intel_dp.c revision fa90ecefdc656b1e25af18251707907dbc1e7609
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
40
41/**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48static bool is_edp(struct intel_dp *intel_dp)
49{
50	return intel_dp->base.type == INTEL_OUTPUT_EDP;
51}
52
53/**
54 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55 * @intel_dp: DP struct
56 *
57 * Returns true if the given DP struct corresponds to a PCH DP port attached
58 * to an eDP panel, false otherwise.  Helpful for determining whether we
59 * may need FDI resources for a given DP output or not.
60 */
61static bool is_pch_edp(struct intel_dp *intel_dp)
62{
63	return intel_dp->is_pch_edp;
64}
65
66/**
67 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68 * @intel_dp: DP struct
69 *
70 * Returns true if the given DP struct corresponds to a CPU eDP port.
71 */
72static bool is_cpu_edp(struct intel_dp *intel_dp)
73{
74	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
75}
76
77static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
78{
79	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
80}
81
82/**
83 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
84 * @encoder: DRM encoder
85 *
86 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
87 * by intel_display.c.
88 */
89bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
90{
91	struct intel_dp *intel_dp;
92
93	if (!encoder)
94		return false;
95
96	intel_dp = enc_to_intel_dp(encoder);
97
98	return is_pch_edp(intel_dp);
99}
100
101static void intel_dp_link_down(struct intel_dp *intel_dp);
102
103void
104intel_edp_link_config(struct intel_encoder *intel_encoder,
105		       int *lane_num, int *link_bw)
106{
107	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
108
109	*lane_num = intel_dp->lane_count;
110	*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
111}
112
113int
114intel_edp_target_clock(struct intel_encoder *intel_encoder,
115		       struct drm_display_mode *mode)
116{
117	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
118	struct intel_connector *intel_connector = intel_dp->attached_connector;
119
120	if (intel_connector->panel.fixed_mode)
121		return intel_connector->panel.fixed_mode->clock;
122	else
123		return mode->clock;
124}
125
126static int
127intel_dp_max_link_bw(struct intel_dp *intel_dp)
128{
129	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
130
131	switch (max_link_bw) {
132	case DP_LINK_BW_1_62:
133	case DP_LINK_BW_2_7:
134		break;
135	default:
136		max_link_bw = DP_LINK_BW_1_62;
137		break;
138	}
139	return max_link_bw;
140}
141
142static int
143intel_dp_link_clock(uint8_t link_bw)
144{
145	if (link_bw == DP_LINK_BW_2_7)
146		return 270000;
147	else
148		return 162000;
149}
150
151/*
152 * The units on the numbers in the next two are... bizarre.  Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 *     270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000.  At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168static int
169intel_dp_link_required(int pixel_clock, int bpp)
170{
171	return (pixel_clock * bpp + 9) / 10;
172}
173
174static int
175intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176{
177	return (max_link_clock * max_lanes * 8) / 10;
178}
179
180static bool
181intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182			  struct drm_display_mode *mode,
183			  bool adjust_mode)
184{
185	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
186	int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
187	int max_rate, mode_rate;
188
189	mode_rate = intel_dp_link_required(mode->clock, 24);
190	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
191
192	if (mode_rate > max_rate) {
193		mode_rate = intel_dp_link_required(mode->clock, 18);
194		if (mode_rate > max_rate)
195			return false;
196
197		if (adjust_mode)
198			mode->private_flags
199				|= INTEL_MODE_DP_FORCE_6BPC;
200
201		return true;
202	}
203
204	return true;
205}
206
207static int
208intel_dp_mode_valid(struct drm_connector *connector,
209		    struct drm_display_mode *mode)
210{
211	struct intel_dp *intel_dp = intel_attached_dp(connector);
212	struct intel_connector *intel_connector = to_intel_connector(connector);
213	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
214
215	if (is_edp(intel_dp) && fixed_mode) {
216		if (mode->hdisplay > fixed_mode->hdisplay)
217			return MODE_PANEL;
218
219		if (mode->vdisplay > fixed_mode->vdisplay)
220			return MODE_PANEL;
221	}
222
223	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
224		return MODE_CLOCK_HIGH;
225
226	if (mode->clock < 10000)
227		return MODE_CLOCK_LOW;
228
229	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
230		return MODE_H_ILLEGAL;
231
232	return MODE_OK;
233}
234
235static uint32_t
236pack_aux(uint8_t *src, int src_bytes)
237{
238	int	i;
239	uint32_t v = 0;
240
241	if (src_bytes > 4)
242		src_bytes = 4;
243	for (i = 0; i < src_bytes; i++)
244		v |= ((uint32_t) src[i]) << ((3-i) * 8);
245	return v;
246}
247
248static void
249unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
250{
251	int i;
252	if (dst_bytes > 4)
253		dst_bytes = 4;
254	for (i = 0; i < dst_bytes; i++)
255		dst[i] = src >> ((3-i) * 8);
256}
257
258/* hrawclock is 1/4 the FSB frequency */
259static int
260intel_hrawclk(struct drm_device *dev)
261{
262	struct drm_i915_private *dev_priv = dev->dev_private;
263	uint32_t clkcfg;
264
265	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
266	if (IS_VALLEYVIEW(dev))
267		return 200;
268
269	clkcfg = I915_READ(CLKCFG);
270	switch (clkcfg & CLKCFG_FSB_MASK) {
271	case CLKCFG_FSB_400:
272		return 100;
273	case CLKCFG_FSB_533:
274		return 133;
275	case CLKCFG_FSB_667:
276		return 166;
277	case CLKCFG_FSB_800:
278		return 200;
279	case CLKCFG_FSB_1067:
280		return 266;
281	case CLKCFG_FSB_1333:
282		return 333;
283	/* these two are just a guess; one of them might be right */
284	case CLKCFG_FSB_1600:
285	case CLKCFG_FSB_1600_ALT:
286		return 400;
287	default:
288		return 133;
289	}
290}
291
292static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
293{
294	struct drm_device *dev = intel_dp->base.base.dev;
295	struct drm_i915_private *dev_priv = dev->dev_private;
296
297	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
298}
299
300static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
301{
302	struct drm_device *dev = intel_dp->base.base.dev;
303	struct drm_i915_private *dev_priv = dev->dev_private;
304
305	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
306}
307
308static void
309intel_dp_check_edp(struct intel_dp *intel_dp)
310{
311	struct drm_device *dev = intel_dp->base.base.dev;
312	struct drm_i915_private *dev_priv = dev->dev_private;
313
314	if (!is_edp(intel_dp))
315		return;
316	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
317		WARN(1, "eDP powered off while attempting aux channel communication.\n");
318		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
319			      I915_READ(PCH_PP_STATUS),
320			      I915_READ(PCH_PP_CONTROL));
321	}
322}
323
324static int
325intel_dp_aux_ch(struct intel_dp *intel_dp,
326		uint8_t *send, int send_bytes,
327		uint8_t *recv, int recv_size)
328{
329	uint32_t output_reg = intel_dp->output_reg;
330	struct drm_device *dev = intel_dp->base.base.dev;
331	struct drm_i915_private *dev_priv = dev->dev_private;
332	uint32_t ch_ctl = output_reg + 0x10;
333	uint32_t ch_data = ch_ctl + 4;
334	int i;
335	int recv_bytes;
336	uint32_t status;
337	uint32_t aux_clock_divider;
338	int try, precharge;
339
340	if (IS_HASWELL(dev)) {
341		switch (intel_dp->port) {
342		case PORT_A:
343			ch_ctl = DPA_AUX_CH_CTL;
344			ch_data = DPA_AUX_CH_DATA1;
345			break;
346		case PORT_B:
347			ch_ctl = PCH_DPB_AUX_CH_CTL;
348			ch_data = PCH_DPB_AUX_CH_DATA1;
349			break;
350		case PORT_C:
351			ch_ctl = PCH_DPC_AUX_CH_CTL;
352			ch_data = PCH_DPC_AUX_CH_DATA1;
353			break;
354		case PORT_D:
355			ch_ctl = PCH_DPD_AUX_CH_CTL;
356			ch_data = PCH_DPD_AUX_CH_DATA1;
357			break;
358		default:
359			BUG();
360		}
361	}
362
363	intel_dp_check_edp(intel_dp);
364	/* The clock divider is based off the hrawclk,
365	 * and would like to run at 2MHz. So, take the
366	 * hrawclk value and divide by 2 and use that
367	 *
368	 * Note that PCH attached eDP panels should use a 125MHz input
369	 * clock divider.
370	 */
371	if (is_cpu_edp(intel_dp)) {
372		if (IS_HASWELL(dev))
373			aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
374		else if (IS_VALLEYVIEW(dev))
375			aux_clock_divider = 100;
376		else if (IS_GEN6(dev) || IS_GEN7(dev))
377			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
378		else
379			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
380	} else if (HAS_PCH_SPLIT(dev))
381		aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
382	else
383		aux_clock_divider = intel_hrawclk(dev) / 2;
384
385	if (IS_GEN6(dev))
386		precharge = 3;
387	else
388		precharge = 5;
389
390	/* Try to wait for any previous AUX channel activity */
391	for (try = 0; try < 3; try++) {
392		status = I915_READ(ch_ctl);
393		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
394			break;
395		msleep(1);
396	}
397
398	if (try == 3) {
399		WARN(1, "dp_aux_ch not started status 0x%08x\n",
400		     I915_READ(ch_ctl));
401		return -EBUSY;
402	}
403
404	/* Must try at least 3 times according to DP spec */
405	for (try = 0; try < 5; try++) {
406		/* Load the send data into the aux channel data registers */
407		for (i = 0; i < send_bytes; i += 4)
408			I915_WRITE(ch_data + i,
409				   pack_aux(send + i, send_bytes - i));
410
411		/* Send the command and wait for it to complete */
412		I915_WRITE(ch_ctl,
413			   DP_AUX_CH_CTL_SEND_BUSY |
414			   DP_AUX_CH_CTL_TIME_OUT_400us |
415			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
416			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
417			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
418			   DP_AUX_CH_CTL_DONE |
419			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
420			   DP_AUX_CH_CTL_RECEIVE_ERROR);
421		for (;;) {
422			status = I915_READ(ch_ctl);
423			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
424				break;
425			udelay(100);
426		}
427
428		/* Clear done status and any errors */
429		I915_WRITE(ch_ctl,
430			   status |
431			   DP_AUX_CH_CTL_DONE |
432			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
433			   DP_AUX_CH_CTL_RECEIVE_ERROR);
434
435		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
436			      DP_AUX_CH_CTL_RECEIVE_ERROR))
437			continue;
438		if (status & DP_AUX_CH_CTL_DONE)
439			break;
440	}
441
442	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
443		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
444		return -EBUSY;
445	}
446
447	/* Check for timeout or receive error.
448	 * Timeouts occur when the sink is not connected
449	 */
450	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
451		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
452		return -EIO;
453	}
454
455	/* Timeouts occur when the device isn't connected, so they're
456	 * "normal" -- don't fill the kernel log with these */
457	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
458		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
459		return -ETIMEDOUT;
460	}
461
462	/* Unload any bytes sent back from the other side */
463	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
464		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
465	if (recv_bytes > recv_size)
466		recv_bytes = recv_size;
467
468	for (i = 0; i < recv_bytes; i += 4)
469		unpack_aux(I915_READ(ch_data + i),
470			   recv + i, recv_bytes - i);
471
472	return recv_bytes;
473}
474
475/* Write data to the aux channel in native mode */
476static int
477intel_dp_aux_native_write(struct intel_dp *intel_dp,
478			  uint16_t address, uint8_t *send, int send_bytes)
479{
480	int ret;
481	uint8_t	msg[20];
482	int msg_bytes;
483	uint8_t	ack;
484
485	intel_dp_check_edp(intel_dp);
486	if (send_bytes > 16)
487		return -1;
488	msg[0] = AUX_NATIVE_WRITE << 4;
489	msg[1] = address >> 8;
490	msg[2] = address & 0xff;
491	msg[3] = send_bytes - 1;
492	memcpy(&msg[4], send, send_bytes);
493	msg_bytes = send_bytes + 4;
494	for (;;) {
495		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
496		if (ret < 0)
497			return ret;
498		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
499			break;
500		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
501			udelay(100);
502		else
503			return -EIO;
504	}
505	return send_bytes;
506}
507
508/* Write a single byte to the aux channel in native mode */
509static int
510intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
511			    uint16_t address, uint8_t byte)
512{
513	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
514}
515
516/* read bytes from a native aux channel */
517static int
518intel_dp_aux_native_read(struct intel_dp *intel_dp,
519			 uint16_t address, uint8_t *recv, int recv_bytes)
520{
521	uint8_t msg[4];
522	int msg_bytes;
523	uint8_t reply[20];
524	int reply_bytes;
525	uint8_t ack;
526	int ret;
527
528	intel_dp_check_edp(intel_dp);
529	msg[0] = AUX_NATIVE_READ << 4;
530	msg[1] = address >> 8;
531	msg[2] = address & 0xff;
532	msg[3] = recv_bytes - 1;
533
534	msg_bytes = 4;
535	reply_bytes = recv_bytes + 1;
536
537	for (;;) {
538		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
539				      reply, reply_bytes);
540		if (ret == 0)
541			return -EPROTO;
542		if (ret < 0)
543			return ret;
544		ack = reply[0];
545		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
546			memcpy(recv, reply + 1, ret - 1);
547			return ret - 1;
548		}
549		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
550			udelay(100);
551		else
552			return -EIO;
553	}
554}
555
556static int
557intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
558		    uint8_t write_byte, uint8_t *read_byte)
559{
560	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
561	struct intel_dp *intel_dp = container_of(adapter,
562						struct intel_dp,
563						adapter);
564	uint16_t address = algo_data->address;
565	uint8_t msg[5];
566	uint8_t reply[2];
567	unsigned retry;
568	int msg_bytes;
569	int reply_bytes;
570	int ret;
571
572	intel_dp_check_edp(intel_dp);
573	/* Set up the command byte */
574	if (mode & MODE_I2C_READ)
575		msg[0] = AUX_I2C_READ << 4;
576	else
577		msg[0] = AUX_I2C_WRITE << 4;
578
579	if (!(mode & MODE_I2C_STOP))
580		msg[0] |= AUX_I2C_MOT << 4;
581
582	msg[1] = address >> 8;
583	msg[2] = address;
584
585	switch (mode) {
586	case MODE_I2C_WRITE:
587		msg[3] = 0;
588		msg[4] = write_byte;
589		msg_bytes = 5;
590		reply_bytes = 1;
591		break;
592	case MODE_I2C_READ:
593		msg[3] = 0;
594		msg_bytes = 4;
595		reply_bytes = 2;
596		break;
597	default:
598		msg_bytes = 3;
599		reply_bytes = 1;
600		break;
601	}
602
603	for (retry = 0; retry < 5; retry++) {
604		ret = intel_dp_aux_ch(intel_dp,
605				      msg, msg_bytes,
606				      reply, reply_bytes);
607		if (ret < 0) {
608			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
609			return ret;
610		}
611
612		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
613		case AUX_NATIVE_REPLY_ACK:
614			/* I2C-over-AUX Reply field is only valid
615			 * when paired with AUX ACK.
616			 */
617			break;
618		case AUX_NATIVE_REPLY_NACK:
619			DRM_DEBUG_KMS("aux_ch native nack\n");
620			return -EREMOTEIO;
621		case AUX_NATIVE_REPLY_DEFER:
622			udelay(100);
623			continue;
624		default:
625			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
626				  reply[0]);
627			return -EREMOTEIO;
628		}
629
630		switch (reply[0] & AUX_I2C_REPLY_MASK) {
631		case AUX_I2C_REPLY_ACK:
632			if (mode == MODE_I2C_READ) {
633				*read_byte = reply[1];
634			}
635			return reply_bytes - 1;
636		case AUX_I2C_REPLY_NACK:
637			DRM_DEBUG_KMS("aux_i2c nack\n");
638			return -EREMOTEIO;
639		case AUX_I2C_REPLY_DEFER:
640			DRM_DEBUG_KMS("aux_i2c defer\n");
641			udelay(100);
642			break;
643		default:
644			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
645			return -EREMOTEIO;
646		}
647	}
648
649	DRM_ERROR("too many retries, giving up\n");
650	return -EREMOTEIO;
651}
652
653static int
654intel_dp_i2c_init(struct intel_dp *intel_dp,
655		  struct intel_connector *intel_connector, const char *name)
656{
657	int	ret;
658
659	DRM_DEBUG_KMS("i2c_init %s\n", name);
660	intel_dp->algo.running = false;
661	intel_dp->algo.address = 0;
662	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
663
664	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
665	intel_dp->adapter.owner = THIS_MODULE;
666	intel_dp->adapter.class = I2C_CLASS_DDC;
667	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
668	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
669	intel_dp->adapter.algo_data = &intel_dp->algo;
670	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
671
672	ironlake_edp_panel_vdd_on(intel_dp);
673	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
674	ironlake_edp_panel_vdd_off(intel_dp, false);
675	return ret;
676}
677
678static bool
679intel_dp_mode_fixup(struct drm_encoder *encoder,
680		    const struct drm_display_mode *mode,
681		    struct drm_display_mode *adjusted_mode)
682{
683	struct drm_device *dev = encoder->dev;
684	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
685	struct intel_connector *intel_connector = intel_dp->attached_connector;
686	int lane_count, clock;
687	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
688	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
689	int bpp, mode_rate;
690	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
691
692	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
693		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
694				       adjusted_mode);
695		intel_pch_panel_fitting(dev,
696					intel_connector->panel.fitting_mode,
697					mode, adjusted_mode);
698	}
699
700	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
701		return false;
702
703	DRM_DEBUG_KMS("DP link computation with max lane count %i "
704		      "max bw %02x pixel clock %iKHz\n",
705		      max_lane_count, bws[max_clock], adjusted_mode->clock);
706
707	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
708		return false;
709
710	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
711	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
712
713	for (clock = 0; clock <= max_clock; clock++) {
714		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
715			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
716
717			if (mode_rate <= link_avail) {
718				intel_dp->link_bw = bws[clock];
719				intel_dp->lane_count = lane_count;
720				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
721				DRM_DEBUG_KMS("DP link bw %02x lane "
722						"count %d clock %d bpp %d\n",
723				       intel_dp->link_bw, intel_dp->lane_count,
724				       adjusted_mode->clock, bpp);
725				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
726					      mode_rate, link_avail);
727				return true;
728			}
729		}
730	}
731
732	return false;
733}
734
735struct intel_dp_m_n {
736	uint32_t	tu;
737	uint32_t	gmch_m;
738	uint32_t	gmch_n;
739	uint32_t	link_m;
740	uint32_t	link_n;
741};
742
743static void
744intel_reduce_ratio(uint32_t *num, uint32_t *den)
745{
746	while (*num > 0xffffff || *den > 0xffffff) {
747		*num >>= 1;
748		*den >>= 1;
749	}
750}
751
752static void
753intel_dp_compute_m_n(int bpp,
754		     int nlanes,
755		     int pixel_clock,
756		     int link_clock,
757		     struct intel_dp_m_n *m_n)
758{
759	m_n->tu = 64;
760	m_n->gmch_m = (pixel_clock * bpp) >> 3;
761	m_n->gmch_n = link_clock * nlanes;
762	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
763	m_n->link_m = pixel_clock;
764	m_n->link_n = link_clock;
765	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
766}
767
768void
769intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
770		 struct drm_display_mode *adjusted_mode)
771{
772	struct drm_device *dev = crtc->dev;
773	struct intel_encoder *intel_encoder;
774	struct intel_dp *intel_dp;
775	struct drm_i915_private *dev_priv = dev->dev_private;
776	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777	int lane_count = 4;
778	struct intel_dp_m_n m_n;
779	int pipe = intel_crtc->pipe;
780	enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
781
782	/*
783	 * Find the lane count in the intel_encoder private
784	 */
785	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
786		intel_dp = enc_to_intel_dp(&intel_encoder->base);
787
788		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
789		    intel_encoder->type == INTEL_OUTPUT_EDP)
790		{
791			lane_count = intel_dp->lane_count;
792			break;
793		}
794	}
795
796	/*
797	 * Compute the GMCH and Link ratios. The '3' here is
798	 * the number of bytes_per_pixel post-LUT, which we always
799	 * set up for 8-bits of R/G/B, or 3 bytes total.
800	 */
801	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
802			     mode->clock, adjusted_mode->clock, &m_n);
803
804	if (IS_HASWELL(dev)) {
805		I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
806			   TU_SIZE(m_n.tu) | m_n.gmch_m);
807		I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
808		I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
809		I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
810	} else if (HAS_PCH_SPLIT(dev)) {
811		I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
812		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
813		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
814		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
815	} else if (IS_VALLEYVIEW(dev)) {
816		I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
817		I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
818		I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
819		I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
820	} else {
821		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
822			   TU_SIZE(m_n.tu) | m_n.gmch_m);
823		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
824		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
825		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
826	}
827}
828
829void intel_dp_init_link_config(struct intel_dp *intel_dp)
830{
831	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
832	intel_dp->link_configuration[0] = intel_dp->link_bw;
833	intel_dp->link_configuration[1] = intel_dp->lane_count;
834	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
835	/*
836	 * Check for DPCD version > 1.1 and enhanced framing support
837	 */
838	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
839	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
840		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
841	}
842}
843
844static void
845intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
846		  struct drm_display_mode *adjusted_mode)
847{
848	struct drm_device *dev = encoder->dev;
849	struct drm_i915_private *dev_priv = dev->dev_private;
850	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
851	struct drm_crtc *crtc = encoder->crtc;
852	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853
854	/*
855	 * There are four kinds of DP registers:
856	 *
857	 * 	IBX PCH
858	 * 	SNB CPU
859	 *	IVB CPU
860	 * 	CPT PCH
861	 *
862	 * IBX PCH and CPU are the same for almost everything,
863	 * except that the CPU DP PLL is configured in this
864	 * register
865	 *
866	 * CPT PCH is quite different, having many bits moved
867	 * to the TRANS_DP_CTL register instead. That
868	 * configuration happens (oddly) in ironlake_pch_enable
869	 */
870
871	/* Preserve the BIOS-computed detected bit. This is
872	 * supposed to be read-only.
873	 */
874	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
875
876	/* Handle DP bits in common between all three register formats */
877	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
878
879	switch (intel_dp->lane_count) {
880	case 1:
881		intel_dp->DP |= DP_PORT_WIDTH_1;
882		break;
883	case 2:
884		intel_dp->DP |= DP_PORT_WIDTH_2;
885		break;
886	case 4:
887		intel_dp->DP |= DP_PORT_WIDTH_4;
888		break;
889	}
890	if (intel_dp->has_audio) {
891		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
892				 pipe_name(intel_crtc->pipe));
893		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
894		intel_write_eld(encoder, adjusted_mode);
895	}
896
897	intel_dp_init_link_config(intel_dp);
898
899	/* Split out the IBX/CPU vs CPT settings */
900
901	if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
902		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
903			intel_dp->DP |= DP_SYNC_HS_HIGH;
904		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
905			intel_dp->DP |= DP_SYNC_VS_HIGH;
906		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
907
908		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
909			intel_dp->DP |= DP_ENHANCED_FRAMING;
910
911		intel_dp->DP |= intel_crtc->pipe << 29;
912
913		/* don't miss out required setting for eDP */
914		if (adjusted_mode->clock < 200000)
915			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
916		else
917			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
919		intel_dp->DP |= intel_dp->color_range;
920
921		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
922			intel_dp->DP |= DP_SYNC_HS_HIGH;
923		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
924			intel_dp->DP |= DP_SYNC_VS_HIGH;
925		intel_dp->DP |= DP_LINK_TRAIN_OFF;
926
927		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
928			intel_dp->DP |= DP_ENHANCED_FRAMING;
929
930		if (intel_crtc->pipe == 1)
931			intel_dp->DP |= DP_PIPEB_SELECT;
932
933		if (is_cpu_edp(intel_dp)) {
934			/* don't miss out required setting for eDP */
935			if (adjusted_mode->clock < 200000)
936				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
937			else
938				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
939		}
940	} else {
941		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
942	}
943}
944
945#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
946#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
947
948#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
949#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
950
951#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
952#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
953
954static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
955				       u32 mask,
956				       u32 value)
957{
958	struct drm_device *dev = intel_dp->base.base.dev;
959	struct drm_i915_private *dev_priv = dev->dev_private;
960
961	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
962		      mask, value,
963		      I915_READ(PCH_PP_STATUS),
964		      I915_READ(PCH_PP_CONTROL));
965
966	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
967		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
968			  I915_READ(PCH_PP_STATUS),
969			  I915_READ(PCH_PP_CONTROL));
970	}
971}
972
973static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
974{
975	DRM_DEBUG_KMS("Wait for panel power on\n");
976	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
977}
978
979static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
980{
981	DRM_DEBUG_KMS("Wait for panel power off time\n");
982	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
983}
984
985static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
986{
987	DRM_DEBUG_KMS("Wait for panel power cycle\n");
988	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
989}
990
991
992/* Read the current pp_control value, unlocking the register if it
993 * is locked
994 */
995
996static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
997{
998	u32	control = I915_READ(PCH_PP_CONTROL);
999
1000	control &= ~PANEL_UNLOCK_MASK;
1001	control |= PANEL_UNLOCK_REGS;
1002	return control;
1003}
1004
1005void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1006{
1007	struct drm_device *dev = intel_dp->base.base.dev;
1008	struct drm_i915_private *dev_priv = dev->dev_private;
1009	u32 pp;
1010
1011	if (!is_edp(intel_dp))
1012		return;
1013	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1014
1015	WARN(intel_dp->want_panel_vdd,
1016	     "eDP VDD already requested on\n");
1017
1018	intel_dp->want_panel_vdd = true;
1019
1020	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1021		DRM_DEBUG_KMS("eDP VDD already on\n");
1022		return;
1023	}
1024
1025	if (!ironlake_edp_have_panel_power(intel_dp))
1026		ironlake_wait_panel_power_cycle(intel_dp);
1027
1028	pp = ironlake_get_pp_control(dev_priv);
1029	pp |= EDP_FORCE_VDD;
1030	I915_WRITE(PCH_PP_CONTROL, pp);
1031	POSTING_READ(PCH_PP_CONTROL);
1032	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1033		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1034
1035	/*
1036	 * If the panel wasn't on, delay before accessing aux channel
1037	 */
1038	if (!ironlake_edp_have_panel_power(intel_dp)) {
1039		DRM_DEBUG_KMS("eDP was not running\n");
1040		msleep(intel_dp->panel_power_up_delay);
1041	}
1042}
1043
1044static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1045{
1046	struct drm_device *dev = intel_dp->base.base.dev;
1047	struct drm_i915_private *dev_priv = dev->dev_private;
1048	u32 pp;
1049
1050	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1051		pp = ironlake_get_pp_control(dev_priv);
1052		pp &= ~EDP_FORCE_VDD;
1053		I915_WRITE(PCH_PP_CONTROL, pp);
1054		POSTING_READ(PCH_PP_CONTROL);
1055
1056		/* Make sure sequencer is idle before allowing subsequent activity */
1057		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1058			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1059
1060		msleep(intel_dp->panel_power_down_delay);
1061	}
1062}
1063
1064static void ironlake_panel_vdd_work(struct work_struct *__work)
1065{
1066	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1067						 struct intel_dp, panel_vdd_work);
1068	struct drm_device *dev = intel_dp->base.base.dev;
1069
1070	mutex_lock(&dev->mode_config.mutex);
1071	ironlake_panel_vdd_off_sync(intel_dp);
1072	mutex_unlock(&dev->mode_config.mutex);
1073}
1074
1075void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1076{
1077	if (!is_edp(intel_dp))
1078		return;
1079
1080	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1081	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1082
1083	intel_dp->want_panel_vdd = false;
1084
1085	if (sync) {
1086		ironlake_panel_vdd_off_sync(intel_dp);
1087	} else {
1088		/*
1089		 * Queue the timer to fire a long
1090		 * time from now (relative to the power down delay)
1091		 * to keep the panel power up across a sequence of operations
1092		 */
1093		schedule_delayed_work(&intel_dp->panel_vdd_work,
1094				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1095	}
1096}
1097
1098void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1099{
1100	struct drm_device *dev = intel_dp->base.base.dev;
1101	struct drm_i915_private *dev_priv = dev->dev_private;
1102	u32 pp;
1103
1104	if (!is_edp(intel_dp))
1105		return;
1106
1107	DRM_DEBUG_KMS("Turn eDP power on\n");
1108
1109	if (ironlake_edp_have_panel_power(intel_dp)) {
1110		DRM_DEBUG_KMS("eDP power already on\n");
1111		return;
1112	}
1113
1114	ironlake_wait_panel_power_cycle(intel_dp);
1115
1116	pp = ironlake_get_pp_control(dev_priv);
1117	if (IS_GEN5(dev)) {
1118		/* ILK workaround: disable reset around power sequence */
1119		pp &= ~PANEL_POWER_RESET;
1120		I915_WRITE(PCH_PP_CONTROL, pp);
1121		POSTING_READ(PCH_PP_CONTROL);
1122	}
1123
1124	pp |= POWER_TARGET_ON;
1125	if (!IS_GEN5(dev))
1126		pp |= PANEL_POWER_RESET;
1127
1128	I915_WRITE(PCH_PP_CONTROL, pp);
1129	POSTING_READ(PCH_PP_CONTROL);
1130
1131	ironlake_wait_panel_on(intel_dp);
1132
1133	if (IS_GEN5(dev)) {
1134		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1135		I915_WRITE(PCH_PP_CONTROL, pp);
1136		POSTING_READ(PCH_PP_CONTROL);
1137	}
1138}
1139
1140void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1141{
1142	struct drm_device *dev = intel_dp->base.base.dev;
1143	struct drm_i915_private *dev_priv = dev->dev_private;
1144	u32 pp;
1145
1146	if (!is_edp(intel_dp))
1147		return;
1148
1149	DRM_DEBUG_KMS("Turn eDP power off\n");
1150
1151	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1152
1153	pp = ironlake_get_pp_control(dev_priv);
1154	/* We need to switch off panel power _and_ force vdd, for otherwise some
1155	 * panels get very unhappy and cease to work. */
1156	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1157	I915_WRITE(PCH_PP_CONTROL, pp);
1158	POSTING_READ(PCH_PP_CONTROL);
1159
1160	intel_dp->want_panel_vdd = false;
1161
1162	ironlake_wait_panel_off(intel_dp);
1163}
1164
1165void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1166{
1167	struct drm_device *dev = intel_dp->base.base.dev;
1168	struct drm_i915_private *dev_priv = dev->dev_private;
1169	int pipe = to_intel_crtc(intel_dp->base.base.crtc)->pipe;
1170	u32 pp;
1171
1172	if (!is_edp(intel_dp))
1173		return;
1174
1175	DRM_DEBUG_KMS("\n");
1176	/*
1177	 * If we enable the backlight right away following a panel power
1178	 * on, we may see slight flicker as the panel syncs with the eDP
1179	 * link.  So delay a bit to make sure the image is solid before
1180	 * allowing it to appear.
1181	 */
1182	msleep(intel_dp->backlight_on_delay);
1183	pp = ironlake_get_pp_control(dev_priv);
1184	pp |= EDP_BLC_ENABLE;
1185	I915_WRITE(PCH_PP_CONTROL, pp);
1186	POSTING_READ(PCH_PP_CONTROL);
1187
1188	intel_panel_enable_backlight(dev, pipe);
1189}
1190
1191void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1192{
1193	struct drm_device *dev = intel_dp->base.base.dev;
1194	struct drm_i915_private *dev_priv = dev->dev_private;
1195	u32 pp;
1196
1197	if (!is_edp(intel_dp))
1198		return;
1199
1200	intel_panel_disable_backlight(dev);
1201
1202	DRM_DEBUG_KMS("\n");
1203	pp = ironlake_get_pp_control(dev_priv);
1204	pp &= ~EDP_BLC_ENABLE;
1205	I915_WRITE(PCH_PP_CONTROL, pp);
1206	POSTING_READ(PCH_PP_CONTROL);
1207	msleep(intel_dp->backlight_off_delay);
1208}
1209
1210static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1211{
1212	struct drm_device *dev = intel_dp->base.base.dev;
1213	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1214	struct drm_i915_private *dev_priv = dev->dev_private;
1215	u32 dpa_ctl;
1216
1217	assert_pipe_disabled(dev_priv,
1218			     to_intel_crtc(crtc)->pipe);
1219
1220	DRM_DEBUG_KMS("\n");
1221	dpa_ctl = I915_READ(DP_A);
1222	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1223	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1224
1225	/* We don't adjust intel_dp->DP while tearing down the link, to
1226	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1227	 * enable bits here to ensure that we don't enable too much. */
1228	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1229	intel_dp->DP |= DP_PLL_ENABLE;
1230	I915_WRITE(DP_A, intel_dp->DP);
1231	POSTING_READ(DP_A);
1232	udelay(200);
1233}
1234
1235static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1236{
1237	struct drm_device *dev = intel_dp->base.base.dev;
1238	struct drm_crtc *crtc = intel_dp->base.base.crtc;
1239	struct drm_i915_private *dev_priv = dev->dev_private;
1240	u32 dpa_ctl;
1241
1242	assert_pipe_disabled(dev_priv,
1243			     to_intel_crtc(crtc)->pipe);
1244
1245	dpa_ctl = I915_READ(DP_A);
1246	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1247	     "dp pll off, should be on\n");
1248	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1249
1250	/* We can't rely on the value tracked for the DP register in
1251	 * intel_dp->DP because link_down must not change that (otherwise link
1252	 * re-training will fail. */
1253	dpa_ctl &= ~DP_PLL_ENABLE;
1254	I915_WRITE(DP_A, dpa_ctl);
1255	POSTING_READ(DP_A);
1256	udelay(200);
1257}
1258
1259/* If the sink supports it, try to set the power state appropriately */
1260void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1261{
1262	int ret, i;
1263
1264	/* Should have a valid DPCD by this point */
1265	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1266		return;
1267
1268	if (mode != DRM_MODE_DPMS_ON) {
1269		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1270						  DP_SET_POWER_D3);
1271		if (ret != 1)
1272			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1273	} else {
1274		/*
1275		 * When turning on, we need to retry for 1ms to give the sink
1276		 * time to wake up.
1277		 */
1278		for (i = 0; i < 3; i++) {
1279			ret = intel_dp_aux_native_write_1(intel_dp,
1280							  DP_SET_POWER,
1281							  DP_SET_POWER_D0);
1282			if (ret == 1)
1283				break;
1284			msleep(1);
1285		}
1286	}
1287}
1288
1289static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1290				  enum pipe *pipe)
1291{
1292	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1293	struct drm_device *dev = encoder->base.dev;
1294	struct drm_i915_private *dev_priv = dev->dev_private;
1295	u32 tmp = I915_READ(intel_dp->output_reg);
1296
1297	if (!(tmp & DP_PORT_EN))
1298		return false;
1299
1300	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1301		*pipe = PORT_TO_PIPE_CPT(tmp);
1302	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1303		*pipe = PORT_TO_PIPE(tmp);
1304	} else {
1305		u32 trans_sel;
1306		u32 trans_dp;
1307		int i;
1308
1309		switch (intel_dp->output_reg) {
1310		case PCH_DP_B:
1311			trans_sel = TRANS_DP_PORT_SEL_B;
1312			break;
1313		case PCH_DP_C:
1314			trans_sel = TRANS_DP_PORT_SEL_C;
1315			break;
1316		case PCH_DP_D:
1317			trans_sel = TRANS_DP_PORT_SEL_D;
1318			break;
1319		default:
1320			return true;
1321		}
1322
1323		for_each_pipe(i) {
1324			trans_dp = I915_READ(TRANS_DP_CTL(i));
1325			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1326				*pipe = i;
1327				return true;
1328			}
1329		}
1330
1331		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1332			      intel_dp->output_reg);
1333	}
1334
1335	return true;
1336}
1337
1338static void intel_disable_dp(struct intel_encoder *encoder)
1339{
1340	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1341
1342	/* Make sure the panel is off before trying to change the mode. But also
1343	 * ensure that we have vdd while we switch off the panel. */
1344	ironlake_edp_panel_vdd_on(intel_dp);
1345	ironlake_edp_backlight_off(intel_dp);
1346	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1347	ironlake_edp_panel_off(intel_dp);
1348
1349	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1350	if (!is_cpu_edp(intel_dp))
1351		intel_dp_link_down(intel_dp);
1352}
1353
1354static void intel_post_disable_dp(struct intel_encoder *encoder)
1355{
1356	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1357
1358	if (is_cpu_edp(intel_dp)) {
1359		intel_dp_link_down(intel_dp);
1360		ironlake_edp_pll_off(intel_dp);
1361	}
1362}
1363
1364static void intel_enable_dp(struct intel_encoder *encoder)
1365{
1366	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1367	struct drm_device *dev = encoder->base.dev;
1368	struct drm_i915_private *dev_priv = dev->dev_private;
1369	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1370
1371	if (WARN_ON(dp_reg & DP_PORT_EN))
1372		return;
1373
1374	ironlake_edp_panel_vdd_on(intel_dp);
1375	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1376	intel_dp_start_link_train(intel_dp);
1377	ironlake_edp_panel_on(intel_dp);
1378	ironlake_edp_panel_vdd_off(intel_dp, true);
1379	intel_dp_complete_link_train(intel_dp);
1380	ironlake_edp_backlight_on(intel_dp);
1381}
1382
1383static void intel_pre_enable_dp(struct intel_encoder *encoder)
1384{
1385	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1386
1387	if (is_cpu_edp(intel_dp))
1388		ironlake_edp_pll_on(intel_dp);
1389}
1390
1391/*
1392 * Native read with retry for link status and receiver capability reads for
1393 * cases where the sink may still be asleep.
1394 */
1395static bool
1396intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1397			       uint8_t *recv, int recv_bytes)
1398{
1399	int ret, i;
1400
1401	/*
1402	 * Sinks are *supposed* to come up within 1ms from an off state,
1403	 * but we're also supposed to retry 3 times per the spec.
1404	 */
1405	for (i = 0; i < 3; i++) {
1406		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1407					       recv_bytes);
1408		if (ret == recv_bytes)
1409			return true;
1410		msleep(1);
1411	}
1412
1413	return false;
1414}
1415
1416/*
1417 * Fetch AUX CH registers 0x202 - 0x207 which contain
1418 * link status information
1419 */
1420static bool
1421intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1422{
1423	return intel_dp_aux_native_read_retry(intel_dp,
1424					      DP_LANE0_1_STATUS,
1425					      link_status,
1426					      DP_LINK_STATUS_SIZE);
1427}
1428
1429#if 0
1430static char	*voltage_names[] = {
1431	"0.4V", "0.6V", "0.8V", "1.2V"
1432};
1433static char	*pre_emph_names[] = {
1434	"0dB", "3.5dB", "6dB", "9.5dB"
1435};
1436static char	*link_train_names[] = {
1437	"pattern 1", "pattern 2", "idle", "off"
1438};
1439#endif
1440
1441/*
1442 * These are source-specific values; current Intel hardware supports
1443 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1444 */
1445
1446static uint8_t
1447intel_dp_voltage_max(struct intel_dp *intel_dp)
1448{
1449	struct drm_device *dev = intel_dp->base.base.dev;
1450
1451	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1452		return DP_TRAIN_VOLTAGE_SWING_800;
1453	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1454		return DP_TRAIN_VOLTAGE_SWING_1200;
1455	else
1456		return DP_TRAIN_VOLTAGE_SWING_800;
1457}
1458
1459static uint8_t
1460intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1461{
1462	struct drm_device *dev = intel_dp->base.base.dev;
1463
1464	if (IS_HASWELL(dev)) {
1465		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1466		case DP_TRAIN_VOLTAGE_SWING_400:
1467			return DP_TRAIN_PRE_EMPHASIS_9_5;
1468		case DP_TRAIN_VOLTAGE_SWING_600:
1469			return DP_TRAIN_PRE_EMPHASIS_6;
1470		case DP_TRAIN_VOLTAGE_SWING_800:
1471			return DP_TRAIN_PRE_EMPHASIS_3_5;
1472		case DP_TRAIN_VOLTAGE_SWING_1200:
1473		default:
1474			return DP_TRAIN_PRE_EMPHASIS_0;
1475		}
1476	} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1477		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1478		case DP_TRAIN_VOLTAGE_SWING_400:
1479			return DP_TRAIN_PRE_EMPHASIS_6;
1480		case DP_TRAIN_VOLTAGE_SWING_600:
1481		case DP_TRAIN_VOLTAGE_SWING_800:
1482			return DP_TRAIN_PRE_EMPHASIS_3_5;
1483		default:
1484			return DP_TRAIN_PRE_EMPHASIS_0;
1485		}
1486	} else {
1487		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1488		case DP_TRAIN_VOLTAGE_SWING_400:
1489			return DP_TRAIN_PRE_EMPHASIS_6;
1490		case DP_TRAIN_VOLTAGE_SWING_600:
1491			return DP_TRAIN_PRE_EMPHASIS_6;
1492		case DP_TRAIN_VOLTAGE_SWING_800:
1493			return DP_TRAIN_PRE_EMPHASIS_3_5;
1494		case DP_TRAIN_VOLTAGE_SWING_1200:
1495		default:
1496			return DP_TRAIN_PRE_EMPHASIS_0;
1497		}
1498	}
1499}
1500
1501static void
1502intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1503{
1504	uint8_t v = 0;
1505	uint8_t p = 0;
1506	int lane;
1507	uint8_t voltage_max;
1508	uint8_t preemph_max;
1509
1510	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1511		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1512		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1513
1514		if (this_v > v)
1515			v = this_v;
1516		if (this_p > p)
1517			p = this_p;
1518	}
1519
1520	voltage_max = intel_dp_voltage_max(intel_dp);
1521	if (v >= voltage_max)
1522		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1523
1524	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1525	if (p >= preemph_max)
1526		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1527
1528	for (lane = 0; lane < 4; lane++)
1529		intel_dp->train_set[lane] = v | p;
1530}
1531
1532static uint32_t
1533intel_dp_signal_levels(uint8_t train_set)
1534{
1535	uint32_t	signal_levels = 0;
1536
1537	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1538	case DP_TRAIN_VOLTAGE_SWING_400:
1539	default:
1540		signal_levels |= DP_VOLTAGE_0_4;
1541		break;
1542	case DP_TRAIN_VOLTAGE_SWING_600:
1543		signal_levels |= DP_VOLTAGE_0_6;
1544		break;
1545	case DP_TRAIN_VOLTAGE_SWING_800:
1546		signal_levels |= DP_VOLTAGE_0_8;
1547		break;
1548	case DP_TRAIN_VOLTAGE_SWING_1200:
1549		signal_levels |= DP_VOLTAGE_1_2;
1550		break;
1551	}
1552	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1553	case DP_TRAIN_PRE_EMPHASIS_0:
1554	default:
1555		signal_levels |= DP_PRE_EMPHASIS_0;
1556		break;
1557	case DP_TRAIN_PRE_EMPHASIS_3_5:
1558		signal_levels |= DP_PRE_EMPHASIS_3_5;
1559		break;
1560	case DP_TRAIN_PRE_EMPHASIS_6:
1561		signal_levels |= DP_PRE_EMPHASIS_6;
1562		break;
1563	case DP_TRAIN_PRE_EMPHASIS_9_5:
1564		signal_levels |= DP_PRE_EMPHASIS_9_5;
1565		break;
1566	}
1567	return signal_levels;
1568}
1569
1570/* Gen6's DP voltage swing and pre-emphasis control */
1571static uint32_t
1572intel_gen6_edp_signal_levels(uint8_t train_set)
1573{
1574	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1575					 DP_TRAIN_PRE_EMPHASIS_MASK);
1576	switch (signal_levels) {
1577	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1578	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1579		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1580	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1581		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1582	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1583	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1584		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1585	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1586	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1587		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1588	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1589	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1590		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1591	default:
1592		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1593			      "0x%x\n", signal_levels);
1594		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1595	}
1596}
1597
1598/* Gen7's DP voltage swing and pre-emphasis control */
1599static uint32_t
1600intel_gen7_edp_signal_levels(uint8_t train_set)
1601{
1602	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1603					 DP_TRAIN_PRE_EMPHASIS_MASK);
1604	switch (signal_levels) {
1605	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1606		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1607	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1608		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1609	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1610		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1611
1612	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1613		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1614	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1615		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1616
1617	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1618		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1619	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1620		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1621
1622	default:
1623		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1624			      "0x%x\n", signal_levels);
1625		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1626	}
1627}
1628
1629/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1630static uint32_t
1631intel_dp_signal_levels_hsw(uint8_t train_set)
1632{
1633	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1634					 DP_TRAIN_PRE_EMPHASIS_MASK);
1635	switch (signal_levels) {
1636	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1637		return DDI_BUF_EMP_400MV_0DB_HSW;
1638	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1639		return DDI_BUF_EMP_400MV_3_5DB_HSW;
1640	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1641		return DDI_BUF_EMP_400MV_6DB_HSW;
1642	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1643		return DDI_BUF_EMP_400MV_9_5DB_HSW;
1644
1645	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1646		return DDI_BUF_EMP_600MV_0DB_HSW;
1647	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1648		return DDI_BUF_EMP_600MV_3_5DB_HSW;
1649	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1650		return DDI_BUF_EMP_600MV_6DB_HSW;
1651
1652	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1653		return DDI_BUF_EMP_800MV_0DB_HSW;
1654	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1655		return DDI_BUF_EMP_800MV_3_5DB_HSW;
1656	default:
1657		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1658			      "0x%x\n", signal_levels);
1659		return DDI_BUF_EMP_400MV_0DB_HSW;
1660	}
1661}
1662
1663static bool
1664intel_dp_set_link_train(struct intel_dp *intel_dp,
1665			uint32_t dp_reg_value,
1666			uint8_t dp_train_pat)
1667{
1668	struct drm_device *dev = intel_dp->base.base.dev;
1669	struct drm_i915_private *dev_priv = dev->dev_private;
1670	int ret;
1671	uint32_t temp;
1672
1673	if (IS_HASWELL(dev)) {
1674		temp = I915_READ(DP_TP_CTL(intel_dp->port));
1675
1676		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1677			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1678		else
1679			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1680
1681		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1682		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1683		case DP_TRAINING_PATTERN_DISABLE:
1684			temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1685			I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1686
1687			if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1688				      DP_TP_STATUS_IDLE_DONE), 1))
1689				DRM_ERROR("Timed out waiting for DP idle patterns\n");
1690
1691			temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1692			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1693
1694			break;
1695		case DP_TRAINING_PATTERN_1:
1696			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1697			break;
1698		case DP_TRAINING_PATTERN_2:
1699			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1700			break;
1701		case DP_TRAINING_PATTERN_3:
1702			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1703			break;
1704		}
1705		I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1706
1707	} else if (HAS_PCH_CPT(dev) &&
1708		   (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1709		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1710
1711		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1712		case DP_TRAINING_PATTERN_DISABLE:
1713			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1714			break;
1715		case DP_TRAINING_PATTERN_1:
1716			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1717			break;
1718		case DP_TRAINING_PATTERN_2:
1719			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1720			break;
1721		case DP_TRAINING_PATTERN_3:
1722			DRM_ERROR("DP training pattern 3 not supported\n");
1723			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1724			break;
1725		}
1726
1727	} else {
1728		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1729
1730		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1731		case DP_TRAINING_PATTERN_DISABLE:
1732			dp_reg_value |= DP_LINK_TRAIN_OFF;
1733			break;
1734		case DP_TRAINING_PATTERN_1:
1735			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1736			break;
1737		case DP_TRAINING_PATTERN_2:
1738			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1739			break;
1740		case DP_TRAINING_PATTERN_3:
1741			DRM_ERROR("DP training pattern 3 not supported\n");
1742			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1743			break;
1744		}
1745	}
1746
1747	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1748	POSTING_READ(intel_dp->output_reg);
1749
1750	intel_dp_aux_native_write_1(intel_dp,
1751				    DP_TRAINING_PATTERN_SET,
1752				    dp_train_pat);
1753
1754	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1755	    DP_TRAINING_PATTERN_DISABLE) {
1756		ret = intel_dp_aux_native_write(intel_dp,
1757						DP_TRAINING_LANE0_SET,
1758						intel_dp->train_set,
1759						intel_dp->lane_count);
1760		if (ret != intel_dp->lane_count)
1761			return false;
1762	}
1763
1764	return true;
1765}
1766
1767/* Enable corresponding port and start training pattern 1 */
1768void
1769intel_dp_start_link_train(struct intel_dp *intel_dp)
1770{
1771	struct drm_encoder *encoder = &intel_dp->base.base;
1772	struct drm_device *dev = encoder->dev;
1773	int i;
1774	uint8_t voltage;
1775	bool clock_recovery = false;
1776	int voltage_tries, loop_tries;
1777	uint32_t DP = intel_dp->DP;
1778
1779	if (IS_HASWELL(dev))
1780		intel_ddi_prepare_link_retrain(encoder);
1781
1782	/* Write the link configuration data */
1783	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1784				  intel_dp->link_configuration,
1785				  DP_LINK_CONFIGURATION_SIZE);
1786
1787	DP |= DP_PORT_EN;
1788
1789	memset(intel_dp->train_set, 0, 4);
1790	voltage = 0xff;
1791	voltage_tries = 0;
1792	loop_tries = 0;
1793	clock_recovery = false;
1794	for (;;) {
1795		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1796		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1797		uint32_t    signal_levels;
1798
1799		if (IS_HASWELL(dev)) {
1800			signal_levels = intel_dp_signal_levels_hsw(
1801							intel_dp->train_set[0]);
1802			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1803		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1804			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1805			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1806		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1807			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1808			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1809		} else {
1810			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1811			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1812		}
1813		DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1814			      signal_levels);
1815
1816		/* Set training pattern 1 */
1817		if (!intel_dp_set_link_train(intel_dp, DP,
1818					     DP_TRAINING_PATTERN_1 |
1819					     DP_LINK_SCRAMBLING_DISABLE))
1820			break;
1821
1822		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1823		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1824			DRM_ERROR("failed to get link status\n");
1825			break;
1826		}
1827
1828		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1829			DRM_DEBUG_KMS("clock recovery OK\n");
1830			clock_recovery = true;
1831			break;
1832		}
1833
1834		/* Check to see if we've tried the max voltage */
1835		for (i = 0; i < intel_dp->lane_count; i++)
1836			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1837				break;
1838		if (i == intel_dp->lane_count && voltage_tries == 5) {
1839			if (++loop_tries == 5) {
1840				DRM_DEBUG_KMS("too many full retries, give up\n");
1841				break;
1842			}
1843			memset(intel_dp->train_set, 0, 4);
1844			voltage_tries = 0;
1845			continue;
1846		}
1847
1848		/* Check to see if we've tried the same voltage 5 times */
1849		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1850			voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1851			voltage_tries = 0;
1852		} else
1853			++voltage_tries;
1854
1855		/* Compute new intel_dp->train_set as requested by target */
1856		intel_get_adjust_train(intel_dp, link_status);
1857	}
1858
1859	intel_dp->DP = DP;
1860}
1861
1862void
1863intel_dp_complete_link_train(struct intel_dp *intel_dp)
1864{
1865	struct drm_device *dev = intel_dp->base.base.dev;
1866	bool channel_eq = false;
1867	int tries, cr_tries;
1868	uint32_t DP = intel_dp->DP;
1869
1870	/* channel equalization */
1871	tries = 0;
1872	cr_tries = 0;
1873	channel_eq = false;
1874	for (;;) {
1875		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1876		uint32_t    signal_levels;
1877		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1878
1879		if (cr_tries > 5) {
1880			DRM_ERROR("failed to train DP, aborting\n");
1881			intel_dp_link_down(intel_dp);
1882			break;
1883		}
1884
1885		if (IS_HASWELL(dev)) {
1886			signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1887			DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1888		} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1889			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1890			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1891		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1892			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1893			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1894		} else {
1895			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1896			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1897		}
1898
1899		/* channel eq pattern */
1900		if (!intel_dp_set_link_train(intel_dp, DP,
1901					     DP_TRAINING_PATTERN_2 |
1902					     DP_LINK_SCRAMBLING_DISABLE))
1903			break;
1904
1905		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1906		if (!intel_dp_get_link_status(intel_dp, link_status))
1907			break;
1908
1909		/* Make sure clock is still ok */
1910		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1911			intel_dp_start_link_train(intel_dp);
1912			cr_tries++;
1913			continue;
1914		}
1915
1916		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1917			channel_eq = true;
1918			break;
1919		}
1920
1921		/* Try 5 times, then try clock recovery if that fails */
1922		if (tries > 5) {
1923			intel_dp_link_down(intel_dp);
1924			intel_dp_start_link_train(intel_dp);
1925			tries = 0;
1926			cr_tries++;
1927			continue;
1928		}
1929
1930		/* Compute new intel_dp->train_set as requested by target */
1931		intel_get_adjust_train(intel_dp, link_status);
1932		++tries;
1933	}
1934
1935	if (channel_eq)
1936		DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1937
1938	intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1939}
1940
1941static void
1942intel_dp_link_down(struct intel_dp *intel_dp)
1943{
1944	struct drm_device *dev = intel_dp->base.base.dev;
1945	struct drm_i915_private *dev_priv = dev->dev_private;
1946	uint32_t DP = intel_dp->DP;
1947
1948	/*
1949	 * DDI code has a strict mode set sequence and we should try to respect
1950	 * it, otherwise we might hang the machine in many different ways. So we
1951	 * really should be disabling the port only on a complete crtc_disable
1952	 * sequence. This function is just called under two conditions on DDI
1953	 * code:
1954	 * - Link train failed while doing crtc_enable, and on this case we
1955	 *   really should respect the mode set sequence and wait for a
1956	 *   crtc_disable.
1957	 * - Someone turned the monitor off and intel_dp_check_link_status
1958	 *   called us. We don't need to disable the whole port on this case, so
1959	 *   when someone turns the monitor on again,
1960	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
1961	 *   train.
1962	 */
1963	if (IS_HASWELL(dev))
1964		return;
1965
1966	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1967		return;
1968
1969	DRM_DEBUG_KMS("\n");
1970
1971	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1972		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1973		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1974	} else {
1975		DP &= ~DP_LINK_TRAIN_MASK;
1976		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1977	}
1978	POSTING_READ(intel_dp->output_reg);
1979
1980	msleep(17);
1981
1982	if (HAS_PCH_IBX(dev) &&
1983	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1984		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1985
1986		/* Hardware workaround: leaving our transcoder select
1987		 * set to transcoder B while it's off will prevent the
1988		 * corresponding HDMI output on transcoder A.
1989		 *
1990		 * Combine this with another hardware workaround:
1991		 * transcoder select bit can only be cleared while the
1992		 * port is enabled.
1993		 */
1994		DP &= ~DP_PIPEB_SELECT;
1995		I915_WRITE(intel_dp->output_reg, DP);
1996
1997		/* Changes to enable or select take place the vblank
1998		 * after being written.
1999		 */
2000		if (crtc == NULL) {
2001			/* We can arrive here never having been attached
2002			 * to a CRTC, for instance, due to inheriting
2003			 * random state from the BIOS.
2004			 *
2005			 * If the pipe is not running, play safe and
2006			 * wait for the clocks to stabilise before
2007			 * continuing.
2008			 */
2009			POSTING_READ(intel_dp->output_reg);
2010			msleep(50);
2011		} else
2012			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2013	}
2014
2015	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2016	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2017	POSTING_READ(intel_dp->output_reg);
2018	msleep(intel_dp->panel_power_down_delay);
2019}
2020
2021static bool
2022intel_dp_get_dpcd(struct intel_dp *intel_dp)
2023{
2024	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2025					   sizeof(intel_dp->dpcd)) == 0)
2026		return false; /* aux transfer failed */
2027
2028	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2029		return false; /* DPCD not present */
2030
2031	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2032	      DP_DWN_STRM_PORT_PRESENT))
2033		return true; /* native DP sink */
2034
2035	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2036		return true; /* no per-port downstream info */
2037
2038	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2039					   intel_dp->downstream_ports,
2040					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2041		return false; /* downstream port status fetch failed */
2042
2043	return true;
2044}
2045
2046static void
2047intel_dp_probe_oui(struct intel_dp *intel_dp)
2048{
2049	u8 buf[3];
2050
2051	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2052		return;
2053
2054	ironlake_edp_panel_vdd_on(intel_dp);
2055
2056	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2057		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2058			      buf[0], buf[1], buf[2]);
2059
2060	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2061		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2062			      buf[0], buf[1], buf[2]);
2063
2064	ironlake_edp_panel_vdd_off(intel_dp, false);
2065}
2066
2067static bool
2068intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2069{
2070	int ret;
2071
2072	ret = intel_dp_aux_native_read_retry(intel_dp,
2073					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2074					     sink_irq_vector, 1);
2075	if (!ret)
2076		return false;
2077
2078	return true;
2079}
2080
2081static void
2082intel_dp_handle_test_request(struct intel_dp *intel_dp)
2083{
2084	/* NAK by default */
2085	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2086}
2087
2088/*
2089 * According to DP spec
2090 * 5.1.2:
2091 *  1. Read DPCD
2092 *  2. Configure link according to Receiver Capabilities
2093 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2094 *  4. Check link status on receipt of hot-plug interrupt
2095 */
2096
2097static void
2098intel_dp_check_link_status(struct intel_dp *intel_dp)
2099{
2100	u8 sink_irq_vector;
2101	u8 link_status[DP_LINK_STATUS_SIZE];
2102
2103	if (!intel_dp->base.connectors_active)
2104		return;
2105
2106	if (WARN_ON(!intel_dp->base.base.crtc))
2107		return;
2108
2109	/* Try to read receiver status if the link appears to be up */
2110	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2111		intel_dp_link_down(intel_dp);
2112		return;
2113	}
2114
2115	/* Now read the DPCD to see if it's actually running */
2116	if (!intel_dp_get_dpcd(intel_dp)) {
2117		intel_dp_link_down(intel_dp);
2118		return;
2119	}
2120
2121	/* Try to read the source of the interrupt */
2122	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2123	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2124		/* Clear interrupt source */
2125		intel_dp_aux_native_write_1(intel_dp,
2126					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2127					    sink_irq_vector);
2128
2129		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2130			intel_dp_handle_test_request(intel_dp);
2131		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2132			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2133	}
2134
2135	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2136		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2137			      drm_get_encoder_name(&intel_dp->base.base));
2138		intel_dp_start_link_train(intel_dp);
2139		intel_dp_complete_link_train(intel_dp);
2140	}
2141}
2142
2143/* XXX this is probably wrong for multiple downstream ports */
2144static enum drm_connector_status
2145intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2146{
2147	uint8_t *dpcd = intel_dp->dpcd;
2148	bool hpd;
2149	uint8_t type;
2150
2151	if (!intel_dp_get_dpcd(intel_dp))
2152		return connector_status_disconnected;
2153
2154	/* if there's no downstream port, we're done */
2155	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2156		return connector_status_connected;
2157
2158	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2159	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2160	if (hpd) {
2161		uint8_t reg;
2162		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2163						    &reg, 1))
2164			return connector_status_unknown;
2165		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2166					      : connector_status_disconnected;
2167	}
2168
2169	/* If no HPD, poke DDC gently */
2170	if (drm_probe_ddc(&intel_dp->adapter))
2171		return connector_status_connected;
2172
2173	/* Well we tried, say unknown for unreliable port types */
2174	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2175	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2176		return connector_status_unknown;
2177
2178	/* Anything else is out of spec, warn and ignore */
2179	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2180	return connector_status_disconnected;
2181}
2182
2183static enum drm_connector_status
2184ironlake_dp_detect(struct intel_dp *intel_dp)
2185{
2186	enum drm_connector_status status;
2187
2188	/* Can't disconnect eDP, but you can close the lid... */
2189	if (is_edp(intel_dp)) {
2190		status = intel_panel_detect(intel_dp->base.base.dev);
2191		if (status == connector_status_unknown)
2192			status = connector_status_connected;
2193		return status;
2194	}
2195
2196	return intel_dp_detect_dpcd(intel_dp);
2197}
2198
2199static enum drm_connector_status
2200g4x_dp_detect(struct intel_dp *intel_dp)
2201{
2202	struct drm_device *dev = intel_dp->base.base.dev;
2203	struct drm_i915_private *dev_priv = dev->dev_private;
2204	uint32_t bit;
2205
2206	switch (intel_dp->output_reg) {
2207	case DP_B:
2208		bit = DPB_HOTPLUG_LIVE_STATUS;
2209		break;
2210	case DP_C:
2211		bit = DPC_HOTPLUG_LIVE_STATUS;
2212		break;
2213	case DP_D:
2214		bit = DPD_HOTPLUG_LIVE_STATUS;
2215		break;
2216	default:
2217		return connector_status_unknown;
2218	}
2219
2220	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2221		return connector_status_disconnected;
2222
2223	return intel_dp_detect_dpcd(intel_dp);
2224}
2225
2226static struct edid *
2227intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2228{
2229	struct intel_connector *intel_connector = to_intel_connector(connector);
2230
2231	/* use cached edid if we have one */
2232	if (intel_connector->edid) {
2233		struct edid *edid;
2234		int size;
2235
2236		/* invalid edid */
2237		if (IS_ERR(intel_connector->edid))
2238			return NULL;
2239
2240		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2241		edid = kmalloc(size, GFP_KERNEL);
2242		if (!edid)
2243			return NULL;
2244
2245		memcpy(edid, intel_connector->edid, size);
2246		return edid;
2247	}
2248
2249	return drm_get_edid(connector, adapter);
2250}
2251
2252static int
2253intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2254{
2255	struct intel_connector *intel_connector = to_intel_connector(connector);
2256
2257	/* use cached edid if we have one */
2258	if (intel_connector->edid) {
2259		/* invalid edid */
2260		if (IS_ERR(intel_connector->edid))
2261			return 0;
2262
2263		return intel_connector_update_modes(connector,
2264						    intel_connector->edid);
2265	}
2266
2267	return intel_ddc_get_modes(connector, adapter);
2268}
2269
2270
2271/**
2272 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2273 *
2274 * \return true if DP port is connected.
2275 * \return false if DP port is disconnected.
2276 */
2277static enum drm_connector_status
2278intel_dp_detect(struct drm_connector *connector, bool force)
2279{
2280	struct intel_dp *intel_dp = intel_attached_dp(connector);
2281	struct drm_device *dev = connector->dev;
2282	enum drm_connector_status status;
2283	struct edid *edid = NULL;
2284	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2285
2286	intel_dp->has_audio = false;
2287
2288	if (HAS_PCH_SPLIT(dev))
2289		status = ironlake_dp_detect(intel_dp);
2290	else
2291		status = g4x_dp_detect(intel_dp);
2292
2293	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2294			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2295	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2296
2297	if (status != connector_status_connected)
2298		return status;
2299
2300	intel_dp_probe_oui(intel_dp);
2301
2302	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2303		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2304	} else {
2305		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2306		if (edid) {
2307			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2308			kfree(edid);
2309		}
2310	}
2311
2312	return connector_status_connected;
2313}
2314
2315static int intel_dp_get_modes(struct drm_connector *connector)
2316{
2317	struct intel_dp *intel_dp = intel_attached_dp(connector);
2318	struct intel_connector *intel_connector = to_intel_connector(connector);
2319	struct drm_device *dev = connector->dev;
2320	int ret;
2321
2322	/* We should parse the EDID data and find out if it has an audio sink
2323	 */
2324
2325	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2326	if (ret)
2327		return ret;
2328
2329	/* if eDP has no EDID, fall back to fixed mode */
2330	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2331		struct drm_display_mode *mode;
2332		mode = drm_mode_duplicate(dev,
2333					  intel_connector->panel.fixed_mode);
2334		if (mode) {
2335			drm_mode_probed_add(connector, mode);
2336			return 1;
2337		}
2338	}
2339	return 0;
2340}
2341
2342static bool
2343intel_dp_detect_audio(struct drm_connector *connector)
2344{
2345	struct intel_dp *intel_dp = intel_attached_dp(connector);
2346	struct edid *edid;
2347	bool has_audio = false;
2348
2349	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2350	if (edid) {
2351		has_audio = drm_detect_monitor_audio(edid);
2352		kfree(edid);
2353	}
2354
2355	return has_audio;
2356}
2357
2358static int
2359intel_dp_set_property(struct drm_connector *connector,
2360		      struct drm_property *property,
2361		      uint64_t val)
2362{
2363	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2364	struct intel_connector *intel_connector = to_intel_connector(connector);
2365	struct intel_dp *intel_dp = intel_attached_dp(connector);
2366	int ret;
2367
2368	ret = drm_connector_property_set_value(connector, property, val);
2369	if (ret)
2370		return ret;
2371
2372	if (property == dev_priv->force_audio_property) {
2373		int i = val;
2374		bool has_audio;
2375
2376		if (i == intel_dp->force_audio)
2377			return 0;
2378
2379		intel_dp->force_audio = i;
2380
2381		if (i == HDMI_AUDIO_AUTO)
2382			has_audio = intel_dp_detect_audio(connector);
2383		else
2384			has_audio = (i == HDMI_AUDIO_ON);
2385
2386		if (has_audio == intel_dp->has_audio)
2387			return 0;
2388
2389		intel_dp->has_audio = has_audio;
2390		goto done;
2391	}
2392
2393	if (property == dev_priv->broadcast_rgb_property) {
2394		if (val == !!intel_dp->color_range)
2395			return 0;
2396
2397		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2398		goto done;
2399	}
2400
2401	if (is_edp(intel_dp) &&
2402	    property == connector->dev->mode_config.scaling_mode_property) {
2403		if (val == DRM_MODE_SCALE_NONE) {
2404			DRM_DEBUG_KMS("no scaling not supported\n");
2405			return -EINVAL;
2406		}
2407
2408		if (intel_connector->panel.fitting_mode == val) {
2409			/* the eDP scaling property is not changed */
2410			return 0;
2411		}
2412		intel_connector->panel.fitting_mode = val;
2413
2414		goto done;
2415	}
2416
2417	return -EINVAL;
2418
2419done:
2420	if (intel_dp->base.base.crtc) {
2421		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2422		intel_set_mode(crtc, &crtc->mode,
2423			       crtc->x, crtc->y, crtc->fb);
2424	}
2425
2426	return 0;
2427}
2428
2429static void
2430intel_dp_destroy(struct drm_connector *connector)
2431{
2432	struct drm_device *dev = connector->dev;
2433	struct intel_dp *intel_dp = intel_attached_dp(connector);
2434	struct intel_connector *intel_connector = to_intel_connector(connector);
2435
2436	if (!IS_ERR_OR_NULL(intel_connector->edid))
2437		kfree(intel_connector->edid);
2438
2439	if (is_edp(intel_dp)) {
2440		intel_panel_destroy_backlight(dev);
2441		intel_panel_fini(&intel_connector->panel);
2442	}
2443
2444	drm_sysfs_connector_remove(connector);
2445	drm_connector_cleanup(connector);
2446	kfree(connector);
2447}
2448
2449static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2450{
2451	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2452
2453	i2c_del_adapter(&intel_dp->adapter);
2454	drm_encoder_cleanup(encoder);
2455	if (is_edp(intel_dp)) {
2456		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2457		ironlake_panel_vdd_off_sync(intel_dp);
2458	}
2459	kfree(intel_dp);
2460}
2461
2462static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2463	.mode_fixup = intel_dp_mode_fixup,
2464	.mode_set = intel_dp_mode_set,
2465	.disable = intel_encoder_noop,
2466};
2467
2468static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2469	.mode_fixup = intel_dp_mode_fixup,
2470	.mode_set = intel_ddi_mode_set,
2471	.disable = intel_encoder_noop,
2472};
2473
2474static const struct drm_connector_funcs intel_dp_connector_funcs = {
2475	.dpms = intel_connector_dpms,
2476	.detect = intel_dp_detect,
2477	.fill_modes = drm_helper_probe_single_connector_modes,
2478	.set_property = intel_dp_set_property,
2479	.destroy = intel_dp_destroy,
2480};
2481
2482static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2483	.get_modes = intel_dp_get_modes,
2484	.mode_valid = intel_dp_mode_valid,
2485	.best_encoder = intel_best_encoder,
2486};
2487
2488static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2489	.destroy = intel_dp_encoder_destroy,
2490};
2491
2492static void
2493intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2494{
2495	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2496
2497	intel_dp_check_link_status(intel_dp);
2498}
2499
2500/* Return which DP Port should be selected for Transcoder DP control */
2501int
2502intel_trans_dp_port_sel(struct drm_crtc *crtc)
2503{
2504	struct drm_device *dev = crtc->dev;
2505	struct intel_encoder *intel_encoder;
2506	struct intel_dp *intel_dp;
2507
2508	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2509		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2510
2511		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2512		    intel_encoder->type == INTEL_OUTPUT_EDP)
2513			return intel_dp->output_reg;
2514	}
2515
2516	return -1;
2517}
2518
2519/* check the VBT to see whether the eDP is on DP-D port */
2520bool intel_dpd_is_edp(struct drm_device *dev)
2521{
2522	struct drm_i915_private *dev_priv = dev->dev_private;
2523	struct child_device_config *p_child;
2524	int i;
2525
2526	if (!dev_priv->child_dev_num)
2527		return false;
2528
2529	for (i = 0; i < dev_priv->child_dev_num; i++) {
2530		p_child = dev_priv->child_dev + i;
2531
2532		if (p_child->dvo_port == PORT_IDPD &&
2533		    p_child->device_type == DEVICE_TYPE_eDP)
2534			return true;
2535	}
2536	return false;
2537}
2538
2539static void
2540intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2541{
2542	struct intel_connector *intel_connector = to_intel_connector(connector);
2543
2544	intel_attach_force_audio_property(connector);
2545	intel_attach_broadcast_rgb_property(connector);
2546
2547	if (is_edp(intel_dp)) {
2548		drm_mode_create_scaling_mode_property(connector->dev);
2549		drm_connector_attach_property(
2550			connector,
2551			connector->dev->mode_config.scaling_mode_property,
2552			DRM_MODE_SCALE_ASPECT);
2553		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2554	}
2555}
2556
2557static void
2558intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2559				    struct intel_dp *intel_dp)
2560{
2561	struct drm_i915_private *dev_priv = dev->dev_private;
2562	struct edp_power_seq cur, vbt, spec, final;
2563	u32 pp_on, pp_off, pp_div, pp;
2564
2565	/* Workaround: Need to write PP_CONTROL with the unlock key as
2566	 * the very first thing. */
2567	pp = ironlake_get_pp_control(dev_priv);
2568	I915_WRITE(PCH_PP_CONTROL, pp);
2569
2570	pp_on = I915_READ(PCH_PP_ON_DELAYS);
2571	pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2572	pp_div = I915_READ(PCH_PP_DIVISOR);
2573
2574	/* Pull timing values out of registers */
2575	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2576		PANEL_POWER_UP_DELAY_SHIFT;
2577
2578	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2579		PANEL_LIGHT_ON_DELAY_SHIFT;
2580
2581	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2582		PANEL_LIGHT_OFF_DELAY_SHIFT;
2583
2584	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2585		PANEL_POWER_DOWN_DELAY_SHIFT;
2586
2587	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2588		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2589
2590	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2591		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2592
2593	vbt = dev_priv->edp.pps;
2594
2595	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2596	 * our hw here, which are all in 100usec. */
2597	spec.t1_t3 = 210 * 10;
2598	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2599	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2600	spec.t10 = 500 * 10;
2601	/* This one is special and actually in units of 100ms, but zero
2602	 * based in the hw (so we need to add 100 ms). But the sw vbt
2603	 * table multiplies it with 1000 to make it in units of 100usec,
2604	 * too. */
2605	spec.t11_t12 = (510 + 100) * 10;
2606
2607	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2608		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2609
2610	/* Use the max of the register settings and vbt. If both are
2611	 * unset, fall back to the spec limits. */
2612#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
2613				       spec.field : \
2614				       max(cur.field, vbt.field))
2615	assign_final(t1_t3);
2616	assign_final(t8);
2617	assign_final(t9);
2618	assign_final(t10);
2619	assign_final(t11_t12);
2620#undef assign_final
2621
2622#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
2623	intel_dp->panel_power_up_delay = get_delay(t1_t3);
2624	intel_dp->backlight_on_delay = get_delay(t8);
2625	intel_dp->backlight_off_delay = get_delay(t9);
2626	intel_dp->panel_power_down_delay = get_delay(t10);
2627	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2628#undef get_delay
2629
2630	/* And finally store the new values in the power sequencer. */
2631	pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2632		(final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2633	pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2634		 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2635	/* Compute the divisor for the pp clock, simply match the Bspec
2636	 * formula. */
2637	pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2638			<< PP_REFERENCE_DIVIDER_SHIFT;
2639	pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2640			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
2641
2642	/* Haswell doesn't have any port selection bits for the panel
2643	 * power sequencer any more. */
2644	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2645		if (is_cpu_edp(intel_dp))
2646			pp_on |= PANEL_POWER_PORT_DP_A;
2647		else
2648			pp_on |= PANEL_POWER_PORT_DP_D;
2649	}
2650
2651	I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2652	I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2653	I915_WRITE(PCH_PP_DIVISOR, pp_div);
2654
2655
2656	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2657		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2658		      intel_dp->panel_power_cycle_delay);
2659
2660	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2661		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2662
2663	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2664		      I915_READ(PCH_PP_ON_DELAYS),
2665		      I915_READ(PCH_PP_OFF_DELAYS),
2666		      I915_READ(PCH_PP_DIVISOR));
2667}
2668
2669void
2670intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2671{
2672	struct drm_i915_private *dev_priv = dev->dev_private;
2673	struct drm_connector *connector;
2674	struct intel_dp *intel_dp;
2675	struct intel_encoder *intel_encoder;
2676	struct intel_connector *intel_connector;
2677	struct drm_display_mode *fixed_mode = NULL;
2678	const char *name = NULL;
2679	int type;
2680
2681	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2682	if (!intel_dp)
2683		return;
2684
2685	intel_dp->output_reg = output_reg;
2686	intel_dp->port = port;
2687	/* Preserve the current hw state. */
2688	intel_dp->DP = I915_READ(intel_dp->output_reg);
2689
2690	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2691	if (!intel_connector) {
2692		kfree(intel_dp);
2693		return;
2694	}
2695	intel_encoder = &intel_dp->base;
2696	intel_dp->attached_connector = intel_connector;
2697
2698	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2699		if (intel_dpd_is_edp(dev))
2700			intel_dp->is_pch_edp = true;
2701
2702	/*
2703	 * FIXME : We need to initialize built-in panels before external panels.
2704	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2705	 */
2706	if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2707		type = DRM_MODE_CONNECTOR_eDP;
2708		intel_encoder->type = INTEL_OUTPUT_EDP;
2709	} else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2710		type = DRM_MODE_CONNECTOR_eDP;
2711		intel_encoder->type = INTEL_OUTPUT_EDP;
2712	} else {
2713		type = DRM_MODE_CONNECTOR_DisplayPort;
2714		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2715	}
2716
2717	connector = &intel_connector->base;
2718	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2719	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2720
2721	connector->polled = DRM_CONNECTOR_POLL_HPD;
2722
2723	intel_encoder->cloneable = false;
2724
2725	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2726			  ironlake_panel_vdd_work);
2727
2728	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2729
2730	connector->interlace_allowed = true;
2731	connector->doublescan_allowed = 0;
2732
2733	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2734			 DRM_MODE_ENCODER_TMDS);
2735
2736	if (IS_HASWELL(dev))
2737		drm_encoder_helper_add(&intel_encoder->base,
2738				       &intel_dp_helper_funcs_hsw);
2739	else
2740		drm_encoder_helper_add(&intel_encoder->base,
2741				       &intel_dp_helper_funcs);
2742
2743	intel_connector_attach_encoder(intel_connector, intel_encoder);
2744	drm_sysfs_connector_add(connector);
2745
2746	if (IS_HASWELL(dev)) {
2747		intel_encoder->enable = intel_enable_ddi;
2748		intel_encoder->pre_enable = intel_ddi_pre_enable;
2749		intel_encoder->disable = intel_disable_ddi;
2750		intel_encoder->post_disable = intel_ddi_post_disable;
2751		intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2752	} else {
2753		intel_encoder->enable = intel_enable_dp;
2754		intel_encoder->pre_enable = intel_pre_enable_dp;
2755		intel_encoder->disable = intel_disable_dp;
2756		intel_encoder->post_disable = intel_post_disable_dp;
2757		intel_encoder->get_hw_state = intel_dp_get_hw_state;
2758	}
2759	intel_connector->get_hw_state = intel_connector_get_hw_state;
2760
2761	/* Set up the DDC bus. */
2762	switch (port) {
2763	case PORT_A:
2764		name = "DPDDC-A";
2765		break;
2766	case PORT_B:
2767		dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2768		name = "DPDDC-B";
2769		break;
2770	case PORT_C:
2771		dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2772		name = "DPDDC-C";
2773		break;
2774	case PORT_D:
2775		dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2776		name = "DPDDC-D";
2777		break;
2778	default:
2779		WARN(1, "Invalid port %c\n", port_name(port));
2780		break;
2781	}
2782
2783	if (is_edp(intel_dp))
2784		intel_dp_init_panel_power_sequencer(dev, intel_dp);
2785
2786	intel_dp_i2c_init(intel_dp, intel_connector, name);
2787
2788	/* Cache DPCD and EDID for edp. */
2789	if (is_edp(intel_dp)) {
2790		bool ret;
2791		struct drm_display_mode *scan;
2792		struct edid *edid;
2793
2794		ironlake_edp_panel_vdd_on(intel_dp);
2795		ret = intel_dp_get_dpcd(intel_dp);
2796		ironlake_edp_panel_vdd_off(intel_dp, false);
2797
2798		if (ret) {
2799			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2800				dev_priv->no_aux_handshake =
2801					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2802					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2803		} else {
2804			/* if this fails, presume the device is a ghost */
2805			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2806			intel_dp_encoder_destroy(&intel_encoder->base);
2807			intel_dp_destroy(connector);
2808			return;
2809		}
2810
2811		ironlake_edp_panel_vdd_on(intel_dp);
2812		edid = drm_get_edid(connector, &intel_dp->adapter);
2813		if (edid) {
2814			if (drm_add_edid_modes(connector, edid)) {
2815				drm_mode_connector_update_edid_property(connector, edid);
2816				drm_edid_to_eld(connector, edid);
2817			} else {
2818				kfree(edid);
2819				edid = ERR_PTR(-EINVAL);
2820			}
2821		} else {
2822			edid = ERR_PTR(-ENOENT);
2823		}
2824		intel_connector->edid = edid;
2825
2826		/* prefer fixed mode from EDID if available */
2827		list_for_each_entry(scan, &connector->probed_modes, head) {
2828			if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2829				fixed_mode = drm_mode_duplicate(dev, scan);
2830				break;
2831			}
2832		}
2833
2834		/* fallback to VBT if available for eDP */
2835		if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2836			fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2837			if (fixed_mode)
2838				fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2839		}
2840
2841		ironlake_edp_panel_vdd_off(intel_dp, false);
2842	}
2843
2844	intel_encoder->hot_plug = intel_dp_hot_plug;
2845
2846	if (is_edp(intel_dp)) {
2847		intel_panel_init(&intel_connector->panel, fixed_mode);
2848		intel_panel_setup_backlight(connector);
2849	}
2850
2851	intel_dp_add_properties(intel_dp, connector);
2852
2853	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2854	 * 0xd.  Failure to do so will result in spurious interrupts being
2855	 * generated on the port when a cable is not attached.
2856	 */
2857	if (IS_G4X(dev) && !IS_GM45(dev)) {
2858		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2859		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2860	}
2861}
2862