intel_dp.c revision d410b56d74bc706f414158cb0149e2a149ee1650
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <linux/notifier.h>
32#include <linux/reboot.h>
33#include <drm/drmP.h>
34#include <drm/drm_crtc.h>
35#include <drm/drm_crtc_helper.h>
36#include <drm/drm_edid.h>
37#include "intel_drv.h"
38#include <drm/i915_drm.h>
39#include "i915_drv.h"
40
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43struct dp_link_dpll {
44	int link_bw;
45	struct dpll dpll;
46};
47
48static const struct dp_link_dpll gen4_dpll[] = {
49	{ DP_LINK_BW_1_62,
50		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51	{ DP_LINK_BW_2_7,
52		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53};
54
55static const struct dp_link_dpll pch_dpll[] = {
56	{ DP_LINK_BW_1_62,
57		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58	{ DP_LINK_BW_2_7,
59		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60};
61
62static const struct dp_link_dpll vlv_dpll[] = {
63	{ DP_LINK_BW_1_62,
64		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65	{ DP_LINK_BW_2_7,
66		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67};
68
69/*
70 * CHV supports eDP 1.4 that have  more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73static const struct dp_link_dpll chv_dpll[] = {
74	/*
75	 * CHV requires to program fractional division for m2.
76	 * m2 is stored in fixed point format using formula below
77	 * (m2_int << 22) | m2_fraction
78	 */
79	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
80		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
84		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85};
86
87/**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94static bool is_edp(struct intel_dp *intel_dp)
95{
96	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99}
100
101static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102{
103	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105	return intel_dig_port->base.base.dev;
106}
107
108static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109{
110	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111}
112
113static void intel_dp_link_down(struct intel_dp *intel_dp);
114static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117int
118intel_dp_max_link_bw(struct intel_dp *intel_dp)
119{
120	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121	struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123	switch (max_link_bw) {
124	case DP_LINK_BW_1_62:
125	case DP_LINK_BW_2_7:
126		break;
127	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129		     INTEL_INFO(dev)->gen >= 8) &&
130		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131			max_link_bw = DP_LINK_BW_5_4;
132		else
133			max_link_bw = DP_LINK_BW_2_7;
134		break;
135	default:
136		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137		     max_link_bw);
138		max_link_bw = DP_LINK_BW_1_62;
139		break;
140	}
141	return max_link_bw;
142}
143
144static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145{
146	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147	struct drm_device *dev = intel_dig_port->base.base.dev;
148	u8 source_max, sink_max;
149
150	source_max = 4;
151	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153		source_max = 2;
154
155	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157	return min(source_max, sink_max);
158}
159
160/*
161 * The units on the numbers in the next two are... bizarre.  Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 *     270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000.  At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177static int
178intel_dp_link_required(int pixel_clock, int bpp)
179{
180	return (pixel_clock * bpp + 9) / 10;
181}
182
183static int
184intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185{
186	return (max_link_clock * max_lanes * 8) / 10;
187}
188
189static enum drm_mode_status
190intel_dp_mode_valid(struct drm_connector *connector,
191		    struct drm_display_mode *mode)
192{
193	struct intel_dp *intel_dp = intel_attached_dp(connector);
194	struct intel_connector *intel_connector = to_intel_connector(connector);
195	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196	int target_clock = mode->clock;
197	int max_rate, mode_rate, max_lanes, max_link_clock;
198
199	if (is_edp(intel_dp) && fixed_mode) {
200		if (mode->hdisplay > fixed_mode->hdisplay)
201			return MODE_PANEL;
202
203		if (mode->vdisplay > fixed_mode->vdisplay)
204			return MODE_PANEL;
205
206		target_clock = fixed_mode->clock;
207	}
208
209	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210	max_lanes = intel_dp_max_lane_count(intel_dp);
211
212	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213	mode_rate = intel_dp_link_required(target_clock, 18);
214
215	if (mode_rate > max_rate)
216		return MODE_CLOCK_HIGH;
217
218	if (mode->clock < 10000)
219		return MODE_CLOCK_LOW;
220
221	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222		return MODE_H_ILLEGAL;
223
224	return MODE_OK;
225}
226
227static uint32_t
228pack_aux(uint8_t *src, int src_bytes)
229{
230	int	i;
231	uint32_t v = 0;
232
233	if (src_bytes > 4)
234		src_bytes = 4;
235	for (i = 0; i < src_bytes; i++)
236		v |= ((uint32_t) src[i]) << ((3-i) * 8);
237	return v;
238}
239
240static void
241unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242{
243	int i;
244	if (dst_bytes > 4)
245		dst_bytes = 4;
246	for (i = 0; i < dst_bytes; i++)
247		dst[i] = src >> ((3-i) * 8);
248}
249
250/* hrawclock is 1/4 the FSB frequency */
251static int
252intel_hrawclk(struct drm_device *dev)
253{
254	struct drm_i915_private *dev_priv = dev->dev_private;
255	uint32_t clkcfg;
256
257	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258	if (IS_VALLEYVIEW(dev))
259		return 200;
260
261	clkcfg = I915_READ(CLKCFG);
262	switch (clkcfg & CLKCFG_FSB_MASK) {
263	case CLKCFG_FSB_400:
264		return 100;
265	case CLKCFG_FSB_533:
266		return 133;
267	case CLKCFG_FSB_667:
268		return 166;
269	case CLKCFG_FSB_800:
270		return 200;
271	case CLKCFG_FSB_1067:
272		return 266;
273	case CLKCFG_FSB_1333:
274		return 333;
275	/* these two are just a guess; one of them might be right */
276	case CLKCFG_FSB_1600:
277	case CLKCFG_FSB_1600_ALT:
278		return 400;
279	default:
280		return 133;
281	}
282}
283
284static void
285intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286				    struct intel_dp *intel_dp,
287				    struct edp_power_seq *out);
288static void
289intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290					      struct intel_dp *intel_dp,
291					      struct edp_power_seq *out);
292
293static enum pipe
294vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295{
296	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298	struct drm_device *dev = intel_dig_port->base.base.dev;
299	struct drm_i915_private *dev_priv = dev->dev_private;
300	enum port port = intel_dig_port->port;
301	enum pipe pipe;
302
303	/* modeset should have pipe */
304	if (crtc)
305		return to_intel_crtc(crtc)->pipe;
306
307	/* init time, try to find a pipe with this port selected */
308	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310			PANEL_PORT_SELECT_MASK;
311		if (port_sel == PANEL_PORT_SELECT_VLV(port))
312			return pipe;
313	}
314
315	/* shrug */
316	return PIPE_A;
317}
318
319static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320{
321	struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323	if (HAS_PCH_SPLIT(dev))
324		return PCH_PP_CONTROL;
325	else
326		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327}
328
329static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330{
331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333	if (HAS_PCH_SPLIT(dev))
334		return PCH_PP_STATUS;
335	else
336		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337}
338
339/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
340   This function only applicable when panel PM state is not to be tracked */
341static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342			      void *unused)
343{
344	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345						 edp_notifier);
346	struct drm_device *dev = intel_dp_to_dev(intel_dp);
347	struct drm_i915_private *dev_priv = dev->dev_private;
348	u32 pp_div;
349	u32 pp_ctrl_reg, pp_div_reg;
350	enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352	if (!is_edp(intel_dp) || code != SYS_RESTART)
353		return 0;
354
355	if (IS_VALLEYVIEW(dev)) {
356		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
358		pp_div = I915_READ(pp_div_reg);
359		pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361		/* 0x1F write to PP_DIV_REG sets max cycle delay */
362		I915_WRITE(pp_div_reg, pp_div | 0x1F);
363		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364		msleep(intel_dp->panel_power_cycle_delay);
365	}
366
367	return 0;
368}
369
370static bool edp_have_panel_power(struct intel_dp *intel_dp)
371{
372	struct drm_device *dev = intel_dp_to_dev(intel_dp);
373	struct drm_i915_private *dev_priv = dev->dev_private;
374
375	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
376}
377
378static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
379{
380	struct drm_device *dev = intel_dp_to_dev(intel_dp);
381	struct drm_i915_private *dev_priv = dev->dev_private;
382	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383	struct intel_encoder *intel_encoder = &intel_dig_port->base;
384	enum intel_display_power_domain power_domain;
385
386	power_domain = intel_display_port_power_domain(intel_encoder);
387	return intel_display_power_enabled(dev_priv, power_domain) &&
388	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
389}
390
391static void
392intel_dp_check_edp(struct intel_dp *intel_dp)
393{
394	struct drm_device *dev = intel_dp_to_dev(intel_dp);
395	struct drm_i915_private *dev_priv = dev->dev_private;
396
397	if (!is_edp(intel_dp))
398		return;
399
400	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
401		WARN(1, "eDP powered off while attempting aux channel communication.\n");
402		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
403			      I915_READ(_pp_stat_reg(intel_dp)),
404			      I915_READ(_pp_ctrl_reg(intel_dp)));
405	}
406}
407
408static uint32_t
409intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
410{
411	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412	struct drm_device *dev = intel_dig_port->base.base.dev;
413	struct drm_i915_private *dev_priv = dev->dev_private;
414	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
415	uint32_t status;
416	bool done;
417
418#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
419	if (has_aux_irq)
420		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
421					  msecs_to_jiffies_timeout(10));
422	else
423		done = wait_for_atomic(C, 10) == 0;
424	if (!done)
425		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
426			  has_aux_irq);
427#undef C
428
429	return status;
430}
431
432static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433{
434	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435	struct drm_device *dev = intel_dig_port->base.base.dev;
436
437	/*
438	 * The clock divider is based off the hrawclk, and would like to run at
439	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
440	 */
441	return index ? 0 : intel_hrawclk(dev) / 2;
442}
443
444static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
445{
446	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447	struct drm_device *dev = intel_dig_port->base.base.dev;
448
449	if (index)
450		return 0;
451
452	if (intel_dig_port->port == PORT_A) {
453		if (IS_GEN6(dev) || IS_GEN7(dev))
454			return 200; /* SNB & IVB eDP input clock at 400Mhz */
455		else
456			return 225; /* eDP input clock at 450Mhz */
457	} else {
458		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
459	}
460}
461
462static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
463{
464	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465	struct drm_device *dev = intel_dig_port->base.base.dev;
466	struct drm_i915_private *dev_priv = dev->dev_private;
467
468	if (intel_dig_port->port == PORT_A) {
469		if (index)
470			return 0;
471		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
472	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
473		/* Workaround for non-ULT HSW */
474		switch (index) {
475		case 0: return 63;
476		case 1: return 72;
477		default: return 0;
478		}
479	} else  {
480		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
481	}
482}
483
484static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
485{
486	return index ? 0 : 100;
487}
488
489static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
490				      bool has_aux_irq,
491				      int send_bytes,
492				      uint32_t aux_clock_divider)
493{
494	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495	struct drm_device *dev = intel_dig_port->base.base.dev;
496	uint32_t precharge, timeout;
497
498	if (IS_GEN6(dev))
499		precharge = 3;
500	else
501		precharge = 5;
502
503	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
504		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
505	else
506		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
507
508	return DP_AUX_CH_CTL_SEND_BUSY |
509	       DP_AUX_CH_CTL_DONE |
510	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
511	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
512	       timeout |
513	       DP_AUX_CH_CTL_RECEIVE_ERROR |
514	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
515	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
516	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
517}
518
519static int
520intel_dp_aux_ch(struct intel_dp *intel_dp,
521		uint8_t *send, int send_bytes,
522		uint8_t *recv, int recv_size)
523{
524	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
525	struct drm_device *dev = intel_dig_port->base.base.dev;
526	struct drm_i915_private *dev_priv = dev->dev_private;
527	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
528	uint32_t ch_data = ch_ctl + 4;
529	uint32_t aux_clock_divider;
530	int i, ret, recv_bytes;
531	uint32_t status;
532	int try, clock = 0;
533	bool has_aux_irq = HAS_AUX_IRQ(dev);
534	bool vdd;
535
536	/*
537	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
538	 * In such cases we want to leave VDD enabled and it's up to upper layers
539	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
540	 * ourselves.
541	 */
542	vdd = edp_panel_vdd_on(intel_dp);
543
544	/* dp aux is extremely sensitive to irq latency, hence request the
545	 * lowest possible wakeup latency and so prevent the cpu from going into
546	 * deep sleep states.
547	 */
548	pm_qos_update_request(&dev_priv->pm_qos, 0);
549
550	intel_dp_check_edp(intel_dp);
551
552	intel_aux_display_runtime_get(dev_priv);
553
554	/* Try to wait for any previous AUX channel activity */
555	for (try = 0; try < 3; try++) {
556		status = I915_READ_NOTRACE(ch_ctl);
557		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
558			break;
559		msleep(1);
560	}
561
562	if (try == 3) {
563		WARN(1, "dp_aux_ch not started status 0x%08x\n",
564		     I915_READ(ch_ctl));
565		ret = -EBUSY;
566		goto out;
567	}
568
569	/* Only 5 data registers! */
570	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
571		ret = -E2BIG;
572		goto out;
573	}
574
575	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
576		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
577							  has_aux_irq,
578							  send_bytes,
579							  aux_clock_divider);
580
581		/* Must try at least 3 times according to DP spec */
582		for (try = 0; try < 5; try++) {
583			/* Load the send data into the aux channel data registers */
584			for (i = 0; i < send_bytes; i += 4)
585				I915_WRITE(ch_data + i,
586					   pack_aux(send + i, send_bytes - i));
587
588			/* Send the command and wait for it to complete */
589			I915_WRITE(ch_ctl, send_ctl);
590
591			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
592
593			/* Clear done status and any errors */
594			I915_WRITE(ch_ctl,
595				   status |
596				   DP_AUX_CH_CTL_DONE |
597				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
598				   DP_AUX_CH_CTL_RECEIVE_ERROR);
599
600			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
601				      DP_AUX_CH_CTL_RECEIVE_ERROR))
602				continue;
603			if (status & DP_AUX_CH_CTL_DONE)
604				break;
605		}
606		if (status & DP_AUX_CH_CTL_DONE)
607			break;
608	}
609
610	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
611		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
612		ret = -EBUSY;
613		goto out;
614	}
615
616	/* Check for timeout or receive error.
617	 * Timeouts occur when the sink is not connected
618	 */
619	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
620		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
621		ret = -EIO;
622		goto out;
623	}
624
625	/* Timeouts occur when the device isn't connected, so they're
626	 * "normal" -- don't fill the kernel log with these */
627	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
628		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
629		ret = -ETIMEDOUT;
630		goto out;
631	}
632
633	/* Unload any bytes sent back from the other side */
634	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
635		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
636	if (recv_bytes > recv_size)
637		recv_bytes = recv_size;
638
639	for (i = 0; i < recv_bytes; i += 4)
640		unpack_aux(I915_READ(ch_data + i),
641			   recv + i, recv_bytes - i);
642
643	ret = recv_bytes;
644out:
645	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
646	intel_aux_display_runtime_put(dev_priv);
647
648	if (vdd)
649		edp_panel_vdd_off(intel_dp, false);
650
651	return ret;
652}
653
654#define BARE_ADDRESS_SIZE	3
655#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
656static ssize_t
657intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
658{
659	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
660	uint8_t txbuf[20], rxbuf[20];
661	size_t txsize, rxsize;
662	int ret;
663
664	txbuf[0] = msg->request << 4;
665	txbuf[1] = msg->address >> 8;
666	txbuf[2] = msg->address & 0xff;
667	txbuf[3] = msg->size - 1;
668
669	switch (msg->request & ~DP_AUX_I2C_MOT) {
670	case DP_AUX_NATIVE_WRITE:
671	case DP_AUX_I2C_WRITE:
672		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
673		rxsize = 1;
674
675		if (WARN_ON(txsize > 20))
676			return -E2BIG;
677
678		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
679
680		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
681		if (ret > 0) {
682			msg->reply = rxbuf[0] >> 4;
683
684			/* Return payload size. */
685			ret = msg->size;
686		}
687		break;
688
689	case DP_AUX_NATIVE_READ:
690	case DP_AUX_I2C_READ:
691		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
692		rxsize = msg->size + 1;
693
694		if (WARN_ON(rxsize > 20))
695			return -E2BIG;
696
697		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
698		if (ret > 0) {
699			msg->reply = rxbuf[0] >> 4;
700			/*
701			 * Assume happy day, and copy the data. The caller is
702			 * expected to check msg->reply before touching it.
703			 *
704			 * Return payload size.
705			 */
706			ret--;
707			memcpy(msg->buffer, rxbuf + 1, ret);
708		}
709		break;
710
711	default:
712		ret = -EINVAL;
713		break;
714	}
715
716	return ret;
717}
718
719static void
720intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
721{
722	struct drm_device *dev = intel_dp_to_dev(intel_dp);
723	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724	enum port port = intel_dig_port->port;
725	const char *name = NULL;
726	int ret;
727
728	switch (port) {
729	case PORT_A:
730		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
731		name = "DPDDC-A";
732		break;
733	case PORT_B:
734		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
735		name = "DPDDC-B";
736		break;
737	case PORT_C:
738		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
739		name = "DPDDC-C";
740		break;
741	case PORT_D:
742		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
743		name = "DPDDC-D";
744		break;
745	default:
746		BUG();
747	}
748
749	if (!HAS_DDI(dev))
750		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
751
752	intel_dp->aux.name = name;
753	intel_dp->aux.dev = dev->dev;
754	intel_dp->aux.transfer = intel_dp_aux_transfer;
755
756	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
757		      connector->base.kdev->kobj.name);
758
759	ret = drm_dp_aux_register(&intel_dp->aux);
760	if (ret < 0) {
761		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
762			  name, ret);
763		return;
764	}
765
766	ret = sysfs_create_link(&connector->base.kdev->kobj,
767				&intel_dp->aux.ddc.dev.kobj,
768				intel_dp->aux.ddc.dev.kobj.name);
769	if (ret < 0) {
770		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
771		drm_dp_aux_unregister(&intel_dp->aux);
772	}
773}
774
775static void
776intel_dp_connector_unregister(struct intel_connector *intel_connector)
777{
778	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
779
780	if (!intel_connector->mst_port)
781		sysfs_remove_link(&intel_connector->base.kdev->kobj,
782				  intel_dp->aux.ddc.dev.kobj.name);
783	intel_connector_unregister(intel_connector);
784}
785
786static void
787hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
788{
789	switch (link_bw) {
790	case DP_LINK_BW_1_62:
791		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
792		break;
793	case DP_LINK_BW_2_7:
794		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
795		break;
796	case DP_LINK_BW_5_4:
797		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
798		break;
799	}
800}
801
802static void
803intel_dp_set_clock(struct intel_encoder *encoder,
804		   struct intel_crtc_config *pipe_config, int link_bw)
805{
806	struct drm_device *dev = encoder->base.dev;
807	const struct dp_link_dpll *divisor = NULL;
808	int i, count = 0;
809
810	if (IS_G4X(dev)) {
811		divisor = gen4_dpll;
812		count = ARRAY_SIZE(gen4_dpll);
813	} else if (HAS_PCH_SPLIT(dev)) {
814		divisor = pch_dpll;
815		count = ARRAY_SIZE(pch_dpll);
816	} else if (IS_CHERRYVIEW(dev)) {
817		divisor = chv_dpll;
818		count = ARRAY_SIZE(chv_dpll);
819	} else if (IS_VALLEYVIEW(dev)) {
820		divisor = vlv_dpll;
821		count = ARRAY_SIZE(vlv_dpll);
822	}
823
824	if (divisor && count) {
825		for (i = 0; i < count; i++) {
826			if (link_bw == divisor[i].link_bw) {
827				pipe_config->dpll = divisor[i].dpll;
828				pipe_config->clock_set = true;
829				break;
830			}
831		}
832	}
833}
834
835bool
836intel_dp_compute_config(struct intel_encoder *encoder,
837			struct intel_crtc_config *pipe_config)
838{
839	struct drm_device *dev = encoder->base.dev;
840	struct drm_i915_private *dev_priv = dev->dev_private;
841	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
842	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
843	enum port port = dp_to_dig_port(intel_dp)->port;
844	struct intel_crtc *intel_crtc = encoder->new_crtc;
845	struct intel_connector *intel_connector = intel_dp->attached_connector;
846	int lane_count, clock;
847	int min_lane_count = 1;
848	int max_lane_count = intel_dp_max_lane_count(intel_dp);
849	/* Conveniently, the link BW constants become indices with a shift...*/
850	int min_clock = 0;
851	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
852	int bpp, mode_rate;
853	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
854	int link_avail, link_clock;
855
856	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
857		pipe_config->has_pch_encoder = true;
858
859	pipe_config->has_dp_encoder = true;
860	pipe_config->has_drrs = false;
861	pipe_config->has_audio = intel_dp->has_audio;
862
863	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
864		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
865				       adjusted_mode);
866		if (!HAS_PCH_SPLIT(dev))
867			intel_gmch_panel_fitting(intel_crtc, pipe_config,
868						 intel_connector->panel.fitting_mode);
869		else
870			intel_pch_panel_fitting(intel_crtc, pipe_config,
871						intel_connector->panel.fitting_mode);
872	}
873
874	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
875		return false;
876
877	DRM_DEBUG_KMS("DP link computation with max lane count %i "
878		      "max bw %02x pixel clock %iKHz\n",
879		      max_lane_count, bws[max_clock],
880		      adjusted_mode->crtc_clock);
881
882	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
883	 * bpc in between. */
884	bpp = pipe_config->pipe_bpp;
885	if (is_edp(intel_dp)) {
886		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
887			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
888				      dev_priv->vbt.edp_bpp);
889			bpp = dev_priv->vbt.edp_bpp;
890		}
891
892		if (IS_BROADWELL(dev)) {
893			/* Yes, it's an ugly hack. */
894			min_lane_count = max_lane_count;
895			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
896				      min_lane_count);
897		} else if (dev_priv->vbt.edp_lanes) {
898			min_lane_count = min(dev_priv->vbt.edp_lanes,
899					     max_lane_count);
900			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
901				      min_lane_count);
902		}
903
904		if (dev_priv->vbt.edp_rate) {
905			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
906			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
907				      bws[min_clock]);
908		}
909	}
910
911	for (; bpp >= 6*3; bpp -= 2*3) {
912		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
913						   bpp);
914
915		for (clock = min_clock; clock <= max_clock; clock++) {
916			for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
917				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
918				link_avail = intel_dp_max_data_rate(link_clock,
919								    lane_count);
920
921				if (mode_rate <= link_avail) {
922					goto found;
923				}
924			}
925		}
926	}
927
928	return false;
929
930found:
931	if (intel_dp->color_range_auto) {
932		/*
933		 * See:
934		 * CEA-861-E - 5.1 Default Encoding Parameters
935		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
936		 */
937		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
938			intel_dp->color_range = DP_COLOR_RANGE_16_235;
939		else
940			intel_dp->color_range = 0;
941	}
942
943	if (intel_dp->color_range)
944		pipe_config->limited_color_range = true;
945
946	intel_dp->link_bw = bws[clock];
947	intel_dp->lane_count = lane_count;
948	pipe_config->pipe_bpp = bpp;
949	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
950
951	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
952		      intel_dp->link_bw, intel_dp->lane_count,
953		      pipe_config->port_clock, bpp);
954	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
955		      mode_rate, link_avail);
956
957	intel_link_compute_m_n(bpp, lane_count,
958			       adjusted_mode->crtc_clock,
959			       pipe_config->port_clock,
960			       &pipe_config->dp_m_n);
961
962	if (intel_connector->panel.downclock_mode != NULL &&
963		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
964			pipe_config->has_drrs = true;
965			intel_link_compute_m_n(bpp, lane_count,
966				intel_connector->panel.downclock_mode->clock,
967				pipe_config->port_clock,
968				&pipe_config->dp_m2_n2);
969	}
970
971	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
972		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
973	else
974		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
975
976	return true;
977}
978
979static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
980{
981	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
982	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
983	struct drm_device *dev = crtc->base.dev;
984	struct drm_i915_private *dev_priv = dev->dev_private;
985	u32 dpa_ctl;
986
987	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
988	dpa_ctl = I915_READ(DP_A);
989	dpa_ctl &= ~DP_PLL_FREQ_MASK;
990
991	if (crtc->config.port_clock == 162000) {
992		/* For a long time we've carried around a ILK-DevA w/a for the
993		 * 160MHz clock. If we're really unlucky, it's still required.
994		 */
995		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
996		dpa_ctl |= DP_PLL_FREQ_160MHZ;
997		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
998	} else {
999		dpa_ctl |= DP_PLL_FREQ_270MHZ;
1000		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1001	}
1002
1003	I915_WRITE(DP_A, dpa_ctl);
1004
1005	POSTING_READ(DP_A);
1006	udelay(500);
1007}
1008
1009static void intel_dp_prepare(struct intel_encoder *encoder)
1010{
1011	struct drm_device *dev = encoder->base.dev;
1012	struct drm_i915_private *dev_priv = dev->dev_private;
1013	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1014	enum port port = dp_to_dig_port(intel_dp)->port;
1015	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1016	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1017
1018	/*
1019	 * There are four kinds of DP registers:
1020	 *
1021	 * 	IBX PCH
1022	 * 	SNB CPU
1023	 *	IVB CPU
1024	 * 	CPT PCH
1025	 *
1026	 * IBX PCH and CPU are the same for almost everything,
1027	 * except that the CPU DP PLL is configured in this
1028	 * register
1029	 *
1030	 * CPT PCH is quite different, having many bits moved
1031	 * to the TRANS_DP_CTL register instead. That
1032	 * configuration happens (oddly) in ironlake_pch_enable
1033	 */
1034
1035	/* Preserve the BIOS-computed detected bit. This is
1036	 * supposed to be read-only.
1037	 */
1038	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1039
1040	/* Handle DP bits in common between all three register formats */
1041	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1042	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1043
1044	if (crtc->config.has_audio) {
1045		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1046				 pipe_name(crtc->pipe));
1047		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1048		intel_write_eld(&encoder->base, adjusted_mode);
1049	}
1050
1051	/* Split out the IBX/CPU vs CPT settings */
1052
1053	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1054		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1055			intel_dp->DP |= DP_SYNC_HS_HIGH;
1056		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1057			intel_dp->DP |= DP_SYNC_VS_HIGH;
1058		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
1060		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1061			intel_dp->DP |= DP_ENHANCED_FRAMING;
1062
1063		intel_dp->DP |= crtc->pipe << 29;
1064	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1065		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1066			intel_dp->DP |= intel_dp->color_range;
1067
1068		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1069			intel_dp->DP |= DP_SYNC_HS_HIGH;
1070		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1071			intel_dp->DP |= DP_SYNC_VS_HIGH;
1072		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1073
1074		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1075			intel_dp->DP |= DP_ENHANCED_FRAMING;
1076
1077		if (!IS_CHERRYVIEW(dev)) {
1078			if (crtc->pipe == 1)
1079				intel_dp->DP |= DP_PIPEB_SELECT;
1080		} else {
1081			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1082		}
1083	} else {
1084		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1085	}
1086}
1087
1088#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1089#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1090
1091#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1092#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1093
1094#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1095#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1096
1097static void wait_panel_status(struct intel_dp *intel_dp,
1098				       u32 mask,
1099				       u32 value)
1100{
1101	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1102	struct drm_i915_private *dev_priv = dev->dev_private;
1103	u32 pp_stat_reg, pp_ctrl_reg;
1104
1105	pp_stat_reg = _pp_stat_reg(intel_dp);
1106	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1109			mask, value,
1110			I915_READ(pp_stat_reg),
1111			I915_READ(pp_ctrl_reg));
1112
1113	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1114		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1115				I915_READ(pp_stat_reg),
1116				I915_READ(pp_ctrl_reg));
1117	}
1118
1119	DRM_DEBUG_KMS("Wait complete\n");
1120}
1121
1122static void wait_panel_on(struct intel_dp *intel_dp)
1123{
1124	DRM_DEBUG_KMS("Wait for panel power on\n");
1125	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1126}
1127
1128static void wait_panel_off(struct intel_dp *intel_dp)
1129{
1130	DRM_DEBUG_KMS("Wait for panel power off time\n");
1131	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1132}
1133
1134static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1135{
1136	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1137
1138	/* When we disable the VDD override bit last we have to do the manual
1139	 * wait. */
1140	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1141				       intel_dp->panel_power_cycle_delay);
1142
1143	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1144}
1145
1146static void wait_backlight_on(struct intel_dp *intel_dp)
1147{
1148	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1149				       intel_dp->backlight_on_delay);
1150}
1151
1152static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1153{
1154	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1155				       intel_dp->backlight_off_delay);
1156}
1157
1158/* Read the current pp_control value, unlocking the register if it
1159 * is locked
1160 */
1161
1162static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1163{
1164	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165	struct drm_i915_private *dev_priv = dev->dev_private;
1166	u32 control;
1167
1168	control = I915_READ(_pp_ctrl_reg(intel_dp));
1169	control &= ~PANEL_UNLOCK_MASK;
1170	control |= PANEL_UNLOCK_REGS;
1171	return control;
1172}
1173
1174static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1175{
1176	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1179	struct drm_i915_private *dev_priv = dev->dev_private;
1180	enum intel_display_power_domain power_domain;
1181	u32 pp;
1182	u32 pp_stat_reg, pp_ctrl_reg;
1183	bool need_to_disable = !intel_dp->want_panel_vdd;
1184
1185	if (!is_edp(intel_dp))
1186		return false;
1187
1188	intel_dp->want_panel_vdd = true;
1189
1190	if (edp_have_panel_vdd(intel_dp))
1191		return need_to_disable;
1192
1193	power_domain = intel_display_port_power_domain(intel_encoder);
1194	intel_display_power_get(dev_priv, power_domain);
1195
1196	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1197
1198	if (!edp_have_panel_power(intel_dp))
1199		wait_panel_power_cycle(intel_dp);
1200
1201	pp = ironlake_get_pp_control(intel_dp);
1202	pp |= EDP_FORCE_VDD;
1203
1204	pp_stat_reg = _pp_stat_reg(intel_dp);
1205	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206
1207	I915_WRITE(pp_ctrl_reg, pp);
1208	POSTING_READ(pp_ctrl_reg);
1209	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1210			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1211	/*
1212	 * If the panel wasn't on, delay before accessing aux channel
1213	 */
1214	if (!edp_have_panel_power(intel_dp)) {
1215		DRM_DEBUG_KMS("eDP was not running\n");
1216		msleep(intel_dp->panel_power_up_delay);
1217	}
1218
1219	return need_to_disable;
1220}
1221
1222void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1223{
1224	bool vdd;
1225
1226	if (!is_edp(intel_dp))
1227		return;
1228
1229	vdd = edp_panel_vdd_on(intel_dp);
1230
1231	WARN(!vdd, "eDP VDD already requested on\n");
1232}
1233
1234static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1235{
1236	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1237	struct drm_i915_private *dev_priv = dev->dev_private;
1238	struct intel_digital_port *intel_dig_port =
1239		dp_to_dig_port(intel_dp);
1240	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1241	enum intel_display_power_domain power_domain;
1242	u32 pp;
1243	u32 pp_stat_reg, pp_ctrl_reg;
1244
1245	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1246
1247	WARN_ON(intel_dp->want_panel_vdd);
1248
1249	if (!edp_have_panel_vdd(intel_dp))
1250		return;
1251
1252	DRM_DEBUG_KMS("Turning eDP VDD off\n");
1253
1254	pp = ironlake_get_pp_control(intel_dp);
1255	pp &= ~EDP_FORCE_VDD;
1256
1257	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258	pp_stat_reg = _pp_stat_reg(intel_dp);
1259
1260	I915_WRITE(pp_ctrl_reg, pp);
1261	POSTING_READ(pp_ctrl_reg);
1262
1263	/* Make sure sequencer is idle before allowing subsequent activity */
1264	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1265	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1266
1267	if ((pp & POWER_TARGET_ON) == 0)
1268		intel_dp->last_power_cycle = jiffies;
1269
1270	power_domain = intel_display_port_power_domain(intel_encoder);
1271	intel_display_power_put(dev_priv, power_domain);
1272}
1273
1274static void edp_panel_vdd_work(struct work_struct *__work)
1275{
1276	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1277						 struct intel_dp, panel_vdd_work);
1278	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279
1280	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1281	if (!intel_dp->want_panel_vdd)
1282		edp_panel_vdd_off_sync(intel_dp);
1283	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1284}
1285
1286static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1287{
1288	unsigned long delay;
1289
1290	/*
1291	 * Queue the timer to fire a long time from now (relative to the power
1292	 * down delay) to keep the panel power up across a sequence of
1293	 * operations.
1294	 */
1295	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1296	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1297}
1298
1299static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1300{
1301	if (!is_edp(intel_dp))
1302		return;
1303
1304	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1305
1306	intel_dp->want_panel_vdd = false;
1307
1308	if (sync)
1309		edp_panel_vdd_off_sync(intel_dp);
1310	else
1311		edp_panel_vdd_schedule_off(intel_dp);
1312}
1313
1314static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1315{
1316	edp_panel_vdd_off(intel_dp, sync);
1317}
1318
1319void intel_edp_panel_on(struct intel_dp *intel_dp)
1320{
1321	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322	struct drm_i915_private *dev_priv = dev->dev_private;
1323	u32 pp;
1324	u32 pp_ctrl_reg;
1325
1326	if (!is_edp(intel_dp))
1327		return;
1328
1329	DRM_DEBUG_KMS("Turn eDP power on\n");
1330
1331	if (edp_have_panel_power(intel_dp)) {
1332		DRM_DEBUG_KMS("eDP power already on\n");
1333		return;
1334	}
1335
1336	wait_panel_power_cycle(intel_dp);
1337
1338	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1339	pp = ironlake_get_pp_control(intel_dp);
1340	if (IS_GEN5(dev)) {
1341		/* ILK workaround: disable reset around power sequence */
1342		pp &= ~PANEL_POWER_RESET;
1343		I915_WRITE(pp_ctrl_reg, pp);
1344		POSTING_READ(pp_ctrl_reg);
1345	}
1346
1347	pp |= POWER_TARGET_ON;
1348	if (!IS_GEN5(dev))
1349		pp |= PANEL_POWER_RESET;
1350
1351	I915_WRITE(pp_ctrl_reg, pp);
1352	POSTING_READ(pp_ctrl_reg);
1353
1354	wait_panel_on(intel_dp);
1355	intel_dp->last_power_on = jiffies;
1356
1357	if (IS_GEN5(dev)) {
1358		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1359		I915_WRITE(pp_ctrl_reg, pp);
1360		POSTING_READ(pp_ctrl_reg);
1361	}
1362}
1363
1364void intel_edp_panel_off(struct intel_dp *intel_dp)
1365{
1366	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1367	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1368	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1369	struct drm_i915_private *dev_priv = dev->dev_private;
1370	enum intel_display_power_domain power_domain;
1371	u32 pp;
1372	u32 pp_ctrl_reg;
1373
1374	if (!is_edp(intel_dp))
1375		return;
1376
1377	DRM_DEBUG_KMS("Turn eDP power off\n");
1378
1379	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1380
1381	pp = ironlake_get_pp_control(intel_dp);
1382	/* We need to switch off panel power _and_ force vdd, for otherwise some
1383	 * panels get very unhappy and cease to work. */
1384	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1385		EDP_BLC_ENABLE);
1386
1387	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389	intel_dp->want_panel_vdd = false;
1390
1391	I915_WRITE(pp_ctrl_reg, pp);
1392	POSTING_READ(pp_ctrl_reg);
1393
1394	intel_dp->last_power_cycle = jiffies;
1395	wait_panel_off(intel_dp);
1396
1397	/* We got a reference when we enabled the VDD. */
1398	power_domain = intel_display_port_power_domain(intel_encoder);
1399	intel_display_power_put(dev_priv, power_domain);
1400}
1401
1402/* Enable backlight in the panel power control. */
1403static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1404{
1405	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1406	struct drm_device *dev = intel_dig_port->base.base.dev;
1407	struct drm_i915_private *dev_priv = dev->dev_private;
1408	u32 pp;
1409	u32 pp_ctrl_reg;
1410
1411	/*
1412	 * If we enable the backlight right away following a panel power
1413	 * on, we may see slight flicker as the panel syncs with the eDP
1414	 * link.  So delay a bit to make sure the image is solid before
1415	 * allowing it to appear.
1416	 */
1417	wait_backlight_on(intel_dp);
1418	pp = ironlake_get_pp_control(intel_dp);
1419	pp |= EDP_BLC_ENABLE;
1420
1421	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423	I915_WRITE(pp_ctrl_reg, pp);
1424	POSTING_READ(pp_ctrl_reg);
1425}
1426
1427/* Enable backlight PWM and backlight PP control. */
1428void intel_edp_backlight_on(struct intel_dp *intel_dp)
1429{
1430	if (!is_edp(intel_dp))
1431		return;
1432
1433	DRM_DEBUG_KMS("\n");
1434
1435	intel_panel_enable_backlight(intel_dp->attached_connector);
1436	_intel_edp_backlight_on(intel_dp);
1437}
1438
1439/* Disable backlight in the panel power control. */
1440static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1441{
1442	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443	struct drm_i915_private *dev_priv = dev->dev_private;
1444	u32 pp;
1445	u32 pp_ctrl_reg;
1446
1447	pp = ironlake_get_pp_control(intel_dp);
1448	pp &= ~EDP_BLC_ENABLE;
1449
1450	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1451
1452	I915_WRITE(pp_ctrl_reg, pp);
1453	POSTING_READ(pp_ctrl_reg);
1454	intel_dp->last_backlight_off = jiffies;
1455
1456	edp_wait_backlight_off(intel_dp);
1457}
1458
1459/* Disable backlight PP control and backlight PWM. */
1460void intel_edp_backlight_off(struct intel_dp *intel_dp)
1461{
1462	if (!is_edp(intel_dp))
1463		return;
1464
1465	DRM_DEBUG_KMS("\n");
1466
1467	_intel_edp_backlight_off(intel_dp);
1468	intel_panel_disable_backlight(intel_dp->attached_connector);
1469}
1470
1471/*
1472 * Hook for controlling the panel power control backlight through the bl_power
1473 * sysfs attribute. Take care to handle multiple calls.
1474 */
1475static void intel_edp_backlight_power(struct intel_connector *connector,
1476				      bool enable)
1477{
1478	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1479	bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1480
1481	if (is_enabled == enable)
1482		return;
1483
1484	DRM_DEBUG_KMS("panel power control backlight %s\n",
1485		      enable ? "enable" : "disable");
1486
1487	if (enable)
1488		_intel_edp_backlight_on(intel_dp);
1489	else
1490		_intel_edp_backlight_off(intel_dp);
1491}
1492
1493static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1494{
1495	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1497	struct drm_device *dev = crtc->dev;
1498	struct drm_i915_private *dev_priv = dev->dev_private;
1499	u32 dpa_ctl;
1500
1501	assert_pipe_disabled(dev_priv,
1502			     to_intel_crtc(crtc)->pipe);
1503
1504	DRM_DEBUG_KMS("\n");
1505	dpa_ctl = I915_READ(DP_A);
1506	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1507	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1508
1509	/* We don't adjust intel_dp->DP while tearing down the link, to
1510	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1511	 * enable bits here to ensure that we don't enable too much. */
1512	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1513	intel_dp->DP |= DP_PLL_ENABLE;
1514	I915_WRITE(DP_A, intel_dp->DP);
1515	POSTING_READ(DP_A);
1516	udelay(200);
1517}
1518
1519static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1520{
1521	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1522	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1523	struct drm_device *dev = crtc->dev;
1524	struct drm_i915_private *dev_priv = dev->dev_private;
1525	u32 dpa_ctl;
1526
1527	assert_pipe_disabled(dev_priv,
1528			     to_intel_crtc(crtc)->pipe);
1529
1530	dpa_ctl = I915_READ(DP_A);
1531	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1532	     "dp pll off, should be on\n");
1533	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1534
1535	/* We can't rely on the value tracked for the DP register in
1536	 * intel_dp->DP because link_down must not change that (otherwise link
1537	 * re-training will fail. */
1538	dpa_ctl &= ~DP_PLL_ENABLE;
1539	I915_WRITE(DP_A, dpa_ctl);
1540	POSTING_READ(DP_A);
1541	udelay(200);
1542}
1543
1544/* If the sink supports it, try to set the power state appropriately */
1545void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1546{
1547	int ret, i;
1548
1549	/* Should have a valid DPCD by this point */
1550	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1551		return;
1552
1553	if (mode != DRM_MODE_DPMS_ON) {
1554		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1555					 DP_SET_POWER_D3);
1556	} else {
1557		/*
1558		 * When turning on, we need to retry for 1ms to give the sink
1559		 * time to wake up.
1560		 */
1561		for (i = 0; i < 3; i++) {
1562			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1563						 DP_SET_POWER_D0);
1564			if (ret == 1)
1565				break;
1566			msleep(1);
1567		}
1568	}
1569
1570	if (ret != 1)
1571		DRM_DEBUG_KMS("failed to %s sink power state\n",
1572			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1573}
1574
1575static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1576				  enum pipe *pipe)
1577{
1578	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1579	enum port port = dp_to_dig_port(intel_dp)->port;
1580	struct drm_device *dev = encoder->base.dev;
1581	struct drm_i915_private *dev_priv = dev->dev_private;
1582	enum intel_display_power_domain power_domain;
1583	u32 tmp;
1584
1585	power_domain = intel_display_port_power_domain(encoder);
1586	if (!intel_display_power_enabled(dev_priv, power_domain))
1587		return false;
1588
1589	tmp = I915_READ(intel_dp->output_reg);
1590
1591	if (!(tmp & DP_PORT_EN))
1592		return false;
1593
1594	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1595		*pipe = PORT_TO_PIPE_CPT(tmp);
1596	} else if (IS_CHERRYVIEW(dev)) {
1597		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1598	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1599		*pipe = PORT_TO_PIPE(tmp);
1600	} else {
1601		u32 trans_sel;
1602		u32 trans_dp;
1603		int i;
1604
1605		switch (intel_dp->output_reg) {
1606		case PCH_DP_B:
1607			trans_sel = TRANS_DP_PORT_SEL_B;
1608			break;
1609		case PCH_DP_C:
1610			trans_sel = TRANS_DP_PORT_SEL_C;
1611			break;
1612		case PCH_DP_D:
1613			trans_sel = TRANS_DP_PORT_SEL_D;
1614			break;
1615		default:
1616			return true;
1617		}
1618
1619		for_each_pipe(dev_priv, i) {
1620			trans_dp = I915_READ(TRANS_DP_CTL(i));
1621			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1622				*pipe = i;
1623				return true;
1624			}
1625		}
1626
1627		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1628			      intel_dp->output_reg);
1629	}
1630
1631	return true;
1632}
1633
1634static void intel_dp_get_config(struct intel_encoder *encoder,
1635				struct intel_crtc_config *pipe_config)
1636{
1637	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1638	u32 tmp, flags = 0;
1639	struct drm_device *dev = encoder->base.dev;
1640	struct drm_i915_private *dev_priv = dev->dev_private;
1641	enum port port = dp_to_dig_port(intel_dp)->port;
1642	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1643	int dotclock;
1644
1645	tmp = I915_READ(intel_dp->output_reg);
1646	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1647		pipe_config->has_audio = true;
1648
1649	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1650		if (tmp & DP_SYNC_HS_HIGH)
1651			flags |= DRM_MODE_FLAG_PHSYNC;
1652		else
1653			flags |= DRM_MODE_FLAG_NHSYNC;
1654
1655		if (tmp & DP_SYNC_VS_HIGH)
1656			flags |= DRM_MODE_FLAG_PVSYNC;
1657		else
1658			flags |= DRM_MODE_FLAG_NVSYNC;
1659	} else {
1660		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1661		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1662			flags |= DRM_MODE_FLAG_PHSYNC;
1663		else
1664			flags |= DRM_MODE_FLAG_NHSYNC;
1665
1666		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1667			flags |= DRM_MODE_FLAG_PVSYNC;
1668		else
1669			flags |= DRM_MODE_FLAG_NVSYNC;
1670	}
1671
1672	pipe_config->adjusted_mode.flags |= flags;
1673
1674	pipe_config->has_dp_encoder = true;
1675
1676	intel_dp_get_m_n(crtc, pipe_config);
1677
1678	if (port == PORT_A) {
1679		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1680			pipe_config->port_clock = 162000;
1681		else
1682			pipe_config->port_clock = 270000;
1683	}
1684
1685	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1686					    &pipe_config->dp_m_n);
1687
1688	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1689		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1690
1691	pipe_config->adjusted_mode.crtc_clock = dotclock;
1692
1693	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1694	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1695		/*
1696		 * This is a big fat ugly hack.
1697		 *
1698		 * Some machines in UEFI boot mode provide us a VBT that has 18
1699		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1700		 * unknown we fail to light up. Yet the same BIOS boots up with
1701		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1702		 * max, not what it tells us to use.
1703		 *
1704		 * Note: This will still be broken if the eDP panel is not lit
1705		 * up by the BIOS, and thus we can't get the mode at module
1706		 * load.
1707		 */
1708		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1709			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1710		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1711	}
1712}
1713
1714static bool is_edp_psr(struct intel_dp *intel_dp)
1715{
1716	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1717}
1718
1719static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1720{
1721	struct drm_i915_private *dev_priv = dev->dev_private;
1722
1723	if (!HAS_PSR(dev))
1724		return false;
1725
1726	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1727}
1728
1729static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1730				    struct edp_vsc_psr *vsc_psr)
1731{
1732	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1733	struct drm_device *dev = dig_port->base.base.dev;
1734	struct drm_i915_private *dev_priv = dev->dev_private;
1735	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1736	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1737	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1738	uint32_t *data = (uint32_t *) vsc_psr;
1739	unsigned int i;
1740
1741	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1742	   the video DIP being updated before program video DIP data buffer
1743	   registers for DIP being updated. */
1744	I915_WRITE(ctl_reg, 0);
1745	POSTING_READ(ctl_reg);
1746
1747	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1748		if (i < sizeof(struct edp_vsc_psr))
1749			I915_WRITE(data_reg + i, *data++);
1750		else
1751			I915_WRITE(data_reg + i, 0);
1752	}
1753
1754	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1755	POSTING_READ(ctl_reg);
1756}
1757
1758static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1759{
1760	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1761	struct drm_i915_private *dev_priv = dev->dev_private;
1762	struct edp_vsc_psr psr_vsc;
1763
1764	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1765	memset(&psr_vsc, 0, sizeof(psr_vsc));
1766	psr_vsc.sdp_header.HB0 = 0;
1767	psr_vsc.sdp_header.HB1 = 0x7;
1768	psr_vsc.sdp_header.HB2 = 0x2;
1769	psr_vsc.sdp_header.HB3 = 0x8;
1770	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1771
1772	/* Avoid continuous PSR exit by masking memup and hpd */
1773	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1774		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1775}
1776
1777static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1778{
1779	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1780	struct drm_device *dev = dig_port->base.base.dev;
1781	struct drm_i915_private *dev_priv = dev->dev_private;
1782	uint32_t aux_clock_divider;
1783	int precharge = 0x3;
1784	int msg_size = 5;       /* Header(4) + Message(1) */
1785	bool only_standby = false;
1786
1787	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1788
1789	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1790		only_standby = true;
1791
1792	/* Enable PSR in sink */
1793	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1794		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1795				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1796	else
1797		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1798				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1799
1800	/* Setup AUX registers */
1801	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1802	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1803	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1804		   DP_AUX_CH_CTL_TIME_OUT_400us |
1805		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1806		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1807		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1808}
1809
1810static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1811{
1812	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1813	struct drm_device *dev = dig_port->base.base.dev;
1814	struct drm_i915_private *dev_priv = dev->dev_private;
1815	uint32_t max_sleep_time = 0x1f;
1816	uint32_t idle_frames = 1;
1817	uint32_t val = 0x0;
1818	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1819	bool only_standby = false;
1820
1821	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1822		only_standby = true;
1823
1824	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1825		val |= EDP_PSR_LINK_STANDBY;
1826		val |= EDP_PSR_TP2_TP3_TIME_0us;
1827		val |= EDP_PSR_TP1_TIME_0us;
1828		val |= EDP_PSR_SKIP_AUX_EXIT;
1829		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1830	} else
1831		val |= EDP_PSR_LINK_DISABLE;
1832
1833	I915_WRITE(EDP_PSR_CTL(dev), val |
1834		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1835		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1836		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1837		   EDP_PSR_ENABLE);
1838}
1839
1840static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1841{
1842	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1843	struct drm_device *dev = dig_port->base.base.dev;
1844	struct drm_i915_private *dev_priv = dev->dev_private;
1845	struct drm_crtc *crtc = dig_port->base.base.crtc;
1846	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847
1848	lockdep_assert_held(&dev_priv->psr.lock);
1849	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1850	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1851
1852	dev_priv->psr.source_ok = false;
1853
1854	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1855		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1856		return false;
1857	}
1858
1859	if (!i915.enable_psr) {
1860		DRM_DEBUG_KMS("PSR disable by flag\n");
1861		return false;
1862	}
1863
1864	/* Below limitations aren't valid for Broadwell */
1865	if (IS_BROADWELL(dev))
1866		goto out;
1867
1868	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1869	    S3D_ENABLE) {
1870		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1871		return false;
1872	}
1873
1874	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1875		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1876		return false;
1877	}
1878
1879 out:
1880	dev_priv->psr.source_ok = true;
1881	return true;
1882}
1883
1884static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1885{
1886	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1887	struct drm_device *dev = intel_dig_port->base.base.dev;
1888	struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1891	WARN_ON(dev_priv->psr.active);
1892	lockdep_assert_held(&dev_priv->psr.lock);
1893
1894	/* Enable PSR on the panel */
1895	intel_edp_psr_enable_sink(intel_dp);
1896
1897	/* Enable PSR on the host */
1898	intel_edp_psr_enable_source(intel_dp);
1899
1900	dev_priv->psr.active = true;
1901}
1902
1903void intel_edp_psr_enable(struct intel_dp *intel_dp)
1904{
1905	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1906	struct drm_i915_private *dev_priv = dev->dev_private;
1907
1908	if (!HAS_PSR(dev)) {
1909		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1910		return;
1911	}
1912
1913	if (!is_edp_psr(intel_dp)) {
1914		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1915		return;
1916	}
1917
1918	mutex_lock(&dev_priv->psr.lock);
1919	if (dev_priv->psr.enabled) {
1920		DRM_DEBUG_KMS("PSR already in use\n");
1921		mutex_unlock(&dev_priv->psr.lock);
1922		return;
1923	}
1924
1925	dev_priv->psr.busy_frontbuffer_bits = 0;
1926
1927	/* Setup PSR once */
1928	intel_edp_psr_setup(intel_dp);
1929
1930	if (intel_edp_psr_match_conditions(intel_dp))
1931		dev_priv->psr.enabled = intel_dp;
1932	mutex_unlock(&dev_priv->psr.lock);
1933}
1934
1935void intel_edp_psr_disable(struct intel_dp *intel_dp)
1936{
1937	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1938	struct drm_i915_private *dev_priv = dev->dev_private;
1939
1940	mutex_lock(&dev_priv->psr.lock);
1941	if (!dev_priv->psr.enabled) {
1942		mutex_unlock(&dev_priv->psr.lock);
1943		return;
1944	}
1945
1946	if (dev_priv->psr.active) {
1947		I915_WRITE(EDP_PSR_CTL(dev),
1948			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1949
1950		/* Wait till PSR is idle */
1951		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1952			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1953			DRM_ERROR("Timed out waiting for PSR Idle State\n");
1954
1955		dev_priv->psr.active = false;
1956	} else {
1957		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1958	}
1959
1960	dev_priv->psr.enabled = NULL;
1961	mutex_unlock(&dev_priv->psr.lock);
1962
1963	cancel_delayed_work_sync(&dev_priv->psr.work);
1964}
1965
1966static void intel_edp_psr_work(struct work_struct *work)
1967{
1968	struct drm_i915_private *dev_priv =
1969		container_of(work, typeof(*dev_priv), psr.work.work);
1970	struct intel_dp *intel_dp = dev_priv->psr.enabled;
1971
1972	mutex_lock(&dev_priv->psr.lock);
1973	intel_dp = dev_priv->psr.enabled;
1974
1975	if (!intel_dp)
1976		goto unlock;
1977
1978	/*
1979	 * The delayed work can race with an invalidate hence we need to
1980	 * recheck. Since psr_flush first clears this and then reschedules we
1981	 * won't ever miss a flush when bailing out here.
1982	 */
1983	if (dev_priv->psr.busy_frontbuffer_bits)
1984		goto unlock;
1985
1986	intel_edp_psr_do_enable(intel_dp);
1987unlock:
1988	mutex_unlock(&dev_priv->psr.lock);
1989}
1990
1991static void intel_edp_psr_do_exit(struct drm_device *dev)
1992{
1993	struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995	if (dev_priv->psr.active) {
1996		u32 val = I915_READ(EDP_PSR_CTL(dev));
1997
1998		WARN_ON(!(val & EDP_PSR_ENABLE));
1999
2000		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2001
2002		dev_priv->psr.active = false;
2003	}
2004
2005}
2006
2007void intel_edp_psr_invalidate(struct drm_device *dev,
2008			      unsigned frontbuffer_bits)
2009{
2010	struct drm_i915_private *dev_priv = dev->dev_private;
2011	struct drm_crtc *crtc;
2012	enum pipe pipe;
2013
2014	mutex_lock(&dev_priv->psr.lock);
2015	if (!dev_priv->psr.enabled) {
2016		mutex_unlock(&dev_priv->psr.lock);
2017		return;
2018	}
2019
2020	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2021	pipe = to_intel_crtc(crtc)->pipe;
2022
2023	intel_edp_psr_do_exit(dev);
2024
2025	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2026
2027	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2028	mutex_unlock(&dev_priv->psr.lock);
2029}
2030
2031void intel_edp_psr_flush(struct drm_device *dev,
2032			 unsigned frontbuffer_bits)
2033{
2034	struct drm_i915_private *dev_priv = dev->dev_private;
2035	struct drm_crtc *crtc;
2036	enum pipe pipe;
2037
2038	mutex_lock(&dev_priv->psr.lock);
2039	if (!dev_priv->psr.enabled) {
2040		mutex_unlock(&dev_priv->psr.lock);
2041		return;
2042	}
2043
2044	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2045	pipe = to_intel_crtc(crtc)->pipe;
2046	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2047
2048	/*
2049	 * On Haswell sprite plane updates don't result in a psr invalidating
2050	 * signal in the hardware. Which means we need to manually fake this in
2051	 * software for all flushes, not just when we've seen a preceding
2052	 * invalidation through frontbuffer rendering.
2053	 */
2054	if (IS_HASWELL(dev) &&
2055	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2056		intel_edp_psr_do_exit(dev);
2057
2058	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2059		schedule_delayed_work(&dev_priv->psr.work,
2060				      msecs_to_jiffies(100));
2061	mutex_unlock(&dev_priv->psr.lock);
2062}
2063
2064void intel_edp_psr_init(struct drm_device *dev)
2065{
2066	struct drm_i915_private *dev_priv = dev->dev_private;
2067
2068	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2069	mutex_init(&dev_priv->psr.lock);
2070}
2071
2072static void intel_disable_dp(struct intel_encoder *encoder)
2073{
2074	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2075	enum port port = dp_to_dig_port(intel_dp)->port;
2076	struct drm_device *dev = encoder->base.dev;
2077
2078	/* Make sure the panel is off before trying to change the mode. But also
2079	 * ensure that we have vdd while we switch off the panel. */
2080	intel_edp_panel_vdd_on(intel_dp);
2081	intel_edp_backlight_off(intel_dp);
2082	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2083	intel_edp_panel_off(intel_dp);
2084
2085	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2086	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2087		intel_dp_link_down(intel_dp);
2088}
2089
2090static void g4x_post_disable_dp(struct intel_encoder *encoder)
2091{
2092	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2093	enum port port = dp_to_dig_port(intel_dp)->port;
2094
2095	if (port != PORT_A)
2096		return;
2097
2098	intel_dp_link_down(intel_dp);
2099	ironlake_edp_pll_off(intel_dp);
2100}
2101
2102static void vlv_post_disable_dp(struct intel_encoder *encoder)
2103{
2104	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2105
2106	intel_dp_link_down(intel_dp);
2107}
2108
2109static void chv_post_disable_dp(struct intel_encoder *encoder)
2110{
2111	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2112	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2113	struct drm_device *dev = encoder->base.dev;
2114	struct drm_i915_private *dev_priv = dev->dev_private;
2115	struct intel_crtc *intel_crtc =
2116		to_intel_crtc(encoder->base.crtc);
2117	enum dpio_channel ch = vlv_dport_to_channel(dport);
2118	enum pipe pipe = intel_crtc->pipe;
2119	u32 val;
2120
2121	intel_dp_link_down(intel_dp);
2122
2123	mutex_lock(&dev_priv->dpio_lock);
2124
2125	/* Propagate soft reset to data lane reset */
2126	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2127	val |= CHV_PCS_REQ_SOFTRESET_EN;
2128	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2129
2130	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2131	val |= CHV_PCS_REQ_SOFTRESET_EN;
2132	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2133
2134	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2135	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2136	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2137
2138	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2139	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2140	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2141
2142	mutex_unlock(&dev_priv->dpio_lock);
2143}
2144
2145static void intel_enable_dp(struct intel_encoder *encoder)
2146{
2147	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2148	struct drm_device *dev = encoder->base.dev;
2149	struct drm_i915_private *dev_priv = dev->dev_private;
2150	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2151
2152	if (WARN_ON(dp_reg & DP_PORT_EN))
2153		return;
2154
2155	intel_edp_panel_vdd_on(intel_dp);
2156	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2157	intel_dp_start_link_train(intel_dp);
2158	intel_edp_panel_on(intel_dp);
2159	intel_edp_panel_vdd_off(intel_dp, true);
2160	intel_dp_complete_link_train(intel_dp);
2161	intel_dp_stop_link_train(intel_dp);
2162}
2163
2164static void g4x_enable_dp(struct intel_encoder *encoder)
2165{
2166	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2167
2168	intel_enable_dp(encoder);
2169	intel_edp_backlight_on(intel_dp);
2170}
2171
2172static void vlv_enable_dp(struct intel_encoder *encoder)
2173{
2174	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2175
2176	intel_edp_backlight_on(intel_dp);
2177}
2178
2179static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2180{
2181	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2182	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2183
2184	intel_dp_prepare(encoder);
2185
2186	/* Only ilk+ has port A */
2187	if (dport->port == PORT_A) {
2188		ironlake_set_pll_cpu_edp(intel_dp);
2189		ironlake_edp_pll_on(intel_dp);
2190	}
2191}
2192
2193static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2194{
2195	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2196	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2197	struct drm_device *dev = encoder->base.dev;
2198	struct drm_i915_private *dev_priv = dev->dev_private;
2199	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2200	enum dpio_channel port = vlv_dport_to_channel(dport);
2201	int pipe = intel_crtc->pipe;
2202	struct edp_power_seq power_seq;
2203	u32 val;
2204
2205	mutex_lock(&dev_priv->dpio_lock);
2206
2207	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2208	val = 0;
2209	if (pipe)
2210		val |= (1<<21);
2211	else
2212		val &= ~(1<<21);
2213	val |= 0x001000c4;
2214	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2215	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2216	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2217
2218	mutex_unlock(&dev_priv->dpio_lock);
2219
2220	if (is_edp(intel_dp)) {
2221		/* init power sequencer on this pipe and port */
2222		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2223		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2224							      &power_seq);
2225	}
2226
2227	intel_enable_dp(encoder);
2228
2229	vlv_wait_port_ready(dev_priv, dport);
2230}
2231
2232static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2233{
2234	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2235	struct drm_device *dev = encoder->base.dev;
2236	struct drm_i915_private *dev_priv = dev->dev_private;
2237	struct intel_crtc *intel_crtc =
2238		to_intel_crtc(encoder->base.crtc);
2239	enum dpio_channel port = vlv_dport_to_channel(dport);
2240	int pipe = intel_crtc->pipe;
2241
2242	intel_dp_prepare(encoder);
2243
2244	/* Program Tx lane resets to default */
2245	mutex_lock(&dev_priv->dpio_lock);
2246	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2247			 DPIO_PCS_TX_LANE2_RESET |
2248			 DPIO_PCS_TX_LANE1_RESET);
2249	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2250			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2251			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2252			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2253				 DPIO_PCS_CLK_SOFT_RESET);
2254
2255	/* Fix up inter-pair skew failure */
2256	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2257	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2258	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2259	mutex_unlock(&dev_priv->dpio_lock);
2260}
2261
2262static void chv_pre_enable_dp(struct intel_encoder *encoder)
2263{
2264	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2265	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2266	struct drm_device *dev = encoder->base.dev;
2267	struct drm_i915_private *dev_priv = dev->dev_private;
2268	struct edp_power_seq power_seq;
2269	struct intel_crtc *intel_crtc =
2270		to_intel_crtc(encoder->base.crtc);
2271	enum dpio_channel ch = vlv_dport_to_channel(dport);
2272	int pipe = intel_crtc->pipe;
2273	int data, i;
2274	u32 val;
2275
2276	mutex_lock(&dev_priv->dpio_lock);
2277
2278	/* Deassert soft data lane reset*/
2279	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2280	val |= CHV_PCS_REQ_SOFTRESET_EN;
2281	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2282
2283	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2284	val |= CHV_PCS_REQ_SOFTRESET_EN;
2285	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2286
2287	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2288	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2289	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2290
2291	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2292	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2293	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2294
2295	/* Program Tx lane latency optimal setting*/
2296	for (i = 0; i < 4; i++) {
2297		/* Set the latency optimal bit */
2298		data = (i == 1) ? 0x0 : 0x6;
2299		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2300				data << DPIO_FRC_LATENCY_SHFIT);
2301
2302		/* Set the upar bit */
2303		data = (i == 1) ? 0x0 : 0x1;
2304		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2305				data << DPIO_UPAR_SHIFT);
2306	}
2307
2308	/* Data lane stagger programming */
2309	/* FIXME: Fix up value only after power analysis */
2310
2311	mutex_unlock(&dev_priv->dpio_lock);
2312
2313	if (is_edp(intel_dp)) {
2314		/* init power sequencer on this pipe and port */
2315		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2316		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2317							      &power_seq);
2318	}
2319
2320	intel_enable_dp(encoder);
2321
2322	vlv_wait_port_ready(dev_priv, dport);
2323}
2324
2325static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2326{
2327	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2328	struct drm_device *dev = encoder->base.dev;
2329	struct drm_i915_private *dev_priv = dev->dev_private;
2330	struct intel_crtc *intel_crtc =
2331		to_intel_crtc(encoder->base.crtc);
2332	enum dpio_channel ch = vlv_dport_to_channel(dport);
2333	enum pipe pipe = intel_crtc->pipe;
2334	u32 val;
2335
2336	intel_dp_prepare(encoder);
2337
2338	mutex_lock(&dev_priv->dpio_lock);
2339
2340	/* program left/right clock distribution */
2341	if (pipe != PIPE_B) {
2342		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2343		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2344		if (ch == DPIO_CH0)
2345			val |= CHV_BUFLEFTENA1_FORCE;
2346		if (ch == DPIO_CH1)
2347			val |= CHV_BUFRIGHTENA1_FORCE;
2348		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2349	} else {
2350		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2351		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2352		if (ch == DPIO_CH0)
2353			val |= CHV_BUFLEFTENA2_FORCE;
2354		if (ch == DPIO_CH1)
2355			val |= CHV_BUFRIGHTENA2_FORCE;
2356		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2357	}
2358
2359	/* program clock channel usage */
2360	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2361	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2362	if (pipe != PIPE_B)
2363		val &= ~CHV_PCS_USEDCLKCHANNEL;
2364	else
2365		val |= CHV_PCS_USEDCLKCHANNEL;
2366	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2367
2368	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2369	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2370	if (pipe != PIPE_B)
2371		val &= ~CHV_PCS_USEDCLKCHANNEL;
2372	else
2373		val |= CHV_PCS_USEDCLKCHANNEL;
2374	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2375
2376	/*
2377	 * This a a bit weird since generally CL
2378	 * matches the pipe, but here we need to
2379	 * pick the CL based on the port.
2380	 */
2381	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2382	if (pipe != PIPE_B)
2383		val &= ~CHV_CMN_USEDCLKCHANNEL;
2384	else
2385		val |= CHV_CMN_USEDCLKCHANNEL;
2386	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2387
2388	mutex_unlock(&dev_priv->dpio_lock);
2389}
2390
2391/*
2392 * Native read with retry for link status and receiver capability reads for
2393 * cases where the sink may still be asleep.
2394 *
2395 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2396 * supposed to retry 3 times per the spec.
2397 */
2398static ssize_t
2399intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2400			void *buffer, size_t size)
2401{
2402	ssize_t ret;
2403	int i;
2404
2405	for (i = 0; i < 3; i++) {
2406		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2407		if (ret == size)
2408			return ret;
2409		msleep(1);
2410	}
2411
2412	return ret;
2413}
2414
2415/*
2416 * Fetch AUX CH registers 0x202 - 0x207 which contain
2417 * link status information
2418 */
2419static bool
2420intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2421{
2422	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2423				       DP_LANE0_1_STATUS,
2424				       link_status,
2425				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2426}
2427
2428/* These are source-specific values. */
2429static uint8_t
2430intel_dp_voltage_max(struct intel_dp *intel_dp)
2431{
2432	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2433	enum port port = dp_to_dig_port(intel_dp)->port;
2434
2435	if (IS_VALLEYVIEW(dev))
2436		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2437	else if (IS_GEN7(dev) && port == PORT_A)
2438		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2439	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2440		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2441	else
2442		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2443}
2444
2445static uint8_t
2446intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2447{
2448	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2449	enum port port = dp_to_dig_port(intel_dp)->port;
2450
2451	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2452		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2453		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2454			return DP_TRAIN_PRE_EMPH_LEVEL_3;
2455		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2456			return DP_TRAIN_PRE_EMPH_LEVEL_2;
2457		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2458			return DP_TRAIN_PRE_EMPH_LEVEL_1;
2459		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2460		default:
2461			return DP_TRAIN_PRE_EMPH_LEVEL_0;
2462		}
2463	} else if (IS_VALLEYVIEW(dev)) {
2464		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2465		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2466			return DP_TRAIN_PRE_EMPH_LEVEL_3;
2467		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2468			return DP_TRAIN_PRE_EMPH_LEVEL_2;
2469		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2470			return DP_TRAIN_PRE_EMPH_LEVEL_1;
2471		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2472		default:
2473			return DP_TRAIN_PRE_EMPH_LEVEL_0;
2474		}
2475	} else if (IS_GEN7(dev) && port == PORT_A) {
2476		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2477		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2478			return DP_TRAIN_PRE_EMPH_LEVEL_2;
2479		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2480		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2481			return DP_TRAIN_PRE_EMPH_LEVEL_1;
2482		default:
2483			return DP_TRAIN_PRE_EMPH_LEVEL_0;
2484		}
2485	} else {
2486		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2487		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2488			return DP_TRAIN_PRE_EMPH_LEVEL_2;
2489		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2490			return DP_TRAIN_PRE_EMPH_LEVEL_2;
2491		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2492			return DP_TRAIN_PRE_EMPH_LEVEL_1;
2493		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2494		default:
2495			return DP_TRAIN_PRE_EMPH_LEVEL_0;
2496		}
2497	}
2498}
2499
2500static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2501{
2502	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2503	struct drm_i915_private *dev_priv = dev->dev_private;
2504	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2505	struct intel_crtc *intel_crtc =
2506		to_intel_crtc(dport->base.base.crtc);
2507	unsigned long demph_reg_value, preemph_reg_value,
2508		uniqtranscale_reg_value;
2509	uint8_t train_set = intel_dp->train_set[0];
2510	enum dpio_channel port = vlv_dport_to_channel(dport);
2511	int pipe = intel_crtc->pipe;
2512
2513	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2514	case DP_TRAIN_PRE_EMPH_LEVEL_0:
2515		preemph_reg_value = 0x0004000;
2516		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2517		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2518			demph_reg_value = 0x2B405555;
2519			uniqtranscale_reg_value = 0x552AB83A;
2520			break;
2521		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2522			demph_reg_value = 0x2B404040;
2523			uniqtranscale_reg_value = 0x5548B83A;
2524			break;
2525		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2526			demph_reg_value = 0x2B245555;
2527			uniqtranscale_reg_value = 0x5560B83A;
2528			break;
2529		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2530			demph_reg_value = 0x2B405555;
2531			uniqtranscale_reg_value = 0x5598DA3A;
2532			break;
2533		default:
2534			return 0;
2535		}
2536		break;
2537	case DP_TRAIN_PRE_EMPH_LEVEL_1:
2538		preemph_reg_value = 0x0002000;
2539		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2540		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2541			demph_reg_value = 0x2B404040;
2542			uniqtranscale_reg_value = 0x5552B83A;
2543			break;
2544		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2545			demph_reg_value = 0x2B404848;
2546			uniqtranscale_reg_value = 0x5580B83A;
2547			break;
2548		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2549			demph_reg_value = 0x2B404040;
2550			uniqtranscale_reg_value = 0x55ADDA3A;
2551			break;
2552		default:
2553			return 0;
2554		}
2555		break;
2556	case DP_TRAIN_PRE_EMPH_LEVEL_2:
2557		preemph_reg_value = 0x0000000;
2558		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2559		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2560			demph_reg_value = 0x2B305555;
2561			uniqtranscale_reg_value = 0x5570B83A;
2562			break;
2563		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2564			demph_reg_value = 0x2B2B4040;
2565			uniqtranscale_reg_value = 0x55ADDA3A;
2566			break;
2567		default:
2568			return 0;
2569		}
2570		break;
2571	case DP_TRAIN_PRE_EMPH_LEVEL_3:
2572		preemph_reg_value = 0x0006000;
2573		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2574		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2575			demph_reg_value = 0x1B405555;
2576			uniqtranscale_reg_value = 0x55ADDA3A;
2577			break;
2578		default:
2579			return 0;
2580		}
2581		break;
2582	default:
2583		return 0;
2584	}
2585
2586	mutex_lock(&dev_priv->dpio_lock);
2587	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2588	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2589	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2590			 uniqtranscale_reg_value);
2591	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2592	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2593	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2594	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2595	mutex_unlock(&dev_priv->dpio_lock);
2596
2597	return 0;
2598}
2599
2600static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2601{
2602	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2603	struct drm_i915_private *dev_priv = dev->dev_private;
2604	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2605	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2606	u32 deemph_reg_value, margin_reg_value, val;
2607	uint8_t train_set = intel_dp->train_set[0];
2608	enum dpio_channel ch = vlv_dport_to_channel(dport);
2609	enum pipe pipe = intel_crtc->pipe;
2610	int i;
2611
2612	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2613	case DP_TRAIN_PRE_EMPH_LEVEL_0:
2614		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2615		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2616			deemph_reg_value = 128;
2617			margin_reg_value = 52;
2618			break;
2619		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2620			deemph_reg_value = 128;
2621			margin_reg_value = 77;
2622			break;
2623		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2624			deemph_reg_value = 128;
2625			margin_reg_value = 102;
2626			break;
2627		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2628			deemph_reg_value = 128;
2629			margin_reg_value = 154;
2630			/* FIXME extra to set for 1200 */
2631			break;
2632		default:
2633			return 0;
2634		}
2635		break;
2636	case DP_TRAIN_PRE_EMPH_LEVEL_1:
2637		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2638		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2639			deemph_reg_value = 85;
2640			margin_reg_value = 78;
2641			break;
2642		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2643			deemph_reg_value = 85;
2644			margin_reg_value = 116;
2645			break;
2646		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2647			deemph_reg_value = 85;
2648			margin_reg_value = 154;
2649			break;
2650		default:
2651			return 0;
2652		}
2653		break;
2654	case DP_TRAIN_PRE_EMPH_LEVEL_2:
2655		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2656		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2657			deemph_reg_value = 64;
2658			margin_reg_value = 104;
2659			break;
2660		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2661			deemph_reg_value = 64;
2662			margin_reg_value = 154;
2663			break;
2664		default:
2665			return 0;
2666		}
2667		break;
2668	case DP_TRAIN_PRE_EMPH_LEVEL_3:
2669		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2670		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2671			deemph_reg_value = 43;
2672			margin_reg_value = 154;
2673			break;
2674		default:
2675			return 0;
2676		}
2677		break;
2678	default:
2679		return 0;
2680	}
2681
2682	mutex_lock(&dev_priv->dpio_lock);
2683
2684	/* Clear calc init */
2685	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2686	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2687	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2688
2689	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2690	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2691	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2692
2693	/* Program swing deemph */
2694	for (i = 0; i < 4; i++) {
2695		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2696		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2697		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2698		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2699	}
2700
2701	/* Program swing margin */
2702	for (i = 0; i < 4; i++) {
2703		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2704		val &= ~DPIO_SWING_MARGIN000_MASK;
2705		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2706		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2707	}
2708
2709	/* Disable unique transition scale */
2710	for (i = 0; i < 4; i++) {
2711		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2712		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2713		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2714	}
2715
2716	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2717			== DP_TRAIN_PRE_EMPH_LEVEL_0) &&
2718		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2719			== DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
2720
2721		/*
2722		 * The document said it needs to set bit 27 for ch0 and bit 26
2723		 * for ch1. Might be a typo in the doc.
2724		 * For now, for this unique transition scale selection, set bit
2725		 * 27 for ch0 and ch1.
2726		 */
2727		for (i = 0; i < 4; i++) {
2728			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2729			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2730			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2731		}
2732
2733		for (i = 0; i < 4; i++) {
2734			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2735			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2736			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2737			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2738		}
2739	}
2740
2741	/* Start swing calculation */
2742	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2743	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2744	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2745
2746	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2747	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2748	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2749
2750	/* LRC Bypass */
2751	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2752	val |= DPIO_LRC_BYPASS;
2753	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2754
2755	mutex_unlock(&dev_priv->dpio_lock);
2756
2757	return 0;
2758}
2759
2760static void
2761intel_get_adjust_train(struct intel_dp *intel_dp,
2762		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2763{
2764	uint8_t v = 0;
2765	uint8_t p = 0;
2766	int lane;
2767	uint8_t voltage_max;
2768	uint8_t preemph_max;
2769
2770	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2771		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2772		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2773
2774		if (this_v > v)
2775			v = this_v;
2776		if (this_p > p)
2777			p = this_p;
2778	}
2779
2780	voltage_max = intel_dp_voltage_max(intel_dp);
2781	if (v >= voltage_max)
2782		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2783
2784	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2785	if (p >= preemph_max)
2786		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2787
2788	for (lane = 0; lane < 4; lane++)
2789		intel_dp->train_set[lane] = v | p;
2790}
2791
2792static uint32_t
2793intel_gen4_signal_levels(uint8_t train_set)
2794{
2795	uint32_t	signal_levels = 0;
2796
2797	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2798	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2799	default:
2800		signal_levels |= DP_VOLTAGE_0_4;
2801		break;
2802	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2803		signal_levels |= DP_VOLTAGE_0_6;
2804		break;
2805	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2806		signal_levels |= DP_VOLTAGE_0_8;
2807		break;
2808	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2809		signal_levels |= DP_VOLTAGE_1_2;
2810		break;
2811	}
2812	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2813	case DP_TRAIN_PRE_EMPH_LEVEL_0:
2814	default:
2815		signal_levels |= DP_PRE_EMPHASIS_0;
2816		break;
2817	case DP_TRAIN_PRE_EMPH_LEVEL_1:
2818		signal_levels |= DP_PRE_EMPHASIS_3_5;
2819		break;
2820	case DP_TRAIN_PRE_EMPH_LEVEL_2:
2821		signal_levels |= DP_PRE_EMPHASIS_6;
2822		break;
2823	case DP_TRAIN_PRE_EMPH_LEVEL_3:
2824		signal_levels |= DP_PRE_EMPHASIS_9_5;
2825		break;
2826	}
2827	return signal_levels;
2828}
2829
2830/* Gen6's DP voltage swing and pre-emphasis control */
2831static uint32_t
2832intel_gen6_edp_signal_levels(uint8_t train_set)
2833{
2834	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2835					 DP_TRAIN_PRE_EMPHASIS_MASK);
2836	switch (signal_levels) {
2837	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2838	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2839		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2840	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2841		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2842	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2843	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2844		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2845	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2846	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2847		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2848	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2849	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2850		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2851	default:
2852		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2853			      "0x%x\n", signal_levels);
2854		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2855	}
2856}
2857
2858/* Gen7's DP voltage swing and pre-emphasis control */
2859static uint32_t
2860intel_gen7_edp_signal_levels(uint8_t train_set)
2861{
2862	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2863					 DP_TRAIN_PRE_EMPHASIS_MASK);
2864	switch (signal_levels) {
2865	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2866		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2867	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2868		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2869	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2870		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2871
2872	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2873		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2874	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2875		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2876
2877	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2878		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2879	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2880		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2881
2882	default:
2883		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2884			      "0x%x\n", signal_levels);
2885		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2886	}
2887}
2888
2889/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2890static uint32_t
2891intel_hsw_signal_levels(uint8_t train_set)
2892{
2893	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2894					 DP_TRAIN_PRE_EMPHASIS_MASK);
2895	switch (signal_levels) {
2896	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2897		return DDI_BUF_TRANS_SELECT(0);
2898	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2899		return DDI_BUF_TRANS_SELECT(1);
2900	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2901		return DDI_BUF_TRANS_SELECT(2);
2902	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2903		return DDI_BUF_TRANS_SELECT(3);
2904
2905	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2906		return DDI_BUF_TRANS_SELECT(4);
2907	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2908		return DDI_BUF_TRANS_SELECT(5);
2909	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2910		return DDI_BUF_TRANS_SELECT(6);
2911
2912	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2913		return DDI_BUF_TRANS_SELECT(7);
2914	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2915		return DDI_BUF_TRANS_SELECT(8);
2916	default:
2917		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2918			      "0x%x\n", signal_levels);
2919		return DDI_BUF_TRANS_SELECT(0);
2920	}
2921}
2922
2923/* Properly updates "DP" with the correct signal levels. */
2924static void
2925intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2926{
2927	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2928	enum port port = intel_dig_port->port;
2929	struct drm_device *dev = intel_dig_port->base.base.dev;
2930	uint32_t signal_levels, mask;
2931	uint8_t train_set = intel_dp->train_set[0];
2932
2933	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2934		signal_levels = intel_hsw_signal_levels(train_set);
2935		mask = DDI_BUF_EMP_MASK;
2936	} else if (IS_CHERRYVIEW(dev)) {
2937		signal_levels = intel_chv_signal_levels(intel_dp);
2938		mask = 0;
2939	} else if (IS_VALLEYVIEW(dev)) {
2940		signal_levels = intel_vlv_signal_levels(intel_dp);
2941		mask = 0;
2942	} else if (IS_GEN7(dev) && port == PORT_A) {
2943		signal_levels = intel_gen7_edp_signal_levels(train_set);
2944		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2945	} else if (IS_GEN6(dev) && port == PORT_A) {
2946		signal_levels = intel_gen6_edp_signal_levels(train_set);
2947		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2948	} else {
2949		signal_levels = intel_gen4_signal_levels(train_set);
2950		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2951	}
2952
2953	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2954
2955	*DP = (*DP & ~mask) | signal_levels;
2956}
2957
2958static bool
2959intel_dp_set_link_train(struct intel_dp *intel_dp,
2960			uint32_t *DP,
2961			uint8_t dp_train_pat)
2962{
2963	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2964	struct drm_device *dev = intel_dig_port->base.base.dev;
2965	struct drm_i915_private *dev_priv = dev->dev_private;
2966	enum port port = intel_dig_port->port;
2967	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2968	int ret, len;
2969
2970	if (HAS_DDI(dev)) {
2971		uint32_t temp = I915_READ(DP_TP_CTL(port));
2972
2973		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2974			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2975		else
2976			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2977
2978		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2979		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2980		case DP_TRAINING_PATTERN_DISABLE:
2981			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2982
2983			break;
2984		case DP_TRAINING_PATTERN_1:
2985			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2986			break;
2987		case DP_TRAINING_PATTERN_2:
2988			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2989			break;
2990		case DP_TRAINING_PATTERN_3:
2991			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2992			break;
2993		}
2994		I915_WRITE(DP_TP_CTL(port), temp);
2995
2996	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2997		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2998
2999		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3000		case DP_TRAINING_PATTERN_DISABLE:
3001			*DP |= DP_LINK_TRAIN_OFF_CPT;
3002			break;
3003		case DP_TRAINING_PATTERN_1:
3004			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3005			break;
3006		case DP_TRAINING_PATTERN_2:
3007			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3008			break;
3009		case DP_TRAINING_PATTERN_3:
3010			DRM_ERROR("DP training pattern 3 not supported\n");
3011			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3012			break;
3013		}
3014
3015	} else {
3016		if (IS_CHERRYVIEW(dev))
3017			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
3018		else
3019			*DP &= ~DP_LINK_TRAIN_MASK;
3020
3021		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3022		case DP_TRAINING_PATTERN_DISABLE:
3023			*DP |= DP_LINK_TRAIN_OFF;
3024			break;
3025		case DP_TRAINING_PATTERN_1:
3026			*DP |= DP_LINK_TRAIN_PAT_1;
3027			break;
3028		case DP_TRAINING_PATTERN_2:
3029			*DP |= DP_LINK_TRAIN_PAT_2;
3030			break;
3031		case DP_TRAINING_PATTERN_3:
3032			if (IS_CHERRYVIEW(dev)) {
3033				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
3034			} else {
3035				DRM_ERROR("DP training pattern 3 not supported\n");
3036				*DP |= DP_LINK_TRAIN_PAT_2;
3037			}
3038			break;
3039		}
3040	}
3041
3042	I915_WRITE(intel_dp->output_reg, *DP);
3043	POSTING_READ(intel_dp->output_reg);
3044
3045	buf[0] = dp_train_pat;
3046	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3047	    DP_TRAINING_PATTERN_DISABLE) {
3048		/* don't write DP_TRAINING_LANEx_SET on disable */
3049		len = 1;
3050	} else {
3051		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3052		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3053		len = intel_dp->lane_count + 1;
3054	}
3055
3056	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3057				buf, len);
3058
3059	return ret == len;
3060}
3061
3062static bool
3063intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3064			uint8_t dp_train_pat)
3065{
3066	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3067	intel_dp_set_signal_levels(intel_dp, DP);
3068	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3069}
3070
3071static bool
3072intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3073			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
3074{
3075	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3076	struct drm_device *dev = intel_dig_port->base.base.dev;
3077	struct drm_i915_private *dev_priv = dev->dev_private;
3078	int ret;
3079
3080	intel_get_adjust_train(intel_dp, link_status);
3081	intel_dp_set_signal_levels(intel_dp, DP);
3082
3083	I915_WRITE(intel_dp->output_reg, *DP);
3084	POSTING_READ(intel_dp->output_reg);
3085
3086	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3087				intel_dp->train_set, intel_dp->lane_count);
3088
3089	return ret == intel_dp->lane_count;
3090}
3091
3092static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3093{
3094	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3095	struct drm_device *dev = intel_dig_port->base.base.dev;
3096	struct drm_i915_private *dev_priv = dev->dev_private;
3097	enum port port = intel_dig_port->port;
3098	uint32_t val;
3099
3100	if (!HAS_DDI(dev))
3101		return;
3102
3103	val = I915_READ(DP_TP_CTL(port));
3104	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3105	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3106	I915_WRITE(DP_TP_CTL(port), val);
3107
3108	/*
3109	 * On PORT_A we can have only eDP in SST mode. There the only reason
3110	 * we need to set idle transmission mode is to work around a HW issue
3111	 * where we enable the pipe while not in idle link-training mode.
3112	 * In this case there is requirement to wait for a minimum number of
3113	 * idle patterns to be sent.
3114	 */
3115	if (port == PORT_A)
3116		return;
3117
3118	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3119		     1))
3120		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3121}
3122
3123/* Enable corresponding port and start training pattern 1 */
3124void
3125intel_dp_start_link_train(struct intel_dp *intel_dp)
3126{
3127	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3128	struct drm_device *dev = encoder->dev;
3129	int i;
3130	uint8_t voltage;
3131	int voltage_tries, loop_tries;
3132	uint32_t DP = intel_dp->DP;
3133	uint8_t link_config[2];
3134
3135	if (HAS_DDI(dev))
3136		intel_ddi_prepare_link_retrain(encoder);
3137
3138	/* Write the link configuration data */
3139	link_config[0] = intel_dp->link_bw;
3140	link_config[1] = intel_dp->lane_count;
3141	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3142		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3143	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3144
3145	link_config[0] = 0;
3146	link_config[1] = DP_SET_ANSI_8B10B;
3147	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3148
3149	DP |= DP_PORT_EN;
3150
3151	/* clock recovery */
3152	if (!intel_dp_reset_link_train(intel_dp, &DP,
3153				       DP_TRAINING_PATTERN_1 |
3154				       DP_LINK_SCRAMBLING_DISABLE)) {
3155		DRM_ERROR("failed to enable link training\n");
3156		return;
3157	}
3158
3159	voltage = 0xff;
3160	voltage_tries = 0;
3161	loop_tries = 0;
3162	for (;;) {
3163		uint8_t link_status[DP_LINK_STATUS_SIZE];
3164
3165		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3166		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3167			DRM_ERROR("failed to get link status\n");
3168			break;
3169		}
3170
3171		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3172			DRM_DEBUG_KMS("clock recovery OK\n");
3173			break;
3174		}
3175
3176		/* Check to see if we've tried the max voltage */
3177		for (i = 0; i < intel_dp->lane_count; i++)
3178			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3179				break;
3180		if (i == intel_dp->lane_count) {
3181			++loop_tries;
3182			if (loop_tries == 5) {
3183				DRM_ERROR("too many full retries, give up\n");
3184				break;
3185			}
3186			intel_dp_reset_link_train(intel_dp, &DP,
3187						  DP_TRAINING_PATTERN_1 |
3188						  DP_LINK_SCRAMBLING_DISABLE);
3189			voltage_tries = 0;
3190			continue;
3191		}
3192
3193		/* Check to see if we've tried the same voltage 5 times */
3194		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3195			++voltage_tries;
3196			if (voltage_tries == 5) {
3197				DRM_ERROR("too many voltage retries, give up\n");
3198				break;
3199			}
3200		} else
3201			voltage_tries = 0;
3202		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3203
3204		/* Update training set as requested by target */
3205		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3206			DRM_ERROR("failed to update link training\n");
3207			break;
3208		}
3209	}
3210
3211	intel_dp->DP = DP;
3212}
3213
3214void
3215intel_dp_complete_link_train(struct intel_dp *intel_dp)
3216{
3217	bool channel_eq = false;
3218	int tries, cr_tries;
3219	uint32_t DP = intel_dp->DP;
3220	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3221
3222	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3223	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3224		training_pattern = DP_TRAINING_PATTERN_3;
3225
3226	/* channel equalization */
3227	if (!intel_dp_set_link_train(intel_dp, &DP,
3228				     training_pattern |
3229				     DP_LINK_SCRAMBLING_DISABLE)) {
3230		DRM_ERROR("failed to start channel equalization\n");
3231		return;
3232	}
3233
3234	tries = 0;
3235	cr_tries = 0;
3236	channel_eq = false;
3237	for (;;) {
3238		uint8_t link_status[DP_LINK_STATUS_SIZE];
3239
3240		if (cr_tries > 5) {
3241			DRM_ERROR("failed to train DP, aborting\n");
3242			break;
3243		}
3244
3245		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3246		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3247			DRM_ERROR("failed to get link status\n");
3248			break;
3249		}
3250
3251		/* Make sure clock is still ok */
3252		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3253			intel_dp_start_link_train(intel_dp);
3254			intel_dp_set_link_train(intel_dp, &DP,
3255						training_pattern |
3256						DP_LINK_SCRAMBLING_DISABLE);
3257			cr_tries++;
3258			continue;
3259		}
3260
3261		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3262			channel_eq = true;
3263			break;
3264		}
3265
3266		/* Try 5 times, then try clock recovery if that fails */
3267		if (tries > 5) {
3268			intel_dp_link_down(intel_dp);
3269			intel_dp_start_link_train(intel_dp);
3270			intel_dp_set_link_train(intel_dp, &DP,
3271						training_pattern |
3272						DP_LINK_SCRAMBLING_DISABLE);
3273			tries = 0;
3274			cr_tries++;
3275			continue;
3276		}
3277
3278		/* Update training set as requested by target */
3279		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3280			DRM_ERROR("failed to update link training\n");
3281			break;
3282		}
3283		++tries;
3284	}
3285
3286	intel_dp_set_idle_link_train(intel_dp);
3287
3288	intel_dp->DP = DP;
3289
3290	if (channel_eq)
3291		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3292
3293}
3294
3295void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3296{
3297	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3298				DP_TRAINING_PATTERN_DISABLE);
3299}
3300
3301static void
3302intel_dp_link_down(struct intel_dp *intel_dp)
3303{
3304	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3305	enum port port = intel_dig_port->port;
3306	struct drm_device *dev = intel_dig_port->base.base.dev;
3307	struct drm_i915_private *dev_priv = dev->dev_private;
3308	struct intel_crtc *intel_crtc =
3309		to_intel_crtc(intel_dig_port->base.base.crtc);
3310	uint32_t DP = intel_dp->DP;
3311
3312	if (WARN_ON(HAS_DDI(dev)))
3313		return;
3314
3315	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3316		return;
3317
3318	DRM_DEBUG_KMS("\n");
3319
3320	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3321		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3322		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3323	} else {
3324		if (IS_CHERRYVIEW(dev))
3325			DP &= ~DP_LINK_TRAIN_MASK_CHV;
3326		else
3327			DP &= ~DP_LINK_TRAIN_MASK;
3328		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3329	}
3330	POSTING_READ(intel_dp->output_reg);
3331
3332	if (HAS_PCH_IBX(dev) &&
3333	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3334		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3335
3336		/* Hardware workaround: leaving our transcoder select
3337		 * set to transcoder B while it's off will prevent the
3338		 * corresponding HDMI output on transcoder A.
3339		 *
3340		 * Combine this with another hardware workaround:
3341		 * transcoder select bit can only be cleared while the
3342		 * port is enabled.
3343		 */
3344		DP &= ~DP_PIPEB_SELECT;
3345		I915_WRITE(intel_dp->output_reg, DP);
3346
3347		/* Changes to enable or select take place the vblank
3348		 * after being written.
3349		 */
3350		if (WARN_ON(crtc == NULL)) {
3351			/* We should never try to disable a port without a crtc
3352			 * attached. For paranoia keep the code around for a
3353			 * bit. */
3354			POSTING_READ(intel_dp->output_reg);
3355			msleep(50);
3356		} else
3357			intel_wait_for_vblank(dev, intel_crtc->pipe);
3358	}
3359
3360	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3361	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3362	POSTING_READ(intel_dp->output_reg);
3363	msleep(intel_dp->panel_power_down_delay);
3364}
3365
3366static bool
3367intel_dp_get_dpcd(struct intel_dp *intel_dp)
3368{
3369	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3370	struct drm_device *dev = dig_port->base.base.dev;
3371	struct drm_i915_private *dev_priv = dev->dev_private;
3372
3373	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3374				    sizeof(intel_dp->dpcd)) < 0)
3375		return false; /* aux transfer failed */
3376
3377	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3378
3379	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3380		return false; /* DPCD not present */
3381
3382	/* Check if the panel supports PSR */
3383	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3384	if (is_edp(intel_dp)) {
3385		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3386					intel_dp->psr_dpcd,
3387					sizeof(intel_dp->psr_dpcd));
3388		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3389			dev_priv->psr.sink_support = true;
3390			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3391		}
3392	}
3393
3394	/* Training Pattern 3 support */
3395	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3396	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3397		intel_dp->use_tps3 = true;
3398		DRM_DEBUG_KMS("Displayport TPS3 supported");
3399	} else
3400		intel_dp->use_tps3 = false;
3401
3402	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3403	      DP_DWN_STRM_PORT_PRESENT))
3404		return true; /* native DP sink */
3405
3406	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3407		return true; /* no per-port downstream info */
3408
3409	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3410				    intel_dp->downstream_ports,
3411				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3412		return false; /* downstream port status fetch failed */
3413
3414	return true;
3415}
3416
3417static void
3418intel_dp_probe_oui(struct intel_dp *intel_dp)
3419{
3420	u8 buf[3];
3421
3422	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3423		return;
3424
3425	intel_edp_panel_vdd_on(intel_dp);
3426
3427	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3428		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3429			      buf[0], buf[1], buf[2]);
3430
3431	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3432		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3433			      buf[0], buf[1], buf[2]);
3434
3435	intel_edp_panel_vdd_off(intel_dp, false);
3436}
3437
3438static bool
3439intel_dp_probe_mst(struct intel_dp *intel_dp)
3440{
3441	u8 buf[1];
3442
3443	if (!intel_dp->can_mst)
3444		return false;
3445
3446	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3447		return false;
3448
3449	intel_edp_panel_vdd_on(intel_dp);
3450	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3451		if (buf[0] & DP_MST_CAP) {
3452			DRM_DEBUG_KMS("Sink is MST capable\n");
3453			intel_dp->is_mst = true;
3454		} else {
3455			DRM_DEBUG_KMS("Sink is not MST capable\n");
3456			intel_dp->is_mst = false;
3457		}
3458	}
3459	intel_edp_panel_vdd_off(intel_dp, false);
3460
3461	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3462	return intel_dp->is_mst;
3463}
3464
3465int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3466{
3467	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3468	struct drm_device *dev = intel_dig_port->base.base.dev;
3469	struct intel_crtc *intel_crtc =
3470		to_intel_crtc(intel_dig_port->base.base.crtc);
3471	u8 buf[1];
3472
3473	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3474		return -EAGAIN;
3475
3476	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3477		return -ENOTTY;
3478
3479	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3480			       DP_TEST_SINK_START) < 0)
3481		return -EAGAIN;
3482
3483	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3484	intel_wait_for_vblank(dev, intel_crtc->pipe);
3485	intel_wait_for_vblank(dev, intel_crtc->pipe);
3486
3487	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3488		return -EAGAIN;
3489
3490	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3491	return 0;
3492}
3493
3494static bool
3495intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3496{
3497	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3498				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3499				       sink_irq_vector, 1) == 1;
3500}
3501
3502static bool
3503intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3504{
3505	int ret;
3506
3507	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3508					     DP_SINK_COUNT_ESI,
3509					     sink_irq_vector, 14);
3510	if (ret != 14)
3511		return false;
3512
3513	return true;
3514}
3515
3516static void
3517intel_dp_handle_test_request(struct intel_dp *intel_dp)
3518{
3519	/* NAK by default */
3520	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3521}
3522
3523static int
3524intel_dp_check_mst_status(struct intel_dp *intel_dp)
3525{
3526	bool bret;
3527
3528	if (intel_dp->is_mst) {
3529		u8 esi[16] = { 0 };
3530		int ret = 0;
3531		int retry;
3532		bool handled;
3533		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3534go_again:
3535		if (bret == true) {
3536
3537			/* check link status - esi[10] = 0x200c */
3538			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3539				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3540				intel_dp_start_link_train(intel_dp);
3541				intel_dp_complete_link_train(intel_dp);
3542				intel_dp_stop_link_train(intel_dp);
3543			}
3544
3545			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3546			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3547
3548			if (handled) {
3549				for (retry = 0; retry < 3; retry++) {
3550					int wret;
3551					wret = drm_dp_dpcd_write(&intel_dp->aux,
3552								 DP_SINK_COUNT_ESI+1,
3553								 &esi[1], 3);
3554					if (wret == 3) {
3555						break;
3556					}
3557				}
3558
3559				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3560				if (bret == true) {
3561					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3562					goto go_again;
3563				}
3564			} else
3565				ret = 0;
3566
3567			return ret;
3568		} else {
3569			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3570			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3571			intel_dp->is_mst = false;
3572			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3573			/* send a hotplug event */
3574			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3575		}
3576	}
3577	return -EINVAL;
3578}
3579
3580/*
3581 * According to DP spec
3582 * 5.1.2:
3583 *  1. Read DPCD
3584 *  2. Configure link according to Receiver Capabilities
3585 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3586 *  4. Check link status on receipt of hot-plug interrupt
3587 */
3588void
3589intel_dp_check_link_status(struct intel_dp *intel_dp)
3590{
3591	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3592	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3593	u8 sink_irq_vector;
3594	u8 link_status[DP_LINK_STATUS_SIZE];
3595
3596	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3597
3598	if (!intel_encoder->connectors_active)
3599		return;
3600
3601	if (WARN_ON(!intel_encoder->base.crtc))
3602		return;
3603
3604	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3605		return;
3606
3607	/* Try to read receiver status if the link appears to be up */
3608	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3609		return;
3610	}
3611
3612	/* Now read the DPCD to see if it's actually running */
3613	if (!intel_dp_get_dpcd(intel_dp)) {
3614		return;
3615	}
3616
3617	/* Try to read the source of the interrupt */
3618	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3619	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3620		/* Clear interrupt source */
3621		drm_dp_dpcd_writeb(&intel_dp->aux,
3622				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3623				   sink_irq_vector);
3624
3625		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3626			intel_dp_handle_test_request(intel_dp);
3627		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3628			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3629	}
3630
3631	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3632		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3633			      intel_encoder->base.name);
3634		intel_dp_start_link_train(intel_dp);
3635		intel_dp_complete_link_train(intel_dp);
3636		intel_dp_stop_link_train(intel_dp);
3637	}
3638}
3639
3640/* XXX this is probably wrong for multiple downstream ports */
3641static enum drm_connector_status
3642intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3643{
3644	uint8_t *dpcd = intel_dp->dpcd;
3645	uint8_t type;
3646
3647	if (!intel_dp_get_dpcd(intel_dp))
3648		return connector_status_disconnected;
3649
3650	/* if there's no downstream port, we're done */
3651	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3652		return connector_status_connected;
3653
3654	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3655	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3656	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3657		uint8_t reg;
3658
3659		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3660					    &reg, 1) < 0)
3661			return connector_status_unknown;
3662
3663		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3664					      : connector_status_disconnected;
3665	}
3666
3667	/* If no HPD, poke DDC gently */
3668	if (drm_probe_ddc(&intel_dp->aux.ddc))
3669		return connector_status_connected;
3670
3671	/* Well we tried, say unknown for unreliable port types */
3672	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3673		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3674		if (type == DP_DS_PORT_TYPE_VGA ||
3675		    type == DP_DS_PORT_TYPE_NON_EDID)
3676			return connector_status_unknown;
3677	} else {
3678		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3679			DP_DWN_STRM_PORT_TYPE_MASK;
3680		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3681		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3682			return connector_status_unknown;
3683	}
3684
3685	/* Anything else is out of spec, warn and ignore */
3686	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3687	return connector_status_disconnected;
3688}
3689
3690static enum drm_connector_status
3691edp_detect(struct intel_dp *intel_dp)
3692{
3693	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3694	enum drm_connector_status status;
3695
3696	status = intel_panel_detect(dev);
3697	if (status == connector_status_unknown)
3698		status = connector_status_connected;
3699
3700	return status;
3701}
3702
3703static enum drm_connector_status
3704ironlake_dp_detect(struct intel_dp *intel_dp)
3705{
3706	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3707	struct drm_i915_private *dev_priv = dev->dev_private;
3708	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3709
3710	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3711		return connector_status_disconnected;
3712
3713	return intel_dp_detect_dpcd(intel_dp);
3714}
3715
3716static enum drm_connector_status
3717g4x_dp_detect(struct intel_dp *intel_dp)
3718{
3719	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3720	struct drm_i915_private *dev_priv = dev->dev_private;
3721	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3722	uint32_t bit;
3723
3724	if (IS_VALLEYVIEW(dev)) {
3725		switch (intel_dig_port->port) {
3726		case PORT_B:
3727			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3728			break;
3729		case PORT_C:
3730			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3731			break;
3732		case PORT_D:
3733			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3734			break;
3735		default:
3736			return connector_status_unknown;
3737		}
3738	} else {
3739		switch (intel_dig_port->port) {
3740		case PORT_B:
3741			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3742			break;
3743		case PORT_C:
3744			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3745			break;
3746		case PORT_D:
3747			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3748			break;
3749		default:
3750			return connector_status_unknown;
3751		}
3752	}
3753
3754	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3755		return connector_status_disconnected;
3756
3757	return intel_dp_detect_dpcd(intel_dp);
3758}
3759
3760static struct edid *
3761intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3762{
3763	struct intel_connector *intel_connector = to_intel_connector(connector);
3764
3765	/* use cached edid if we have one */
3766	if (intel_connector->edid) {
3767		/* invalid edid */
3768		if (IS_ERR(intel_connector->edid))
3769			return NULL;
3770
3771		return drm_edid_duplicate(intel_connector->edid);
3772	}
3773
3774	return drm_get_edid(connector, adapter);
3775}
3776
3777static int
3778intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3779{
3780	struct intel_connector *intel_connector = to_intel_connector(connector);
3781
3782	/* use cached edid if we have one */
3783	if (intel_connector->edid) {
3784		/* invalid edid */
3785		if (IS_ERR(intel_connector->edid))
3786			return 0;
3787
3788		return intel_connector_update_modes(connector,
3789						    intel_connector->edid);
3790	}
3791
3792	return intel_ddc_get_modes(connector, adapter);
3793}
3794
3795static enum drm_connector_status
3796intel_dp_detect(struct drm_connector *connector, bool force)
3797{
3798	struct intel_dp *intel_dp = intel_attached_dp(connector);
3799	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3800	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3801	struct drm_device *dev = connector->dev;
3802	struct drm_i915_private *dev_priv = dev->dev_private;
3803	enum drm_connector_status status;
3804	enum intel_display_power_domain power_domain;
3805	struct edid *edid = NULL;
3806	bool ret;
3807
3808	power_domain = intel_display_port_power_domain(intel_encoder);
3809	intel_display_power_get(dev_priv, power_domain);
3810
3811	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3812		      connector->base.id, connector->name);
3813
3814	if (intel_dp->is_mst) {
3815		/* MST devices are disconnected from a monitor POV */
3816		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3817			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3818		status = connector_status_disconnected;
3819		goto out;
3820	}
3821
3822	intel_dp->has_audio = false;
3823
3824	/* Can't disconnect eDP, but you can close the lid... */
3825	if (is_edp(intel_dp))
3826		status = edp_detect(intel_dp);
3827	else if (HAS_PCH_SPLIT(dev))
3828		status = ironlake_dp_detect(intel_dp);
3829	else
3830		status = g4x_dp_detect(intel_dp);
3831	if (status != connector_status_connected)
3832		goto out;
3833
3834	intel_dp_probe_oui(intel_dp);
3835
3836	ret = intel_dp_probe_mst(intel_dp);
3837	if (ret) {
3838		/* if we are in MST mode then this connector
3839		   won't appear connected or have anything with EDID on it */
3840		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3841			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3842		status = connector_status_disconnected;
3843		goto out;
3844	}
3845
3846	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3847		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3848	} else {
3849		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3850		if (edid) {
3851			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3852			kfree(edid);
3853		}
3854	}
3855
3856	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3857		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3858	status = connector_status_connected;
3859
3860out:
3861	intel_display_power_put(dev_priv, power_domain);
3862	return status;
3863}
3864
3865static int intel_dp_get_modes(struct drm_connector *connector)
3866{
3867	struct intel_dp *intel_dp = intel_attached_dp(connector);
3868	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3869	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3870	struct intel_connector *intel_connector = to_intel_connector(connector);
3871	struct drm_device *dev = connector->dev;
3872	struct drm_i915_private *dev_priv = dev->dev_private;
3873	enum intel_display_power_domain power_domain;
3874	int ret;
3875
3876	/* We should parse the EDID data and find out if it has an audio sink
3877	 */
3878
3879	power_domain = intel_display_port_power_domain(intel_encoder);
3880	intel_display_power_get(dev_priv, power_domain);
3881
3882	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3883	intel_display_power_put(dev_priv, power_domain);
3884	if (ret)
3885		return ret;
3886
3887	/* if eDP has no EDID, fall back to fixed mode */
3888	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3889		struct drm_display_mode *mode;
3890		mode = drm_mode_duplicate(dev,
3891					  intel_connector->panel.fixed_mode);
3892		if (mode) {
3893			drm_mode_probed_add(connector, mode);
3894			return 1;
3895		}
3896	}
3897	return 0;
3898}
3899
3900static bool
3901intel_dp_detect_audio(struct drm_connector *connector)
3902{
3903	struct intel_dp *intel_dp = intel_attached_dp(connector);
3904	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3905	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3906	struct drm_device *dev = connector->dev;
3907	struct drm_i915_private *dev_priv = dev->dev_private;
3908	enum intel_display_power_domain power_domain;
3909	struct edid *edid;
3910	bool has_audio = false;
3911
3912	power_domain = intel_display_port_power_domain(intel_encoder);
3913	intel_display_power_get(dev_priv, power_domain);
3914
3915	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3916	if (edid) {
3917		has_audio = drm_detect_monitor_audio(edid);
3918		kfree(edid);
3919	}
3920
3921	intel_display_power_put(dev_priv, power_domain);
3922
3923	return has_audio;
3924}
3925
3926static int
3927intel_dp_set_property(struct drm_connector *connector,
3928		      struct drm_property *property,
3929		      uint64_t val)
3930{
3931	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3932	struct intel_connector *intel_connector = to_intel_connector(connector);
3933	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3934	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3935	int ret;
3936
3937	ret = drm_object_property_set_value(&connector->base, property, val);
3938	if (ret)
3939		return ret;
3940
3941	if (property == dev_priv->force_audio_property) {
3942		int i = val;
3943		bool has_audio;
3944
3945		if (i == intel_dp->force_audio)
3946			return 0;
3947
3948		intel_dp->force_audio = i;
3949
3950		if (i == HDMI_AUDIO_AUTO)
3951			has_audio = intel_dp_detect_audio(connector);
3952		else
3953			has_audio = (i == HDMI_AUDIO_ON);
3954
3955		if (has_audio == intel_dp->has_audio)
3956			return 0;
3957
3958		intel_dp->has_audio = has_audio;
3959		goto done;
3960	}
3961
3962	if (property == dev_priv->broadcast_rgb_property) {
3963		bool old_auto = intel_dp->color_range_auto;
3964		uint32_t old_range = intel_dp->color_range;
3965
3966		switch (val) {
3967		case INTEL_BROADCAST_RGB_AUTO:
3968			intel_dp->color_range_auto = true;
3969			break;
3970		case INTEL_BROADCAST_RGB_FULL:
3971			intel_dp->color_range_auto = false;
3972			intel_dp->color_range = 0;
3973			break;
3974		case INTEL_BROADCAST_RGB_LIMITED:
3975			intel_dp->color_range_auto = false;
3976			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3977			break;
3978		default:
3979			return -EINVAL;
3980		}
3981
3982		if (old_auto == intel_dp->color_range_auto &&
3983		    old_range == intel_dp->color_range)
3984			return 0;
3985
3986		goto done;
3987	}
3988
3989	if (is_edp(intel_dp) &&
3990	    property == connector->dev->mode_config.scaling_mode_property) {
3991		if (val == DRM_MODE_SCALE_NONE) {
3992			DRM_DEBUG_KMS("no scaling not supported\n");
3993			return -EINVAL;
3994		}
3995
3996		if (intel_connector->panel.fitting_mode == val) {
3997			/* the eDP scaling property is not changed */
3998			return 0;
3999		}
4000		intel_connector->panel.fitting_mode = val;
4001
4002		goto done;
4003	}
4004
4005	return -EINVAL;
4006
4007done:
4008	if (intel_encoder->base.crtc)
4009		intel_crtc_restore_mode(intel_encoder->base.crtc);
4010
4011	return 0;
4012}
4013
4014static void
4015intel_dp_connector_destroy(struct drm_connector *connector)
4016{
4017	struct intel_connector *intel_connector = to_intel_connector(connector);
4018
4019	if (!IS_ERR_OR_NULL(intel_connector->edid))
4020		kfree(intel_connector->edid);
4021
4022	/* Can't call is_edp() since the encoder may have been destroyed
4023	 * already. */
4024	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4025		intel_panel_fini(&intel_connector->panel);
4026
4027	drm_connector_cleanup(connector);
4028	kfree(connector);
4029}
4030
4031void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4032{
4033	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4034	struct intel_dp *intel_dp = &intel_dig_port->dp;
4035	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4036
4037	drm_dp_aux_unregister(&intel_dp->aux);
4038	intel_dp_mst_encoder_cleanup(intel_dig_port);
4039	drm_encoder_cleanup(encoder);
4040	if (is_edp(intel_dp)) {
4041		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4042		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4043		edp_panel_vdd_off_sync(intel_dp);
4044		drm_modeset_unlock(&dev->mode_config.connection_mutex);
4045		if (intel_dp->edp_notifier.notifier_call) {
4046			unregister_reboot_notifier(&intel_dp->edp_notifier);
4047			intel_dp->edp_notifier.notifier_call = NULL;
4048		}
4049	}
4050	kfree(intel_dig_port);
4051}
4052
4053static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4054{
4055	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4056
4057	if (!is_edp(intel_dp))
4058		return;
4059
4060	edp_panel_vdd_off_sync(intel_dp);
4061}
4062
4063static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4064{
4065	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4066}
4067
4068static const struct drm_connector_funcs intel_dp_connector_funcs = {
4069	.dpms = intel_connector_dpms,
4070	.detect = intel_dp_detect,
4071	.fill_modes = drm_helper_probe_single_connector_modes,
4072	.set_property = intel_dp_set_property,
4073	.destroy = intel_dp_connector_destroy,
4074};
4075
4076static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4077	.get_modes = intel_dp_get_modes,
4078	.mode_valid = intel_dp_mode_valid,
4079	.best_encoder = intel_best_encoder,
4080};
4081
4082static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4083	.reset = intel_dp_encoder_reset,
4084	.destroy = intel_dp_encoder_destroy,
4085};
4086
4087void
4088intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4089{
4090	return;
4091}
4092
4093bool
4094intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4095{
4096	struct intel_dp *intel_dp = &intel_dig_port->dp;
4097	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4098	struct drm_device *dev = intel_dig_port->base.base.dev;
4099	struct drm_i915_private *dev_priv = dev->dev_private;
4100	enum intel_display_power_domain power_domain;
4101	bool ret = true;
4102
4103	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4104		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4105
4106	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4107		      port_name(intel_dig_port->port),
4108		      long_hpd ? "long" : "short");
4109
4110	power_domain = intel_display_port_power_domain(intel_encoder);
4111	intel_display_power_get(dev_priv, power_domain);
4112
4113	if (long_hpd) {
4114		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4115			goto mst_fail;
4116
4117		if (!intel_dp_get_dpcd(intel_dp)) {
4118			goto mst_fail;
4119		}
4120
4121		intel_dp_probe_oui(intel_dp);
4122
4123		if (!intel_dp_probe_mst(intel_dp))
4124			goto mst_fail;
4125
4126	} else {
4127		if (intel_dp->is_mst) {
4128			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4129				goto mst_fail;
4130		}
4131
4132		if (!intel_dp->is_mst) {
4133			/*
4134			 * we'll check the link status via the normal hot plug path later -
4135			 * but for short hpds we should check it now
4136			 */
4137			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4138			intel_dp_check_link_status(intel_dp);
4139			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4140		}
4141	}
4142	ret = false;
4143	goto put_power;
4144mst_fail:
4145	/* if we were in MST mode, and device is not there get out of MST mode */
4146	if (intel_dp->is_mst) {
4147		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4148		intel_dp->is_mst = false;
4149		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4150	}
4151put_power:
4152	intel_display_power_put(dev_priv, power_domain);
4153
4154	return ret;
4155}
4156
4157/* Return which DP Port should be selected for Transcoder DP control */
4158int
4159intel_trans_dp_port_sel(struct drm_crtc *crtc)
4160{
4161	struct drm_device *dev = crtc->dev;
4162	struct intel_encoder *intel_encoder;
4163	struct intel_dp *intel_dp;
4164
4165	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4166		intel_dp = enc_to_intel_dp(&intel_encoder->base);
4167
4168		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4169		    intel_encoder->type == INTEL_OUTPUT_EDP)
4170			return intel_dp->output_reg;
4171	}
4172
4173	return -1;
4174}
4175
4176/* check the VBT to see whether the eDP is on DP-D port */
4177bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4178{
4179	struct drm_i915_private *dev_priv = dev->dev_private;
4180	union child_device_config *p_child;
4181	int i;
4182	static const short port_mapping[] = {
4183		[PORT_B] = PORT_IDPB,
4184		[PORT_C] = PORT_IDPC,
4185		[PORT_D] = PORT_IDPD,
4186	};
4187
4188	if (port == PORT_A)
4189		return true;
4190
4191	if (!dev_priv->vbt.child_dev_num)
4192		return false;
4193
4194	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4195		p_child = dev_priv->vbt.child_dev + i;
4196
4197		if (p_child->common.dvo_port == port_mapping[port] &&
4198		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4199		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4200			return true;
4201	}
4202	return false;
4203}
4204
4205void
4206intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4207{
4208	struct intel_connector *intel_connector = to_intel_connector(connector);
4209
4210	intel_attach_force_audio_property(connector);
4211	intel_attach_broadcast_rgb_property(connector);
4212	intel_dp->color_range_auto = true;
4213
4214	if (is_edp(intel_dp)) {
4215		drm_mode_create_scaling_mode_property(connector->dev);
4216		drm_object_attach_property(
4217			&connector->base,
4218			connector->dev->mode_config.scaling_mode_property,
4219			DRM_MODE_SCALE_ASPECT);
4220		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4221	}
4222}
4223
4224static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4225{
4226	intel_dp->last_power_cycle = jiffies;
4227	intel_dp->last_power_on = jiffies;
4228	intel_dp->last_backlight_off = jiffies;
4229}
4230
4231static void
4232intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4233				    struct intel_dp *intel_dp,
4234				    struct edp_power_seq *out)
4235{
4236	struct drm_i915_private *dev_priv = dev->dev_private;
4237	struct edp_power_seq cur, vbt, spec, final;
4238	u32 pp_on, pp_off, pp_div, pp;
4239	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4240
4241	if (HAS_PCH_SPLIT(dev)) {
4242		pp_ctrl_reg = PCH_PP_CONTROL;
4243		pp_on_reg = PCH_PP_ON_DELAYS;
4244		pp_off_reg = PCH_PP_OFF_DELAYS;
4245		pp_div_reg = PCH_PP_DIVISOR;
4246	} else {
4247		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4248
4249		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4250		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4251		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4252		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4253	}
4254
4255	/* Workaround: Need to write PP_CONTROL with the unlock key as
4256	 * the very first thing. */
4257	pp = ironlake_get_pp_control(intel_dp);
4258	I915_WRITE(pp_ctrl_reg, pp);
4259
4260	pp_on = I915_READ(pp_on_reg);
4261	pp_off = I915_READ(pp_off_reg);
4262	pp_div = I915_READ(pp_div_reg);
4263
4264	/* Pull timing values out of registers */
4265	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4266		PANEL_POWER_UP_DELAY_SHIFT;
4267
4268	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4269		PANEL_LIGHT_ON_DELAY_SHIFT;
4270
4271	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4272		PANEL_LIGHT_OFF_DELAY_SHIFT;
4273
4274	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4275		PANEL_POWER_DOWN_DELAY_SHIFT;
4276
4277	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4278		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4279
4280	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4281		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4282
4283	vbt = dev_priv->vbt.edp_pps;
4284
4285	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4286	 * our hw here, which are all in 100usec. */
4287	spec.t1_t3 = 210 * 10;
4288	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4289	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4290	spec.t10 = 500 * 10;
4291	/* This one is special and actually in units of 100ms, but zero
4292	 * based in the hw (so we need to add 100 ms). But the sw vbt
4293	 * table multiplies it with 1000 to make it in units of 100usec,
4294	 * too. */
4295	spec.t11_t12 = (510 + 100) * 10;
4296
4297	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4298		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4299
4300	/* Use the max of the register settings and vbt. If both are
4301	 * unset, fall back to the spec limits. */
4302#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4303				       spec.field : \
4304				       max(cur.field, vbt.field))
4305	assign_final(t1_t3);
4306	assign_final(t8);
4307	assign_final(t9);
4308	assign_final(t10);
4309	assign_final(t11_t12);
4310#undef assign_final
4311
4312#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4313	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4314	intel_dp->backlight_on_delay = get_delay(t8);
4315	intel_dp->backlight_off_delay = get_delay(t9);
4316	intel_dp->panel_power_down_delay = get_delay(t10);
4317	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4318#undef get_delay
4319
4320	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4321		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4322		      intel_dp->panel_power_cycle_delay);
4323
4324	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4325		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4326
4327	if (out)
4328		*out = final;
4329}
4330
4331static void
4332intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4333					      struct intel_dp *intel_dp,
4334					      struct edp_power_seq *seq)
4335{
4336	struct drm_i915_private *dev_priv = dev->dev_private;
4337	u32 pp_on, pp_off, pp_div, port_sel = 0;
4338	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4339	int pp_on_reg, pp_off_reg, pp_div_reg;
4340	enum port port = dp_to_dig_port(intel_dp)->port;
4341
4342	if (HAS_PCH_SPLIT(dev)) {
4343		pp_on_reg = PCH_PP_ON_DELAYS;
4344		pp_off_reg = PCH_PP_OFF_DELAYS;
4345		pp_div_reg = PCH_PP_DIVISOR;
4346	} else {
4347		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4348
4349		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4350		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4351		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4352	}
4353
4354	/*
4355	 * And finally store the new values in the power sequencer. The
4356	 * backlight delays are set to 1 because we do manual waits on them. For
4357	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4358	 * we'll end up waiting for the backlight off delay twice: once when we
4359	 * do the manual sleep, and once when we disable the panel and wait for
4360	 * the PP_STATUS bit to become zero.
4361	 */
4362	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4363		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4364	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4365		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4366	/* Compute the divisor for the pp clock, simply match the Bspec
4367	 * formula. */
4368	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4369	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4370			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4371
4372	/* Haswell doesn't have any port selection bits for the panel
4373	 * power sequencer any more. */
4374	if (IS_VALLEYVIEW(dev)) {
4375		port_sel = PANEL_PORT_SELECT_VLV(port);
4376	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4377		if (port == PORT_A)
4378			port_sel = PANEL_PORT_SELECT_DPA;
4379		else
4380			port_sel = PANEL_PORT_SELECT_DPD;
4381	}
4382
4383	pp_on |= port_sel;
4384
4385	I915_WRITE(pp_on_reg, pp_on);
4386	I915_WRITE(pp_off_reg, pp_off);
4387	I915_WRITE(pp_div_reg, pp_div);
4388
4389	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4390		      I915_READ(pp_on_reg),
4391		      I915_READ(pp_off_reg),
4392		      I915_READ(pp_div_reg));
4393}
4394
4395void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4396{
4397	struct drm_i915_private *dev_priv = dev->dev_private;
4398	struct intel_encoder *encoder;
4399	struct intel_dp *intel_dp = NULL;
4400	struct intel_crtc_config *config = NULL;
4401	struct intel_crtc *intel_crtc = NULL;
4402	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4403	u32 reg, val;
4404	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4405
4406	if (refresh_rate <= 0) {
4407		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4408		return;
4409	}
4410
4411	if (intel_connector == NULL) {
4412		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4413		return;
4414	}
4415
4416	/*
4417	 * FIXME: This needs proper synchronization with psr state. But really
4418	 * hard to tell without seeing the user of this function of this code.
4419	 * Check locking and ordering once that lands.
4420	 */
4421	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4422		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4423		return;
4424	}
4425
4426	encoder = intel_attached_encoder(&intel_connector->base);
4427	intel_dp = enc_to_intel_dp(&encoder->base);
4428	intel_crtc = encoder->new_crtc;
4429
4430	if (!intel_crtc) {
4431		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4432		return;
4433	}
4434
4435	config = &intel_crtc->config;
4436
4437	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4438		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4439		return;
4440	}
4441
4442	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4443		index = DRRS_LOW_RR;
4444
4445	if (index == intel_dp->drrs_state.refresh_rate_type) {
4446		DRM_DEBUG_KMS(
4447			"DRRS requested for previously set RR...ignoring\n");
4448		return;
4449	}
4450
4451	if (!intel_crtc->active) {
4452		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4453		return;
4454	}
4455
4456	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4457		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4458		val = I915_READ(reg);
4459		if (index > DRRS_HIGH_RR) {
4460			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4461			intel_dp_set_m_n(intel_crtc);
4462		} else {
4463			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4464		}
4465		I915_WRITE(reg, val);
4466	}
4467
4468	/*
4469	 * mutex taken to ensure that there is no race between differnt
4470	 * drrs calls trying to update refresh rate. This scenario may occur
4471	 * in future when idleness detection based DRRS in kernel and
4472	 * possible calls from user space to set differnt RR are made.
4473	 */
4474
4475	mutex_lock(&intel_dp->drrs_state.mutex);
4476
4477	intel_dp->drrs_state.refresh_rate_type = index;
4478
4479	mutex_unlock(&intel_dp->drrs_state.mutex);
4480
4481	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4482}
4483
4484static struct drm_display_mode *
4485intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4486			struct intel_connector *intel_connector,
4487			struct drm_display_mode *fixed_mode)
4488{
4489	struct drm_connector *connector = &intel_connector->base;
4490	struct intel_dp *intel_dp = &intel_dig_port->dp;
4491	struct drm_device *dev = intel_dig_port->base.base.dev;
4492	struct drm_i915_private *dev_priv = dev->dev_private;
4493	struct drm_display_mode *downclock_mode = NULL;
4494
4495	if (INTEL_INFO(dev)->gen <= 6) {
4496		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4497		return NULL;
4498	}
4499
4500	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4501		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4502		return NULL;
4503	}
4504
4505	downclock_mode = intel_find_panel_downclock
4506					(dev, fixed_mode, connector);
4507
4508	if (!downclock_mode) {
4509		DRM_DEBUG_KMS("DRRS not supported\n");
4510		return NULL;
4511	}
4512
4513	dev_priv->drrs.connector = intel_connector;
4514
4515	mutex_init(&intel_dp->drrs_state.mutex);
4516
4517	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4518
4519	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4520	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4521	return downclock_mode;
4522}
4523
4524void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4525{
4526	struct drm_device *dev = intel_encoder->base.dev;
4527	struct drm_i915_private *dev_priv = dev->dev_private;
4528	struct intel_dp *intel_dp;
4529	enum intel_display_power_domain power_domain;
4530
4531	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4532		return;
4533
4534	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4535	if (!edp_have_panel_vdd(intel_dp))
4536		return;
4537	/*
4538	 * The VDD bit needs a power domain reference, so if the bit is
4539	 * already enabled when we boot or resume, grab this reference and
4540	 * schedule a vdd off, so we don't hold on to the reference
4541	 * indefinitely.
4542	 */
4543	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4544	power_domain = intel_display_port_power_domain(intel_encoder);
4545	intel_display_power_get(dev_priv, power_domain);
4546
4547	edp_panel_vdd_schedule_off(intel_dp);
4548}
4549
4550static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4551				     struct intel_connector *intel_connector,
4552				     struct edp_power_seq *power_seq)
4553{
4554	struct drm_connector *connector = &intel_connector->base;
4555	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4556	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4557	struct drm_device *dev = intel_encoder->base.dev;
4558	struct drm_i915_private *dev_priv = dev->dev_private;
4559	struct drm_display_mode *fixed_mode = NULL;
4560	struct drm_display_mode *downclock_mode = NULL;
4561	bool has_dpcd;
4562	struct drm_display_mode *scan;
4563	struct edid *edid;
4564
4565	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4566
4567	if (!is_edp(intel_dp))
4568		return true;
4569
4570	intel_edp_panel_vdd_sanitize(intel_encoder);
4571
4572	/* Cache DPCD and EDID for edp. */
4573	intel_edp_panel_vdd_on(intel_dp);
4574	has_dpcd = intel_dp_get_dpcd(intel_dp);
4575	intel_edp_panel_vdd_off(intel_dp, false);
4576
4577	if (has_dpcd) {
4578		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4579			dev_priv->no_aux_handshake =
4580				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4581				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4582	} else {
4583		/* if this fails, presume the device is a ghost */
4584		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4585		return false;
4586	}
4587
4588	/* We now know it's not a ghost, init power sequence regs. */
4589	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4590
4591	mutex_lock(&dev->mode_config.mutex);
4592	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4593	if (edid) {
4594		if (drm_add_edid_modes(connector, edid)) {
4595			drm_mode_connector_update_edid_property(connector,
4596								edid);
4597			drm_edid_to_eld(connector, edid);
4598		} else {
4599			kfree(edid);
4600			edid = ERR_PTR(-EINVAL);
4601		}
4602	} else {
4603		edid = ERR_PTR(-ENOENT);
4604	}
4605	intel_connector->edid = edid;
4606
4607	/* prefer fixed mode from EDID if available */
4608	list_for_each_entry(scan, &connector->probed_modes, head) {
4609		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4610			fixed_mode = drm_mode_duplicate(dev, scan);
4611			downclock_mode = intel_dp_drrs_init(
4612						intel_dig_port,
4613						intel_connector, fixed_mode);
4614			break;
4615		}
4616	}
4617
4618	/* fallback to VBT if available for eDP */
4619	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4620		fixed_mode = drm_mode_duplicate(dev,
4621					dev_priv->vbt.lfp_lvds_vbt_mode);
4622		if (fixed_mode)
4623			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4624	}
4625	mutex_unlock(&dev->mode_config.mutex);
4626
4627	if (IS_VALLEYVIEW(dev)) {
4628		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4629		register_reboot_notifier(&intel_dp->edp_notifier);
4630	}
4631
4632	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4633	intel_connector->panel.backlight_power = intel_edp_backlight_power;
4634	intel_panel_setup_backlight(connector);
4635
4636	return true;
4637}
4638
4639bool
4640intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4641			struct intel_connector *intel_connector)
4642{
4643	struct drm_connector *connector = &intel_connector->base;
4644	struct intel_dp *intel_dp = &intel_dig_port->dp;
4645	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4646	struct drm_device *dev = intel_encoder->base.dev;
4647	struct drm_i915_private *dev_priv = dev->dev_private;
4648	enum port port = intel_dig_port->port;
4649	struct edp_power_seq power_seq = { 0 };
4650	int type;
4651
4652	/* intel_dp vfuncs */
4653	if (IS_VALLEYVIEW(dev))
4654		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4655	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4656		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4657	else if (HAS_PCH_SPLIT(dev))
4658		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4659	else
4660		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4661
4662	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4663
4664	/* Preserve the current hw state. */
4665	intel_dp->DP = I915_READ(intel_dp->output_reg);
4666	intel_dp->attached_connector = intel_connector;
4667
4668	if (intel_dp_is_edp(dev, port))
4669		type = DRM_MODE_CONNECTOR_eDP;
4670	else
4671		type = DRM_MODE_CONNECTOR_DisplayPort;
4672
4673	/*
4674	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4675	 * for DP the encoder type can be set by the caller to
4676	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4677	 */
4678	if (type == DRM_MODE_CONNECTOR_eDP)
4679		intel_encoder->type = INTEL_OUTPUT_EDP;
4680
4681	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4682			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4683			port_name(port));
4684
4685	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4686	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4687
4688	connector->interlace_allowed = true;
4689	connector->doublescan_allowed = 0;
4690
4691	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4692			  edp_panel_vdd_work);
4693
4694	intel_connector_attach_encoder(intel_connector, intel_encoder);
4695	drm_connector_register(connector);
4696
4697	if (HAS_DDI(dev))
4698		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4699	else
4700		intel_connector->get_hw_state = intel_connector_get_hw_state;
4701	intel_connector->unregister = intel_dp_connector_unregister;
4702
4703	/* Set up the hotplug pin. */
4704	switch (port) {
4705	case PORT_A:
4706		intel_encoder->hpd_pin = HPD_PORT_A;
4707		break;
4708	case PORT_B:
4709		intel_encoder->hpd_pin = HPD_PORT_B;
4710		break;
4711	case PORT_C:
4712		intel_encoder->hpd_pin = HPD_PORT_C;
4713		break;
4714	case PORT_D:
4715		intel_encoder->hpd_pin = HPD_PORT_D;
4716		break;
4717	default:
4718		BUG();
4719	}
4720
4721	if (is_edp(intel_dp)) {
4722		intel_dp_init_panel_power_timestamps(intel_dp);
4723		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4724	}
4725
4726	intel_dp_aux_init(intel_dp, intel_connector);
4727
4728	/* init MST on ports that can support it */
4729	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4730		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4731			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4732		}
4733	}
4734
4735	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4736		drm_dp_aux_unregister(&intel_dp->aux);
4737		if (is_edp(intel_dp)) {
4738			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4739			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4740			edp_panel_vdd_off_sync(intel_dp);
4741			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4742		}
4743		drm_connector_unregister(connector);
4744		drm_connector_cleanup(connector);
4745		return false;
4746	}
4747
4748	intel_dp_add_properties(intel_dp, connector);
4749
4750	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4751	 * 0xd.  Failure to do so will result in spurious interrupts being
4752	 * generated on the port when a cable is not attached.
4753	 */
4754	if (IS_G4X(dev) && !IS_GM45(dev)) {
4755		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4756		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4757	}
4758
4759	return true;
4760}
4761
4762void
4763intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4764{
4765	struct drm_i915_private *dev_priv = dev->dev_private;
4766	struct intel_digital_port *intel_dig_port;
4767	struct intel_encoder *intel_encoder;
4768	struct drm_encoder *encoder;
4769	struct intel_connector *intel_connector;
4770
4771	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4772	if (!intel_dig_port)
4773		return;
4774
4775	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4776	if (!intel_connector) {
4777		kfree(intel_dig_port);
4778		return;
4779	}
4780
4781	intel_encoder = &intel_dig_port->base;
4782	encoder = &intel_encoder->base;
4783
4784	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4785			 DRM_MODE_ENCODER_TMDS);
4786
4787	intel_encoder->compute_config = intel_dp_compute_config;
4788	intel_encoder->disable = intel_disable_dp;
4789	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4790	intel_encoder->get_config = intel_dp_get_config;
4791	intel_encoder->suspend = intel_dp_encoder_suspend;
4792	if (IS_CHERRYVIEW(dev)) {
4793		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4794		intel_encoder->pre_enable = chv_pre_enable_dp;
4795		intel_encoder->enable = vlv_enable_dp;
4796		intel_encoder->post_disable = chv_post_disable_dp;
4797	} else if (IS_VALLEYVIEW(dev)) {
4798		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4799		intel_encoder->pre_enable = vlv_pre_enable_dp;
4800		intel_encoder->enable = vlv_enable_dp;
4801		intel_encoder->post_disable = vlv_post_disable_dp;
4802	} else {
4803		intel_encoder->pre_enable = g4x_pre_enable_dp;
4804		intel_encoder->enable = g4x_enable_dp;
4805		intel_encoder->post_disable = g4x_post_disable_dp;
4806	}
4807
4808	intel_dig_port->port = port;
4809	intel_dig_port->dp.output_reg = output_reg;
4810
4811	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4812	if (IS_CHERRYVIEW(dev)) {
4813		if (port == PORT_D)
4814			intel_encoder->crtc_mask = 1 << 2;
4815		else
4816			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4817	} else {
4818		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4819	}
4820	intel_encoder->cloneable = 0;
4821	intel_encoder->hot_plug = intel_dp_hot_plug;
4822
4823	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4824	dev_priv->hpd_irq_port[port] = intel_dig_port;
4825
4826	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4827		drm_encoder_cleanup(encoder);
4828		kfree(intel_dig_port);
4829		kfree(intel_connector);
4830	}
4831}
4832
4833void intel_dp_mst_suspend(struct drm_device *dev)
4834{
4835	struct drm_i915_private *dev_priv = dev->dev_private;
4836	int i;
4837
4838	/* disable MST */
4839	for (i = 0; i < I915_MAX_PORTS; i++) {
4840		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4841		if (!intel_dig_port)
4842			continue;
4843
4844		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4845			if (!intel_dig_port->dp.can_mst)
4846				continue;
4847			if (intel_dig_port->dp.is_mst)
4848				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4849		}
4850	}
4851}
4852
4853void intel_dp_mst_resume(struct drm_device *dev)
4854{
4855	struct drm_i915_private *dev_priv = dev->dev_private;
4856	int i;
4857
4858	for (i = 0; i < I915_MAX_PORTS; i++) {
4859		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4860		if (!intel_dig_port)
4861			continue;
4862		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4863			int ret;
4864
4865			if (!intel_dig_port->dp.can_mst)
4866				continue;
4867
4868			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4869			if (ret != 0) {
4870				intel_dp_check_mst_status(&intel_dig_port->dp);
4871			}
4872		}
4873	}
4874}
4875