intel_dp.c revision d41f1efb323e99f680650f77c00907904d246bf7
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41struct dp_link_dpll {
42	int link_bw;
43	struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47	{ DP_LINK_BW_1_62,
48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49	{ DP_LINK_BW_2_7,
50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54	{ DP_LINK_BW_1_62,
55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56	{ DP_LINK_BW_2_7,
57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61	{ DP_LINK_BW_1_62,
62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63	{ DP_LINK_BW_2_7,
64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/*
68 * CHV supports eDP 1.4 that have  more link rates.
69 * Below only provides the fixed rate but exclude variable rate.
70 */
71static const struct dp_link_dpll chv_dpll[] = {
72	/*
73	 * CHV requires to program fractional division for m2.
74	 * m2 is stored in fixed point format using formula below
75	 * (m2_int << 22) | m2_fraction
76	 */
77	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83};
84
85/**
86 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87 * @intel_dp: DP struct
88 *
89 * If a CPU or PCH DP output is attached to an eDP panel, this function
90 * will return true, and false otherwise.
91 */
92static bool is_edp(struct intel_dp *intel_dp)
93{
94	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97}
98
99static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100{
101	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103	return intel_dig_port->base.base.dev;
104}
105
106static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107{
108	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109}
110
111static void intel_dp_link_down(struct intel_dp *intel_dp);
112static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115static int
116intel_dp_max_link_bw(struct intel_dp *intel_dp)
117{
118	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119	struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121	switch (max_link_bw) {
122	case DP_LINK_BW_1_62:
123	case DP_LINK_BW_2_7:
124		break;
125	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126		if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
127		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128			max_link_bw = DP_LINK_BW_5_4;
129		else
130			max_link_bw = DP_LINK_BW_2_7;
131		break;
132	default:
133		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134		     max_link_bw);
135		max_link_bw = DP_LINK_BW_1_62;
136		break;
137	}
138	return max_link_bw;
139}
140
141/*
142 * The units on the numbers in the next two are... bizarre.  Examples will
143 * make it clearer; this one parallels an example in the eDP spec.
144 *
145 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
146 *
147 *     270000 * 1 * 8 / 10 == 216000
148 *
149 * The actual data capacity of that configuration is 2.16Gbit/s, so the
150 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
151 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
152 * 119000.  At 18bpp that's 2142000 kilobits per second.
153 *
154 * Thus the strange-looking division by 10 in intel_dp_link_required, to
155 * get the result in decakilobits instead of kilobits.
156 */
157
158static int
159intel_dp_link_required(int pixel_clock, int bpp)
160{
161	return (pixel_clock * bpp + 9) / 10;
162}
163
164static int
165intel_dp_max_data_rate(int max_link_clock, int max_lanes)
166{
167	return (max_link_clock * max_lanes * 8) / 10;
168}
169
170static enum drm_mode_status
171intel_dp_mode_valid(struct drm_connector *connector,
172		    struct drm_display_mode *mode)
173{
174	struct intel_dp *intel_dp = intel_attached_dp(connector);
175	struct intel_connector *intel_connector = to_intel_connector(connector);
176	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
177	int target_clock = mode->clock;
178	int max_rate, mode_rate, max_lanes, max_link_clock;
179
180	if (is_edp(intel_dp) && fixed_mode) {
181		if (mode->hdisplay > fixed_mode->hdisplay)
182			return MODE_PANEL;
183
184		if (mode->vdisplay > fixed_mode->vdisplay)
185			return MODE_PANEL;
186
187		target_clock = fixed_mode->clock;
188	}
189
190	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
191	max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
192
193	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
194	mode_rate = intel_dp_link_required(target_clock, 18);
195
196	if (mode_rate > max_rate)
197		return MODE_CLOCK_HIGH;
198
199	if (mode->clock < 10000)
200		return MODE_CLOCK_LOW;
201
202	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
203		return MODE_H_ILLEGAL;
204
205	return MODE_OK;
206}
207
208static uint32_t
209pack_aux(uint8_t *src, int src_bytes)
210{
211	int	i;
212	uint32_t v = 0;
213
214	if (src_bytes > 4)
215		src_bytes = 4;
216	for (i = 0; i < src_bytes; i++)
217		v |= ((uint32_t) src[i]) << ((3-i) * 8);
218	return v;
219}
220
221static void
222unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
223{
224	int i;
225	if (dst_bytes > 4)
226		dst_bytes = 4;
227	for (i = 0; i < dst_bytes; i++)
228		dst[i] = src >> ((3-i) * 8);
229}
230
231/* hrawclock is 1/4 the FSB frequency */
232static int
233intel_hrawclk(struct drm_device *dev)
234{
235	struct drm_i915_private *dev_priv = dev->dev_private;
236	uint32_t clkcfg;
237
238	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
239	if (IS_VALLEYVIEW(dev))
240		return 200;
241
242	clkcfg = I915_READ(CLKCFG);
243	switch (clkcfg & CLKCFG_FSB_MASK) {
244	case CLKCFG_FSB_400:
245		return 100;
246	case CLKCFG_FSB_533:
247		return 133;
248	case CLKCFG_FSB_667:
249		return 166;
250	case CLKCFG_FSB_800:
251		return 200;
252	case CLKCFG_FSB_1067:
253		return 266;
254	case CLKCFG_FSB_1333:
255		return 333;
256	/* these two are just a guess; one of them might be right */
257	case CLKCFG_FSB_1600:
258	case CLKCFG_FSB_1600_ALT:
259		return 400;
260	default:
261		return 133;
262	}
263}
264
265static void
266intel_dp_init_panel_power_sequencer(struct drm_device *dev,
267				    struct intel_dp *intel_dp,
268				    struct edp_power_seq *out);
269static void
270intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
271					      struct intel_dp *intel_dp,
272					      struct edp_power_seq *out);
273
274static enum pipe
275vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
276{
277	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
278	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
279	struct drm_device *dev = intel_dig_port->base.base.dev;
280	struct drm_i915_private *dev_priv = dev->dev_private;
281	enum port port = intel_dig_port->port;
282	enum pipe pipe;
283
284	/* modeset should have pipe */
285	if (crtc)
286		return to_intel_crtc(crtc)->pipe;
287
288	/* init time, try to find a pipe with this port selected */
289	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
290		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
291			PANEL_PORT_SELECT_MASK;
292		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
293			return pipe;
294		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
295			return pipe;
296	}
297
298	/* shrug */
299	return PIPE_A;
300}
301
302static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
303{
304	struct drm_device *dev = intel_dp_to_dev(intel_dp);
305
306	if (HAS_PCH_SPLIT(dev))
307		return PCH_PP_CONTROL;
308	else
309		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
310}
311
312static u32 _pp_stat_reg(struct intel_dp *intel_dp)
313{
314	struct drm_device *dev = intel_dp_to_dev(intel_dp);
315
316	if (HAS_PCH_SPLIT(dev))
317		return PCH_PP_STATUS;
318	else
319		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
320}
321
322static bool edp_have_panel_power(struct intel_dp *intel_dp)
323{
324	struct drm_device *dev = intel_dp_to_dev(intel_dp);
325	struct drm_i915_private *dev_priv = dev->dev_private;
326
327	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
328}
329
330static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
331{
332	struct drm_device *dev = intel_dp_to_dev(intel_dp);
333	struct drm_i915_private *dev_priv = dev->dev_private;
334	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335	struct intel_encoder *intel_encoder = &intel_dig_port->base;
336	enum intel_display_power_domain power_domain;
337
338	power_domain = intel_display_port_power_domain(intel_encoder);
339	return intel_display_power_enabled(dev_priv, power_domain) &&
340	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
341}
342
343static void
344intel_dp_check_edp(struct intel_dp *intel_dp)
345{
346	struct drm_device *dev = intel_dp_to_dev(intel_dp);
347	struct drm_i915_private *dev_priv = dev->dev_private;
348
349	if (!is_edp(intel_dp))
350		return;
351
352	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
353		WARN(1, "eDP powered off while attempting aux channel communication.\n");
354		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355			      I915_READ(_pp_stat_reg(intel_dp)),
356			      I915_READ(_pp_ctrl_reg(intel_dp)));
357	}
358}
359
360static uint32_t
361intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
362{
363	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364	struct drm_device *dev = intel_dig_port->base.base.dev;
365	struct drm_i915_private *dev_priv = dev->dev_private;
366	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
367	uint32_t status;
368	bool done;
369
370#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
371	if (has_aux_irq)
372		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
373					  msecs_to_jiffies_timeout(10));
374	else
375		done = wait_for_atomic(C, 10) == 0;
376	if (!done)
377		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
378			  has_aux_irq);
379#undef C
380
381	return status;
382}
383
384static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
385{
386	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
387	struct drm_device *dev = intel_dig_port->base.base.dev;
388
389	/*
390	 * The clock divider is based off the hrawclk, and would like to run at
391	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
392	 */
393	return index ? 0 : intel_hrawclk(dev) / 2;
394}
395
396static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
397{
398	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399	struct drm_device *dev = intel_dig_port->base.base.dev;
400
401	if (index)
402		return 0;
403
404	if (intel_dig_port->port == PORT_A) {
405		if (IS_GEN6(dev) || IS_GEN7(dev))
406			return 200; /* SNB & IVB eDP input clock at 400Mhz */
407		else
408			return 225; /* eDP input clock at 450Mhz */
409	} else {
410		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411	}
412}
413
414static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415{
416	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417	struct drm_device *dev = intel_dig_port->base.base.dev;
418	struct drm_i915_private *dev_priv = dev->dev_private;
419
420	if (intel_dig_port->port == PORT_A) {
421		if (index)
422			return 0;
423		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
424	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
425		/* Workaround for non-ULT HSW */
426		switch (index) {
427		case 0: return 63;
428		case 1: return 72;
429		default: return 0;
430		}
431	} else  {
432		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433	}
434}
435
436static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
437{
438	return index ? 0 : 100;
439}
440
441static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
442				      bool has_aux_irq,
443				      int send_bytes,
444				      uint32_t aux_clock_divider)
445{
446	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447	struct drm_device *dev = intel_dig_port->base.base.dev;
448	uint32_t precharge, timeout;
449
450	if (IS_GEN6(dev))
451		precharge = 3;
452	else
453		precharge = 5;
454
455	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
456		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
457	else
458		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
459
460	return DP_AUX_CH_CTL_SEND_BUSY |
461	       DP_AUX_CH_CTL_DONE |
462	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
464	       timeout |
465	       DP_AUX_CH_CTL_RECEIVE_ERROR |
466	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
467	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
468	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
469}
470
471static int
472intel_dp_aux_ch(struct intel_dp *intel_dp,
473		uint8_t *send, int send_bytes,
474		uint8_t *recv, int recv_size)
475{
476	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
477	struct drm_device *dev = intel_dig_port->base.base.dev;
478	struct drm_i915_private *dev_priv = dev->dev_private;
479	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
480	uint32_t ch_data = ch_ctl + 4;
481	uint32_t aux_clock_divider;
482	int i, ret, recv_bytes;
483	uint32_t status;
484	int try, clock = 0;
485	bool has_aux_irq = HAS_AUX_IRQ(dev);
486	bool vdd;
487
488	vdd = _edp_panel_vdd_on(intel_dp);
489
490	/* dp aux is extremely sensitive to irq latency, hence request the
491	 * lowest possible wakeup latency and so prevent the cpu from going into
492	 * deep sleep states.
493	 */
494	pm_qos_update_request(&dev_priv->pm_qos, 0);
495
496	intel_dp_check_edp(intel_dp);
497
498	intel_aux_display_runtime_get(dev_priv);
499
500	/* Try to wait for any previous AUX channel activity */
501	for (try = 0; try < 3; try++) {
502		status = I915_READ_NOTRACE(ch_ctl);
503		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
504			break;
505		msleep(1);
506	}
507
508	if (try == 3) {
509		WARN(1, "dp_aux_ch not started status 0x%08x\n",
510		     I915_READ(ch_ctl));
511		ret = -EBUSY;
512		goto out;
513	}
514
515	/* Only 5 data registers! */
516	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
517		ret = -E2BIG;
518		goto out;
519	}
520
521	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
522		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
523							  has_aux_irq,
524							  send_bytes,
525							  aux_clock_divider);
526
527		/* Must try at least 3 times according to DP spec */
528		for (try = 0; try < 5; try++) {
529			/* Load the send data into the aux channel data registers */
530			for (i = 0; i < send_bytes; i += 4)
531				I915_WRITE(ch_data + i,
532					   pack_aux(send + i, send_bytes - i));
533
534			/* Send the command and wait for it to complete */
535			I915_WRITE(ch_ctl, send_ctl);
536
537			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
538
539			/* Clear done status and any errors */
540			I915_WRITE(ch_ctl,
541				   status |
542				   DP_AUX_CH_CTL_DONE |
543				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
544				   DP_AUX_CH_CTL_RECEIVE_ERROR);
545
546			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
547				      DP_AUX_CH_CTL_RECEIVE_ERROR))
548				continue;
549			if (status & DP_AUX_CH_CTL_DONE)
550				break;
551		}
552		if (status & DP_AUX_CH_CTL_DONE)
553			break;
554	}
555
556	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
557		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
558		ret = -EBUSY;
559		goto out;
560	}
561
562	/* Check for timeout or receive error.
563	 * Timeouts occur when the sink is not connected
564	 */
565	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
566		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
567		ret = -EIO;
568		goto out;
569	}
570
571	/* Timeouts occur when the device isn't connected, so they're
572	 * "normal" -- don't fill the kernel log with these */
573	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
574		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
575		ret = -ETIMEDOUT;
576		goto out;
577	}
578
579	/* Unload any bytes sent back from the other side */
580	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
581		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
582	if (recv_bytes > recv_size)
583		recv_bytes = recv_size;
584
585	for (i = 0; i < recv_bytes; i += 4)
586		unpack_aux(I915_READ(ch_data + i),
587			   recv + i, recv_bytes - i);
588
589	ret = recv_bytes;
590out:
591	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
592	intel_aux_display_runtime_put(dev_priv);
593
594	if (vdd)
595		edp_panel_vdd_off(intel_dp, false);
596
597	return ret;
598}
599
600#define BARE_ADDRESS_SIZE	3
601#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
602static ssize_t
603intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
604{
605	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
606	uint8_t txbuf[20], rxbuf[20];
607	size_t txsize, rxsize;
608	int ret;
609
610	txbuf[0] = msg->request << 4;
611	txbuf[1] = msg->address >> 8;
612	txbuf[2] = msg->address & 0xff;
613	txbuf[3] = msg->size - 1;
614
615	switch (msg->request & ~DP_AUX_I2C_MOT) {
616	case DP_AUX_NATIVE_WRITE:
617	case DP_AUX_I2C_WRITE:
618		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
619		rxsize = 1;
620
621		if (WARN_ON(txsize > 20))
622			return -E2BIG;
623
624		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
625
626		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
627		if (ret > 0) {
628			msg->reply = rxbuf[0] >> 4;
629
630			/* Return payload size. */
631			ret = msg->size;
632		}
633		break;
634
635	case DP_AUX_NATIVE_READ:
636	case DP_AUX_I2C_READ:
637		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
638		rxsize = msg->size + 1;
639
640		if (WARN_ON(rxsize > 20))
641			return -E2BIG;
642
643		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644		if (ret > 0) {
645			msg->reply = rxbuf[0] >> 4;
646			/*
647			 * Assume happy day, and copy the data. The caller is
648			 * expected to check msg->reply before touching it.
649			 *
650			 * Return payload size.
651			 */
652			ret--;
653			memcpy(msg->buffer, rxbuf + 1, ret);
654		}
655		break;
656
657	default:
658		ret = -EINVAL;
659		break;
660	}
661
662	return ret;
663}
664
665static void
666intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
667{
668	struct drm_device *dev = intel_dp_to_dev(intel_dp);
669	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670	enum port port = intel_dig_port->port;
671	const char *name = NULL;
672	int ret;
673
674	switch (port) {
675	case PORT_A:
676		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
677		name = "DPDDC-A";
678		break;
679	case PORT_B:
680		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
681		name = "DPDDC-B";
682		break;
683	case PORT_C:
684		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
685		name = "DPDDC-C";
686		break;
687	case PORT_D:
688		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
689		name = "DPDDC-D";
690		break;
691	default:
692		BUG();
693	}
694
695	if (!HAS_DDI(dev))
696		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
697
698	intel_dp->aux.name = name;
699	intel_dp->aux.dev = dev->dev;
700	intel_dp->aux.transfer = intel_dp_aux_transfer;
701
702	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
703		      connector->base.kdev->kobj.name);
704
705	ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
706	if (ret < 0) {
707		DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
708			  name, ret);
709		return;
710	}
711
712	ret = sysfs_create_link(&connector->base.kdev->kobj,
713				&intel_dp->aux.ddc.dev.kobj,
714				intel_dp->aux.ddc.dev.kobj.name);
715	if (ret < 0) {
716		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
717		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
718	}
719}
720
721static void
722intel_dp_connector_unregister(struct intel_connector *intel_connector)
723{
724	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
725
726	sysfs_remove_link(&intel_connector->base.kdev->kobj,
727			  intel_dp->aux.ddc.dev.kobj.name);
728	intel_connector_unregister(intel_connector);
729}
730
731static void
732intel_dp_set_clock(struct intel_encoder *encoder,
733		   struct intel_crtc_config *pipe_config, int link_bw)
734{
735	struct drm_device *dev = encoder->base.dev;
736	const struct dp_link_dpll *divisor = NULL;
737	int i, count = 0;
738
739	if (IS_G4X(dev)) {
740		divisor = gen4_dpll;
741		count = ARRAY_SIZE(gen4_dpll);
742	} else if (IS_HASWELL(dev)) {
743		/* Haswell has special-purpose DP DDI clocks. */
744	} else if (HAS_PCH_SPLIT(dev)) {
745		divisor = pch_dpll;
746		count = ARRAY_SIZE(pch_dpll);
747	} else if (IS_CHERRYVIEW(dev)) {
748		divisor = chv_dpll;
749		count = ARRAY_SIZE(chv_dpll);
750	} else if (IS_VALLEYVIEW(dev)) {
751		divisor = vlv_dpll;
752		count = ARRAY_SIZE(vlv_dpll);
753	}
754
755	if (divisor && count) {
756		for (i = 0; i < count; i++) {
757			if (link_bw == divisor[i].link_bw) {
758				pipe_config->dpll = divisor[i].dpll;
759				pipe_config->clock_set = true;
760				break;
761			}
762		}
763	}
764}
765
766static void
767intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
768{
769	struct drm_device *dev = crtc->base.dev;
770	struct drm_i915_private *dev_priv = dev->dev_private;
771	enum transcoder transcoder = crtc->config.cpu_transcoder;
772
773	I915_WRITE(PIPE_DATA_M2(transcoder),
774		TU_SIZE(m_n->tu) | m_n->gmch_m);
775	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
776	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
777	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
778}
779
780bool
781intel_dp_compute_config(struct intel_encoder *encoder,
782			struct intel_crtc_config *pipe_config)
783{
784	struct drm_device *dev = encoder->base.dev;
785	struct drm_i915_private *dev_priv = dev->dev_private;
786	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788	enum port port = dp_to_dig_port(intel_dp)->port;
789	struct intel_crtc *intel_crtc = encoder->new_crtc;
790	struct intel_connector *intel_connector = intel_dp->attached_connector;
791	int lane_count, clock;
792	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793	/* Conveniently, the link BW constants become indices with a shift...*/
794	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
795	int bpp, mode_rate;
796	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
797	int link_avail, link_clock;
798
799	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
800		pipe_config->has_pch_encoder = true;
801
802	pipe_config->has_dp_encoder = true;
803	pipe_config->has_audio = intel_dp->has_audio;
804
805	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
806		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
807				       adjusted_mode);
808		if (!HAS_PCH_SPLIT(dev))
809			intel_gmch_panel_fitting(intel_crtc, pipe_config,
810						 intel_connector->panel.fitting_mode);
811		else
812			intel_pch_panel_fitting(intel_crtc, pipe_config,
813						intel_connector->panel.fitting_mode);
814	}
815
816	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
817		return false;
818
819	DRM_DEBUG_KMS("DP link computation with max lane count %i "
820		      "max bw %02x pixel clock %iKHz\n",
821		      max_lane_count, bws[max_clock],
822		      adjusted_mode->crtc_clock);
823
824	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
825	 * bpc in between. */
826	bpp = pipe_config->pipe_bpp;
827	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
828	    dev_priv->vbt.edp_bpp < bpp) {
829		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
830			      dev_priv->vbt.edp_bpp);
831		bpp = dev_priv->vbt.edp_bpp;
832	}
833
834	for (; bpp >= 6*3; bpp -= 2*3) {
835		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
836						   bpp);
837
838		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
839			for (clock = 0; clock <= max_clock; clock++) {
840				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
841				link_avail = intel_dp_max_data_rate(link_clock,
842								    lane_count);
843
844				if (mode_rate <= link_avail) {
845					goto found;
846				}
847			}
848		}
849	}
850
851	return false;
852
853found:
854	if (intel_dp->color_range_auto) {
855		/*
856		 * See:
857		 * CEA-861-E - 5.1 Default Encoding Parameters
858		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
859		 */
860		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
861			intel_dp->color_range = DP_COLOR_RANGE_16_235;
862		else
863			intel_dp->color_range = 0;
864	}
865
866	if (intel_dp->color_range)
867		pipe_config->limited_color_range = true;
868
869	intel_dp->link_bw = bws[clock];
870	intel_dp->lane_count = lane_count;
871	pipe_config->pipe_bpp = bpp;
872	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
873
874	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
875		      intel_dp->link_bw, intel_dp->lane_count,
876		      pipe_config->port_clock, bpp);
877	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
878		      mode_rate, link_avail);
879
880	intel_link_compute_m_n(bpp, lane_count,
881			       adjusted_mode->crtc_clock,
882			       pipe_config->port_clock,
883			       &pipe_config->dp_m_n);
884
885	if (intel_connector->panel.downclock_mode != NULL &&
886		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
887			intel_link_compute_m_n(bpp, lane_count,
888				intel_connector->panel.downclock_mode->clock,
889				pipe_config->port_clock,
890				&pipe_config->dp_m2_n2);
891	}
892
893	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
894
895	return true;
896}
897
898static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
899{
900	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
901	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
902	struct drm_device *dev = crtc->base.dev;
903	struct drm_i915_private *dev_priv = dev->dev_private;
904	u32 dpa_ctl;
905
906	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
907	dpa_ctl = I915_READ(DP_A);
908	dpa_ctl &= ~DP_PLL_FREQ_MASK;
909
910	if (crtc->config.port_clock == 162000) {
911		/* For a long time we've carried around a ILK-DevA w/a for the
912		 * 160MHz clock. If we're really unlucky, it's still required.
913		 */
914		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
915		dpa_ctl |= DP_PLL_FREQ_160MHZ;
916		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917	} else {
918		dpa_ctl |= DP_PLL_FREQ_270MHZ;
919		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
920	}
921
922	I915_WRITE(DP_A, dpa_ctl);
923
924	POSTING_READ(DP_A);
925	udelay(500);
926}
927
928static void intel_dp_mode_set(struct intel_encoder *encoder)
929{
930	struct drm_device *dev = encoder->base.dev;
931	struct drm_i915_private *dev_priv = dev->dev_private;
932	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
933	enum port port = dp_to_dig_port(intel_dp)->port;
934	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
935	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
936
937	/*
938	 * There are four kinds of DP registers:
939	 *
940	 * 	IBX PCH
941	 * 	SNB CPU
942	 *	IVB CPU
943	 * 	CPT PCH
944	 *
945	 * IBX PCH and CPU are the same for almost everything,
946	 * except that the CPU DP PLL is configured in this
947	 * register
948	 *
949	 * CPT PCH is quite different, having many bits moved
950	 * to the TRANS_DP_CTL register instead. That
951	 * configuration happens (oddly) in ironlake_pch_enable
952	 */
953
954	/* Preserve the BIOS-computed detected bit. This is
955	 * supposed to be read-only.
956	 */
957	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
958
959	/* Handle DP bits in common between all three register formats */
960	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
961	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
962
963	if (crtc->config.has_audio) {
964		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
965				 pipe_name(crtc->pipe));
966		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
967		intel_write_eld(&encoder->base, adjusted_mode);
968	}
969
970	/* Split out the IBX/CPU vs CPT settings */
971
972	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
973		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
974			intel_dp->DP |= DP_SYNC_HS_HIGH;
975		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
976			intel_dp->DP |= DP_SYNC_VS_HIGH;
977		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
978
979		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
980			intel_dp->DP |= DP_ENHANCED_FRAMING;
981
982		intel_dp->DP |= crtc->pipe << 29;
983	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
984		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
985			intel_dp->DP |= intel_dp->color_range;
986
987		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
988			intel_dp->DP |= DP_SYNC_HS_HIGH;
989		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
990			intel_dp->DP |= DP_SYNC_VS_HIGH;
991		intel_dp->DP |= DP_LINK_TRAIN_OFF;
992
993		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
994			intel_dp->DP |= DP_ENHANCED_FRAMING;
995
996		if (!IS_CHERRYVIEW(dev)) {
997			if (crtc->pipe == 1)
998				intel_dp->DP |= DP_PIPEB_SELECT;
999		} else {
1000			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1001		}
1002	} else {
1003		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004	}
1005}
1006
1007#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1008#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1009
1010#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1011#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1012
1013#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1014#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016static void wait_panel_status(struct intel_dp *intel_dp,
1017				       u32 mask,
1018				       u32 value)
1019{
1020	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021	struct drm_i915_private *dev_priv = dev->dev_private;
1022	u32 pp_stat_reg, pp_ctrl_reg;
1023
1024	pp_stat_reg = _pp_stat_reg(intel_dp);
1025	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1026
1027	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1028			mask, value,
1029			I915_READ(pp_stat_reg),
1030			I915_READ(pp_ctrl_reg));
1031
1032	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1033		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1034				I915_READ(pp_stat_reg),
1035				I915_READ(pp_ctrl_reg));
1036	}
1037
1038	DRM_DEBUG_KMS("Wait complete\n");
1039}
1040
1041static void wait_panel_on(struct intel_dp *intel_dp)
1042{
1043	DRM_DEBUG_KMS("Wait for panel power on\n");
1044	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1045}
1046
1047static void wait_panel_off(struct intel_dp *intel_dp)
1048{
1049	DRM_DEBUG_KMS("Wait for panel power off time\n");
1050	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1051}
1052
1053static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1054{
1055	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1056
1057	/* When we disable the VDD override bit last we have to do the manual
1058	 * wait. */
1059	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1060				       intel_dp->panel_power_cycle_delay);
1061
1062	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1063}
1064
1065static void wait_backlight_on(struct intel_dp *intel_dp)
1066{
1067	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1068				       intel_dp->backlight_on_delay);
1069}
1070
1071static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1072{
1073	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1074				       intel_dp->backlight_off_delay);
1075}
1076
1077/* Read the current pp_control value, unlocking the register if it
1078 * is locked
1079 */
1080
1081static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1082{
1083	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1084	struct drm_i915_private *dev_priv = dev->dev_private;
1085	u32 control;
1086
1087	control = I915_READ(_pp_ctrl_reg(intel_dp));
1088	control &= ~PANEL_UNLOCK_MASK;
1089	control |= PANEL_UNLOCK_REGS;
1090	return control;
1091}
1092
1093static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1094{
1095	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1096	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1097	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1098	struct drm_i915_private *dev_priv = dev->dev_private;
1099	enum intel_display_power_domain power_domain;
1100	u32 pp;
1101	u32 pp_stat_reg, pp_ctrl_reg;
1102	bool need_to_disable = !intel_dp->want_panel_vdd;
1103
1104	if (!is_edp(intel_dp))
1105		return false;
1106
1107	intel_dp->want_panel_vdd = true;
1108
1109	if (edp_have_panel_vdd(intel_dp))
1110		return need_to_disable;
1111
1112	power_domain = intel_display_port_power_domain(intel_encoder);
1113	intel_display_power_get(dev_priv, power_domain);
1114
1115	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1116
1117	if (!edp_have_panel_power(intel_dp))
1118		wait_panel_power_cycle(intel_dp);
1119
1120	pp = ironlake_get_pp_control(intel_dp);
1121	pp |= EDP_FORCE_VDD;
1122
1123	pp_stat_reg = _pp_stat_reg(intel_dp);
1124	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1125
1126	I915_WRITE(pp_ctrl_reg, pp);
1127	POSTING_READ(pp_ctrl_reg);
1128	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1129			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1130	/*
1131	 * If the panel wasn't on, delay before accessing aux channel
1132	 */
1133	if (!edp_have_panel_power(intel_dp)) {
1134		DRM_DEBUG_KMS("eDP was not running\n");
1135		msleep(intel_dp->panel_power_up_delay);
1136	}
1137
1138	return need_to_disable;
1139}
1140
1141void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1142{
1143	if (is_edp(intel_dp)) {
1144		bool vdd = _edp_panel_vdd_on(intel_dp);
1145
1146		WARN(!vdd, "eDP VDD already requested on\n");
1147	}
1148}
1149
1150static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1151{
1152	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153	struct drm_i915_private *dev_priv = dev->dev_private;
1154	u32 pp;
1155	u32 pp_stat_reg, pp_ctrl_reg;
1156
1157	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1158
1159	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1160		struct intel_digital_port *intel_dig_port =
1161						dp_to_dig_port(intel_dp);
1162		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1163		enum intel_display_power_domain power_domain;
1164
1165		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1166
1167		pp = ironlake_get_pp_control(intel_dp);
1168		pp &= ~EDP_FORCE_VDD;
1169
1170		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1171		pp_stat_reg = _pp_stat_reg(intel_dp);
1172
1173		I915_WRITE(pp_ctrl_reg, pp);
1174		POSTING_READ(pp_ctrl_reg);
1175
1176		/* Make sure sequencer is idle before allowing subsequent activity */
1177		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1178		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1179
1180		if ((pp & POWER_TARGET_ON) == 0)
1181			intel_dp->last_power_cycle = jiffies;
1182
1183		power_domain = intel_display_port_power_domain(intel_encoder);
1184		intel_display_power_put(dev_priv, power_domain);
1185	}
1186}
1187
1188static void edp_panel_vdd_work(struct work_struct *__work)
1189{
1190	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1191						 struct intel_dp, panel_vdd_work);
1192	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1193
1194	mutex_lock(&dev->mode_config.mutex);
1195	edp_panel_vdd_off_sync(intel_dp);
1196	mutex_unlock(&dev->mode_config.mutex);
1197}
1198
1199static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1200{
1201	if (!is_edp(intel_dp))
1202		return;
1203
1204	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1205
1206	intel_dp->want_panel_vdd = false;
1207
1208	if (sync) {
1209		edp_panel_vdd_off_sync(intel_dp);
1210	} else {
1211		/*
1212		 * Queue the timer to fire a long
1213		 * time from now (relative to the power down delay)
1214		 * to keep the panel power up across a sequence of operations
1215		 */
1216		schedule_delayed_work(&intel_dp->panel_vdd_work,
1217				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1218	}
1219}
1220
1221void intel_edp_panel_on(struct intel_dp *intel_dp)
1222{
1223	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224	struct drm_i915_private *dev_priv = dev->dev_private;
1225	u32 pp;
1226	u32 pp_ctrl_reg;
1227
1228	if (!is_edp(intel_dp))
1229		return;
1230
1231	DRM_DEBUG_KMS("Turn eDP power on\n");
1232
1233	if (edp_have_panel_power(intel_dp)) {
1234		DRM_DEBUG_KMS("eDP power already on\n");
1235		return;
1236	}
1237
1238	wait_panel_power_cycle(intel_dp);
1239
1240	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1241	pp = ironlake_get_pp_control(intel_dp);
1242	if (IS_GEN5(dev)) {
1243		/* ILK workaround: disable reset around power sequence */
1244		pp &= ~PANEL_POWER_RESET;
1245		I915_WRITE(pp_ctrl_reg, pp);
1246		POSTING_READ(pp_ctrl_reg);
1247	}
1248
1249	pp |= POWER_TARGET_ON;
1250	if (!IS_GEN5(dev))
1251		pp |= PANEL_POWER_RESET;
1252
1253	I915_WRITE(pp_ctrl_reg, pp);
1254	POSTING_READ(pp_ctrl_reg);
1255
1256	wait_panel_on(intel_dp);
1257	intel_dp->last_power_on = jiffies;
1258
1259	if (IS_GEN5(dev)) {
1260		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1261		I915_WRITE(pp_ctrl_reg, pp);
1262		POSTING_READ(pp_ctrl_reg);
1263	}
1264}
1265
1266void intel_edp_panel_off(struct intel_dp *intel_dp)
1267{
1268	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1269	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1270	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1271	struct drm_i915_private *dev_priv = dev->dev_private;
1272	enum intel_display_power_domain power_domain;
1273	u32 pp;
1274	u32 pp_ctrl_reg;
1275
1276	if (!is_edp(intel_dp))
1277		return;
1278
1279	DRM_DEBUG_KMS("Turn eDP power off\n");
1280
1281	edp_wait_backlight_off(intel_dp);
1282
1283	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1284
1285	pp = ironlake_get_pp_control(intel_dp);
1286	/* We need to switch off panel power _and_ force vdd, for otherwise some
1287	 * panels get very unhappy and cease to work. */
1288	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1289		EDP_BLC_ENABLE);
1290
1291	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1292
1293	intel_dp->want_panel_vdd = false;
1294
1295	I915_WRITE(pp_ctrl_reg, pp);
1296	POSTING_READ(pp_ctrl_reg);
1297
1298	intel_dp->last_power_cycle = jiffies;
1299	wait_panel_off(intel_dp);
1300
1301	/* We got a reference when we enabled the VDD. */
1302	power_domain = intel_display_port_power_domain(intel_encoder);
1303	intel_display_power_put(dev_priv, power_domain);
1304}
1305
1306void intel_edp_backlight_on(struct intel_dp *intel_dp)
1307{
1308	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1309	struct drm_device *dev = intel_dig_port->base.base.dev;
1310	struct drm_i915_private *dev_priv = dev->dev_private;
1311	u32 pp;
1312	u32 pp_ctrl_reg;
1313
1314	if (!is_edp(intel_dp))
1315		return;
1316
1317	DRM_DEBUG_KMS("\n");
1318	/*
1319	 * If we enable the backlight right away following a panel power
1320	 * on, we may see slight flicker as the panel syncs with the eDP
1321	 * link.  So delay a bit to make sure the image is solid before
1322	 * allowing it to appear.
1323	 */
1324	wait_backlight_on(intel_dp);
1325	pp = ironlake_get_pp_control(intel_dp);
1326	pp |= EDP_BLC_ENABLE;
1327
1328	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1329
1330	I915_WRITE(pp_ctrl_reg, pp);
1331	POSTING_READ(pp_ctrl_reg);
1332
1333	intel_panel_enable_backlight(intel_dp->attached_connector);
1334}
1335
1336void intel_edp_backlight_off(struct intel_dp *intel_dp)
1337{
1338	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1339	struct drm_i915_private *dev_priv = dev->dev_private;
1340	u32 pp;
1341	u32 pp_ctrl_reg;
1342
1343	if (!is_edp(intel_dp))
1344		return;
1345
1346	intel_panel_disable_backlight(intel_dp->attached_connector);
1347
1348	DRM_DEBUG_KMS("\n");
1349	pp = ironlake_get_pp_control(intel_dp);
1350	pp &= ~EDP_BLC_ENABLE;
1351
1352	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1353
1354	I915_WRITE(pp_ctrl_reg, pp);
1355	POSTING_READ(pp_ctrl_reg);
1356	intel_dp->last_backlight_off = jiffies;
1357}
1358
1359static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1360{
1361	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1363	struct drm_device *dev = crtc->dev;
1364	struct drm_i915_private *dev_priv = dev->dev_private;
1365	u32 dpa_ctl;
1366
1367	assert_pipe_disabled(dev_priv,
1368			     to_intel_crtc(crtc)->pipe);
1369
1370	DRM_DEBUG_KMS("\n");
1371	dpa_ctl = I915_READ(DP_A);
1372	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1373	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1374
1375	/* We don't adjust intel_dp->DP while tearing down the link, to
1376	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1377	 * enable bits here to ensure that we don't enable too much. */
1378	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1379	intel_dp->DP |= DP_PLL_ENABLE;
1380	I915_WRITE(DP_A, intel_dp->DP);
1381	POSTING_READ(DP_A);
1382	udelay(200);
1383}
1384
1385static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1386{
1387	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1388	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1389	struct drm_device *dev = crtc->dev;
1390	struct drm_i915_private *dev_priv = dev->dev_private;
1391	u32 dpa_ctl;
1392
1393	assert_pipe_disabled(dev_priv,
1394			     to_intel_crtc(crtc)->pipe);
1395
1396	dpa_ctl = I915_READ(DP_A);
1397	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1398	     "dp pll off, should be on\n");
1399	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1400
1401	/* We can't rely on the value tracked for the DP register in
1402	 * intel_dp->DP because link_down must not change that (otherwise link
1403	 * re-training will fail. */
1404	dpa_ctl &= ~DP_PLL_ENABLE;
1405	I915_WRITE(DP_A, dpa_ctl);
1406	POSTING_READ(DP_A);
1407	udelay(200);
1408}
1409
1410/* If the sink supports it, try to set the power state appropriately */
1411void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1412{
1413	int ret, i;
1414
1415	/* Should have a valid DPCD by this point */
1416	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1417		return;
1418
1419	if (mode != DRM_MODE_DPMS_ON) {
1420		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1421					 DP_SET_POWER_D3);
1422		if (ret != 1)
1423			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1424	} else {
1425		/*
1426		 * When turning on, we need to retry for 1ms to give the sink
1427		 * time to wake up.
1428		 */
1429		for (i = 0; i < 3; i++) {
1430			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1431						 DP_SET_POWER_D0);
1432			if (ret == 1)
1433				break;
1434			msleep(1);
1435		}
1436	}
1437}
1438
1439static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1440				  enum pipe *pipe)
1441{
1442	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443	enum port port = dp_to_dig_port(intel_dp)->port;
1444	struct drm_device *dev = encoder->base.dev;
1445	struct drm_i915_private *dev_priv = dev->dev_private;
1446	enum intel_display_power_domain power_domain;
1447	u32 tmp;
1448
1449	power_domain = intel_display_port_power_domain(encoder);
1450	if (!intel_display_power_enabled(dev_priv, power_domain))
1451		return false;
1452
1453	tmp = I915_READ(intel_dp->output_reg);
1454
1455	if (!(tmp & DP_PORT_EN))
1456		return false;
1457
1458	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1459		*pipe = PORT_TO_PIPE_CPT(tmp);
1460	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1461		*pipe = PORT_TO_PIPE(tmp);
1462	} else {
1463		u32 trans_sel;
1464		u32 trans_dp;
1465		int i;
1466
1467		switch (intel_dp->output_reg) {
1468		case PCH_DP_B:
1469			trans_sel = TRANS_DP_PORT_SEL_B;
1470			break;
1471		case PCH_DP_C:
1472			trans_sel = TRANS_DP_PORT_SEL_C;
1473			break;
1474		case PCH_DP_D:
1475			trans_sel = TRANS_DP_PORT_SEL_D;
1476			break;
1477		default:
1478			return true;
1479		}
1480
1481		for_each_pipe(i) {
1482			trans_dp = I915_READ(TRANS_DP_CTL(i));
1483			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1484				*pipe = i;
1485				return true;
1486			}
1487		}
1488
1489		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1490			      intel_dp->output_reg);
1491	}
1492
1493	return true;
1494}
1495
1496static void intel_dp_get_config(struct intel_encoder *encoder,
1497				struct intel_crtc_config *pipe_config)
1498{
1499	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1500	u32 tmp, flags = 0;
1501	struct drm_device *dev = encoder->base.dev;
1502	struct drm_i915_private *dev_priv = dev->dev_private;
1503	enum port port = dp_to_dig_port(intel_dp)->port;
1504	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1505	int dotclock;
1506
1507	tmp = I915_READ(intel_dp->output_reg);
1508	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1509		pipe_config->has_audio = true;
1510
1511	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1512		if (tmp & DP_SYNC_HS_HIGH)
1513			flags |= DRM_MODE_FLAG_PHSYNC;
1514		else
1515			flags |= DRM_MODE_FLAG_NHSYNC;
1516
1517		if (tmp & DP_SYNC_VS_HIGH)
1518			flags |= DRM_MODE_FLAG_PVSYNC;
1519		else
1520			flags |= DRM_MODE_FLAG_NVSYNC;
1521	} else {
1522		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1523		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1524			flags |= DRM_MODE_FLAG_PHSYNC;
1525		else
1526			flags |= DRM_MODE_FLAG_NHSYNC;
1527
1528		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1529			flags |= DRM_MODE_FLAG_PVSYNC;
1530		else
1531			flags |= DRM_MODE_FLAG_NVSYNC;
1532	}
1533
1534	pipe_config->adjusted_mode.flags |= flags;
1535
1536	pipe_config->has_dp_encoder = true;
1537
1538	intel_dp_get_m_n(crtc, pipe_config);
1539
1540	if (port == PORT_A) {
1541		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1542			pipe_config->port_clock = 162000;
1543		else
1544			pipe_config->port_clock = 270000;
1545	}
1546
1547	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1548					    &pipe_config->dp_m_n);
1549
1550	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1551		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1552
1553	pipe_config->adjusted_mode.crtc_clock = dotclock;
1554
1555	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1556	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1557		/*
1558		 * This is a big fat ugly hack.
1559		 *
1560		 * Some machines in UEFI boot mode provide us a VBT that has 18
1561		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1562		 * unknown we fail to light up. Yet the same BIOS boots up with
1563		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1564		 * max, not what it tells us to use.
1565		 *
1566		 * Note: This will still be broken if the eDP panel is not lit
1567		 * up by the BIOS, and thus we can't get the mode at module
1568		 * load.
1569		 */
1570		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1571			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1572		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1573	}
1574}
1575
1576static bool is_edp_psr(struct drm_device *dev)
1577{
1578	struct drm_i915_private *dev_priv = dev->dev_private;
1579
1580	return dev_priv->psr.sink_support;
1581}
1582
1583static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1584{
1585	struct drm_i915_private *dev_priv = dev->dev_private;
1586
1587	if (!HAS_PSR(dev))
1588		return false;
1589
1590	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1591}
1592
1593static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1594				    struct edp_vsc_psr *vsc_psr)
1595{
1596	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1597	struct drm_device *dev = dig_port->base.base.dev;
1598	struct drm_i915_private *dev_priv = dev->dev_private;
1599	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1600	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1601	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1602	uint32_t *data = (uint32_t *) vsc_psr;
1603	unsigned int i;
1604
1605	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1606	   the video DIP being updated before program video DIP data buffer
1607	   registers for DIP being updated. */
1608	I915_WRITE(ctl_reg, 0);
1609	POSTING_READ(ctl_reg);
1610
1611	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1612		if (i < sizeof(struct edp_vsc_psr))
1613			I915_WRITE(data_reg + i, *data++);
1614		else
1615			I915_WRITE(data_reg + i, 0);
1616	}
1617
1618	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1619	POSTING_READ(ctl_reg);
1620}
1621
1622static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1623{
1624	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1625	struct drm_i915_private *dev_priv = dev->dev_private;
1626	struct edp_vsc_psr psr_vsc;
1627
1628	if (intel_dp->psr_setup_done)
1629		return;
1630
1631	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1632	memset(&psr_vsc, 0, sizeof(psr_vsc));
1633	psr_vsc.sdp_header.HB0 = 0;
1634	psr_vsc.sdp_header.HB1 = 0x7;
1635	psr_vsc.sdp_header.HB2 = 0x2;
1636	psr_vsc.sdp_header.HB3 = 0x8;
1637	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1638
1639	/* Avoid continuous PSR exit by masking memup and hpd */
1640	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1641		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1642
1643	intel_dp->psr_setup_done = true;
1644}
1645
1646static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1647{
1648	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	uint32_t aux_clock_divider;
1651	int precharge = 0x3;
1652	int msg_size = 5;       /* Header(4) + Message(1) */
1653
1654	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1655
1656	/* Enable PSR in sink */
1657	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1658		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1659				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1660	else
1661		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1662				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1663
1664	/* Setup AUX registers */
1665	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1666	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1667	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1668		   DP_AUX_CH_CTL_TIME_OUT_400us |
1669		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1670		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1671		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1672}
1673
1674static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1675{
1676	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1677	struct drm_i915_private *dev_priv = dev->dev_private;
1678	uint32_t max_sleep_time = 0x1f;
1679	uint32_t idle_frames = 1;
1680	uint32_t val = 0x0;
1681	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1682
1683	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1684		val |= EDP_PSR_LINK_STANDBY;
1685		val |= EDP_PSR_TP2_TP3_TIME_0us;
1686		val |= EDP_PSR_TP1_TIME_0us;
1687		val |= EDP_PSR_SKIP_AUX_EXIT;
1688	} else
1689		val |= EDP_PSR_LINK_DISABLE;
1690
1691	I915_WRITE(EDP_PSR_CTL(dev), val |
1692		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1693		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1694		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1695		   EDP_PSR_ENABLE);
1696}
1697
1698static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1699{
1700	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1701	struct drm_device *dev = dig_port->base.base.dev;
1702	struct drm_i915_private *dev_priv = dev->dev_private;
1703	struct drm_crtc *crtc = dig_port->base.base.crtc;
1704	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1705	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1706	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1707
1708	dev_priv->psr.source_ok = false;
1709
1710	if (!HAS_PSR(dev)) {
1711		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1712		return false;
1713	}
1714
1715	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1716	    (dig_port->port != PORT_A)) {
1717		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1718		return false;
1719	}
1720
1721	if (!i915.enable_psr) {
1722		DRM_DEBUG_KMS("PSR disable by flag\n");
1723		return false;
1724	}
1725
1726	crtc = dig_port->base.base.crtc;
1727	if (crtc == NULL) {
1728		DRM_DEBUG_KMS("crtc not active for PSR\n");
1729		return false;
1730	}
1731
1732	intel_crtc = to_intel_crtc(crtc);
1733	if (!intel_crtc_active(crtc)) {
1734		DRM_DEBUG_KMS("crtc not active for PSR\n");
1735		return false;
1736	}
1737
1738	obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1739	if (obj->tiling_mode != I915_TILING_X ||
1740	    obj->fence_reg == I915_FENCE_REG_NONE) {
1741		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1742		return false;
1743	}
1744
1745	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1746		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1747		return false;
1748	}
1749
1750	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1751	    S3D_ENABLE) {
1752		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1753		return false;
1754	}
1755
1756	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1757		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1758		return false;
1759	}
1760
1761	dev_priv->psr.source_ok = true;
1762	return true;
1763}
1764
1765static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1766{
1767	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768
1769	if (!intel_edp_psr_match_conditions(intel_dp) ||
1770	    intel_edp_is_psr_enabled(dev))
1771		return;
1772
1773	/* Setup PSR once */
1774	intel_edp_psr_setup(intel_dp);
1775
1776	/* Enable PSR on the panel */
1777	intel_edp_psr_enable_sink(intel_dp);
1778
1779	/* Enable PSR on the host */
1780	intel_edp_psr_enable_source(intel_dp);
1781}
1782
1783void intel_edp_psr_enable(struct intel_dp *intel_dp)
1784{
1785	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1786
1787	if (intel_edp_psr_match_conditions(intel_dp) &&
1788	    !intel_edp_is_psr_enabled(dev))
1789		intel_edp_psr_do_enable(intel_dp);
1790}
1791
1792void intel_edp_psr_disable(struct intel_dp *intel_dp)
1793{
1794	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796
1797	if (!intel_edp_is_psr_enabled(dev))
1798		return;
1799
1800	I915_WRITE(EDP_PSR_CTL(dev),
1801		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1802
1803	/* Wait till PSR is idle */
1804	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1805		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1806		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1807}
1808
1809void intel_edp_psr_update(struct drm_device *dev)
1810{
1811	struct intel_encoder *encoder;
1812	struct intel_dp *intel_dp = NULL;
1813
1814	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1815		if (encoder->type == INTEL_OUTPUT_EDP) {
1816			intel_dp = enc_to_intel_dp(&encoder->base);
1817
1818			if (!is_edp_psr(dev))
1819				return;
1820
1821			if (!intel_edp_psr_match_conditions(intel_dp))
1822				intel_edp_psr_disable(intel_dp);
1823			else
1824				if (!intel_edp_is_psr_enabled(dev))
1825					intel_edp_psr_do_enable(intel_dp);
1826		}
1827}
1828
1829static void intel_disable_dp(struct intel_encoder *encoder)
1830{
1831	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1832	enum port port = dp_to_dig_port(intel_dp)->port;
1833	struct drm_device *dev = encoder->base.dev;
1834
1835	/* Make sure the panel is off before trying to change the mode. But also
1836	 * ensure that we have vdd while we switch off the panel. */
1837	intel_edp_panel_vdd_on(intel_dp);
1838	intel_edp_backlight_off(intel_dp);
1839	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1840	intel_edp_panel_off(intel_dp);
1841
1842	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1843	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1844		intel_dp_link_down(intel_dp);
1845}
1846
1847static void g4x_post_disable_dp(struct intel_encoder *encoder)
1848{
1849	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1850	enum port port = dp_to_dig_port(intel_dp)->port;
1851
1852	if (port != PORT_A)
1853		return;
1854
1855	intel_dp_link_down(intel_dp);
1856	ironlake_edp_pll_off(intel_dp);
1857}
1858
1859static void vlv_post_disable_dp(struct intel_encoder *encoder)
1860{
1861	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1862
1863	intel_dp_link_down(intel_dp);
1864}
1865
1866static void intel_enable_dp(struct intel_encoder *encoder)
1867{
1868	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869	struct drm_device *dev = encoder->base.dev;
1870	struct drm_i915_private *dev_priv = dev->dev_private;
1871	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1872
1873	if (WARN_ON(dp_reg & DP_PORT_EN))
1874		return;
1875
1876	intel_edp_panel_vdd_on(intel_dp);
1877	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1878	intel_dp_start_link_train(intel_dp);
1879	intel_edp_panel_on(intel_dp);
1880	edp_panel_vdd_off(intel_dp, true);
1881	intel_dp_complete_link_train(intel_dp);
1882	intel_dp_stop_link_train(intel_dp);
1883}
1884
1885static void g4x_enable_dp(struct intel_encoder *encoder)
1886{
1887	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1888
1889	intel_enable_dp(encoder);
1890	intel_edp_backlight_on(intel_dp);
1891}
1892
1893static void vlv_enable_dp(struct intel_encoder *encoder)
1894{
1895	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1896
1897	intel_edp_backlight_on(intel_dp);
1898}
1899
1900static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1901{
1902	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1903	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1904
1905	/* Only ilk+ has port A */
1906	if (dport->port == PORT_A) {
1907		ironlake_set_pll_cpu_edp(intel_dp);
1908		ironlake_edp_pll_on(intel_dp);
1909	}
1910}
1911
1912static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1913{
1914	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1915	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1916	struct drm_device *dev = encoder->base.dev;
1917	struct drm_i915_private *dev_priv = dev->dev_private;
1918	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1919	enum dpio_channel port = vlv_dport_to_channel(dport);
1920	int pipe = intel_crtc->pipe;
1921	struct edp_power_seq power_seq;
1922	u32 val;
1923
1924	mutex_lock(&dev_priv->dpio_lock);
1925
1926	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1927	val = 0;
1928	if (pipe)
1929		val |= (1<<21);
1930	else
1931		val &= ~(1<<21);
1932	val |= 0x001000c4;
1933	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1934	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1935	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1936
1937	mutex_unlock(&dev_priv->dpio_lock);
1938
1939	if (is_edp(intel_dp)) {
1940		/* init power sequencer on this pipe and port */
1941		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1942		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1943							      &power_seq);
1944	}
1945
1946	intel_enable_dp(encoder);
1947
1948	vlv_wait_port_ready(dev_priv, dport);
1949}
1950
1951static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1952{
1953	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1954	struct drm_device *dev = encoder->base.dev;
1955	struct drm_i915_private *dev_priv = dev->dev_private;
1956	struct intel_crtc *intel_crtc =
1957		to_intel_crtc(encoder->base.crtc);
1958	enum dpio_channel port = vlv_dport_to_channel(dport);
1959	int pipe = intel_crtc->pipe;
1960
1961	/* Program Tx lane resets to default */
1962	mutex_lock(&dev_priv->dpio_lock);
1963	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1964			 DPIO_PCS_TX_LANE2_RESET |
1965			 DPIO_PCS_TX_LANE1_RESET);
1966	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1967			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1968			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1969			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1970				 DPIO_PCS_CLK_SOFT_RESET);
1971
1972	/* Fix up inter-pair skew failure */
1973	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1974	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1975	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1976	mutex_unlock(&dev_priv->dpio_lock);
1977}
1978
1979static void chv_pre_enable_dp(struct intel_encoder *encoder)
1980{
1981	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1982	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1983	struct drm_device *dev = encoder->base.dev;
1984	struct drm_i915_private *dev_priv = dev->dev_private;
1985	struct edp_power_seq power_seq;
1986	struct intel_crtc *intel_crtc =
1987		to_intel_crtc(encoder->base.crtc);
1988	enum dpio_channel ch = vlv_dport_to_channel(dport);
1989	int pipe = intel_crtc->pipe;
1990	int data, i;
1991
1992	/* Program Tx lane latency optimal setting*/
1993	mutex_lock(&dev_priv->dpio_lock);
1994	for (i = 0; i < 4; i++) {
1995		/* Set the latency optimal bit */
1996		data = (i == 1) ? 0x0 : 0x6;
1997		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
1998				data << DPIO_FRC_LATENCY_SHFIT);
1999
2000		/* Set the upar bit */
2001		data = (i == 1) ? 0x0 : 0x1;
2002		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2003				data << DPIO_UPAR_SHIFT);
2004	}
2005
2006	/* Data lane stagger programming */
2007	/* FIXME: Fix up value only after power analysis */
2008
2009	mutex_unlock(&dev_priv->dpio_lock);
2010
2011	if (is_edp(intel_dp)) {
2012		/* init power sequencer on this pipe and port */
2013		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2014		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2015							      &power_seq);
2016	}
2017
2018	intel_enable_dp(encoder);
2019
2020	vlv_wait_port_ready(dev_priv, dport);
2021}
2022
2023/*
2024 * Native read with retry for link status and receiver capability reads for
2025 * cases where the sink may still be asleep.
2026 *
2027 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2028 * supposed to retry 3 times per the spec.
2029 */
2030static ssize_t
2031intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2032			void *buffer, size_t size)
2033{
2034	ssize_t ret;
2035	int i;
2036
2037	for (i = 0; i < 3; i++) {
2038		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2039		if (ret == size)
2040			return ret;
2041		msleep(1);
2042	}
2043
2044	return ret;
2045}
2046
2047/*
2048 * Fetch AUX CH registers 0x202 - 0x207 which contain
2049 * link status information
2050 */
2051static bool
2052intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2053{
2054	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2055				       DP_LANE0_1_STATUS,
2056				       link_status,
2057				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2058}
2059
2060/*
2061 * These are source-specific values; current Intel hardware supports
2062 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2063 */
2064
2065static uint8_t
2066intel_dp_voltage_max(struct intel_dp *intel_dp)
2067{
2068	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2069	enum port port = dp_to_dig_port(intel_dp)->port;
2070
2071	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2072		return DP_TRAIN_VOLTAGE_SWING_1200;
2073	else if (IS_GEN7(dev) && port == PORT_A)
2074		return DP_TRAIN_VOLTAGE_SWING_800;
2075	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2076		return DP_TRAIN_VOLTAGE_SWING_1200;
2077	else
2078		return DP_TRAIN_VOLTAGE_SWING_800;
2079}
2080
2081static uint8_t
2082intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2083{
2084	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2085	enum port port = dp_to_dig_port(intel_dp)->port;
2086
2087	if (IS_BROADWELL(dev)) {
2088		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2089		case DP_TRAIN_VOLTAGE_SWING_400:
2090		case DP_TRAIN_VOLTAGE_SWING_600:
2091			return DP_TRAIN_PRE_EMPHASIS_6;
2092		case DP_TRAIN_VOLTAGE_SWING_800:
2093			return DP_TRAIN_PRE_EMPHASIS_3_5;
2094		case DP_TRAIN_VOLTAGE_SWING_1200:
2095		default:
2096			return DP_TRAIN_PRE_EMPHASIS_0;
2097		}
2098	} else if (IS_HASWELL(dev)) {
2099		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2100		case DP_TRAIN_VOLTAGE_SWING_400:
2101			return DP_TRAIN_PRE_EMPHASIS_9_5;
2102		case DP_TRAIN_VOLTAGE_SWING_600:
2103			return DP_TRAIN_PRE_EMPHASIS_6;
2104		case DP_TRAIN_VOLTAGE_SWING_800:
2105			return DP_TRAIN_PRE_EMPHASIS_3_5;
2106		case DP_TRAIN_VOLTAGE_SWING_1200:
2107		default:
2108			return DP_TRAIN_PRE_EMPHASIS_0;
2109		}
2110	} else if (IS_VALLEYVIEW(dev)) {
2111		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2112		case DP_TRAIN_VOLTAGE_SWING_400:
2113			return DP_TRAIN_PRE_EMPHASIS_9_5;
2114		case DP_TRAIN_VOLTAGE_SWING_600:
2115			return DP_TRAIN_PRE_EMPHASIS_6;
2116		case DP_TRAIN_VOLTAGE_SWING_800:
2117			return DP_TRAIN_PRE_EMPHASIS_3_5;
2118		case DP_TRAIN_VOLTAGE_SWING_1200:
2119		default:
2120			return DP_TRAIN_PRE_EMPHASIS_0;
2121		}
2122	} else if (IS_GEN7(dev) && port == PORT_A) {
2123		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2124		case DP_TRAIN_VOLTAGE_SWING_400:
2125			return DP_TRAIN_PRE_EMPHASIS_6;
2126		case DP_TRAIN_VOLTAGE_SWING_600:
2127		case DP_TRAIN_VOLTAGE_SWING_800:
2128			return DP_TRAIN_PRE_EMPHASIS_3_5;
2129		default:
2130			return DP_TRAIN_PRE_EMPHASIS_0;
2131		}
2132	} else {
2133		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2134		case DP_TRAIN_VOLTAGE_SWING_400:
2135			return DP_TRAIN_PRE_EMPHASIS_6;
2136		case DP_TRAIN_VOLTAGE_SWING_600:
2137			return DP_TRAIN_PRE_EMPHASIS_6;
2138		case DP_TRAIN_VOLTAGE_SWING_800:
2139			return DP_TRAIN_PRE_EMPHASIS_3_5;
2140		case DP_TRAIN_VOLTAGE_SWING_1200:
2141		default:
2142			return DP_TRAIN_PRE_EMPHASIS_0;
2143		}
2144	}
2145}
2146
2147static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2148{
2149	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2150	struct drm_i915_private *dev_priv = dev->dev_private;
2151	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2152	struct intel_crtc *intel_crtc =
2153		to_intel_crtc(dport->base.base.crtc);
2154	unsigned long demph_reg_value, preemph_reg_value,
2155		uniqtranscale_reg_value;
2156	uint8_t train_set = intel_dp->train_set[0];
2157	enum dpio_channel port = vlv_dport_to_channel(dport);
2158	int pipe = intel_crtc->pipe;
2159
2160	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2161	case DP_TRAIN_PRE_EMPHASIS_0:
2162		preemph_reg_value = 0x0004000;
2163		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2164		case DP_TRAIN_VOLTAGE_SWING_400:
2165			demph_reg_value = 0x2B405555;
2166			uniqtranscale_reg_value = 0x552AB83A;
2167			break;
2168		case DP_TRAIN_VOLTAGE_SWING_600:
2169			demph_reg_value = 0x2B404040;
2170			uniqtranscale_reg_value = 0x5548B83A;
2171			break;
2172		case DP_TRAIN_VOLTAGE_SWING_800:
2173			demph_reg_value = 0x2B245555;
2174			uniqtranscale_reg_value = 0x5560B83A;
2175			break;
2176		case DP_TRAIN_VOLTAGE_SWING_1200:
2177			demph_reg_value = 0x2B405555;
2178			uniqtranscale_reg_value = 0x5598DA3A;
2179			break;
2180		default:
2181			return 0;
2182		}
2183		break;
2184	case DP_TRAIN_PRE_EMPHASIS_3_5:
2185		preemph_reg_value = 0x0002000;
2186		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2187		case DP_TRAIN_VOLTAGE_SWING_400:
2188			demph_reg_value = 0x2B404040;
2189			uniqtranscale_reg_value = 0x5552B83A;
2190			break;
2191		case DP_TRAIN_VOLTAGE_SWING_600:
2192			demph_reg_value = 0x2B404848;
2193			uniqtranscale_reg_value = 0x5580B83A;
2194			break;
2195		case DP_TRAIN_VOLTAGE_SWING_800:
2196			demph_reg_value = 0x2B404040;
2197			uniqtranscale_reg_value = 0x55ADDA3A;
2198			break;
2199		default:
2200			return 0;
2201		}
2202		break;
2203	case DP_TRAIN_PRE_EMPHASIS_6:
2204		preemph_reg_value = 0x0000000;
2205		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2206		case DP_TRAIN_VOLTAGE_SWING_400:
2207			demph_reg_value = 0x2B305555;
2208			uniqtranscale_reg_value = 0x5570B83A;
2209			break;
2210		case DP_TRAIN_VOLTAGE_SWING_600:
2211			demph_reg_value = 0x2B2B4040;
2212			uniqtranscale_reg_value = 0x55ADDA3A;
2213			break;
2214		default:
2215			return 0;
2216		}
2217		break;
2218	case DP_TRAIN_PRE_EMPHASIS_9_5:
2219		preemph_reg_value = 0x0006000;
2220		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2221		case DP_TRAIN_VOLTAGE_SWING_400:
2222			demph_reg_value = 0x1B405555;
2223			uniqtranscale_reg_value = 0x55ADDA3A;
2224			break;
2225		default:
2226			return 0;
2227		}
2228		break;
2229	default:
2230		return 0;
2231	}
2232
2233	mutex_lock(&dev_priv->dpio_lock);
2234	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2235	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2236	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2237			 uniqtranscale_reg_value);
2238	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2239	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2240	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2241	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2242	mutex_unlock(&dev_priv->dpio_lock);
2243
2244	return 0;
2245}
2246
2247static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2248{
2249	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2250	struct drm_i915_private *dev_priv = dev->dev_private;
2251	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2252	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2253	u32 deemph_reg_value, margin_reg_value, val, tx_dw2;
2254	uint8_t train_set = intel_dp->train_set[0];
2255	enum dpio_channel ch = vlv_dport_to_channel(dport);
2256	int pipe = intel_crtc->pipe;
2257
2258	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2259	case DP_TRAIN_PRE_EMPHASIS_0:
2260		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2261		case DP_TRAIN_VOLTAGE_SWING_400:
2262			deemph_reg_value = 128;
2263			margin_reg_value = 52;
2264			break;
2265		case DP_TRAIN_VOLTAGE_SWING_600:
2266			deemph_reg_value = 128;
2267			margin_reg_value = 77;
2268			break;
2269		case DP_TRAIN_VOLTAGE_SWING_800:
2270			deemph_reg_value = 128;
2271			margin_reg_value = 102;
2272			break;
2273		case DP_TRAIN_VOLTAGE_SWING_1200:
2274			deemph_reg_value = 128;
2275			margin_reg_value = 154;
2276			/* FIXME extra to set for 1200 */
2277			break;
2278		default:
2279			return 0;
2280		}
2281		break;
2282	case DP_TRAIN_PRE_EMPHASIS_3_5:
2283		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2284		case DP_TRAIN_VOLTAGE_SWING_400:
2285			deemph_reg_value = 85;
2286			margin_reg_value = 78;
2287			break;
2288		case DP_TRAIN_VOLTAGE_SWING_600:
2289			deemph_reg_value = 85;
2290			margin_reg_value = 116;
2291			break;
2292		case DP_TRAIN_VOLTAGE_SWING_800:
2293			deemph_reg_value = 85;
2294			margin_reg_value = 154;
2295			break;
2296		default:
2297			return 0;
2298		}
2299		break;
2300	case DP_TRAIN_PRE_EMPHASIS_6:
2301		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2302		case DP_TRAIN_VOLTAGE_SWING_400:
2303			deemph_reg_value = 64;
2304			margin_reg_value = 104;
2305			break;
2306		case DP_TRAIN_VOLTAGE_SWING_600:
2307			deemph_reg_value = 64;
2308			margin_reg_value = 154;
2309			break;
2310		default:
2311			return 0;
2312		}
2313		break;
2314	case DP_TRAIN_PRE_EMPHASIS_9_5:
2315		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2316		case DP_TRAIN_VOLTAGE_SWING_400:
2317			deemph_reg_value = 43;
2318			margin_reg_value = 154;
2319			break;
2320		default:
2321			return 0;
2322		}
2323		break;
2324	default:
2325		return 0;
2326	}
2327
2328	mutex_lock(&dev_priv->dpio_lock);
2329
2330	/* Clear calc init */
2331	vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch), 0);
2332
2333	/* Program swing deemph */
2334	val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW4(ch));
2335	val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2336	val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2337	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(ch), val);
2338
2339	/* Program swing margin */
2340	tx_dw2 = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch));
2341	tx_dw2 &= ~DPIO_SWING_MARGIN_MASK;
2342	tx_dw2 |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2343	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2344
2345	/* Disable unique transition scale */
2346	val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2347	val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2348	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2349
2350	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2351			== DP_TRAIN_PRE_EMPHASIS_0) &&
2352		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2353			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2354
2355		/*
2356		 * The document said it needs to set bit 27 for ch0 and bit 26
2357		 * for ch1. Might be a typo in the doc.
2358		 * For now, for this unique transition scale selection, set bit
2359		 * 27 for ch0 and ch1.
2360		 */
2361		val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2362		val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2363		vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2364
2365		tx_dw2 |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2366		vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2367	}
2368
2369	/* Start swing calculation */
2370	vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch),
2371		(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3));
2372
2373	/* LRC Bypass */
2374	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2375	val |= DPIO_LRC_BYPASS;
2376	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2377
2378	mutex_unlock(&dev_priv->dpio_lock);
2379
2380	return 0;
2381}
2382
2383static void
2384intel_get_adjust_train(struct intel_dp *intel_dp,
2385		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2386{
2387	uint8_t v = 0;
2388	uint8_t p = 0;
2389	int lane;
2390	uint8_t voltage_max;
2391	uint8_t preemph_max;
2392
2393	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2394		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2395		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2396
2397		if (this_v > v)
2398			v = this_v;
2399		if (this_p > p)
2400			p = this_p;
2401	}
2402
2403	voltage_max = intel_dp_voltage_max(intel_dp);
2404	if (v >= voltage_max)
2405		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2406
2407	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2408	if (p >= preemph_max)
2409		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2410
2411	for (lane = 0; lane < 4; lane++)
2412		intel_dp->train_set[lane] = v | p;
2413}
2414
2415static uint32_t
2416intel_gen4_signal_levels(uint8_t train_set)
2417{
2418	uint32_t	signal_levels = 0;
2419
2420	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2421	case DP_TRAIN_VOLTAGE_SWING_400:
2422	default:
2423		signal_levels |= DP_VOLTAGE_0_4;
2424		break;
2425	case DP_TRAIN_VOLTAGE_SWING_600:
2426		signal_levels |= DP_VOLTAGE_0_6;
2427		break;
2428	case DP_TRAIN_VOLTAGE_SWING_800:
2429		signal_levels |= DP_VOLTAGE_0_8;
2430		break;
2431	case DP_TRAIN_VOLTAGE_SWING_1200:
2432		signal_levels |= DP_VOLTAGE_1_2;
2433		break;
2434	}
2435	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2436	case DP_TRAIN_PRE_EMPHASIS_0:
2437	default:
2438		signal_levels |= DP_PRE_EMPHASIS_0;
2439		break;
2440	case DP_TRAIN_PRE_EMPHASIS_3_5:
2441		signal_levels |= DP_PRE_EMPHASIS_3_5;
2442		break;
2443	case DP_TRAIN_PRE_EMPHASIS_6:
2444		signal_levels |= DP_PRE_EMPHASIS_6;
2445		break;
2446	case DP_TRAIN_PRE_EMPHASIS_9_5:
2447		signal_levels |= DP_PRE_EMPHASIS_9_5;
2448		break;
2449	}
2450	return signal_levels;
2451}
2452
2453/* Gen6's DP voltage swing and pre-emphasis control */
2454static uint32_t
2455intel_gen6_edp_signal_levels(uint8_t train_set)
2456{
2457	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2458					 DP_TRAIN_PRE_EMPHASIS_MASK);
2459	switch (signal_levels) {
2460	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2461	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2462		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2463	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2464		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2465	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2466	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2467		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2468	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2469	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2470		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2471	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2472	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2473		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2474	default:
2475		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2476			      "0x%x\n", signal_levels);
2477		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2478	}
2479}
2480
2481/* Gen7's DP voltage swing and pre-emphasis control */
2482static uint32_t
2483intel_gen7_edp_signal_levels(uint8_t train_set)
2484{
2485	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2486					 DP_TRAIN_PRE_EMPHASIS_MASK);
2487	switch (signal_levels) {
2488	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2489		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2490	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2491		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2492	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2493		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2494
2495	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2496		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2497	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2498		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2499
2500	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2501		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2502	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2503		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2504
2505	default:
2506		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2507			      "0x%x\n", signal_levels);
2508		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2509	}
2510}
2511
2512/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2513static uint32_t
2514intel_hsw_signal_levels(uint8_t train_set)
2515{
2516	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2517					 DP_TRAIN_PRE_EMPHASIS_MASK);
2518	switch (signal_levels) {
2519	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2520		return DDI_BUF_EMP_400MV_0DB_HSW;
2521	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2522		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2523	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2524		return DDI_BUF_EMP_400MV_6DB_HSW;
2525	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2526		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2527
2528	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2529		return DDI_BUF_EMP_600MV_0DB_HSW;
2530	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2531		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2532	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2533		return DDI_BUF_EMP_600MV_6DB_HSW;
2534
2535	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2536		return DDI_BUF_EMP_800MV_0DB_HSW;
2537	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2538		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2539	default:
2540		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2541			      "0x%x\n", signal_levels);
2542		return DDI_BUF_EMP_400MV_0DB_HSW;
2543	}
2544}
2545
2546static uint32_t
2547intel_bdw_signal_levels(uint8_t train_set)
2548{
2549	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2550					 DP_TRAIN_PRE_EMPHASIS_MASK);
2551	switch (signal_levels) {
2552	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2553		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2554	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2555		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2556	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2557		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2558
2559	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2560		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2561	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2562		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2563	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2564		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2565
2566	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2567		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2568	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2569		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2570
2571	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2572		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2573
2574	default:
2575		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2576			      "0x%x\n", signal_levels);
2577		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2578	}
2579}
2580
2581/* Properly updates "DP" with the correct signal levels. */
2582static void
2583intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2584{
2585	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2586	enum port port = intel_dig_port->port;
2587	struct drm_device *dev = intel_dig_port->base.base.dev;
2588	uint32_t signal_levels, mask;
2589	uint8_t train_set = intel_dp->train_set[0];
2590
2591	if (IS_BROADWELL(dev)) {
2592		signal_levels = intel_bdw_signal_levels(train_set);
2593		mask = DDI_BUF_EMP_MASK;
2594	} else if (IS_HASWELL(dev)) {
2595		signal_levels = intel_hsw_signal_levels(train_set);
2596		mask = DDI_BUF_EMP_MASK;
2597	} else if (IS_CHERRYVIEW(dev)) {
2598		signal_levels = intel_chv_signal_levels(intel_dp);
2599		mask = 0;
2600	} else if (IS_VALLEYVIEW(dev)) {
2601		signal_levels = intel_vlv_signal_levels(intel_dp);
2602		mask = 0;
2603	} else if (IS_GEN7(dev) && port == PORT_A) {
2604		signal_levels = intel_gen7_edp_signal_levels(train_set);
2605		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2606	} else if (IS_GEN6(dev) && port == PORT_A) {
2607		signal_levels = intel_gen6_edp_signal_levels(train_set);
2608		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2609	} else {
2610		signal_levels = intel_gen4_signal_levels(train_set);
2611		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2612	}
2613
2614	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2615
2616	*DP = (*DP & ~mask) | signal_levels;
2617}
2618
2619static bool
2620intel_dp_set_link_train(struct intel_dp *intel_dp,
2621			uint32_t *DP,
2622			uint8_t dp_train_pat)
2623{
2624	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2625	struct drm_device *dev = intel_dig_port->base.base.dev;
2626	struct drm_i915_private *dev_priv = dev->dev_private;
2627	enum port port = intel_dig_port->port;
2628	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2629	int ret, len;
2630
2631	if (HAS_DDI(dev)) {
2632		uint32_t temp = I915_READ(DP_TP_CTL(port));
2633
2634		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2635			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2636		else
2637			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2638
2639		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2640		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2641		case DP_TRAINING_PATTERN_DISABLE:
2642			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2643
2644			break;
2645		case DP_TRAINING_PATTERN_1:
2646			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2647			break;
2648		case DP_TRAINING_PATTERN_2:
2649			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2650			break;
2651		case DP_TRAINING_PATTERN_3:
2652			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2653			break;
2654		}
2655		I915_WRITE(DP_TP_CTL(port), temp);
2656
2657	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2658		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2659
2660		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2661		case DP_TRAINING_PATTERN_DISABLE:
2662			*DP |= DP_LINK_TRAIN_OFF_CPT;
2663			break;
2664		case DP_TRAINING_PATTERN_1:
2665			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2666			break;
2667		case DP_TRAINING_PATTERN_2:
2668			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2669			break;
2670		case DP_TRAINING_PATTERN_3:
2671			DRM_ERROR("DP training pattern 3 not supported\n");
2672			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2673			break;
2674		}
2675
2676	} else {
2677		*DP &= ~DP_LINK_TRAIN_MASK;
2678
2679		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2680		case DP_TRAINING_PATTERN_DISABLE:
2681			*DP |= DP_LINK_TRAIN_OFF;
2682			break;
2683		case DP_TRAINING_PATTERN_1:
2684			*DP |= DP_LINK_TRAIN_PAT_1;
2685			break;
2686		case DP_TRAINING_PATTERN_2:
2687			*DP |= DP_LINK_TRAIN_PAT_2;
2688			break;
2689		case DP_TRAINING_PATTERN_3:
2690			DRM_ERROR("DP training pattern 3 not supported\n");
2691			*DP |= DP_LINK_TRAIN_PAT_2;
2692			break;
2693		}
2694	}
2695
2696	I915_WRITE(intel_dp->output_reg, *DP);
2697	POSTING_READ(intel_dp->output_reg);
2698
2699	buf[0] = dp_train_pat;
2700	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2701	    DP_TRAINING_PATTERN_DISABLE) {
2702		/* don't write DP_TRAINING_LANEx_SET on disable */
2703		len = 1;
2704	} else {
2705		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2706		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2707		len = intel_dp->lane_count + 1;
2708	}
2709
2710	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2711				buf, len);
2712
2713	return ret == len;
2714}
2715
2716static bool
2717intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2718			uint8_t dp_train_pat)
2719{
2720	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2721	intel_dp_set_signal_levels(intel_dp, DP);
2722	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2723}
2724
2725static bool
2726intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2727			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2728{
2729	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2730	struct drm_device *dev = intel_dig_port->base.base.dev;
2731	struct drm_i915_private *dev_priv = dev->dev_private;
2732	int ret;
2733
2734	intel_get_adjust_train(intel_dp, link_status);
2735	intel_dp_set_signal_levels(intel_dp, DP);
2736
2737	I915_WRITE(intel_dp->output_reg, *DP);
2738	POSTING_READ(intel_dp->output_reg);
2739
2740	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2741				intel_dp->train_set, intel_dp->lane_count);
2742
2743	return ret == intel_dp->lane_count;
2744}
2745
2746static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2747{
2748	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2749	struct drm_device *dev = intel_dig_port->base.base.dev;
2750	struct drm_i915_private *dev_priv = dev->dev_private;
2751	enum port port = intel_dig_port->port;
2752	uint32_t val;
2753
2754	if (!HAS_DDI(dev))
2755		return;
2756
2757	val = I915_READ(DP_TP_CTL(port));
2758	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2759	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2760	I915_WRITE(DP_TP_CTL(port), val);
2761
2762	/*
2763	 * On PORT_A we can have only eDP in SST mode. There the only reason
2764	 * we need to set idle transmission mode is to work around a HW issue
2765	 * where we enable the pipe while not in idle link-training mode.
2766	 * In this case there is requirement to wait for a minimum number of
2767	 * idle patterns to be sent.
2768	 */
2769	if (port == PORT_A)
2770		return;
2771
2772	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2773		     1))
2774		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2775}
2776
2777/* Enable corresponding port and start training pattern 1 */
2778void
2779intel_dp_start_link_train(struct intel_dp *intel_dp)
2780{
2781	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2782	struct drm_device *dev = encoder->dev;
2783	int i;
2784	uint8_t voltage;
2785	int voltage_tries, loop_tries;
2786	uint32_t DP = intel_dp->DP;
2787	uint8_t link_config[2];
2788
2789	if (HAS_DDI(dev))
2790		intel_ddi_prepare_link_retrain(encoder);
2791
2792	/* Write the link configuration data */
2793	link_config[0] = intel_dp->link_bw;
2794	link_config[1] = intel_dp->lane_count;
2795	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2796		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2797	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2798
2799	link_config[0] = 0;
2800	link_config[1] = DP_SET_ANSI_8B10B;
2801	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2802
2803	DP |= DP_PORT_EN;
2804
2805	/* clock recovery */
2806	if (!intel_dp_reset_link_train(intel_dp, &DP,
2807				       DP_TRAINING_PATTERN_1 |
2808				       DP_LINK_SCRAMBLING_DISABLE)) {
2809		DRM_ERROR("failed to enable link training\n");
2810		return;
2811	}
2812
2813	voltage = 0xff;
2814	voltage_tries = 0;
2815	loop_tries = 0;
2816	for (;;) {
2817		uint8_t link_status[DP_LINK_STATUS_SIZE];
2818
2819		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2820		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2821			DRM_ERROR("failed to get link status\n");
2822			break;
2823		}
2824
2825		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2826			DRM_DEBUG_KMS("clock recovery OK\n");
2827			break;
2828		}
2829
2830		/* Check to see if we've tried the max voltage */
2831		for (i = 0; i < intel_dp->lane_count; i++)
2832			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2833				break;
2834		if (i == intel_dp->lane_count) {
2835			++loop_tries;
2836			if (loop_tries == 5) {
2837				DRM_ERROR("too many full retries, give up\n");
2838				break;
2839			}
2840			intel_dp_reset_link_train(intel_dp, &DP,
2841						  DP_TRAINING_PATTERN_1 |
2842						  DP_LINK_SCRAMBLING_DISABLE);
2843			voltage_tries = 0;
2844			continue;
2845		}
2846
2847		/* Check to see if we've tried the same voltage 5 times */
2848		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2849			++voltage_tries;
2850			if (voltage_tries == 5) {
2851				DRM_ERROR("too many voltage retries, give up\n");
2852				break;
2853			}
2854		} else
2855			voltage_tries = 0;
2856		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2857
2858		/* Update training set as requested by target */
2859		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2860			DRM_ERROR("failed to update link training\n");
2861			break;
2862		}
2863	}
2864
2865	intel_dp->DP = DP;
2866}
2867
2868void
2869intel_dp_complete_link_train(struct intel_dp *intel_dp)
2870{
2871	bool channel_eq = false;
2872	int tries, cr_tries;
2873	uint32_t DP = intel_dp->DP;
2874	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2875
2876	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2877	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2878		training_pattern = DP_TRAINING_PATTERN_3;
2879
2880	/* channel equalization */
2881	if (!intel_dp_set_link_train(intel_dp, &DP,
2882				     training_pattern |
2883				     DP_LINK_SCRAMBLING_DISABLE)) {
2884		DRM_ERROR("failed to start channel equalization\n");
2885		return;
2886	}
2887
2888	tries = 0;
2889	cr_tries = 0;
2890	channel_eq = false;
2891	for (;;) {
2892		uint8_t link_status[DP_LINK_STATUS_SIZE];
2893
2894		if (cr_tries > 5) {
2895			DRM_ERROR("failed to train DP, aborting\n");
2896			break;
2897		}
2898
2899		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2900		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2901			DRM_ERROR("failed to get link status\n");
2902			break;
2903		}
2904
2905		/* Make sure clock is still ok */
2906		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2907			intel_dp_start_link_train(intel_dp);
2908			intel_dp_set_link_train(intel_dp, &DP,
2909						training_pattern |
2910						DP_LINK_SCRAMBLING_DISABLE);
2911			cr_tries++;
2912			continue;
2913		}
2914
2915		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2916			channel_eq = true;
2917			break;
2918		}
2919
2920		/* Try 5 times, then try clock recovery if that fails */
2921		if (tries > 5) {
2922			intel_dp_link_down(intel_dp);
2923			intel_dp_start_link_train(intel_dp);
2924			intel_dp_set_link_train(intel_dp, &DP,
2925						training_pattern |
2926						DP_LINK_SCRAMBLING_DISABLE);
2927			tries = 0;
2928			cr_tries++;
2929			continue;
2930		}
2931
2932		/* Update training set as requested by target */
2933		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2934			DRM_ERROR("failed to update link training\n");
2935			break;
2936		}
2937		++tries;
2938	}
2939
2940	intel_dp_set_idle_link_train(intel_dp);
2941
2942	intel_dp->DP = DP;
2943
2944	if (channel_eq)
2945		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2946
2947}
2948
2949void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2950{
2951	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2952				DP_TRAINING_PATTERN_DISABLE);
2953}
2954
2955static void
2956intel_dp_link_down(struct intel_dp *intel_dp)
2957{
2958	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2959	enum port port = intel_dig_port->port;
2960	struct drm_device *dev = intel_dig_port->base.base.dev;
2961	struct drm_i915_private *dev_priv = dev->dev_private;
2962	struct intel_crtc *intel_crtc =
2963		to_intel_crtc(intel_dig_port->base.base.crtc);
2964	uint32_t DP = intel_dp->DP;
2965
2966	/*
2967	 * DDI code has a strict mode set sequence and we should try to respect
2968	 * it, otherwise we might hang the machine in many different ways. So we
2969	 * really should be disabling the port only on a complete crtc_disable
2970	 * sequence. This function is just called under two conditions on DDI
2971	 * code:
2972	 * - Link train failed while doing crtc_enable, and on this case we
2973	 *   really should respect the mode set sequence and wait for a
2974	 *   crtc_disable.
2975	 * - Someone turned the monitor off and intel_dp_check_link_status
2976	 *   called us. We don't need to disable the whole port on this case, so
2977	 *   when someone turns the monitor on again,
2978	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2979	 *   train.
2980	 */
2981	if (HAS_DDI(dev))
2982		return;
2983
2984	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2985		return;
2986
2987	DRM_DEBUG_KMS("\n");
2988
2989	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2990		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2991		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2992	} else {
2993		DP &= ~DP_LINK_TRAIN_MASK;
2994		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2995	}
2996	POSTING_READ(intel_dp->output_reg);
2997
2998	if (HAS_PCH_IBX(dev) &&
2999	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3000		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3001
3002		/* Hardware workaround: leaving our transcoder select
3003		 * set to transcoder B while it's off will prevent the
3004		 * corresponding HDMI output on transcoder A.
3005		 *
3006		 * Combine this with another hardware workaround:
3007		 * transcoder select bit can only be cleared while the
3008		 * port is enabled.
3009		 */
3010		DP &= ~DP_PIPEB_SELECT;
3011		I915_WRITE(intel_dp->output_reg, DP);
3012
3013		/* Changes to enable or select take place the vblank
3014		 * after being written.
3015		 */
3016		if (WARN_ON(crtc == NULL)) {
3017			/* We should never try to disable a port without a crtc
3018			 * attached. For paranoia keep the code around for a
3019			 * bit. */
3020			POSTING_READ(intel_dp->output_reg);
3021			msleep(50);
3022		} else
3023			intel_wait_for_vblank(dev, intel_crtc->pipe);
3024	}
3025
3026	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3027	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3028	POSTING_READ(intel_dp->output_reg);
3029	msleep(intel_dp->panel_power_down_delay);
3030}
3031
3032static bool
3033intel_dp_get_dpcd(struct intel_dp *intel_dp)
3034{
3035	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3036	struct drm_device *dev = dig_port->base.base.dev;
3037	struct drm_i915_private *dev_priv = dev->dev_private;
3038
3039	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3040
3041	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3042				    sizeof(intel_dp->dpcd)) < 0)
3043		return false; /* aux transfer failed */
3044
3045	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3046			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3047	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3048
3049	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3050		return false; /* DPCD not present */
3051
3052	/* Check if the panel supports PSR */
3053	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3054	if (is_edp(intel_dp)) {
3055		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3056					intel_dp->psr_dpcd,
3057					sizeof(intel_dp->psr_dpcd));
3058		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3059			dev_priv->psr.sink_support = true;
3060			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3061		}
3062	}
3063
3064	/* Training Pattern 3 support */
3065	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3066	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3067		intel_dp->use_tps3 = true;
3068		DRM_DEBUG_KMS("Displayport TPS3 supported");
3069	} else
3070		intel_dp->use_tps3 = false;
3071
3072	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3073	      DP_DWN_STRM_PORT_PRESENT))
3074		return true; /* native DP sink */
3075
3076	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3077		return true; /* no per-port downstream info */
3078
3079	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3080				    intel_dp->downstream_ports,
3081				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3082		return false; /* downstream port status fetch failed */
3083
3084	return true;
3085}
3086
3087static void
3088intel_dp_probe_oui(struct intel_dp *intel_dp)
3089{
3090	u8 buf[3];
3091
3092	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3093		return;
3094
3095	intel_edp_panel_vdd_on(intel_dp);
3096
3097	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3098		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3099			      buf[0], buf[1], buf[2]);
3100
3101	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3102		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3103			      buf[0], buf[1], buf[2]);
3104
3105	edp_panel_vdd_off(intel_dp, false);
3106}
3107
3108int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3109{
3110	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3111	struct drm_device *dev = intel_dig_port->base.base.dev;
3112	struct intel_crtc *intel_crtc =
3113		to_intel_crtc(intel_dig_port->base.base.crtc);
3114	u8 buf[1];
3115
3116	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3117		return -EAGAIN;
3118
3119	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3120		return -ENOTTY;
3121
3122	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3123			       DP_TEST_SINK_START) < 0)
3124		return -EAGAIN;
3125
3126	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3127	intel_wait_for_vblank(dev, intel_crtc->pipe);
3128	intel_wait_for_vblank(dev, intel_crtc->pipe);
3129
3130	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3131		return -EAGAIN;
3132
3133	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3134	return 0;
3135}
3136
3137static bool
3138intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3139{
3140	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3141				       DP_DEVICE_SERVICE_IRQ_VECTOR,
3142				       sink_irq_vector, 1) == 1;
3143}
3144
3145static void
3146intel_dp_handle_test_request(struct intel_dp *intel_dp)
3147{
3148	/* NAK by default */
3149	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3150}
3151
3152/*
3153 * According to DP spec
3154 * 5.1.2:
3155 *  1. Read DPCD
3156 *  2. Configure link according to Receiver Capabilities
3157 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3158 *  4. Check link status on receipt of hot-plug interrupt
3159 */
3160
3161void
3162intel_dp_check_link_status(struct intel_dp *intel_dp)
3163{
3164	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3165	u8 sink_irq_vector;
3166	u8 link_status[DP_LINK_STATUS_SIZE];
3167
3168	if (!intel_encoder->connectors_active)
3169		return;
3170
3171	if (WARN_ON(!intel_encoder->base.crtc))
3172		return;
3173
3174	/* Try to read receiver status if the link appears to be up */
3175	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3176		return;
3177	}
3178
3179	/* Now read the DPCD to see if it's actually running */
3180	if (!intel_dp_get_dpcd(intel_dp)) {
3181		return;
3182	}
3183
3184	/* Try to read the source of the interrupt */
3185	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3186	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3187		/* Clear interrupt source */
3188		drm_dp_dpcd_writeb(&intel_dp->aux,
3189				   DP_DEVICE_SERVICE_IRQ_VECTOR,
3190				   sink_irq_vector);
3191
3192		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3193			intel_dp_handle_test_request(intel_dp);
3194		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3195			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3196	}
3197
3198	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3199		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3200			      drm_get_encoder_name(&intel_encoder->base));
3201		intel_dp_start_link_train(intel_dp);
3202		intel_dp_complete_link_train(intel_dp);
3203		intel_dp_stop_link_train(intel_dp);
3204	}
3205}
3206
3207/* XXX this is probably wrong for multiple downstream ports */
3208static enum drm_connector_status
3209intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3210{
3211	uint8_t *dpcd = intel_dp->dpcd;
3212	uint8_t type;
3213
3214	if (!intel_dp_get_dpcd(intel_dp))
3215		return connector_status_disconnected;
3216
3217	/* if there's no downstream port, we're done */
3218	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3219		return connector_status_connected;
3220
3221	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3222	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3223	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3224		uint8_t reg;
3225
3226		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3227					    &reg, 1) < 0)
3228			return connector_status_unknown;
3229
3230		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3231					      : connector_status_disconnected;
3232	}
3233
3234	/* If no HPD, poke DDC gently */
3235	if (drm_probe_ddc(&intel_dp->aux.ddc))
3236		return connector_status_connected;
3237
3238	/* Well we tried, say unknown for unreliable port types */
3239	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3240		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3241		if (type == DP_DS_PORT_TYPE_VGA ||
3242		    type == DP_DS_PORT_TYPE_NON_EDID)
3243			return connector_status_unknown;
3244	} else {
3245		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3246			DP_DWN_STRM_PORT_TYPE_MASK;
3247		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3248		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3249			return connector_status_unknown;
3250	}
3251
3252	/* Anything else is out of spec, warn and ignore */
3253	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3254	return connector_status_disconnected;
3255}
3256
3257static enum drm_connector_status
3258ironlake_dp_detect(struct intel_dp *intel_dp)
3259{
3260	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3261	struct drm_i915_private *dev_priv = dev->dev_private;
3262	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3263	enum drm_connector_status status;
3264
3265	/* Can't disconnect eDP, but you can close the lid... */
3266	if (is_edp(intel_dp)) {
3267		status = intel_panel_detect(dev);
3268		if (status == connector_status_unknown)
3269			status = connector_status_connected;
3270		return status;
3271	}
3272
3273	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3274		return connector_status_disconnected;
3275
3276	return intel_dp_detect_dpcd(intel_dp);
3277}
3278
3279static enum drm_connector_status
3280g4x_dp_detect(struct intel_dp *intel_dp)
3281{
3282	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3283	struct drm_i915_private *dev_priv = dev->dev_private;
3284	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3285	uint32_t bit;
3286
3287	/* Can't disconnect eDP, but you can close the lid... */
3288	if (is_edp(intel_dp)) {
3289		enum drm_connector_status status;
3290
3291		status = intel_panel_detect(dev);
3292		if (status == connector_status_unknown)
3293			status = connector_status_connected;
3294		return status;
3295	}
3296
3297	if (IS_VALLEYVIEW(dev)) {
3298		switch (intel_dig_port->port) {
3299		case PORT_B:
3300			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3301			break;
3302		case PORT_C:
3303			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3304			break;
3305		case PORT_D:
3306			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3307			break;
3308		default:
3309			return connector_status_unknown;
3310		}
3311	} else {
3312		switch (intel_dig_port->port) {
3313		case PORT_B:
3314			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3315			break;
3316		case PORT_C:
3317			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3318			break;
3319		case PORT_D:
3320			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3321			break;
3322		default:
3323			return connector_status_unknown;
3324		}
3325	}
3326
3327	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3328		return connector_status_disconnected;
3329
3330	return intel_dp_detect_dpcd(intel_dp);
3331}
3332
3333static struct edid *
3334intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3335{
3336	struct intel_connector *intel_connector = to_intel_connector(connector);
3337
3338	/* use cached edid if we have one */
3339	if (intel_connector->edid) {
3340		/* invalid edid */
3341		if (IS_ERR(intel_connector->edid))
3342			return NULL;
3343
3344		return drm_edid_duplicate(intel_connector->edid);
3345	}
3346
3347	return drm_get_edid(connector, adapter);
3348}
3349
3350static int
3351intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3352{
3353	struct intel_connector *intel_connector = to_intel_connector(connector);
3354
3355	/* use cached edid if we have one */
3356	if (intel_connector->edid) {
3357		/* invalid edid */
3358		if (IS_ERR(intel_connector->edid))
3359			return 0;
3360
3361		return intel_connector_update_modes(connector,
3362						    intel_connector->edid);
3363	}
3364
3365	return intel_ddc_get_modes(connector, adapter);
3366}
3367
3368static enum drm_connector_status
3369intel_dp_detect(struct drm_connector *connector, bool force)
3370{
3371	struct intel_dp *intel_dp = intel_attached_dp(connector);
3372	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3373	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3374	struct drm_device *dev = connector->dev;
3375	struct drm_i915_private *dev_priv = dev->dev_private;
3376	enum drm_connector_status status;
3377	enum intel_display_power_domain power_domain;
3378	struct edid *edid = NULL;
3379
3380	intel_runtime_pm_get(dev_priv);
3381
3382	power_domain = intel_display_port_power_domain(intel_encoder);
3383	intel_display_power_get(dev_priv, power_domain);
3384
3385	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3386		      connector->base.id, drm_get_connector_name(connector));
3387
3388	intel_dp->has_audio = false;
3389
3390	if (HAS_PCH_SPLIT(dev))
3391		status = ironlake_dp_detect(intel_dp);
3392	else
3393		status = g4x_dp_detect(intel_dp);
3394
3395	if (status != connector_status_connected)
3396		goto out;
3397
3398	intel_dp_probe_oui(intel_dp);
3399
3400	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3401		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3402	} else {
3403		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3404		if (edid) {
3405			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3406			kfree(edid);
3407		}
3408	}
3409
3410	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3411		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3412	status = connector_status_connected;
3413
3414out:
3415	intel_display_power_put(dev_priv, power_domain);
3416
3417	intel_runtime_pm_put(dev_priv);
3418
3419	return status;
3420}
3421
3422static int intel_dp_get_modes(struct drm_connector *connector)
3423{
3424	struct intel_dp *intel_dp = intel_attached_dp(connector);
3425	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3426	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3427	struct intel_connector *intel_connector = to_intel_connector(connector);
3428	struct drm_device *dev = connector->dev;
3429	struct drm_i915_private *dev_priv = dev->dev_private;
3430	enum intel_display_power_domain power_domain;
3431	int ret;
3432
3433	/* We should parse the EDID data and find out if it has an audio sink
3434	 */
3435
3436	power_domain = intel_display_port_power_domain(intel_encoder);
3437	intel_display_power_get(dev_priv, power_domain);
3438
3439	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3440	intel_display_power_put(dev_priv, power_domain);
3441	if (ret)
3442		return ret;
3443
3444	/* if eDP has no EDID, fall back to fixed mode */
3445	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3446		struct drm_display_mode *mode;
3447		mode = drm_mode_duplicate(dev,
3448					  intel_connector->panel.fixed_mode);
3449		if (mode) {
3450			drm_mode_probed_add(connector, mode);
3451			return 1;
3452		}
3453	}
3454	return 0;
3455}
3456
3457static bool
3458intel_dp_detect_audio(struct drm_connector *connector)
3459{
3460	struct intel_dp *intel_dp = intel_attached_dp(connector);
3461	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3462	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3463	struct drm_device *dev = connector->dev;
3464	struct drm_i915_private *dev_priv = dev->dev_private;
3465	enum intel_display_power_domain power_domain;
3466	struct edid *edid;
3467	bool has_audio = false;
3468
3469	power_domain = intel_display_port_power_domain(intel_encoder);
3470	intel_display_power_get(dev_priv, power_domain);
3471
3472	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3473	if (edid) {
3474		has_audio = drm_detect_monitor_audio(edid);
3475		kfree(edid);
3476	}
3477
3478	intel_display_power_put(dev_priv, power_domain);
3479
3480	return has_audio;
3481}
3482
3483static int
3484intel_dp_set_property(struct drm_connector *connector,
3485		      struct drm_property *property,
3486		      uint64_t val)
3487{
3488	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3489	struct intel_connector *intel_connector = to_intel_connector(connector);
3490	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3491	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3492	int ret;
3493
3494	ret = drm_object_property_set_value(&connector->base, property, val);
3495	if (ret)
3496		return ret;
3497
3498	if (property == dev_priv->force_audio_property) {
3499		int i = val;
3500		bool has_audio;
3501
3502		if (i == intel_dp->force_audio)
3503			return 0;
3504
3505		intel_dp->force_audio = i;
3506
3507		if (i == HDMI_AUDIO_AUTO)
3508			has_audio = intel_dp_detect_audio(connector);
3509		else
3510			has_audio = (i == HDMI_AUDIO_ON);
3511
3512		if (has_audio == intel_dp->has_audio)
3513			return 0;
3514
3515		intel_dp->has_audio = has_audio;
3516		goto done;
3517	}
3518
3519	if (property == dev_priv->broadcast_rgb_property) {
3520		bool old_auto = intel_dp->color_range_auto;
3521		uint32_t old_range = intel_dp->color_range;
3522
3523		switch (val) {
3524		case INTEL_BROADCAST_RGB_AUTO:
3525			intel_dp->color_range_auto = true;
3526			break;
3527		case INTEL_BROADCAST_RGB_FULL:
3528			intel_dp->color_range_auto = false;
3529			intel_dp->color_range = 0;
3530			break;
3531		case INTEL_BROADCAST_RGB_LIMITED:
3532			intel_dp->color_range_auto = false;
3533			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3534			break;
3535		default:
3536			return -EINVAL;
3537		}
3538
3539		if (old_auto == intel_dp->color_range_auto &&
3540		    old_range == intel_dp->color_range)
3541			return 0;
3542
3543		goto done;
3544	}
3545
3546	if (is_edp(intel_dp) &&
3547	    property == connector->dev->mode_config.scaling_mode_property) {
3548		if (val == DRM_MODE_SCALE_NONE) {
3549			DRM_DEBUG_KMS("no scaling not supported\n");
3550			return -EINVAL;
3551		}
3552
3553		if (intel_connector->panel.fitting_mode == val) {
3554			/* the eDP scaling property is not changed */
3555			return 0;
3556		}
3557		intel_connector->panel.fitting_mode = val;
3558
3559		goto done;
3560	}
3561
3562	return -EINVAL;
3563
3564done:
3565	if (intel_encoder->base.crtc)
3566		intel_crtc_restore_mode(intel_encoder->base.crtc);
3567
3568	return 0;
3569}
3570
3571static void
3572intel_dp_connector_destroy(struct drm_connector *connector)
3573{
3574	struct intel_connector *intel_connector = to_intel_connector(connector);
3575
3576	if (!IS_ERR_OR_NULL(intel_connector->edid))
3577		kfree(intel_connector->edid);
3578
3579	/* Can't call is_edp() since the encoder may have been destroyed
3580	 * already. */
3581	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3582		intel_panel_fini(&intel_connector->panel);
3583
3584	drm_connector_cleanup(connector);
3585	kfree(connector);
3586}
3587
3588void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3589{
3590	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3591	struct intel_dp *intel_dp = &intel_dig_port->dp;
3592	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3593
3594	drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3595	drm_encoder_cleanup(encoder);
3596	if (is_edp(intel_dp)) {
3597		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3598		mutex_lock(&dev->mode_config.mutex);
3599		edp_panel_vdd_off_sync(intel_dp);
3600		mutex_unlock(&dev->mode_config.mutex);
3601	}
3602	kfree(intel_dig_port);
3603}
3604
3605static const struct drm_connector_funcs intel_dp_connector_funcs = {
3606	.dpms = intel_connector_dpms,
3607	.detect = intel_dp_detect,
3608	.fill_modes = drm_helper_probe_single_connector_modes,
3609	.set_property = intel_dp_set_property,
3610	.destroy = intel_dp_connector_destroy,
3611};
3612
3613static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3614	.get_modes = intel_dp_get_modes,
3615	.mode_valid = intel_dp_mode_valid,
3616	.best_encoder = intel_best_encoder,
3617};
3618
3619static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3620	.destroy = intel_dp_encoder_destroy,
3621};
3622
3623static void
3624intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3625{
3626	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3627
3628	intel_dp_check_link_status(intel_dp);
3629}
3630
3631/* Return which DP Port should be selected for Transcoder DP control */
3632int
3633intel_trans_dp_port_sel(struct drm_crtc *crtc)
3634{
3635	struct drm_device *dev = crtc->dev;
3636	struct intel_encoder *intel_encoder;
3637	struct intel_dp *intel_dp;
3638
3639	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3640		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3641
3642		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3643		    intel_encoder->type == INTEL_OUTPUT_EDP)
3644			return intel_dp->output_reg;
3645	}
3646
3647	return -1;
3648}
3649
3650/* check the VBT to see whether the eDP is on DP-D port */
3651bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3652{
3653	struct drm_i915_private *dev_priv = dev->dev_private;
3654	union child_device_config *p_child;
3655	int i;
3656	static const short port_mapping[] = {
3657		[PORT_B] = PORT_IDPB,
3658		[PORT_C] = PORT_IDPC,
3659		[PORT_D] = PORT_IDPD,
3660	};
3661
3662	if (port == PORT_A)
3663		return true;
3664
3665	if (!dev_priv->vbt.child_dev_num)
3666		return false;
3667
3668	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3669		p_child = dev_priv->vbt.child_dev + i;
3670
3671		if (p_child->common.dvo_port == port_mapping[port] &&
3672		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3673		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3674			return true;
3675	}
3676	return false;
3677}
3678
3679static void
3680intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3681{
3682	struct intel_connector *intel_connector = to_intel_connector(connector);
3683
3684	intel_attach_force_audio_property(connector);
3685	intel_attach_broadcast_rgb_property(connector);
3686	intel_dp->color_range_auto = true;
3687
3688	if (is_edp(intel_dp)) {
3689		drm_mode_create_scaling_mode_property(connector->dev);
3690		drm_object_attach_property(
3691			&connector->base,
3692			connector->dev->mode_config.scaling_mode_property,
3693			DRM_MODE_SCALE_ASPECT);
3694		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3695	}
3696}
3697
3698static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3699{
3700	intel_dp->last_power_cycle = jiffies;
3701	intel_dp->last_power_on = jiffies;
3702	intel_dp->last_backlight_off = jiffies;
3703}
3704
3705static void
3706intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3707				    struct intel_dp *intel_dp,
3708				    struct edp_power_seq *out)
3709{
3710	struct drm_i915_private *dev_priv = dev->dev_private;
3711	struct edp_power_seq cur, vbt, spec, final;
3712	u32 pp_on, pp_off, pp_div, pp;
3713	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3714
3715	if (HAS_PCH_SPLIT(dev)) {
3716		pp_ctrl_reg = PCH_PP_CONTROL;
3717		pp_on_reg = PCH_PP_ON_DELAYS;
3718		pp_off_reg = PCH_PP_OFF_DELAYS;
3719		pp_div_reg = PCH_PP_DIVISOR;
3720	} else {
3721		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3722
3723		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3724		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3725		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3726		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3727	}
3728
3729	/* Workaround: Need to write PP_CONTROL with the unlock key as
3730	 * the very first thing. */
3731	pp = ironlake_get_pp_control(intel_dp);
3732	I915_WRITE(pp_ctrl_reg, pp);
3733
3734	pp_on = I915_READ(pp_on_reg);
3735	pp_off = I915_READ(pp_off_reg);
3736	pp_div = I915_READ(pp_div_reg);
3737
3738	/* Pull timing values out of registers */
3739	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3740		PANEL_POWER_UP_DELAY_SHIFT;
3741
3742	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3743		PANEL_LIGHT_ON_DELAY_SHIFT;
3744
3745	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3746		PANEL_LIGHT_OFF_DELAY_SHIFT;
3747
3748	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3749		PANEL_POWER_DOWN_DELAY_SHIFT;
3750
3751	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3752		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3753
3754	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3755		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3756
3757	vbt = dev_priv->vbt.edp_pps;
3758
3759	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3760	 * our hw here, which are all in 100usec. */
3761	spec.t1_t3 = 210 * 10;
3762	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3763	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3764	spec.t10 = 500 * 10;
3765	/* This one is special and actually in units of 100ms, but zero
3766	 * based in the hw (so we need to add 100 ms). But the sw vbt
3767	 * table multiplies it with 1000 to make it in units of 100usec,
3768	 * too. */
3769	spec.t11_t12 = (510 + 100) * 10;
3770
3771	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3772		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3773
3774	/* Use the max of the register settings and vbt. If both are
3775	 * unset, fall back to the spec limits. */
3776#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3777				       spec.field : \
3778				       max(cur.field, vbt.field))
3779	assign_final(t1_t3);
3780	assign_final(t8);
3781	assign_final(t9);
3782	assign_final(t10);
3783	assign_final(t11_t12);
3784#undef assign_final
3785
3786#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3787	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3788	intel_dp->backlight_on_delay = get_delay(t8);
3789	intel_dp->backlight_off_delay = get_delay(t9);
3790	intel_dp->panel_power_down_delay = get_delay(t10);
3791	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3792#undef get_delay
3793
3794	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3795		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3796		      intel_dp->panel_power_cycle_delay);
3797
3798	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3799		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3800
3801	if (out)
3802		*out = final;
3803}
3804
3805static void
3806intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3807					      struct intel_dp *intel_dp,
3808					      struct edp_power_seq *seq)
3809{
3810	struct drm_i915_private *dev_priv = dev->dev_private;
3811	u32 pp_on, pp_off, pp_div, port_sel = 0;
3812	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3813	int pp_on_reg, pp_off_reg, pp_div_reg;
3814
3815	if (HAS_PCH_SPLIT(dev)) {
3816		pp_on_reg = PCH_PP_ON_DELAYS;
3817		pp_off_reg = PCH_PP_OFF_DELAYS;
3818		pp_div_reg = PCH_PP_DIVISOR;
3819	} else {
3820		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3821
3822		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3823		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3824		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3825	}
3826
3827	/*
3828	 * And finally store the new values in the power sequencer. The
3829	 * backlight delays are set to 1 because we do manual waits on them. For
3830	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3831	 * we'll end up waiting for the backlight off delay twice: once when we
3832	 * do the manual sleep, and once when we disable the panel and wait for
3833	 * the PP_STATUS bit to become zero.
3834	 */
3835	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3836		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3837	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3838		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3839	/* Compute the divisor for the pp clock, simply match the Bspec
3840	 * formula. */
3841	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3842	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3843			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3844
3845	/* Haswell doesn't have any port selection bits for the panel
3846	 * power sequencer any more. */
3847	if (IS_VALLEYVIEW(dev)) {
3848		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3849			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3850		else
3851			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3852	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3853		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3854			port_sel = PANEL_PORT_SELECT_DPA;
3855		else
3856			port_sel = PANEL_PORT_SELECT_DPD;
3857	}
3858
3859	pp_on |= port_sel;
3860
3861	I915_WRITE(pp_on_reg, pp_on);
3862	I915_WRITE(pp_off_reg, pp_off);
3863	I915_WRITE(pp_div_reg, pp_div);
3864
3865	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3866		      I915_READ(pp_on_reg),
3867		      I915_READ(pp_off_reg),
3868		      I915_READ(pp_div_reg));
3869}
3870
3871void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
3872{
3873	struct drm_i915_private *dev_priv = dev->dev_private;
3874	struct intel_encoder *encoder;
3875	struct intel_dp *intel_dp = NULL;
3876	struct intel_crtc_config *config = NULL;
3877	struct intel_crtc *intel_crtc = NULL;
3878	struct intel_connector *intel_connector = dev_priv->drrs.connector;
3879	u32 reg, val;
3880	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
3881
3882	if (refresh_rate <= 0) {
3883		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
3884		return;
3885	}
3886
3887	if (intel_connector == NULL) {
3888		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
3889		return;
3890	}
3891
3892	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
3893		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
3894		return;
3895	}
3896
3897	encoder = intel_attached_encoder(&intel_connector->base);
3898	intel_dp = enc_to_intel_dp(&encoder->base);
3899	intel_crtc = encoder->new_crtc;
3900
3901	if (!intel_crtc) {
3902		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
3903		return;
3904	}
3905
3906	config = &intel_crtc->config;
3907
3908	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
3909		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
3910		return;
3911	}
3912
3913	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
3914		index = DRRS_LOW_RR;
3915
3916	if (index == intel_dp->drrs_state.refresh_rate_type) {
3917		DRM_DEBUG_KMS(
3918			"DRRS requested for previously set RR...ignoring\n");
3919		return;
3920	}
3921
3922	if (!intel_crtc->active) {
3923		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
3924		return;
3925	}
3926
3927	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
3928		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
3929		val = I915_READ(reg);
3930		if (index > DRRS_HIGH_RR) {
3931			val |= PIPECONF_EDP_RR_MODE_SWITCH;
3932			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
3933		} else {
3934			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
3935		}
3936		I915_WRITE(reg, val);
3937	}
3938
3939	/*
3940	 * mutex taken to ensure that there is no race between differnt
3941	 * drrs calls trying to update refresh rate. This scenario may occur
3942	 * in future when idleness detection based DRRS in kernel and
3943	 * possible calls from user space to set differnt RR are made.
3944	 */
3945
3946	mutex_lock(&intel_dp->drrs_state.mutex);
3947
3948	intel_dp->drrs_state.refresh_rate_type = index;
3949
3950	mutex_unlock(&intel_dp->drrs_state.mutex);
3951
3952	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
3953}
3954
3955static struct drm_display_mode *
3956intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
3957			struct intel_connector *intel_connector,
3958			struct drm_display_mode *fixed_mode)
3959{
3960	struct drm_connector *connector = &intel_connector->base;
3961	struct intel_dp *intel_dp = &intel_dig_port->dp;
3962	struct drm_device *dev = intel_dig_port->base.base.dev;
3963	struct drm_i915_private *dev_priv = dev->dev_private;
3964	struct drm_display_mode *downclock_mode = NULL;
3965
3966	if (INTEL_INFO(dev)->gen <= 6) {
3967		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
3968		return NULL;
3969	}
3970
3971	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
3972		DRM_INFO("VBT doesn't support DRRS\n");
3973		return NULL;
3974	}
3975
3976	downclock_mode = intel_find_panel_downclock
3977					(dev, fixed_mode, connector);
3978
3979	if (!downclock_mode) {
3980		DRM_INFO("DRRS not supported\n");
3981		return NULL;
3982	}
3983
3984	dev_priv->drrs.connector = intel_connector;
3985
3986	mutex_init(&intel_dp->drrs_state.mutex);
3987
3988	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
3989
3990	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
3991	DRM_INFO("seamless DRRS supported for eDP panel.\n");
3992	return downclock_mode;
3993}
3994
3995static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3996				     struct intel_connector *intel_connector,
3997				     struct edp_power_seq *power_seq)
3998{
3999	struct drm_connector *connector = &intel_connector->base;
4000	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4001	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4002	struct drm_device *dev = intel_encoder->base.dev;
4003	struct drm_i915_private *dev_priv = dev->dev_private;
4004	struct drm_display_mode *fixed_mode = NULL;
4005	struct drm_display_mode *downclock_mode = NULL;
4006	bool has_dpcd;
4007	struct drm_display_mode *scan;
4008	struct edid *edid;
4009
4010	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4011
4012	if (!is_edp(intel_dp))
4013		return true;
4014
4015	/* The VDD bit needs a power domain reference, so if the bit is already
4016	 * enabled when we boot, grab this reference. */
4017	if (edp_have_panel_vdd(intel_dp)) {
4018		enum intel_display_power_domain power_domain;
4019		power_domain = intel_display_port_power_domain(intel_encoder);
4020		intel_display_power_get(dev_priv, power_domain);
4021	}
4022
4023	/* Cache DPCD and EDID for edp. */
4024	intel_edp_panel_vdd_on(intel_dp);
4025	has_dpcd = intel_dp_get_dpcd(intel_dp);
4026	edp_panel_vdd_off(intel_dp, false);
4027
4028	if (has_dpcd) {
4029		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4030			dev_priv->no_aux_handshake =
4031				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4032				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4033	} else {
4034		/* if this fails, presume the device is a ghost */
4035		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4036		return false;
4037	}
4038
4039	/* We now know it's not a ghost, init power sequence regs. */
4040	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4041
4042	mutex_lock(&dev->mode_config.mutex);
4043	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4044	if (edid) {
4045		if (drm_add_edid_modes(connector, edid)) {
4046			drm_mode_connector_update_edid_property(connector,
4047								edid);
4048			drm_edid_to_eld(connector, edid);
4049		} else {
4050			kfree(edid);
4051			edid = ERR_PTR(-EINVAL);
4052		}
4053	} else {
4054		edid = ERR_PTR(-ENOENT);
4055	}
4056	intel_connector->edid = edid;
4057
4058	/* prefer fixed mode from EDID if available */
4059	list_for_each_entry(scan, &connector->probed_modes, head) {
4060		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4061			fixed_mode = drm_mode_duplicate(dev, scan);
4062			downclock_mode = intel_dp_drrs_init(
4063						intel_dig_port,
4064						intel_connector, fixed_mode);
4065			break;
4066		}
4067	}
4068
4069	/* fallback to VBT if available for eDP */
4070	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4071		fixed_mode = drm_mode_duplicate(dev,
4072					dev_priv->vbt.lfp_lvds_vbt_mode);
4073		if (fixed_mode)
4074			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4075	}
4076	mutex_unlock(&dev->mode_config.mutex);
4077
4078	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4079	intel_panel_setup_backlight(connector);
4080
4081	return true;
4082}
4083
4084bool
4085intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4086			struct intel_connector *intel_connector)
4087{
4088	struct drm_connector *connector = &intel_connector->base;
4089	struct intel_dp *intel_dp = &intel_dig_port->dp;
4090	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4091	struct drm_device *dev = intel_encoder->base.dev;
4092	struct drm_i915_private *dev_priv = dev->dev_private;
4093	enum port port = intel_dig_port->port;
4094	struct edp_power_seq power_seq = { 0 };
4095	int type;
4096
4097	/* intel_dp vfuncs */
4098	if (IS_VALLEYVIEW(dev))
4099		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4100	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4101		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4102	else if (HAS_PCH_SPLIT(dev))
4103		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4104	else
4105		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4106
4107	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4108
4109	/* Preserve the current hw state. */
4110	intel_dp->DP = I915_READ(intel_dp->output_reg);
4111	intel_dp->attached_connector = intel_connector;
4112
4113	if (intel_dp_is_edp(dev, port))
4114		type = DRM_MODE_CONNECTOR_eDP;
4115	else
4116		type = DRM_MODE_CONNECTOR_DisplayPort;
4117
4118	/*
4119	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4120	 * for DP the encoder type can be set by the caller to
4121	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4122	 */
4123	if (type == DRM_MODE_CONNECTOR_eDP)
4124		intel_encoder->type = INTEL_OUTPUT_EDP;
4125
4126	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4127			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4128			port_name(port));
4129
4130	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4131	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4132
4133	connector->interlace_allowed = true;
4134	connector->doublescan_allowed = 0;
4135
4136	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4137			  edp_panel_vdd_work);
4138
4139	intel_connector_attach_encoder(intel_connector, intel_encoder);
4140	drm_sysfs_connector_add(connector);
4141
4142	if (HAS_DDI(dev))
4143		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4144	else
4145		intel_connector->get_hw_state = intel_connector_get_hw_state;
4146	intel_connector->unregister = intel_dp_connector_unregister;
4147
4148	/* Set up the hotplug pin. */
4149	switch (port) {
4150	case PORT_A:
4151		intel_encoder->hpd_pin = HPD_PORT_A;
4152		break;
4153	case PORT_B:
4154		intel_encoder->hpd_pin = HPD_PORT_B;
4155		break;
4156	case PORT_C:
4157		intel_encoder->hpd_pin = HPD_PORT_C;
4158		break;
4159	case PORT_D:
4160		intel_encoder->hpd_pin = HPD_PORT_D;
4161		break;
4162	default:
4163		BUG();
4164	}
4165
4166	if (is_edp(intel_dp)) {
4167		intel_dp_init_panel_power_timestamps(intel_dp);
4168		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4169	}
4170
4171	intel_dp_aux_init(intel_dp, intel_connector);
4172
4173	intel_dp->psr_setup_done = false;
4174
4175	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4176		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
4177		if (is_edp(intel_dp)) {
4178			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4179			mutex_lock(&dev->mode_config.mutex);
4180			edp_panel_vdd_off_sync(intel_dp);
4181			mutex_unlock(&dev->mode_config.mutex);
4182		}
4183		drm_sysfs_connector_remove(connector);
4184		drm_connector_cleanup(connector);
4185		return false;
4186	}
4187
4188	intel_dp_add_properties(intel_dp, connector);
4189
4190	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4191	 * 0xd.  Failure to do so will result in spurious interrupts being
4192	 * generated on the port when a cable is not attached.
4193	 */
4194	if (IS_G4X(dev) && !IS_GM45(dev)) {
4195		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4196		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4197	}
4198
4199	return true;
4200}
4201
4202void
4203intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4204{
4205	struct intel_digital_port *intel_dig_port;
4206	struct intel_encoder *intel_encoder;
4207	struct drm_encoder *encoder;
4208	struct intel_connector *intel_connector;
4209
4210	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4211	if (!intel_dig_port)
4212		return;
4213
4214	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4215	if (!intel_connector) {
4216		kfree(intel_dig_port);
4217		return;
4218	}
4219
4220	intel_encoder = &intel_dig_port->base;
4221	encoder = &intel_encoder->base;
4222
4223	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4224			 DRM_MODE_ENCODER_TMDS);
4225
4226	intel_encoder->compute_config = intel_dp_compute_config;
4227	intel_encoder->mode_set = intel_dp_mode_set;
4228	intel_encoder->disable = intel_disable_dp;
4229	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4230	intel_encoder->get_config = intel_dp_get_config;
4231	if (IS_CHERRYVIEW(dev)) {
4232		intel_encoder->pre_enable = chv_pre_enable_dp;
4233		intel_encoder->enable = vlv_enable_dp;
4234	} else if (IS_VALLEYVIEW(dev)) {
4235		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4236		intel_encoder->pre_enable = vlv_pre_enable_dp;
4237		intel_encoder->enable = vlv_enable_dp;
4238		intel_encoder->post_disable = vlv_post_disable_dp;
4239	} else {
4240		intel_encoder->pre_enable = g4x_pre_enable_dp;
4241		intel_encoder->enable = g4x_enable_dp;
4242		intel_encoder->post_disable = g4x_post_disable_dp;
4243	}
4244
4245	intel_dig_port->port = port;
4246	intel_dig_port->dp.output_reg = output_reg;
4247
4248	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4249	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4250	intel_encoder->cloneable = 0;
4251	intel_encoder->hot_plug = intel_dp_hot_plug;
4252
4253	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4254		drm_encoder_cleanup(encoder);
4255		kfree(intel_dig_port);
4256		kfree(intel_connector);
4257	}
4258}
4259