelay(100);
339		else
340			return -EIO;
341	}
342	return send_bytes;
343}
344
345/* Write a single byte to the aux channel in native mode */
346static int
347intel_dp_aux_native_write_1(struct intel_output *intel_output,
348			    uint16_t address, uint8_t byte)
349{
350	return intel_dp_aux_native_write(intel_output, address, &byte, 1);
351}
352
353/* read bytes from a native aux channel */
354static int
355intel_dp_aux_native_read(struct intel_output *intel_output,
356			 uint16_t address, uint8_t *recv, int recv_bytes)
357{
358	uint8_t msg[4];
359	int msg_bytes;
360	uint8_t reply[20];
361	int reply_bytes;
362	uint8_t ack;
363	int ret;
364
365	msg[0] = AUX_NATIVE_READ << 4;
366	msg[1] = address >> 8;
367	msg[2] = address & 0xff;
368	msg[3] = recv_bytes - 1;
369
370	msg_bytes = 4;
371	reply_bytes = recv_bytes + 1;
372
373	for (;;) {
374		ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
375				      reply, reply_bytes);
376		if (ret == 0)
377			return -EPROTO;
378		if (ret < 0)
379			return ret;
380		ack = reply[0];
381		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
382			memcpy(recv, reply + 1, ret - 1);
383			return ret - 1;
384		}
385		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
386			udelay(100);
387		else
388			return -EIO;
389	}
390}
391
392static int
393intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
394		    uint8_t write_byte, uint8_t *read_byte)
395{
396	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
397	struct intel_dp_priv *dp_priv = container_of(adapter,
398						     struct intel_dp_priv,
399						     adapter);
400	struct intel_output *intel_output = dp_priv->intel_output;
401	uint16_t address = algo_data->address;
402	uint8_t msg[5];
403	uint8_t reply[2];
404	int msg_bytes;
405	int reply_bytes;
406	int ret;
407
408	/* Set up the command byte */
409	if (mode & MODE_I2C_READ)
410		msg[0] = AUX_I2C_READ << 4;
411	else
412		msg[0] = AUX_I2C_WRITE << 4;
413
414	if (!(mode & MODE_I2C_STOP))
415		msg[0] |= AUX_I2C_MOT << 4;
416
417	msg[1] = address >> 8;
418	msg[2] = address;
419
420	switch (mode) {
421	case MODE_I2C_WRITE:
422		msg[3] = 0;
423		msg[4] = write_byte;
424		msg_bytes = 5;
425		reply_bytes = 1;
426		break;
427	case MODE_I2C_READ:
428		msg[3] = 0;
429		msg_bytes = 4;
430		reply_bytes = 2;
431		break;
432	default:
433		msg_bytes = 3;
434		reply_bytes = 1;
435		break;
436	}
437
438	for (;;) {
439	  ret = intel_dp_aux_ch(intel_output,
440				msg, msg_bytes,
441				reply, reply_bytes);
442		if (ret < 0) {
443			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
444			return ret;
445		}
446		switch (reply[0] & AUX_I2C_REPLY_MASK) {
447		case AUX_I2C_REPLY_ACK:
448			if (mode == MODE_I2C_READ) {
449				*read_byte = reply[1];
450			}
451			return reply_bytes - 1;
452		case AUX_I2C_REPLY_NACK:
453			DRM_DEBUG_KMS("aux_ch nack\n");
454			return -EREMOTEIO;
455		case AUX_I2C_REPLY_DEFER:
456			DRM_DEBUG_KMS("aux_ch defer\n");
457			udelay(100);
458			break;
459		default:
460			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
461			return -EREMOTEIO;
462		}
463	}
464}
465
466static int
467intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
468{
469	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
470
471	DRM_DEBUG_KMS("i2c_init %s\n", name);
472	dp_priv->algo.running = false;
473	dp_priv->algo.address = 0;
474	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
475
476	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
477	dp_priv->adapter.owner = THIS_MODULE;
478	dp_priv->adapter.class = I2C_CLASS_DDC;
479	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
480	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
481	dp_priv->adapter.algo_data = &dp_priv->algo;
482	dp_priv->adapter.dev.parent = &intel_output->base.kdev;
483
484	return i2c_dp_aux_add_bus(&dp_priv->adapter);
485}
486
487static bool
488intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
489		    struct drm_display_mode *adjusted_mode)
490{
491	struct intel_output *intel_output = enc_to_intel_output(encoder);
492	struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
493	int lane_count, clock;
494	int max_lane_count = intel_dp_max_lane_count(intel_output);
495	int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
496	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
497
498	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
499		for (clock = 0; clock <= max_clock; clock++) {
500			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
501
502			if (intel_dp_link_required(encoder->dev, intel_output, mode->clock)
503					<= link_avail) {
504				dp_priv->link_bw = bws[clock];
505				dp_priv->lane_count = lane_count;
506				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
507				DRM_DEBUG_KMS("Display port link bw %02x lane "
508						"count %d clock %d\n",
509				       dp_priv->link_bw, dp_priv->lane_count,
510				       adjusted_mode->clock);
511				return true;
512			}
513		}
514	}
515	return false;
516}
517
518struct intel_dp_m_n {
519	uint32_t	tu;
520	uint32_t	gmch_m;
521	uint32_t	gmch_n;
522	uint32_t	link_m;
523	uint32_t	link_n;
524};
525
526static void
527intel_reduce_ratio(uint32_t *num, uint32_t *den)
528{
529	while (*num > 0xffffff || *den > 0xffffff) {
530		*num >>= 1;
531		*den >>= 1;
532	}
533}
534
535static void
536intel_dp_compute_m_n(int bytes_per_pixel,
537		     int nlanes,
538		     int pixel_clock,
539		     int link_clock,
540		     struct intel_dp_m_n *m_n)
541{
542	m_n->tu = 64;
543	m_n->gmch_m = pixel_clock * bytes_per_pixel;
544	m_n->gmch_n = link_clock * nlanes;
545	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
546	m_n->link_m = pixel_clock;
547	m_n->link_n = link_clock;
548	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
549}
550
551void
552intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
553		 struct drm_display_mode *adjusted_mode)
554{
555	struct drm_device *dev = crtc->dev;
556	struct drm_mode_config *mode_config = &dev->mode_config;
557	struct drm_connector *connector;
558	struct drm_i915_private *dev_priv = dev->dev_private;
559	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
560	int lane_count = 4;
561	struct intel_dp_m_n m_n;
562
563	/*
564	 * Find the lane count in the intel_output private
565	 */
566	list_for_each_entry(connector, &mode_config->connector_list, head) {
567		struct intel_output *intel_output = to_intel_output(connector);
568		struct intel_dp_priv *dp_priv = intel_output->dev_priv;
569
570		if (!connector->encoder || connector->encoder->crtc != crtc)
571			continue;
572
573		if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
574			lane_count = dp_priv->lane_count;
575			break;
576		}
577	}
578
579	/*
580	 * Compute the GMCH and Link ratios. The '3' here is
581	 * the number of bytes_per_pixel post-LUT, which we always
582	 * set up for 8-bits of R/G/B, or 3 bytes total.
583	 */
584	intel_dp_compute_m_n(3, lane_count,
585			     mode->clock, adjusted_mode->clock, &m_n);
586
587	if (HAS_PCH_SPLIT(dev)) {
588		if (intel_crtc->pipe == 0) {
589			I915_WRITE(TRANSA_DATA_M1,
590				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
591				   m_n.gmch_m);
592			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
593			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
594			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
595		} else {
596			I915_WRITE(TRANSB_DATA_M1,
597				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
598				   m_n.gmch_m);
599			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
600			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
601			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
602		}
603	} else {
604		if (intel_crtc->pipe == 0) {
605			I915_WRITE(PIPEA_GMCH_DATA_M,
606				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
607				   m_n.gmch_m);
608			I915_WRITE(PIPEA_GMCH_DATA_N,
609				   m_n.gmch_n);
610			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
611			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
612		} else {
613			I915_WRITE(PIPEB_GMCH_DATA_M,
614				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
615				   m_n.gmch_m);
616			I915_WRITE(PIPEB_GMCH_DATA_N,
617					m_n.gmch_n);
618			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
619			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
620		}
621	}
622}
623
624static void
625intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
626		  struct drm_display_mode *adjusted_mode)
627{
628	struct intel_output *intel_output = enc_to_intel_output(encoder);
629	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
630	struct drm_crtc *crtc = intel_output->enc.crtc;
631	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
632
633	dp_priv->DP = (DP_LINK_TRAIN_OFF |
634			DP_VOLTAGE_0_4 |
635			DP_PRE_EMPHASIS_0 |
636			DP_SYNC_VS_HIGH |
637			DP_SYNC_HS_HIGH);
638
639	switch (dp_priv->lane_count) {
640	case 1:
641		dp_priv->DP |= DP_PORT_WIDTH_1;
642		break;
643	case 2:
644		dp_priv->DP |= DP_PORT_WIDTH_2;
645		break;
646	case 4:
647		dp_priv->DP |= DP_PORT_WIDTH_4;
648		break;
649	}
650	if (dp_priv->has_audio)
651		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
652
653	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
654	dp_priv->link_configuration[0] = dp_priv->link_bw;
655	dp_priv->link_configuration[1] = dp_priv->lane_count;
656
657	/*
658	 * Check for DPCD version > 1.1,
659	 * enable enahanced frame stuff in that case
660	 */
661	if (dp_priv->dpcd[0] >= 0x11) {
662		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
663		dp_priv->DP |= DP_ENHANCED_FRAMING;
664	}
665
666	if (intel_crtc->pipe == 1)
667		dp_priv->DP |= DP_PIPEB_SELECT;
668
669	if (IS_eDP(intel_output)) {
670		/* don't miss out required setting for eDP */
671		dp_priv->DP |= DP_PLL_ENABLE;
672		if (adjusted_mode->clock < 200000)
673			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
674		else
675			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
676	}
677}
678
679static void ironlake_edp_backlight_on (struct drm_device *dev)
680{
681	struct drm_i915_private *dev_priv = dev->dev_private;
682	u32 pp;
683
684	DRM_DEBUG_KMS("\n");
685	pp = I915_READ(PCH_PP_CONTROL);
686	pp |= EDP_BLC_ENABLE;
687	I915_WRITE(PCH_PP_CONTROL, pp);
688}
689
690static void ironlake_edp_backlight_off (struct drm_device *dev)
691{
692	struct drm_i915_private *dev_priv = dev->dev_private;
693	u32 pp;
694
695	DRM_DEBUG_KMS("\n");
696	pp = I915_READ(PCH_PP_CONTROL);
697	pp &= ~EDP_BLC_ENABLE;
698	I915_WRITE(PCH_PP_CONTROL, pp);
699}
700
701static void
702intel_dp_dpms(struct drm_encoder *encoder, int mode)
703{
704	struct intel_output *intel_output = enc_to_intel_output(encoder);
705	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
706	struct drm_device *dev = intel_output->base.dev;
707	struct drm_i915_private *dev_priv = dev->dev_private;
708	uint32_t dp_reg = I915_READ(dp_priv->output_reg);
709
710	if (mode != DRM_MODE_DPMS_ON) {
711		if (dp_reg & DP_PORT_EN) {
712			intel_dp_link_down(intel_output, dp_priv->DP);
713			if (IS_eDP(intel_output))
714				ironlake_edp_backlight_off(dev);
715		}
716	} else {
717		if (!(dp_reg & DP_PORT_EN)) {
718			intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
719			if (IS_eDP(intel_output))
720				ironlake_edp_backlight_on(dev);
721		}
722	}
723	dp_priv->dpms_mode = mode;
724}
725
726/*
727 * Fetch AUX CH registers 0x202 - 0x207 which contain
728 * link status information
729 */
730static bool
731intel_dp_get_link_status(struct intel_output *intel_output,
732			 uint8_t link_status[DP_LINK_STATUS_SIZE])
733{
734	int ret;
735
736	ret = intel_dp_aux_native_read(intel_output,
737				       DP_LANE0_1_STATUS,
738				       link_status, DP_LINK_STATUS_SIZE);
739	if (ret != DP_LINK_STATUS_SIZE)
740		return false;
741	return true;
742}
743
744static uint8_t
745intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
746		     int r)
747{
748	return link_status[r - DP_LANE0_1_STATUS];
749}
750
751static void
752intel_dp_save(struct drm_connector *connector)
753{
754	struct intel_output *intel_output = to_intel_output(connector);
755	struct drm_device *dev = intel_output->base.dev;
756	struct drm_i915_private *dev_priv = dev->dev_private;
757	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
758
759	dp_priv->save_DP = I915_READ(dp_priv->output_reg);
760	intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
761				 dp_priv->save_link_configuration,
762				 sizeof (dp_priv->save_link_configuration));
763}
764
765static uint8_t
766intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
767				 int lane)
768{
769	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
770	int	    s = ((lane & 1) ?
771			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
772			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
773	uint8_t l = intel_dp_link_status(link_status, i);
774
775	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
776}
777
778static uint8_t
779intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
780				      int lane)
781{
782	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
783	int	    s = ((lane & 1) ?
784			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
785			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
786	uint8_t l = intel_dp_link_status(link_status, i);
787
788	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
789}
790
791
792#if 0
793static char	*voltage_names[] = {
794	"0.4V", "0.6V", "0.8V", "1.2V"
795};
796static char	*pre_emph_names[] = {
797	"0dB", "3.5dB", "6dB", "9.5dB"
798};
799static char	*link_train_names[] = {
800	"pattern 1", "pattern 2", "idle", "off"
801};
802#endif
803
804/*
805 * These are source-specific values; current Intel hardware supports
806 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
807 */
808#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
809
810static uint8_t
811intel_dp_pre_emphasis_max(uint8_t voltage_swing)
812{
813	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
814	case DP_TRAIN_VOLTAGE_SWING_400:
815		return DP_TRAIN_PRE_EMPHASIS_6;
816	case DP_TRAIN_VOLTAGE_SWING_600:
817		return DP_TRAIN_PRE_EMPHASIS_6;
818	case DP_TRAIN_VOLTAGE_SWING_800:
819		return DP_TRAIN_PRE_EMPHASIS_3_5;
820	case DP_TRAIN_VOLTAGE_SWING_1200:
821	default:
822		return DP_TRAIN_PRE_EMPHASIS_0;
823	}
824}
825
826static void
827intel_get_adjust_train(struct intel_output *intel_output,
828		       uint8_t link_status[DP_LINK_STATUS_SIZE],
829		       int lane_count,
830		       uint8_t train_set[4])
831{
832	uint8_t v = 0;
833	uint8_t p = 0;
834	int lane;
835
836	for (lane = 0; lane < lane_count; lane++) {
837		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
838		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
839
840		if (this_v > v)
841			v = this_v;
842		if (this_p > p)
843			p = this_p;
844	}
845
846	if (v >= I830_DP_VOLTAGE_MAX)
847		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
848
849	if (p >= intel_dp_pre_emphasis_max(v))
850		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
851
852	for (lane = 0; lane < 4; lane++)
853		train_set[lane] = v | p;
854}
855
856static uint32_t
857intel_dp_signal_levels(uint8_t train_set, int lane_count)
858{
859	uint32_t	signal_levels = 0;
860
861	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
862	case DP_TRAIN_VOLTAGE_SWING_400:
863	default:
864		signal_levels |= DP_VOLTAGE_0_4;
865		break;
866	case DP_TRAIN_VOLTAGE_SWING_600:
867		signal_levels |= DP_VOLTAGE_0_6;
868		break;
869	case DP_TRAIN_VOLTAGE_SWING_800:
870		signal_levels |= DP_VOLTAGE_0_8;
871		break;
872	case DP_TRAIN_VOLTAGE_SWING_1200:
873		signal_levels |= DP_VOLTAGE_1_2;
874		break;
875	}
876	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
877	case DP_TRAIN_PRE_EMPHASIS_0:
878	default:
879		signal_levels |= DP_PRE_EMPHASIS_0;
880		break;
881	case DP_TRAIN_PRE_EMPHASIS_3_5:
882		signal_levels |= DP_PRE_EMPHASIS_3_5;
883		break;
884	case DP_TRAIN_PRE_EMPHASIS_6:
885		signal_levels |= DP_PRE_EMPHASIS_6;
886		break;
887	case DP_TRAIN_PRE_EMPHASIS_9_5:
888		signal_levels |= DP_PRE_EMPHASIS_9_5;
889		break;
890	}
891	return signal_levels;
892}
893
894static uint8_t
895intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
896		      int lane)
897{
898	int i = DP_LANE0_1_STATUS + (lane >> 1);
899	int s = (lane & 1) * 4;
900	uint8_t l = intel_dp_link_status(link_status, i);
901
902	return (l >> s) & 0xf;
903}
904
905/* Check for clock recovery is done on all channels */
906static bool
907intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
908{
909	int lane;
910	uint8_t lane_status;
911
912	for (lane = 0; lane < lane_count; lane++) {
913		lane_status = intel_get_lane_status(link_status, lane);
914		if ((lane_status & DP_LANE_CR_DONE) == 0)
915			return false;
916	}
917	return true;
918}
919
920/* Check to see if channel eq is done on all channels */
921#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
922			 DP_LANE_CHANNEL_EQ_DONE|\
923			 DP_LANE_SYMBOL_LOCKED)
924static bool
925intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
926{
927	uint8_t lane_align;
928	uint8_t lane_status;
929	int lane;
930
931	lane_align = intel_dp_link_status(link_status,
932					  DP_LANE_ALIGN_STATUS_UPDATED);
933	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
934		return false;
935	for (lane = 0; lane < lane_count; lane++) {
936		lane_status = intel_get_lane_status(link_status, lane);
937		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
938			return false;
939	}
940	return true;
941}
942
943static bool
944intel_dp_set_link_train(struct intel_output *intel_output,
945			uint32_t dp_reg_value,
946			uint8_t dp_train_pat,
947			uint8_t train_set[4],
948			bool first)
949{
950	struct drm_device *dev = intel_output->base.dev;
951	struct drm_i915_private *dev_priv = dev->dev_private;
952	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
953	int ret;
954
955	I915_WRITE(dp_priv->output_reg, dp_reg_value);
956	POSTING_READ(dp_priv->output_reg);
957	if (first)
958		intel_wait_for_vblank(dev);
959
960	intel_dp_aux_native_write_1(intel_output,
961				    DP_TRAINING_PATTERN_SET,
962				    dp_train_pat);
963
964	ret = intel_dp_aux_native_write(intel_output,
965					DP_TRAINING_LANE0_SET, train_set, 4);
966	if (ret != 4)
967		return false;
968
969	return true;
970}
971
972static void
973intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
974		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
975{
976	struct drm_device *dev = intel_output->base.dev;
977	struct drm_i915_private *dev_priv = dev->dev_private;
978	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
979	uint8_t	train_set[4];
980	uint8_t link_status[DP_LINK_STATUS_SIZE];
981	int i;
982	uint8_t voltage;
983	bool clock_recovery = false;
984	bool channel_eq = false;
985	bool first = true;
986	int tries;
987
988	/* Write the link configuration data */
989	intel_dp_aux_native_write(intel_output, 0x100,
990				  link_configuration, DP_LINK_CONFIGURATION_SIZE);
991
992	DP |= DP_PORT_EN;
993	DP &= ~DP_LINK_TRAIN_MASK;
994	memset(train_set, 0, 4);
995	voltage = 0xff;
996	tries = 0;
997	clock_recovery = false;
998	for (;;) {
999		/* Use train_set[0] to set the voltage and pre emphasis values */
1000		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1001		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1002
1003		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
1004					     DP_TRAINING_PATTERN_1, train_set, first))
1005			break;
1006		first = false;
1007		/* Set training pattern 1 */
1008
1009		udelay(100);
1010		if (!intel_dp_get_link_status(intel_output, link_status))
1011			break;
1012
1013		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
1014			clock_recovery = true;
1015			break;
1016		}
1017
1018		/* Check to see if we've tried the max voltage */
1019		for (i = 0; i < dp_priv->lane_count; i++)
1020			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1021				break;
1022		if (i == dp_priv->lane_count)
1023			break;
1024
1025		/* Check to see if we've tried the same voltage 5 times */
1026		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1027			++tries;
1028			if (tries == 5)
1029				break;
1030		} else
1031			tries = 0;
1032		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1033
1034		/* Compute new train_set as requested by target */
1035		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1036	}
1037
1038	/* channel equalization */
1039	tries = 0;
1040	channel_eq = false;
1041	for (;;) {
1042		/* Use train_set[0] to set the voltage and pre emphasis values */
1043		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1044		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1045
1046		/* channel eq pattern */
1047		if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
1048					     DP_TRAINING_PATTERN_2, train_set,
1049					     false))
1050			break;
1051
1052		udelay(400);
1053		if (!intel_dp_get_link_status(intel_output, link_status))
1054			break;
1055
1056		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1057			channel_eq = true;
1058			break;
1059		}
1060
1061		/* Try 5 times */
1062		if (tries > 5)
1063			break;
1064
1065		/* Compute new train_set as requested by target */
1066		intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1067		++tries;
1068	}
1069
1070	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
1071	POSTING_READ(dp_priv->output_reg);
1072	intel_dp_aux_native_write_1(intel_output,
1073				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1074}
1075
1076static void
1077intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
1078{
1079	struct drm_device *dev = intel_output->base.dev;
1080	struct drm_i915_private *dev_priv = dev->dev_private;
1081	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1082
1083	DRM_DEBUG_KMS("\n");
1084
1085	if (IS_eDP(intel_output)) {
1086		DP &= ~DP_PLL_ENABLE;
1087		I915_WRITE(dp_priv->output_reg, DP);
1088		POSTING_READ(dp_priv->output_reg);
1089		udelay(100);
1090	}
1091
1092	DP &= ~DP_LINK_TRAIN_MASK;
1093	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1094	POSTING_READ(dp_priv->output_reg);
1095
1096	udelay(17000);
1097
1098	if (IS_eDP(intel_output))
1099		DP |= DP_LINK_TRAIN_OFF;
1100	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1101	POSTING_READ(dp_priv->output_reg);
1102}
1103
1104static void
1105intel_dp_restore(struct drm_connector *connector)
1106{
1107	struct intel_output *intel_output = to_intel_output(connector);
1108	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1109
1110	if (dp_priv->save_DP & DP_PORT_EN)
1111		intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
1112	else
1113		intel_dp_link_down(intel_output,  dp_priv->save_DP);
1114}
1115
1116/*
1117 * According to DP spec
1118 * 5.1.2:
1119 *  1. Read DPCD
1120 *  2. Configure link according to Receiver Capabilities
1121 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1122 *  4. Check link status on receipt of hot-plug interrupt
1123 */
1124
1125static void
1126intel_dp_check_link_status(struct intel_output *intel_output)
1127{
1128	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1129	uint8_t link_status[DP_LINK_STATUS_SIZE];
1130
1131	if (!intel_output->enc.crtc)
1132		return;
1133
1134	if (!intel_dp_get_link_status(intel_output, link_status)) {
1135		intel_dp_link_down(intel_output, dp_priv->DP);
1136		return;
1137	}
1138
1139	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1140		intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
1141}
1142
1143static enum drm_connector_status
1144ironlake_dp_detect(struct drm_connector *connector)
1145{
1146	struct intel_output *intel_output = to_intel_output(connector);
1147	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1148	enum drm_connector_status status;
1149
1150	status = connector_status_disconnected;
1151	if (intel_dp_aux_native_read(intel_output,
1152				     0x000, dp_priv->dpcd,
1153				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1154	{
1155		if (dp_priv->dpcd[0] != 0)
1156			status = connector_status_connected;
1157	}
1158	return status;
1159}
1160
1161/**
1162 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1163 *
1164 * \return true if DP port is connected.
1165 * \return false if DP port is disconnected.
1166 */
1167static enum drm_connector_status
1168intel_dp_detect(struct drm_connector *connector)
1169{
1170	struct intel_output *intel_output = to_intel_output(connector);
1171	struct drm_device *dev = intel_output->base.dev;
1172	struct drm_i915_private *dev_priv = dev->dev_private;
1173	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1174	uint32_t temp, bit;
1175	enum drm_connector_status status;
1176
1177	dp_priv->has_audio = false;
1178
1179	if (HAS_PCH_SPLIT(dev))
1180		return ironlake_dp_detect(connector);
1181
1182	temp = I915_READ(PORT_HOTPLUG_EN);
1183
1184	I915_WRITE(PORT_HOTPLUG_EN,
1185	       temp |
1186	       DPB_HOTPLUG_INT_EN |
1187	       DPC_HOTPLUG_INT_EN |
1188	       DPD_HOTPLUG_INT_EN);
1189
1190	POSTING_READ(PORT_HOTPLUG_EN);
1191
1192	switch (dp_priv->output_reg) {
1193	case DP_B:
1194		bit = DPB_HOTPLUG_INT_STATUS;
1195		break;
1196	case DP_C:
1197		bit = DPC_HOTPLUG_INT_STATUS;
1198		break;
1199	case DP_D:
1200		bit = DPD_HOTPLUG_INT_STATUS;
1201		break;
1202	default:
1203		return connector_status_unknown;
1204	}
1205
1206	temp = I915_READ(PORT_HOTPLUG_STAT);
1207
1208	if ((temp & bit) == 0)
1209		return connector_status_disconnected;
1210
1211	status = connector_status_disconnected;
1212	if (intel_dp_aux_native_read(intel_output,
1213				     0x000, dp_priv->dpcd,
1214				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1215	{
1216		if (dp_priv->dpcd[0] != 0)
1217			status = connector_status_connected;
1218	}
1219	return status;
1220}
1221
1222static int intel_dp_get_modes(struct drm_connector *connector)
1223{
1224	struct intel_output *intel_output = to_intel_output(connector);
1225	struct drm_device *dev = intel_output->base.dev;
1226	struct drm_i915_private *dev_priv = dev->dev_private;
1227	int ret;
1228
1229	/* We should parse the EDID data and find out if it has an audio sink
1230	 */
1231
1232	ret = intel_ddc_get_modes(intel_output);
1233	if (ret)
1234		return ret;
1235
1236	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1237	if (IS_eDP(intel_output)) {
1238		if (dev_priv->panel_fixed_mode != NULL) {
1239			struct drm_display_mode *mode;
1240			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1241			drm_mode_probed_add(connector, mode);
1242			return 1;
1243		}
1244	}
1245	return 0;
1246}
1247
1248static void
1249intel_dp_destroy (struct drm_connector *connector)
1250{
1251	struct intel_output *intel_output = to_intel_output(connector);
1252
1253	if (intel_output->i2c_bus)
1254		intel_i2c_destroy(intel_output->i2c_bus);
1255	drm_sysfs_connector_remove(connector);
1256	drm_connector_cleanup(connector);
1257	kfree(intel_output);
1258}
1259
1260static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1261	.dpms = intel_dp_dpms,
1262	.mode_fixup = intel_dp_mode_fixup,
1263	.prepare = intel_encoder_prepare,
1264	.mode_set = intel_dp_mode_set,
1265	.commit = intel_encoder_commit,
1266};
1267
1268static const struct drm_connector_funcs intel_dp_connector_funcs = {
1269	.dpms = drm_helper_connector_dpms,
1270	.save = intel_dp_save,
1271	.restore = intel_dp_restore,
1272	.detect = intel_dp_detect,
1273	.fill_modes = drm_helper_probe_single_connector_modes,
1274	.destroy = intel_dp_destroy,
1275};
1276
1277static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1278	.get_modes = intel_dp_get_modes,
1279	.mode_valid = intel_dp_mode_valid,
1280	.best_encoder = intel_best_encoder,
1281};
1282
1283static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1284{
1285	drm_encoder_cleanup(encoder);
1286}
1287
1288static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1289	.destroy = intel_dp_enc_destroy,
1290};
1291
1292void
1293intel_dp_hot_plug(struct intel_output *intel_output)
1294{
1295	struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1296
1297	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1298		intel_dp_check_link_status(intel_output);
1299}
1300
1301void
1302intel_dp_init(struct drm_device *dev, int output_reg)
1303{
1304	struct drm_i915_private *dev_priv = dev->dev_private;
1305	struct drm_connector *connector;
1306	struct intel_output *intel_output;
1307	struct intel_dp_priv *dp_priv;
1308	const char *name = NULL;
1309
1310	intel_output = kcalloc(sizeof(struct intel_output) +
1311			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1312	if (!intel_output)
1313		return;
1314
1315	dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1316
1317	connector = &intel_output->base;
1318	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1319			   DRM_MODE_CONNECTOR_DisplayPort);
1320	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1321
1322	if (output_reg == DP_A)
1323		intel_output->type = INTEL_OUTPUT_EDP;
1324	else
1325		intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1326
1327	if (output_reg == DP_B || output_reg == PCH_DP_B)
1328		intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1329	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1330		intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1331	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1332		intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1333
1334	if (IS_eDP(intel_output))
1335		intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1336
1337	intel_output->crtc_mask = (1 << 0) | (1 << 1);
1338	connector->interlace_allowed = true;
1339	connector->doublescan_allowed = 0;
1340
1341	dp_priv->intel_output = intel_output;
1342	dp_priv->output_reg = output_reg;
1343	dp_priv->has_audio = false;
1344	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1345	intel_output->dev_priv = dp_priv;
1346
1347	drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1348			 DRM_MODE_ENCODER_TMDS);
1349	drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1350
1351	drm_mode_connector_attach_encoder(&intel_output->base,
1352					  &intel_output->enc);
1353	drm_sysfs_connector_add(connector);
1354
1355	/* Set up the DDC bus. */
1356	switch (output_reg) {
1357		case DP_A:
1358			name = "DPDDC-A";
1359			break;
1360		case DP_B:
1361		case PCH_DP_B:
1362			dev_priv->hotplug_supported_mask |=
1363				HDMIB_HOTPLUG_INT_STATUS;
1364			name = "DPDDC-B";
1365			break;
1366		case DP_C:
1367		case PCH_DP_C:
1368			dev_priv->hotplug_supported_mask |=
1369				HDMIC_HOTPLUG_INT_STATUS;
1370			name = "DPDDC-C";
1371			break;
1372		case DP_D:
1373		case PCH_DP_D:
1374			dev_priv->hotplug_supported_mask |=
1375				HDMID_HOTPLUG_INT_STATUS;
1376			name = "DPDDC-D";
1377			break;
1378	}
1379
1380	intel_dp_i2c_init(intel_output, name);
1381
1382	intel_output->ddc_bus = &dp_priv->adapter;
1383	intel_output->hot_plug = intel_dp_hot_plug;
1384
1385	if (output_reg == DP_A) {
1386		/* initialize panel mode from VBT if available for eDP */
1387		if (dev_priv->lfp_lvds_vbt_mode) {
1388			dev_priv->panel_fixed_mode =
1389				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1390			if (dev_priv->panel_fixed_mode) {
1391				dev_priv->panel_fixed_mode->type |=
1392					DRM_MODE_TYPE_PREFERRED;
1393			}
1394		}
1395	}
1396
1397	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1398	 * 0xd.  Failure to do so will result in spurious interrupts being
1399	 * generated on the port when a cable is not attached.
1400	 */
1401	if (IS_G4X(dev) && !IS_GM45(dev)) {
1402		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1403		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1404	}
1405}
1406