intel_dp.c revision e953fd7bb32f55309a96abd5ceba9cf68d221434
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39
40#define DP_LINK_STATUS_SIZE	6
41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE	9
44
45struct intel_dp {
46	struct intel_encoder base;
47	uint32_t output_reg;
48	uint32_t DP;
49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50	bool has_audio;
51	int force_audio;
52	uint32_t color_range;
53	int dpms_mode;
54	uint8_t link_bw;
55	uint8_t lane_count;
56	uint8_t dpcd[4];
57	struct i2c_adapter adapter;
58	struct i2c_algo_dp_aux_data algo;
59	bool is_pch_edp;
60	uint8_t	train_set[4];
61	uint8_t link_status[DP_LINK_STATUS_SIZE];
62
63	struct drm_property *force_audio_property;
64};
65
66/**
67 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
68 * @intel_dp: DP struct
69 *
70 * If a CPU or PCH DP output is attached to an eDP panel, this function
71 * will return true, and false otherwise.
72 */
73static bool is_edp(struct intel_dp *intel_dp)
74{
75	return intel_dp->base.type == INTEL_OUTPUT_EDP;
76}
77
78/**
79 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
80 * @intel_dp: DP struct
81 *
82 * Returns true if the given DP struct corresponds to a PCH DP port attached
83 * to an eDP panel, false otherwise.  Helpful for determining whether we
84 * may need FDI resources for a given DP output or not.
85 */
86static bool is_pch_edp(struct intel_dp *intel_dp)
87{
88	return intel_dp->is_pch_edp;
89}
90
91static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
92{
93	return container_of(encoder, struct intel_dp, base.base);
94}
95
96static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
97{
98	return container_of(intel_attached_encoder(connector),
99			    struct intel_dp, base);
100}
101
102/**
103 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
104 * @encoder: DRM encoder
105 *
106 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
107 * by intel_display.c.
108 */
109bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
110{
111	struct intel_dp *intel_dp;
112
113	if (!encoder)
114		return false;
115
116	intel_dp = enc_to_intel_dp(encoder);
117
118	return is_pch_edp(intel_dp);
119}
120
121static void intel_dp_start_link_train(struct intel_dp *intel_dp);
122static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
123static void intel_dp_link_down(struct intel_dp *intel_dp);
124
125void
126intel_edp_link_config (struct intel_encoder *intel_encoder,
127		       int *lane_num, int *link_bw)
128{
129	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
130
131	*lane_num = intel_dp->lane_count;
132	if (intel_dp->link_bw == DP_LINK_BW_1_62)
133		*link_bw = 162000;
134	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
135		*link_bw = 270000;
136}
137
138static int
139intel_dp_max_lane_count(struct intel_dp *intel_dp)
140{
141	int max_lane_count = 4;
142
143	if (intel_dp->dpcd[0] >= 0x11) {
144		max_lane_count = intel_dp->dpcd[2] & 0x1f;
145		switch (max_lane_count) {
146		case 1: case 2: case 4:
147			break;
148		default:
149			max_lane_count = 4;
150		}
151	}
152	return max_lane_count;
153}
154
155static int
156intel_dp_max_link_bw(struct intel_dp *intel_dp)
157{
158	int max_link_bw = intel_dp->dpcd[1];
159
160	switch (max_link_bw) {
161	case DP_LINK_BW_1_62:
162	case DP_LINK_BW_2_7:
163		break;
164	default:
165		max_link_bw = DP_LINK_BW_1_62;
166		break;
167	}
168	return max_link_bw;
169}
170
171static int
172intel_dp_link_clock(uint8_t link_bw)
173{
174	if (link_bw == DP_LINK_BW_2_7)
175		return 270000;
176	else
177		return 162000;
178}
179
180/* I think this is a fiction */
181static int
182intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
183{
184	struct drm_i915_private *dev_priv = dev->dev_private;
185
186	if (is_edp(intel_dp))
187		return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
188	else
189		return pixel_clock * 3;
190}
191
192static int
193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194{
195	return (max_link_clock * max_lanes * 8) / 10;
196}
197
198static int
199intel_dp_mode_valid(struct drm_connector *connector,
200		    struct drm_display_mode *mode)
201{
202	struct intel_dp *intel_dp = intel_attached_dp(connector);
203	struct drm_device *dev = connector->dev;
204	struct drm_i915_private *dev_priv = dev->dev_private;
205	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206	int max_lanes = intel_dp_max_lane_count(intel_dp);
207
208	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210			return MODE_PANEL;
211
212		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213			return MODE_PANEL;
214	}
215
216	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
217	   which are outside spec tolerances but somehow work by magic */
218	if (!is_edp(intel_dp) &&
219	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221		return MODE_CLOCK_HIGH;
222
223	if (mode->clock < 10000)
224		return MODE_CLOCK_LOW;
225
226	return MODE_OK;
227}
228
229static uint32_t
230pack_aux(uint8_t *src, int src_bytes)
231{
232	int	i;
233	uint32_t v = 0;
234
235	if (src_bytes > 4)
236		src_bytes = 4;
237	for (i = 0; i < src_bytes; i++)
238		v |= ((uint32_t) src[i]) << ((3-i) * 8);
239	return v;
240}
241
242static void
243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244{
245	int i;
246	if (dst_bytes > 4)
247		dst_bytes = 4;
248	for (i = 0; i < dst_bytes; i++)
249		dst[i] = src >> ((3-i) * 8);
250}
251
252/* hrawclock is 1/4 the FSB frequency */
253static int
254intel_hrawclk(struct drm_device *dev)
255{
256	struct drm_i915_private *dev_priv = dev->dev_private;
257	uint32_t clkcfg;
258
259	clkcfg = I915_READ(CLKCFG);
260	switch (clkcfg & CLKCFG_FSB_MASK) {
261	case CLKCFG_FSB_400:
262		return 100;
263	case CLKCFG_FSB_533:
264		return 133;
265	case CLKCFG_FSB_667:
266		return 166;
267	case CLKCFG_FSB_800:
268		return 200;
269	case CLKCFG_FSB_1067:
270		return 266;
271	case CLKCFG_FSB_1333:
272		return 333;
273	/* these two are just a guess; one of them might be right */
274	case CLKCFG_FSB_1600:
275	case CLKCFG_FSB_1600_ALT:
276		return 400;
277	default:
278		return 133;
279	}
280}
281
282static int
283intel_dp_aux_ch(struct intel_dp *intel_dp,
284		uint8_t *send, int send_bytes,
285		uint8_t *recv, int recv_size)
286{
287	uint32_t output_reg = intel_dp->output_reg;
288	struct drm_device *dev = intel_dp->base.base.dev;
289	struct drm_i915_private *dev_priv = dev->dev_private;
290	uint32_t ch_ctl = output_reg + 0x10;
291	uint32_t ch_data = ch_ctl + 4;
292	int i;
293	int recv_bytes;
294	uint32_t status;
295	uint32_t aux_clock_divider;
296	int try, precharge;
297
298	/* The clock divider is based off the hrawclk,
299	 * and would like to run at 2MHz. So, take the
300	 * hrawclk value and divide by 2 and use that
301	 *
302	 * Note that PCH attached eDP panels should use a 125MHz input
303	 * clock divider.
304	 */
305	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306		if (IS_GEN6(dev))
307			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308		else
309			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310	} else if (HAS_PCH_SPLIT(dev))
311		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312	else
313		aux_clock_divider = intel_hrawclk(dev) / 2;
314
315	if (IS_GEN6(dev))
316		precharge = 3;
317	else
318		precharge = 5;
319
320	if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
321		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
322			  I915_READ(ch_ctl));
323		return -EBUSY;
324	}
325
326	/* Must try at least 3 times according to DP spec */
327	for (try = 0; try < 5; try++) {
328		/* Load the send data into the aux channel data registers */
329		for (i = 0; i < send_bytes; i += 4)
330			I915_WRITE(ch_data + i,
331				   pack_aux(send + i, send_bytes - i));
332
333		/* Send the command and wait for it to complete */
334		I915_WRITE(ch_ctl,
335			   DP_AUX_CH_CTL_SEND_BUSY |
336			   DP_AUX_CH_CTL_TIME_OUT_400us |
337			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
338			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
339			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
340			   DP_AUX_CH_CTL_DONE |
341			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
342			   DP_AUX_CH_CTL_RECEIVE_ERROR);
343		for (;;) {
344			status = I915_READ(ch_ctl);
345			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
346				break;
347			udelay(100);
348		}
349
350		/* Clear done status and any errors */
351		I915_WRITE(ch_ctl,
352			   status |
353			   DP_AUX_CH_CTL_DONE |
354			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
355			   DP_AUX_CH_CTL_RECEIVE_ERROR);
356		if (status & DP_AUX_CH_CTL_DONE)
357			break;
358	}
359
360	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
361		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
362		return -EBUSY;
363	}
364
365	/* Check for timeout or receive error.
366	 * Timeouts occur when the sink is not connected
367	 */
368	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
369		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
370		return -EIO;
371	}
372
373	/* Timeouts occur when the device isn't connected, so they're
374	 * "normal" -- don't fill the kernel log with these */
375	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
376		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
377		return -ETIMEDOUT;
378	}
379
380	/* Unload any bytes sent back from the other side */
381	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
382		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
383	if (recv_bytes > recv_size)
384		recv_bytes = recv_size;
385
386	for (i = 0; i < recv_bytes; i += 4)
387		unpack_aux(I915_READ(ch_data + i),
388			   recv + i, recv_bytes - i);
389
390	return recv_bytes;
391}
392
393/* Write data to the aux channel in native mode */
394static int
395intel_dp_aux_native_write(struct intel_dp *intel_dp,
396			  uint16_t address, uint8_t *send, int send_bytes)
397{
398	int ret;
399	uint8_t	msg[20];
400	int msg_bytes;
401	uint8_t	ack;
402
403	if (send_bytes > 16)
404		return -1;
405	msg[0] = AUX_NATIVE_WRITE << 4;
406	msg[1] = address >> 8;
407	msg[2] = address & 0xff;
408	msg[3] = send_bytes - 1;
409	memcpy(&msg[4], send, send_bytes);
410	msg_bytes = send_bytes + 4;
411	for (;;) {
412		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
413		if (ret < 0)
414			return ret;
415		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
416			break;
417		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
418			udelay(100);
419		else
420			return -EIO;
421	}
422	return send_bytes;
423}
424
425/* Write a single byte to the aux channel in native mode */
426static int
427intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
428			    uint16_t address, uint8_t byte)
429{
430	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
431}
432
433/* read bytes from a native aux channel */
434static int
435intel_dp_aux_native_read(struct intel_dp *intel_dp,
436			 uint16_t address, uint8_t *recv, int recv_bytes)
437{
438	uint8_t msg[4];
439	int msg_bytes;
440	uint8_t reply[20];
441	int reply_bytes;
442	uint8_t ack;
443	int ret;
444
445	msg[0] = AUX_NATIVE_READ << 4;
446	msg[1] = address >> 8;
447	msg[2] = address & 0xff;
448	msg[3] = recv_bytes - 1;
449
450	msg_bytes = 4;
451	reply_bytes = recv_bytes + 1;
452
453	for (;;) {
454		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
455				      reply, reply_bytes);
456		if (ret == 0)
457			return -EPROTO;
458		if (ret < 0)
459			return ret;
460		ack = reply[0];
461		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
462			memcpy(recv, reply + 1, ret - 1);
463			return ret - 1;
464		}
465		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
466			udelay(100);
467		else
468			return -EIO;
469	}
470}
471
472static int
473intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
474		    uint8_t write_byte, uint8_t *read_byte)
475{
476	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
477	struct intel_dp *intel_dp = container_of(adapter,
478						struct intel_dp,
479						adapter);
480	uint16_t address = algo_data->address;
481	uint8_t msg[5];
482	uint8_t reply[2];
483	unsigned retry;
484	int msg_bytes;
485	int reply_bytes;
486	int ret;
487
488	/* Set up the command byte */
489	if (mode & MODE_I2C_READ)
490		msg[0] = AUX_I2C_READ << 4;
491	else
492		msg[0] = AUX_I2C_WRITE << 4;
493
494	if (!(mode & MODE_I2C_STOP))
495		msg[0] |= AUX_I2C_MOT << 4;
496
497	msg[1] = address >> 8;
498	msg[2] = address;
499
500	switch (mode) {
501	case MODE_I2C_WRITE:
502		msg[3] = 0;
503		msg[4] = write_byte;
504		msg_bytes = 5;
505		reply_bytes = 1;
506		break;
507	case MODE_I2C_READ:
508		msg[3] = 0;
509		msg_bytes = 4;
510		reply_bytes = 2;
511		break;
512	default:
513		msg_bytes = 3;
514		reply_bytes = 1;
515		break;
516	}
517
518	for (retry = 0; retry < 5; retry++) {
519		ret = intel_dp_aux_ch(intel_dp,
520				      msg, msg_bytes,
521				      reply, reply_bytes);
522		if (ret < 0) {
523			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
524			return ret;
525		}
526
527		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
528		case AUX_NATIVE_REPLY_ACK:
529			/* I2C-over-AUX Reply field is only valid
530			 * when paired with AUX ACK.
531			 */
532			break;
533		case AUX_NATIVE_REPLY_NACK:
534			DRM_DEBUG_KMS("aux_ch native nack\n");
535			return -EREMOTEIO;
536		case AUX_NATIVE_REPLY_DEFER:
537			udelay(100);
538			continue;
539		default:
540			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
541				  reply[0]);
542			return -EREMOTEIO;
543		}
544
545		switch (reply[0] & AUX_I2C_REPLY_MASK) {
546		case AUX_I2C_REPLY_ACK:
547			if (mode == MODE_I2C_READ) {
548				*read_byte = reply[1];
549			}
550			return reply_bytes - 1;
551		case AUX_I2C_REPLY_NACK:
552			DRM_DEBUG_KMS("aux_i2c nack\n");
553			return -EREMOTEIO;
554		case AUX_I2C_REPLY_DEFER:
555			DRM_DEBUG_KMS("aux_i2c defer\n");
556			udelay(100);
557			break;
558		default:
559			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
560			return -EREMOTEIO;
561		}
562	}
563
564	DRM_ERROR("too many retries, giving up\n");
565	return -EREMOTEIO;
566}
567
568static int
569intel_dp_i2c_init(struct intel_dp *intel_dp,
570		  struct intel_connector *intel_connector, const char *name)
571{
572	DRM_DEBUG_KMS("i2c_init %s\n", name);
573	intel_dp->algo.running = false;
574	intel_dp->algo.address = 0;
575	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
576
577	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
578	intel_dp->adapter.owner = THIS_MODULE;
579	intel_dp->adapter.class = I2C_CLASS_DDC;
580	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
581	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
582	intel_dp->adapter.algo_data = &intel_dp->algo;
583	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
584
585	return i2c_dp_aux_add_bus(&intel_dp->adapter);
586}
587
588static bool
589intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
590		    struct drm_display_mode *adjusted_mode)
591{
592	struct drm_device *dev = encoder->dev;
593	struct drm_i915_private *dev_priv = dev->dev_private;
594	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
595	int lane_count, clock;
596	int max_lane_count = intel_dp_max_lane_count(intel_dp);
597	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
598	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
599
600	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
601		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
602		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
603					mode, adjusted_mode);
604		/*
605		 * the mode->clock is used to calculate the Data&Link M/N
606		 * of the pipe. For the eDP the fixed clock should be used.
607		 */
608		mode->clock = dev_priv->panel_fixed_mode->clock;
609	}
610
611	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
612		for (clock = 0; clock <= max_clock; clock++) {
613			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
614
615			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
616					<= link_avail) {
617				intel_dp->link_bw = bws[clock];
618				intel_dp->lane_count = lane_count;
619				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
620				DRM_DEBUG_KMS("Display port link bw %02x lane "
621						"count %d clock %d\n",
622				       intel_dp->link_bw, intel_dp->lane_count,
623				       adjusted_mode->clock);
624				return true;
625			}
626		}
627	}
628
629	if (is_edp(intel_dp)) {
630		/* okay we failed just pick the highest */
631		intel_dp->lane_count = max_lane_count;
632		intel_dp->link_bw = bws[max_clock];
633		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
634		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
635			      "count %d clock %d\n",
636			      intel_dp->link_bw, intel_dp->lane_count,
637			      adjusted_mode->clock);
638
639		return true;
640	}
641
642	return false;
643}
644
645struct intel_dp_m_n {
646	uint32_t	tu;
647	uint32_t	gmch_m;
648	uint32_t	gmch_n;
649	uint32_t	link_m;
650	uint32_t	link_n;
651};
652
653static void
654intel_reduce_ratio(uint32_t *num, uint32_t *den)
655{
656	while (*num > 0xffffff || *den > 0xffffff) {
657		*num >>= 1;
658		*den >>= 1;
659	}
660}
661
662static void
663intel_dp_compute_m_n(int bpp,
664		     int nlanes,
665		     int pixel_clock,
666		     int link_clock,
667		     struct intel_dp_m_n *m_n)
668{
669	m_n->tu = 64;
670	m_n->gmch_m = (pixel_clock * bpp) >> 3;
671	m_n->gmch_n = link_clock * nlanes;
672	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
673	m_n->link_m = pixel_clock;
674	m_n->link_n = link_clock;
675	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
676}
677
678void
679intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
680		 struct drm_display_mode *adjusted_mode)
681{
682	struct drm_device *dev = crtc->dev;
683	struct drm_mode_config *mode_config = &dev->mode_config;
684	struct drm_encoder *encoder;
685	struct drm_i915_private *dev_priv = dev->dev_private;
686	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
687	int lane_count = 4, bpp = 24;
688	struct intel_dp_m_n m_n;
689	int pipe = intel_crtc->pipe;
690
691	/*
692	 * Find the lane count in the intel_encoder private
693	 */
694	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
695		struct intel_dp *intel_dp;
696
697		if (encoder->crtc != crtc)
698			continue;
699
700		intel_dp = enc_to_intel_dp(encoder);
701		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
702			lane_count = intel_dp->lane_count;
703			break;
704		} else if (is_edp(intel_dp)) {
705			lane_count = dev_priv->edp.lanes;
706			bpp = dev_priv->edp.bpp;
707			break;
708		}
709	}
710
711	/*
712	 * Compute the GMCH and Link ratios. The '3' here is
713	 * the number of bytes_per_pixel post-LUT, which we always
714	 * set up for 8-bits of R/G/B, or 3 bytes total.
715	 */
716	intel_dp_compute_m_n(bpp, lane_count,
717			     mode->clock, adjusted_mode->clock, &m_n);
718
719	if (HAS_PCH_SPLIT(dev)) {
720		I915_WRITE(TRANSDATA_M1(pipe),
721			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
722			   m_n.gmch_m);
723		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
724		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
725		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
726	} else {
727		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
728			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729			   m_n.gmch_m);
730		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
731		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
732		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
733	}
734}
735
736static void
737intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
738		  struct drm_display_mode *adjusted_mode)
739{
740	struct drm_device *dev = encoder->dev;
741	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
742	struct drm_crtc *crtc = intel_dp->base.base.crtc;
743	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
744
745	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
746	intel_dp->DP |= intel_dp->color_range;
747
748	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
749		intel_dp->DP |= DP_SYNC_HS_HIGH;
750	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
751		intel_dp->DP |= DP_SYNC_VS_HIGH;
752
753	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
754		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
755	else
756		intel_dp->DP |= DP_LINK_TRAIN_OFF;
757
758	switch (intel_dp->lane_count) {
759	case 1:
760		intel_dp->DP |= DP_PORT_WIDTH_1;
761		break;
762	case 2:
763		intel_dp->DP |= DP_PORT_WIDTH_2;
764		break;
765	case 4:
766		intel_dp->DP |= DP_PORT_WIDTH_4;
767		break;
768	}
769	if (intel_dp->has_audio)
770		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
771
772	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
773	intel_dp->link_configuration[0] = intel_dp->link_bw;
774	intel_dp->link_configuration[1] = intel_dp->lane_count;
775
776	/*
777	 * Check for DPCD version > 1.1 and enhanced framing support
778	 */
779	if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
780		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
781		intel_dp->DP |= DP_ENHANCED_FRAMING;
782	}
783
784	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
785	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
786		intel_dp->DP |= DP_PIPEB_SELECT;
787
788	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
789		/* don't miss out required setting for eDP */
790		intel_dp->DP |= DP_PLL_ENABLE;
791		if (adjusted_mode->clock < 200000)
792			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
793		else
794			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
795	}
796}
797
798static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
799{
800	struct drm_device *dev = intel_dp->base.base.dev;
801	struct drm_i915_private *dev_priv = dev->dev_private;
802	u32 pp;
803
804	/*
805	 * If the panel wasn't on, make sure there's not a currently
806	 * active PP sequence before enabling AUX VDD.
807	 */
808	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
809		msleep(dev_priv->panel_t3);
810
811	pp = I915_READ(PCH_PP_CONTROL);
812	pp |= EDP_FORCE_VDD;
813	I915_WRITE(PCH_PP_CONTROL, pp);
814	POSTING_READ(PCH_PP_CONTROL);
815}
816
817static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
818{
819	struct drm_device *dev = intel_dp->base.base.dev;
820	struct drm_i915_private *dev_priv = dev->dev_private;
821	u32 pp;
822
823	pp = I915_READ(PCH_PP_CONTROL);
824	pp &= ~EDP_FORCE_VDD;
825	I915_WRITE(PCH_PP_CONTROL, pp);
826	POSTING_READ(PCH_PP_CONTROL);
827
828	/* Make sure sequencer is idle before allowing subsequent activity */
829	msleep(dev_priv->panel_t12);
830}
831
832/* Returns true if the panel was already on when called */
833static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
834{
835	struct drm_device *dev = intel_dp->base.base.dev;
836	struct drm_i915_private *dev_priv = dev->dev_private;
837	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
838
839	if (I915_READ(PCH_PP_STATUS) & PP_ON)
840		return true;
841
842	pp = I915_READ(PCH_PP_CONTROL);
843
844	/* ILK workaround: disable reset around power sequence */
845	pp &= ~PANEL_POWER_RESET;
846	I915_WRITE(PCH_PP_CONTROL, pp);
847	POSTING_READ(PCH_PP_CONTROL);
848
849	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
850	I915_WRITE(PCH_PP_CONTROL, pp);
851	POSTING_READ(PCH_PP_CONTROL);
852
853	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
854		     5000))
855		DRM_ERROR("panel on wait timed out: 0x%08x\n",
856			  I915_READ(PCH_PP_STATUS));
857
858	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
859	I915_WRITE(PCH_PP_CONTROL, pp);
860	POSTING_READ(PCH_PP_CONTROL);
861
862	return false;
863}
864
865static void ironlake_edp_panel_off (struct drm_device *dev)
866{
867	struct drm_i915_private *dev_priv = dev->dev_private;
868	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
869		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
870
871	pp = I915_READ(PCH_PP_CONTROL);
872
873	/* ILK workaround: disable reset around power sequence */
874	pp &= ~PANEL_POWER_RESET;
875	I915_WRITE(PCH_PP_CONTROL, pp);
876	POSTING_READ(PCH_PP_CONTROL);
877
878	pp &= ~POWER_TARGET_ON;
879	I915_WRITE(PCH_PP_CONTROL, pp);
880	POSTING_READ(PCH_PP_CONTROL);
881
882	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
883		DRM_ERROR("panel off wait timed out: 0x%08x\n",
884			  I915_READ(PCH_PP_STATUS));
885
886	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
887	I915_WRITE(PCH_PP_CONTROL, pp);
888	POSTING_READ(PCH_PP_CONTROL);
889}
890
891static void ironlake_edp_backlight_on (struct drm_device *dev)
892{
893	struct drm_i915_private *dev_priv = dev->dev_private;
894	u32 pp;
895
896	DRM_DEBUG_KMS("\n");
897	/*
898	 * If we enable the backlight right away following a panel power
899	 * on, we may see slight flicker as the panel syncs with the eDP
900	 * link.  So delay a bit to make sure the image is solid before
901	 * allowing it to appear.
902	 */
903	msleep(300);
904	pp = I915_READ(PCH_PP_CONTROL);
905	pp |= EDP_BLC_ENABLE;
906	I915_WRITE(PCH_PP_CONTROL, pp);
907}
908
909static void ironlake_edp_backlight_off (struct drm_device *dev)
910{
911	struct drm_i915_private *dev_priv = dev->dev_private;
912	u32 pp;
913
914	DRM_DEBUG_KMS("\n");
915	pp = I915_READ(PCH_PP_CONTROL);
916	pp &= ~EDP_BLC_ENABLE;
917	I915_WRITE(PCH_PP_CONTROL, pp);
918}
919
920static void ironlake_edp_pll_on(struct drm_encoder *encoder)
921{
922	struct drm_device *dev = encoder->dev;
923	struct drm_i915_private *dev_priv = dev->dev_private;
924	u32 dpa_ctl;
925
926	DRM_DEBUG_KMS("\n");
927	dpa_ctl = I915_READ(DP_A);
928	dpa_ctl |= DP_PLL_ENABLE;
929	I915_WRITE(DP_A, dpa_ctl);
930	POSTING_READ(DP_A);
931	udelay(200);
932}
933
934static void ironlake_edp_pll_off(struct drm_encoder *encoder)
935{
936	struct drm_device *dev = encoder->dev;
937	struct drm_i915_private *dev_priv = dev->dev_private;
938	u32 dpa_ctl;
939
940	dpa_ctl = I915_READ(DP_A);
941	dpa_ctl &= ~DP_PLL_ENABLE;
942	I915_WRITE(DP_A, dpa_ctl);
943	POSTING_READ(DP_A);
944	udelay(200);
945}
946
947static void intel_dp_prepare(struct drm_encoder *encoder)
948{
949	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
950	struct drm_device *dev = encoder->dev;
951
952	if (is_edp(intel_dp)) {
953		ironlake_edp_backlight_off(dev);
954		ironlake_edp_panel_off(dev);
955		if (!is_pch_edp(intel_dp))
956			ironlake_edp_pll_on(encoder);
957		else
958			ironlake_edp_pll_off(encoder);
959	}
960	intel_dp_link_down(intel_dp);
961}
962
963static void intel_dp_commit(struct drm_encoder *encoder)
964{
965	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
966	struct drm_device *dev = encoder->dev;
967
968	if (is_edp(intel_dp))
969		ironlake_edp_panel_vdd_on(intel_dp);
970
971	intel_dp_start_link_train(intel_dp);
972
973	if (is_edp(intel_dp)) {
974		ironlake_edp_panel_on(intel_dp);
975		ironlake_edp_panel_vdd_off(intel_dp);
976	}
977
978	intel_dp_complete_link_train(intel_dp);
979
980	if (is_edp(intel_dp))
981		ironlake_edp_backlight_on(dev);
982}
983
984static void
985intel_dp_dpms(struct drm_encoder *encoder, int mode)
986{
987	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
988	struct drm_device *dev = encoder->dev;
989	struct drm_i915_private *dev_priv = dev->dev_private;
990	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
991
992	if (mode != DRM_MODE_DPMS_ON) {
993		if (is_edp(intel_dp))
994			ironlake_edp_backlight_off(dev);
995		intel_dp_link_down(intel_dp);
996		if (is_edp(intel_dp))
997			ironlake_edp_panel_off(dev);
998		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
999			ironlake_edp_pll_off(encoder);
1000	} else {
1001		if (is_edp(intel_dp))
1002			ironlake_edp_panel_vdd_on(intel_dp);
1003		if (!(dp_reg & DP_PORT_EN)) {
1004			intel_dp_start_link_train(intel_dp);
1005			if (is_edp(intel_dp)) {
1006				ironlake_edp_panel_on(intel_dp);
1007				ironlake_edp_panel_vdd_off(intel_dp);
1008			}
1009			intel_dp_complete_link_train(intel_dp);
1010		}
1011		if (is_edp(intel_dp))
1012			ironlake_edp_backlight_on(dev);
1013	}
1014	intel_dp->dpms_mode = mode;
1015}
1016
1017/*
1018 * Fetch AUX CH registers 0x202 - 0x207 which contain
1019 * link status information
1020 */
1021static bool
1022intel_dp_get_link_status(struct intel_dp *intel_dp)
1023{
1024	int ret;
1025
1026	ret = intel_dp_aux_native_read(intel_dp,
1027				       DP_LANE0_1_STATUS,
1028				       intel_dp->link_status, DP_LINK_STATUS_SIZE);
1029	if (ret != DP_LINK_STATUS_SIZE)
1030		return false;
1031	return true;
1032}
1033
1034static uint8_t
1035intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1036		     int r)
1037{
1038	return link_status[r - DP_LANE0_1_STATUS];
1039}
1040
1041static uint8_t
1042intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1043				 int lane)
1044{
1045	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1046	int	    s = ((lane & 1) ?
1047			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1048			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1049	uint8_t l = intel_dp_link_status(link_status, i);
1050
1051	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1052}
1053
1054static uint8_t
1055intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1056				      int lane)
1057{
1058	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1059	int	    s = ((lane & 1) ?
1060			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1061			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1062	uint8_t l = intel_dp_link_status(link_status, i);
1063
1064	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1065}
1066
1067
1068#if 0
1069static char	*voltage_names[] = {
1070	"0.4V", "0.6V", "0.8V", "1.2V"
1071};
1072static char	*pre_emph_names[] = {
1073	"0dB", "3.5dB", "6dB", "9.5dB"
1074};
1075static char	*link_train_names[] = {
1076	"pattern 1", "pattern 2", "idle", "off"
1077};
1078#endif
1079
1080/*
1081 * These are source-specific values; current Intel hardware supports
1082 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1083 */
1084#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1085
1086static uint8_t
1087intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1088{
1089	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1090	case DP_TRAIN_VOLTAGE_SWING_400:
1091		return DP_TRAIN_PRE_EMPHASIS_6;
1092	case DP_TRAIN_VOLTAGE_SWING_600:
1093		return DP_TRAIN_PRE_EMPHASIS_6;
1094	case DP_TRAIN_VOLTAGE_SWING_800:
1095		return DP_TRAIN_PRE_EMPHASIS_3_5;
1096	case DP_TRAIN_VOLTAGE_SWING_1200:
1097	default:
1098		return DP_TRAIN_PRE_EMPHASIS_0;
1099	}
1100}
1101
1102static void
1103intel_get_adjust_train(struct intel_dp *intel_dp)
1104{
1105	uint8_t v = 0;
1106	uint8_t p = 0;
1107	int lane;
1108
1109	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1110		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1111		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1112
1113		if (this_v > v)
1114			v = this_v;
1115		if (this_p > p)
1116			p = this_p;
1117	}
1118
1119	if (v >= I830_DP_VOLTAGE_MAX)
1120		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1121
1122	if (p >= intel_dp_pre_emphasis_max(v))
1123		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1124
1125	for (lane = 0; lane < 4; lane++)
1126		intel_dp->train_set[lane] = v | p;
1127}
1128
1129static uint32_t
1130intel_dp_signal_levels(uint8_t train_set, int lane_count)
1131{
1132	uint32_t	signal_levels = 0;
1133
1134	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1135	case DP_TRAIN_VOLTAGE_SWING_400:
1136	default:
1137		signal_levels |= DP_VOLTAGE_0_4;
1138		break;
1139	case DP_TRAIN_VOLTAGE_SWING_600:
1140		signal_levels |= DP_VOLTAGE_0_6;
1141		break;
1142	case DP_TRAIN_VOLTAGE_SWING_800:
1143		signal_levels |= DP_VOLTAGE_0_8;
1144		break;
1145	case DP_TRAIN_VOLTAGE_SWING_1200:
1146		signal_levels |= DP_VOLTAGE_1_2;
1147		break;
1148	}
1149	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1150	case DP_TRAIN_PRE_EMPHASIS_0:
1151	default:
1152		signal_levels |= DP_PRE_EMPHASIS_0;
1153		break;
1154	case DP_TRAIN_PRE_EMPHASIS_3_5:
1155		signal_levels |= DP_PRE_EMPHASIS_3_5;
1156		break;
1157	case DP_TRAIN_PRE_EMPHASIS_6:
1158		signal_levels |= DP_PRE_EMPHASIS_6;
1159		break;
1160	case DP_TRAIN_PRE_EMPHASIS_9_5:
1161		signal_levels |= DP_PRE_EMPHASIS_9_5;
1162		break;
1163	}
1164	return signal_levels;
1165}
1166
1167/* Gen6's DP voltage swing and pre-emphasis control */
1168static uint32_t
1169intel_gen6_edp_signal_levels(uint8_t train_set)
1170{
1171	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1172					 DP_TRAIN_PRE_EMPHASIS_MASK);
1173	switch (signal_levels) {
1174	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1175	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1176		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1177	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1178		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1179	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1180	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1181		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1182	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1183	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1184		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1185	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1186	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1187		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1188	default:
1189		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1190			      "0x%x\n", signal_levels);
1191		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1192	}
1193}
1194
1195static uint8_t
1196intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1197		      int lane)
1198{
1199	int i = DP_LANE0_1_STATUS + (lane >> 1);
1200	int s = (lane & 1) * 4;
1201	uint8_t l = intel_dp_link_status(link_status, i);
1202
1203	return (l >> s) & 0xf;
1204}
1205
1206/* Check for clock recovery is done on all channels */
1207static bool
1208intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1209{
1210	int lane;
1211	uint8_t lane_status;
1212
1213	for (lane = 0; lane < lane_count; lane++) {
1214		lane_status = intel_get_lane_status(link_status, lane);
1215		if ((lane_status & DP_LANE_CR_DONE) == 0)
1216			return false;
1217	}
1218	return true;
1219}
1220
1221/* Check to see if channel eq is done on all channels */
1222#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1223			 DP_LANE_CHANNEL_EQ_DONE|\
1224			 DP_LANE_SYMBOL_LOCKED)
1225static bool
1226intel_channel_eq_ok(struct intel_dp *intel_dp)
1227{
1228	uint8_t lane_align;
1229	uint8_t lane_status;
1230	int lane;
1231
1232	lane_align = intel_dp_link_status(intel_dp->link_status,
1233					  DP_LANE_ALIGN_STATUS_UPDATED);
1234	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1235		return false;
1236	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1237		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1238		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1239			return false;
1240	}
1241	return true;
1242}
1243
1244static bool
1245intel_dp_set_link_train(struct intel_dp *intel_dp,
1246			uint32_t dp_reg_value,
1247			uint8_t dp_train_pat)
1248{
1249	struct drm_device *dev = intel_dp->base.base.dev;
1250	struct drm_i915_private *dev_priv = dev->dev_private;
1251	int ret;
1252
1253	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1254	POSTING_READ(intel_dp->output_reg);
1255
1256	intel_dp_aux_native_write_1(intel_dp,
1257				    DP_TRAINING_PATTERN_SET,
1258				    dp_train_pat);
1259
1260	ret = intel_dp_aux_native_write(intel_dp,
1261					DP_TRAINING_LANE0_SET,
1262					intel_dp->train_set, 4);
1263	if (ret != 4)
1264		return false;
1265
1266	return true;
1267}
1268
1269/* Enable corresponding port and start training pattern 1 */
1270static void
1271intel_dp_start_link_train(struct intel_dp *intel_dp)
1272{
1273	struct drm_device *dev = intel_dp->base.base.dev;
1274	struct drm_i915_private *dev_priv = dev->dev_private;
1275	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1276	int i;
1277	uint8_t voltage;
1278	bool clock_recovery = false;
1279	int tries;
1280	u32 reg;
1281	uint32_t DP = intel_dp->DP;
1282
1283	/* Enable output, wait for it to become active */
1284	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1285	POSTING_READ(intel_dp->output_reg);
1286	intel_wait_for_vblank(dev, intel_crtc->pipe);
1287
1288	/* Write the link configuration data */
1289	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1290				  intel_dp->link_configuration,
1291				  DP_LINK_CONFIGURATION_SIZE);
1292
1293	DP |= DP_PORT_EN;
1294	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1295		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1296	else
1297		DP &= ~DP_LINK_TRAIN_MASK;
1298	memset(intel_dp->train_set, 0, 4);
1299	voltage = 0xff;
1300	tries = 0;
1301	clock_recovery = false;
1302	for (;;) {
1303		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1304		uint32_t    signal_levels;
1305		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1306			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1307			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1308		} else {
1309			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1310			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1311		}
1312
1313		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1314			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1315		else
1316			reg = DP | DP_LINK_TRAIN_PAT_1;
1317
1318		if (!intel_dp_set_link_train(intel_dp, reg,
1319					     DP_TRAINING_PATTERN_1))
1320			break;
1321		/* Set training pattern 1 */
1322
1323		udelay(100);
1324		if (!intel_dp_get_link_status(intel_dp))
1325			break;
1326
1327		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1328			clock_recovery = true;
1329			break;
1330		}
1331
1332		/* Check to see if we've tried the max voltage */
1333		for (i = 0; i < intel_dp->lane_count; i++)
1334			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1335				break;
1336		if (i == intel_dp->lane_count)
1337			break;
1338
1339		/* Check to see if we've tried the same voltage 5 times */
1340		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1341			++tries;
1342			if (tries == 5)
1343				break;
1344		} else
1345			tries = 0;
1346		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1347
1348		/* Compute new intel_dp->train_set as requested by target */
1349		intel_get_adjust_train(intel_dp);
1350	}
1351
1352	intel_dp->DP = DP;
1353}
1354
1355static void
1356intel_dp_complete_link_train(struct intel_dp *intel_dp)
1357{
1358	struct drm_device *dev = intel_dp->base.base.dev;
1359	struct drm_i915_private *dev_priv = dev->dev_private;
1360	bool channel_eq = false;
1361	int tries, cr_tries;
1362	u32 reg;
1363	uint32_t DP = intel_dp->DP;
1364
1365	/* channel equalization */
1366	tries = 0;
1367	cr_tries = 0;
1368	channel_eq = false;
1369	for (;;) {
1370		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1371		uint32_t    signal_levels;
1372
1373		if (cr_tries > 5) {
1374			DRM_ERROR("failed to train DP, aborting\n");
1375			intel_dp_link_down(intel_dp);
1376			break;
1377		}
1378
1379		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1380			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1381			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1382		} else {
1383			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1384			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1385		}
1386
1387		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1388			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1389		else
1390			reg = DP | DP_LINK_TRAIN_PAT_2;
1391
1392		/* channel eq pattern */
1393		if (!intel_dp_set_link_train(intel_dp, reg,
1394					     DP_TRAINING_PATTERN_2))
1395			break;
1396
1397		udelay(400);
1398		if (!intel_dp_get_link_status(intel_dp))
1399			break;
1400
1401		/* Make sure clock is still ok */
1402		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1403			intel_dp_start_link_train(intel_dp);
1404			cr_tries++;
1405			continue;
1406		}
1407
1408		if (intel_channel_eq_ok(intel_dp)) {
1409			channel_eq = true;
1410			break;
1411		}
1412
1413		/* Try 5 times, then try clock recovery if that fails */
1414		if (tries > 5) {
1415			intel_dp_link_down(intel_dp);
1416			intel_dp_start_link_train(intel_dp);
1417			tries = 0;
1418			cr_tries++;
1419			continue;
1420		}
1421
1422		/* Compute new intel_dp->train_set as requested by target */
1423		intel_get_adjust_train(intel_dp);
1424		++tries;
1425	}
1426
1427	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1428		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1429	else
1430		reg = DP | DP_LINK_TRAIN_OFF;
1431
1432	I915_WRITE(intel_dp->output_reg, reg);
1433	POSTING_READ(intel_dp->output_reg);
1434	intel_dp_aux_native_write_1(intel_dp,
1435				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1436}
1437
1438static void
1439intel_dp_link_down(struct intel_dp *intel_dp)
1440{
1441	struct drm_device *dev = intel_dp->base.base.dev;
1442	struct drm_i915_private *dev_priv = dev->dev_private;
1443	uint32_t DP = intel_dp->DP;
1444
1445	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1446		return;
1447
1448	DRM_DEBUG_KMS("\n");
1449
1450	if (is_edp(intel_dp)) {
1451		DP &= ~DP_PLL_ENABLE;
1452		I915_WRITE(intel_dp->output_reg, DP);
1453		POSTING_READ(intel_dp->output_reg);
1454		udelay(100);
1455	}
1456
1457	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1458		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1459		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1460	} else {
1461		DP &= ~DP_LINK_TRAIN_MASK;
1462		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1463	}
1464	POSTING_READ(intel_dp->output_reg);
1465
1466	msleep(17);
1467
1468	if (is_edp(intel_dp))
1469		DP |= DP_LINK_TRAIN_OFF;
1470
1471	if (!HAS_PCH_CPT(dev) &&
1472	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1473		struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1474		/* Hardware workaround: leaving our transcoder select
1475		 * set to transcoder B while it's off will prevent the
1476		 * corresponding HDMI output on transcoder A.
1477		 *
1478		 * Combine this with another hardware workaround:
1479		 * transcoder select bit can only be cleared while the
1480		 * port is enabled.
1481		 */
1482		DP &= ~DP_PIPEB_SELECT;
1483		I915_WRITE(intel_dp->output_reg, DP);
1484
1485		/* Changes to enable or select take place the vblank
1486		 * after being written.
1487		 */
1488		intel_wait_for_vblank(dev, intel_crtc->pipe);
1489	}
1490
1491	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1492	POSTING_READ(intel_dp->output_reg);
1493}
1494
1495/*
1496 * According to DP spec
1497 * 5.1.2:
1498 *  1. Read DPCD
1499 *  2. Configure link according to Receiver Capabilities
1500 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1501 *  4. Check link status on receipt of hot-plug interrupt
1502 */
1503
1504static void
1505intel_dp_check_link_status(struct intel_dp *intel_dp)
1506{
1507	if (!intel_dp->base.base.crtc)
1508		return;
1509
1510	if (!intel_dp_get_link_status(intel_dp)) {
1511		intel_dp_link_down(intel_dp);
1512		return;
1513	}
1514
1515	if (!intel_channel_eq_ok(intel_dp)) {
1516		intel_dp_start_link_train(intel_dp);
1517		intel_dp_complete_link_train(intel_dp);
1518	}
1519}
1520
1521static enum drm_connector_status
1522ironlake_dp_detect(struct intel_dp *intel_dp)
1523{
1524	enum drm_connector_status status;
1525
1526	/* Can't disconnect eDP, but you can close the lid... */
1527	if (is_edp(intel_dp)) {
1528		status = intel_panel_detect(intel_dp->base.base.dev);
1529		if (status == connector_status_unknown)
1530			status = connector_status_connected;
1531		return status;
1532	}
1533
1534	status = connector_status_disconnected;
1535	if (intel_dp_aux_native_read(intel_dp,
1536				     0x000, intel_dp->dpcd,
1537				     sizeof (intel_dp->dpcd))
1538	    == sizeof(intel_dp->dpcd)) {
1539		if (intel_dp->dpcd[0] != 0)
1540			status = connector_status_connected;
1541	}
1542	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1543		      intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1544	return status;
1545}
1546
1547static enum drm_connector_status
1548g4x_dp_detect(struct intel_dp *intel_dp)
1549{
1550	struct drm_device *dev = intel_dp->base.base.dev;
1551	struct drm_i915_private *dev_priv = dev->dev_private;
1552	enum drm_connector_status status;
1553	uint32_t temp, bit;
1554
1555	switch (intel_dp->output_reg) {
1556	case DP_B:
1557		bit = DPB_HOTPLUG_INT_STATUS;
1558		break;
1559	case DP_C:
1560		bit = DPC_HOTPLUG_INT_STATUS;
1561		break;
1562	case DP_D:
1563		bit = DPD_HOTPLUG_INT_STATUS;
1564		break;
1565	default:
1566		return connector_status_unknown;
1567	}
1568
1569	temp = I915_READ(PORT_HOTPLUG_STAT);
1570
1571	if ((temp & bit) == 0)
1572		return connector_status_disconnected;
1573
1574	status = connector_status_disconnected;
1575	if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1576				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1577	{
1578		if (intel_dp->dpcd[0] != 0)
1579			status = connector_status_connected;
1580	}
1581
1582	return status;
1583}
1584
1585/**
1586 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1587 *
1588 * \return true if DP port is connected.
1589 * \return false if DP port is disconnected.
1590 */
1591static enum drm_connector_status
1592intel_dp_detect(struct drm_connector *connector, bool force)
1593{
1594	struct intel_dp *intel_dp = intel_attached_dp(connector);
1595	struct drm_device *dev = intel_dp->base.base.dev;
1596	enum drm_connector_status status;
1597	struct edid *edid = NULL;
1598
1599	intel_dp->has_audio = false;
1600
1601	if (HAS_PCH_SPLIT(dev))
1602		status = ironlake_dp_detect(intel_dp);
1603	else
1604		status = g4x_dp_detect(intel_dp);
1605	if (status != connector_status_connected)
1606		return status;
1607
1608	if (intel_dp->force_audio) {
1609		intel_dp->has_audio = intel_dp->force_audio > 0;
1610	} else {
1611		edid = drm_get_edid(connector, &intel_dp->adapter);
1612		if (edid) {
1613			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1614			connector->display_info.raw_edid = NULL;
1615			kfree(edid);
1616		}
1617	}
1618
1619	return connector_status_connected;
1620}
1621
1622static int intel_dp_get_modes(struct drm_connector *connector)
1623{
1624	struct intel_dp *intel_dp = intel_attached_dp(connector);
1625	struct drm_device *dev = intel_dp->base.base.dev;
1626	struct drm_i915_private *dev_priv = dev->dev_private;
1627	int ret;
1628
1629	/* We should parse the EDID data and find out if it has an audio sink
1630	 */
1631
1632	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1633	if (ret) {
1634		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1635			struct drm_display_mode *newmode;
1636			list_for_each_entry(newmode, &connector->probed_modes,
1637					    head) {
1638				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1639					dev_priv->panel_fixed_mode =
1640						drm_mode_duplicate(dev, newmode);
1641					break;
1642				}
1643			}
1644		}
1645
1646		return ret;
1647	}
1648
1649	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1650	if (is_edp(intel_dp)) {
1651		if (dev_priv->panel_fixed_mode != NULL) {
1652			struct drm_display_mode *mode;
1653			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1654			drm_mode_probed_add(connector, mode);
1655			return 1;
1656		}
1657	}
1658	return 0;
1659}
1660
1661static bool
1662intel_dp_detect_audio(struct drm_connector *connector)
1663{
1664	struct intel_dp *intel_dp = intel_attached_dp(connector);
1665	struct edid *edid;
1666	bool has_audio = false;
1667
1668	edid = drm_get_edid(connector, &intel_dp->adapter);
1669	if (edid) {
1670		has_audio = drm_detect_monitor_audio(edid);
1671
1672		connector->display_info.raw_edid = NULL;
1673		kfree(edid);
1674	}
1675
1676	return has_audio;
1677}
1678
1679static int
1680intel_dp_set_property(struct drm_connector *connector,
1681		      struct drm_property *property,
1682		      uint64_t val)
1683{
1684	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1685	struct intel_dp *intel_dp = intel_attached_dp(connector);
1686	int ret;
1687
1688	ret = drm_connector_property_set_value(connector, property, val);
1689	if (ret)
1690		return ret;
1691
1692	if (property == intel_dp->force_audio_property) {
1693		int i = val;
1694		bool has_audio;
1695
1696		if (i == intel_dp->force_audio)
1697			return 0;
1698
1699		intel_dp->force_audio = i;
1700
1701		if (i == 0)
1702			has_audio = intel_dp_detect_audio(connector);
1703		else
1704			has_audio = i > 0;
1705
1706		if (has_audio == intel_dp->has_audio)
1707			return 0;
1708
1709		intel_dp->has_audio = has_audio;
1710		goto done;
1711	}
1712
1713	if (property == dev_priv->broadcast_rgb_property) {
1714		if (val == !!intel_dp->color_range)
1715			return 0;
1716
1717		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1718		goto done;
1719	}
1720
1721	return -EINVAL;
1722
1723done:
1724	if (intel_dp->base.base.crtc) {
1725		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1726		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1727					 crtc->x, crtc->y,
1728					 crtc->fb);
1729	}
1730
1731	return 0;
1732}
1733
1734static void
1735intel_dp_destroy (struct drm_connector *connector)
1736{
1737	drm_sysfs_connector_remove(connector);
1738	drm_connector_cleanup(connector);
1739	kfree(connector);
1740}
1741
1742static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1743{
1744	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1745
1746	i2c_del_adapter(&intel_dp->adapter);
1747	drm_encoder_cleanup(encoder);
1748	kfree(intel_dp);
1749}
1750
1751static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1752	.dpms = intel_dp_dpms,
1753	.mode_fixup = intel_dp_mode_fixup,
1754	.prepare = intel_dp_prepare,
1755	.mode_set = intel_dp_mode_set,
1756	.commit = intel_dp_commit,
1757};
1758
1759static const struct drm_connector_funcs intel_dp_connector_funcs = {
1760	.dpms = drm_helper_connector_dpms,
1761	.detect = intel_dp_detect,
1762	.fill_modes = drm_helper_probe_single_connector_modes,
1763	.set_property = intel_dp_set_property,
1764	.destroy = intel_dp_destroy,
1765};
1766
1767static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1768	.get_modes = intel_dp_get_modes,
1769	.mode_valid = intel_dp_mode_valid,
1770	.best_encoder = intel_best_encoder,
1771};
1772
1773static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1774	.destroy = intel_dp_encoder_destroy,
1775};
1776
1777static void
1778intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1779{
1780	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1781
1782	if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1783		intel_dp_check_link_status(intel_dp);
1784}
1785
1786/* Return which DP Port should be selected for Transcoder DP control */
1787int
1788intel_trans_dp_port_sel (struct drm_crtc *crtc)
1789{
1790	struct drm_device *dev = crtc->dev;
1791	struct drm_mode_config *mode_config = &dev->mode_config;
1792	struct drm_encoder *encoder;
1793
1794	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1795		struct intel_dp *intel_dp;
1796
1797		if (encoder->crtc != crtc)
1798			continue;
1799
1800		intel_dp = enc_to_intel_dp(encoder);
1801		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1802			return intel_dp->output_reg;
1803	}
1804
1805	return -1;
1806}
1807
1808/* check the VBT to see whether the eDP is on DP-D port */
1809bool intel_dpd_is_edp(struct drm_device *dev)
1810{
1811	struct drm_i915_private *dev_priv = dev->dev_private;
1812	struct child_device_config *p_child;
1813	int i;
1814
1815	if (!dev_priv->child_dev_num)
1816		return false;
1817
1818	for (i = 0; i < dev_priv->child_dev_num; i++) {
1819		p_child = dev_priv->child_dev + i;
1820
1821		if (p_child->dvo_port == PORT_IDPD &&
1822		    p_child->device_type == DEVICE_TYPE_eDP)
1823			return true;
1824	}
1825	return false;
1826}
1827
1828static void
1829intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1830{
1831	struct drm_device *dev = connector->dev;
1832
1833	intel_dp->force_audio_property =
1834		drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1835	if (intel_dp->force_audio_property) {
1836		intel_dp->force_audio_property->values[0] = -1;
1837		intel_dp->force_audio_property->values[1] = 1;
1838		drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1839	}
1840
1841	intel_attach_broadcast_rgb_property(connector);
1842}
1843
1844void
1845intel_dp_init(struct drm_device *dev, int output_reg)
1846{
1847	struct drm_i915_private *dev_priv = dev->dev_private;
1848	struct drm_connector *connector;
1849	struct intel_dp *intel_dp;
1850	struct intel_encoder *intel_encoder;
1851	struct intel_connector *intel_connector;
1852	const char *name = NULL;
1853	int type;
1854
1855	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1856	if (!intel_dp)
1857		return;
1858
1859	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1860	if (!intel_connector) {
1861		kfree(intel_dp);
1862		return;
1863	}
1864	intel_encoder = &intel_dp->base;
1865
1866	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1867		if (intel_dpd_is_edp(dev))
1868			intel_dp->is_pch_edp = true;
1869
1870	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1871		type = DRM_MODE_CONNECTOR_eDP;
1872		intel_encoder->type = INTEL_OUTPUT_EDP;
1873	} else {
1874		type = DRM_MODE_CONNECTOR_DisplayPort;
1875		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1876	}
1877
1878	connector = &intel_connector->base;
1879	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1880	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1881
1882	connector->polled = DRM_CONNECTOR_POLL_HPD;
1883
1884	if (output_reg == DP_B || output_reg == PCH_DP_B)
1885		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1886	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1887		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1888	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1889		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1890
1891	if (is_edp(intel_dp))
1892		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1893
1894	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1895	connector->interlace_allowed = true;
1896	connector->doublescan_allowed = 0;
1897
1898	intel_dp->output_reg = output_reg;
1899	intel_dp->has_audio = false;
1900	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1901
1902	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1903			 DRM_MODE_ENCODER_TMDS);
1904	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1905
1906	intel_connector_attach_encoder(intel_connector, intel_encoder);
1907	drm_sysfs_connector_add(connector);
1908
1909	/* Set up the DDC bus. */
1910	switch (output_reg) {
1911		case DP_A:
1912			name = "DPDDC-A";
1913			break;
1914		case DP_B:
1915		case PCH_DP_B:
1916			dev_priv->hotplug_supported_mask |=
1917				HDMIB_HOTPLUG_INT_STATUS;
1918			name = "DPDDC-B";
1919			break;
1920		case DP_C:
1921		case PCH_DP_C:
1922			dev_priv->hotplug_supported_mask |=
1923				HDMIC_HOTPLUG_INT_STATUS;
1924			name = "DPDDC-C";
1925			break;
1926		case DP_D:
1927		case PCH_DP_D:
1928			dev_priv->hotplug_supported_mask |=
1929				HDMID_HOTPLUG_INT_STATUS;
1930			name = "DPDDC-D";
1931			break;
1932	}
1933
1934	intel_dp_i2c_init(intel_dp, intel_connector, name);
1935
1936	/* Cache some DPCD data in the eDP case */
1937	if (is_edp(intel_dp)) {
1938		int ret;
1939		u32 pp_on, pp_div;
1940
1941		pp_on = I915_READ(PCH_PP_ON_DELAYS);
1942		pp_div = I915_READ(PCH_PP_DIVISOR);
1943
1944		/* Get T3 & T12 values (note: VESA not bspec terminology) */
1945		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
1946		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
1947		dev_priv->panel_t12 = pp_div & 0xf;
1948		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
1949
1950		ironlake_edp_panel_vdd_on(intel_dp);
1951		ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1952					       intel_dp->dpcd,
1953					       sizeof(intel_dp->dpcd));
1954		if (ret == sizeof(intel_dp->dpcd)) {
1955			if (intel_dp->dpcd[0] >= 0x11)
1956				dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1957					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1958		} else {
1959			DRM_ERROR("failed to retrieve link info\n");
1960		}
1961		ironlake_edp_panel_vdd_off(intel_dp);
1962	}
1963
1964	intel_encoder->hot_plug = intel_dp_hot_plug;
1965
1966	if (is_edp(intel_dp)) {
1967		/* initialize panel mode from VBT if available for eDP */
1968		if (dev_priv->lfp_lvds_vbt_mode) {
1969			dev_priv->panel_fixed_mode =
1970				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1971			if (dev_priv->panel_fixed_mode) {
1972				dev_priv->panel_fixed_mode->type |=
1973					DRM_MODE_TYPE_PREFERRED;
1974			}
1975		}
1976	}
1977
1978	intel_dp_add_properties(intel_dp, connector);
1979
1980	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1981	 * 0xd.  Failure to do so will result in spurious interrupts being
1982	 * generated on the port when a cable is not attached.
1983	 */
1984	if (IS_G4X(dev) && !IS_GM45(dev)) {
1985		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1986		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1987	}
1988}
1989