1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Ben Widawsky <ben@bwidawsk.net>
25 *    Michel Thierry <michel.thierry@intel.com>
26 *    Thomas Daniel <thomas.daniel@intel.com>
27 *    Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
138
139#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142#define GEN8_LR_CONTEXT_ALIGN 4096
143
144#define RING_EXECLIST_QFULL		(1 << 0x2)
145#define RING_EXECLIST1_VALID		(1 << 0x3)
146#define RING_EXECLIST0_VALID		(1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
148#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
149#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157
158#define CTX_LRI_HEADER_0		0x01
159#define CTX_CONTEXT_CONTROL		0x02
160#define CTX_RING_HEAD			0x04
161#define CTX_RING_TAIL			0x06
162#define CTX_RING_BUFFER_START		0x08
163#define CTX_RING_BUFFER_CONTROL		0x0a
164#define CTX_BB_HEAD_U			0x0c
165#define CTX_BB_HEAD_L			0x0e
166#define CTX_BB_STATE			0x10
167#define CTX_SECOND_BB_HEAD_U		0x12
168#define CTX_SECOND_BB_HEAD_L		0x14
169#define CTX_SECOND_BB_STATE		0x16
170#define CTX_BB_PER_CTX_PTR		0x18
171#define CTX_RCS_INDIRECT_CTX		0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
173#define CTX_LRI_HEADER_1		0x21
174#define CTX_CTX_TIMESTAMP		0x22
175#define CTX_PDP3_UDW			0x24
176#define CTX_PDP3_LDW			0x26
177#define CTX_PDP2_UDW			0x28
178#define CTX_PDP2_LDW			0x2a
179#define CTX_PDP1_UDW			0x2c
180#define CTX_PDP1_LDW			0x2e
181#define CTX_PDP0_UDW			0x30
182#define CTX_PDP0_LDW			0x32
183#define CTX_LRI_HEADER_2		0x41
184#define CTX_R_PWR_CLK_STATE		0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
186
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
192enum {
193	ADVANCED_CONTEXT = 0,
194	LEGACY_CONTEXT,
195	ADVANCED_AD_CONTEXT,
196	LEGACY_64B_CONTEXT
197};
198#define GEN8_CTX_MODE_SHIFT 3
199enum {
200	FAULT_AND_HANG = 0,
201	FAULT_AND_HALT, /* Debug only */
202	FAULT_AND_STREAM,
203	FAULT_AND_CONTINUE /* Unsupported */
204};
205#define GEN8_CTX_ID_SHIFT 32
206
207/**
208 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209 * @dev: DRM device.
210 * @enable_execlists: value of i915.enable_execlists module parameter.
211 *
212 * Only certain platforms support Execlists (the prerequisites being
213 * support for Logical Ring Contexts and Aliasing PPGTT or better),
214 * and only when enabled via module parameter.
215 *
216 * Return: 1 if Execlists is supported and has to be enabled.
217 */
218int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219{
220	WARN_ON(i915.enable_ppgtt == -1);
221
222	if (enable_execlists == 0)
223		return 0;
224
225	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226	    i915.use_mmio_flip >= 0)
227		return 1;
228
229	return 0;
230}
231
232/**
233 * intel_execlists_ctx_id() - get the Execlists Context ID
234 * @ctx_obj: Logical Ring Context backing object.
235 *
236 * Do not confuse with ctx->id! Unfortunately we have a name overload
237 * here: the old context ID we pass to userspace as a handler so that
238 * they can refer to a context, and the new context ID we pass to the
239 * ELSP so that the GPU can inform us of the context status via
240 * interrupts.
241 *
242 * Return: 20-bits globally unique context ID.
243 */
244u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245{
246	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248	/* LRCA is required to be 4K aligned so the more significant 20 bits
249	 * are globally unique */
250	return lrca >> 12;
251}
252
253static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254{
255	uint64_t desc;
256	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
257
258	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
259
260	desc = GEN8_CTX_VALID;
261	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262	desc |= GEN8_CTX_L3LLC_COHERENT;
263	desc |= GEN8_CTX_PRIVILEGE;
264	desc |= lrca;
265	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267	/* TODO: WaDisableLiteRestore when we start using semaphore
268	 * signalling between Command Streamers */
269	/* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271	return desc;
272}
273
274static void execlists_elsp_write(struct intel_engine_cs *ring,
275				 struct drm_i915_gem_object *ctx_obj0,
276				 struct drm_i915_gem_object *ctx_obj1)
277{
278	struct drm_i915_private *dev_priv = ring->dev->dev_private;
279	uint64_t temp = 0;
280	uint32_t desc[4];
281	unsigned long flags;
282
283	/* XXX: You must always write both descriptors in the order below. */
284	if (ctx_obj1)
285		temp = execlists_ctx_descriptor(ctx_obj1);
286	else
287		temp = 0;
288	desc[1] = (u32)(temp >> 32);
289	desc[0] = (u32)temp;
290
291	temp = execlists_ctx_descriptor(ctx_obj0);
292	desc[3] = (u32)(temp >> 32);
293	desc[2] = (u32)temp;
294
295	/* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296	 * are in progress.
297	 *
298	 * The other problem is that we can't just call gen6_gt_force_wake_get()
299	 * because that function calls intel_runtime_pm_get(), which might sleep.
300	 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301	 */
302	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
303	if (IS_CHERRYVIEW(dev_priv->dev)) {
304		if (dev_priv->uncore.fw_rendercount++ == 0)
305			dev_priv->uncore.funcs.force_wake_get(dev_priv,
306							      FORCEWAKE_RENDER);
307		if (dev_priv->uncore.fw_mediacount++ == 0)
308			dev_priv->uncore.funcs.force_wake_get(dev_priv,
309							      FORCEWAKE_MEDIA);
310	} else {
311		if (dev_priv->uncore.forcewake_count++ == 0)
312			dev_priv->uncore.funcs.force_wake_get(dev_priv,
313							      FORCEWAKE_ALL);
314	}
315	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
316
317	I915_WRITE(RING_ELSP(ring), desc[1]);
318	I915_WRITE(RING_ELSP(ring), desc[0]);
319	I915_WRITE(RING_ELSP(ring), desc[3]);
320	/* The context is automatically loaded after the following */
321	I915_WRITE(RING_ELSP(ring), desc[2]);
322
323	/* ELSP is a wo register, so use another nearby reg for posting instead */
324	POSTING_READ(RING_EXECLIST_STATUS(ring));
325
326	/* Release Force Wakeup (see the big comment above). */
327	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
328	if (IS_CHERRYVIEW(dev_priv->dev)) {
329		if (--dev_priv->uncore.fw_rendercount == 0)
330			dev_priv->uncore.funcs.force_wake_put(dev_priv,
331							      FORCEWAKE_RENDER);
332		if (--dev_priv->uncore.fw_mediacount == 0)
333			dev_priv->uncore.funcs.force_wake_put(dev_priv,
334							      FORCEWAKE_MEDIA);
335	} else {
336		if (--dev_priv->uncore.forcewake_count == 0)
337			dev_priv->uncore.funcs.force_wake_put(dev_priv,
338							      FORCEWAKE_ALL);
339	}
340
341	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
342}
343
344static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345{
346	struct page *page;
347	uint32_t *reg_state;
348
349	page = i915_gem_object_get_page(ctx_obj, 1);
350	reg_state = kmap_atomic(page);
351
352	reg_state[CTX_RING_TAIL+1] = tail;
353
354	kunmap_atomic(reg_state);
355
356	return 0;
357}
358
359static int execlists_submit_context(struct intel_engine_cs *ring,
360				    struct intel_context *to0, u32 tail0,
361				    struct intel_context *to1, u32 tail1)
362{
363	struct drm_i915_gem_object *ctx_obj0;
364	struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366	ctx_obj0 = to0->engine[ring->id].state;
367	BUG_ON(!ctx_obj0);
368	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369
370	execlists_ctx_write_tail(ctx_obj0, tail0);
371
372	if (to1) {
373		ctx_obj1 = to1->engine[ring->id].state;
374		BUG_ON(!ctx_obj1);
375		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376
377		execlists_ctx_write_tail(ctx_obj1, tail1);
378	}
379
380	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382	return 0;
383}
384
385static void execlists_context_unqueue(struct intel_engine_cs *ring)
386{
387	struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388	struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389	struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391	assert_spin_locked(&ring->execlist_lock);
392
393	if (list_empty(&ring->execlist_queue))
394		return;
395
396	/* Try to read in pairs */
397	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398				 execlist_link) {
399		if (!req0) {
400			req0 = cursor;
401		} else if (req0->ctx == cursor->ctx) {
402			/* Same ctx: ignore first request, as second request
403			 * will update tail past first request's workload */
404			cursor->elsp_submitted = req0->elsp_submitted;
405			list_del(&req0->execlist_link);
406			queue_work(dev_priv->wq, &req0->work);
407			req0 = cursor;
408		} else {
409			req1 = cursor;
410			break;
411		}
412	}
413
414	WARN_ON(req1 && req1->elsp_submitted);
415
416	WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417					 req1 ? req1->ctx : NULL,
418					 req1 ? req1->tail : 0));
419
420	req0->elsp_submitted++;
421	if (req1)
422		req1->elsp_submitted++;
423}
424
425static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426					   u32 request_id)
427{
428	struct drm_i915_private *dev_priv = ring->dev->dev_private;
429	struct intel_ctx_submit_request *head_req;
430
431	assert_spin_locked(&ring->execlist_lock);
432
433	head_req = list_first_entry_or_null(&ring->execlist_queue,
434					    struct intel_ctx_submit_request,
435					    execlist_link);
436
437	if (head_req != NULL) {
438		struct drm_i915_gem_object *ctx_obj =
439				head_req->ctx->engine[ring->id].state;
440		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441			WARN(head_req->elsp_submitted == 0,
442			     "Never submitted head request\n");
443
444			if (--head_req->elsp_submitted <= 0) {
445				list_del(&head_req->execlist_link);
446				queue_work(dev_priv->wq, &head_req->work);
447				return true;
448			}
449		}
450	}
451
452	return false;
453}
454
455/**
456 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457 * @ring: Engine Command Streamer to handle.
458 *
459 * Check the unread Context Status Buffers and manage the submission of new
460 * contexts to the ELSP accordingly.
461 */
462void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463{
464	struct drm_i915_private *dev_priv = ring->dev->dev_private;
465	u32 status_pointer;
466	u8 read_pointer;
467	u8 write_pointer;
468	u32 status;
469	u32 status_id;
470	u32 submit_contexts = 0;
471
472	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474	read_pointer = ring->next_context_status_buffer;
475	write_pointer = status_pointer & 0x07;
476	if (read_pointer > write_pointer)
477		write_pointer += 6;
478
479	spin_lock(&ring->execlist_lock);
480
481	while (read_pointer < write_pointer) {
482		read_pointer++;
483		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484				(read_pointer % 6) * 8);
485		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486				(read_pointer % 6) * 8 + 4);
487
488		if (status & GEN8_CTX_STATUS_PREEMPTED) {
489			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490				if (execlists_check_remove_request(ring, status_id))
491					WARN(1, "Lite Restored request removed from queue\n");
492			} else
493				WARN(1, "Preemption without Lite Restore\n");
494		}
495
496		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498			if (execlists_check_remove_request(ring, status_id))
499				submit_contexts++;
500		}
501	}
502
503	if (submit_contexts != 0)
504		execlists_context_unqueue(ring);
505
506	spin_unlock(&ring->execlist_lock);
507
508	WARN(submit_contexts > 2, "More than two context complete events?\n");
509	ring->next_context_status_buffer = write_pointer % 6;
510
511	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
513}
514
515static void execlists_free_request_task(struct work_struct *work)
516{
517	struct intel_ctx_submit_request *req =
518		container_of(work, struct intel_ctx_submit_request, work);
519	struct drm_device *dev = req->ring->dev;
520	struct drm_i915_private *dev_priv = dev->dev_private;
521
522	intel_runtime_pm_put(dev_priv);
523
524	mutex_lock(&dev->struct_mutex);
525	i915_gem_context_unreference(req->ctx);
526	mutex_unlock(&dev->struct_mutex);
527
528	kfree(req);
529}
530
531static int execlists_context_queue(struct intel_engine_cs *ring,
532				   struct intel_context *to,
533				   u32 tail)
534{
535	struct intel_ctx_submit_request *req = NULL, *cursor;
536	struct drm_i915_private *dev_priv = ring->dev->dev_private;
537	unsigned long flags;
538	int num_elements = 0;
539
540	req = kzalloc(sizeof(*req), GFP_KERNEL);
541	if (req == NULL)
542		return -ENOMEM;
543	req->ctx = to;
544	i915_gem_context_reference(req->ctx);
545	req->ring = ring;
546	req->tail = tail;
547	INIT_WORK(&req->work, execlists_free_request_task);
548
549	intel_runtime_pm_get(dev_priv);
550
551	spin_lock_irqsave(&ring->execlist_lock, flags);
552
553	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
554		if (++num_elements > 2)
555			break;
556
557	if (num_elements > 2) {
558		struct intel_ctx_submit_request *tail_req;
559
560		tail_req = list_last_entry(&ring->execlist_queue,
561					   struct intel_ctx_submit_request,
562					   execlist_link);
563
564		if (to == tail_req->ctx) {
565			WARN(tail_req->elsp_submitted != 0,
566			     "More than 2 already-submitted reqs queued\n");
567			list_del(&tail_req->execlist_link);
568			queue_work(dev_priv->wq, &tail_req->work);
569		}
570	}
571
572	list_add_tail(&req->execlist_link, &ring->execlist_queue);
573	if (num_elements == 0)
574		execlists_context_unqueue(ring);
575
576	spin_unlock_irqrestore(&ring->execlist_lock, flags);
577
578	return 0;
579}
580
581static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
582{
583	struct intel_engine_cs *ring = ringbuf->ring;
584	uint32_t flush_domains;
585	int ret;
586
587	flush_domains = 0;
588	if (ring->gpu_caches_dirty)
589		flush_domains = I915_GEM_GPU_DOMAINS;
590
591	ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
592	if (ret)
593		return ret;
594
595	ring->gpu_caches_dirty = false;
596	return 0;
597}
598
599static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
600				 struct list_head *vmas)
601{
602	struct intel_engine_cs *ring = ringbuf->ring;
603	struct i915_vma *vma;
604	uint32_t flush_domains = 0;
605	bool flush_chipset = false;
606	int ret;
607
608	list_for_each_entry(vma, vmas, exec_list) {
609		struct drm_i915_gem_object *obj = vma->obj;
610
611		ret = i915_gem_object_sync(obj, ring);
612		if (ret)
613			return ret;
614
615		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
616			flush_chipset |= i915_gem_clflush_object(obj, false);
617
618		flush_domains |= obj->base.write_domain;
619	}
620
621	if (flush_domains & I915_GEM_DOMAIN_GTT)
622		wmb();
623
624	/* Unconditionally invalidate gpu caches and ensure that we do flush
625	 * any residual writes from the previous batch.
626	 */
627	return logical_ring_invalidate_all_caches(ringbuf);
628}
629
630/**
631 * execlists_submission() - submit a batchbuffer for execution, Execlists style
632 * @dev: DRM device.
633 * @file: DRM file.
634 * @ring: Engine Command Streamer to submit to.
635 * @ctx: Context to employ for this submission.
636 * @args: execbuffer call arguments.
637 * @vmas: list of vmas.
638 * @batch_obj: the batchbuffer to submit.
639 * @exec_start: batchbuffer start virtual address pointer.
640 * @flags: translated execbuffer call flags.
641 *
642 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
643 * away the submission details of the execbuffer ioctl call.
644 *
645 * Return: non-zero if the submission fails.
646 */
647int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
648			       struct intel_engine_cs *ring,
649			       struct intel_context *ctx,
650			       struct drm_i915_gem_execbuffer2 *args,
651			       struct list_head *vmas,
652			       struct drm_i915_gem_object *batch_obj,
653			       u64 exec_start, u32 flags)
654{
655	struct drm_i915_private *dev_priv = dev->dev_private;
656	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
657	int instp_mode;
658	u32 instp_mask;
659	int ret;
660
661	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
662	instp_mask = I915_EXEC_CONSTANTS_MASK;
663	switch (instp_mode) {
664	case I915_EXEC_CONSTANTS_REL_GENERAL:
665	case I915_EXEC_CONSTANTS_ABSOLUTE:
666	case I915_EXEC_CONSTANTS_REL_SURFACE:
667		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
668			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
669			return -EINVAL;
670		}
671
672		if (instp_mode != dev_priv->relative_constants_mode) {
673			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
674				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
675				return -EINVAL;
676			}
677
678			/* The HW changed the meaning on this bit on gen6 */
679			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
680		}
681		break;
682	default:
683		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
684		return -EINVAL;
685	}
686
687	if (args->num_cliprects != 0) {
688		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
689		return -EINVAL;
690	} else {
691		if (args->DR4 == 0xffffffff) {
692			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
693			args->DR4 = 0;
694		}
695
696		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
697			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
698			return -EINVAL;
699		}
700	}
701
702	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
703		DRM_DEBUG("sol reset is gen7 only\n");
704		return -EINVAL;
705	}
706
707	ret = execlists_move_to_gpu(ringbuf, vmas);
708	if (ret)
709		return ret;
710
711	if (ring == &dev_priv->ring[RCS] &&
712	    instp_mode != dev_priv->relative_constants_mode) {
713		ret = intel_logical_ring_begin(ringbuf, 4);
714		if (ret)
715			return ret;
716
717		intel_logical_ring_emit(ringbuf, MI_NOOP);
718		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
719		intel_logical_ring_emit(ringbuf, INSTPM);
720		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
721		intel_logical_ring_advance(ringbuf);
722
723		dev_priv->relative_constants_mode = instp_mode;
724	}
725
726	ret = ring->emit_bb_start(ringbuf, exec_start, flags);
727	if (ret)
728		return ret;
729
730	i915_gem_execbuffer_move_to_active(vmas, ring);
731	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
732
733	return 0;
734}
735
736void intel_logical_ring_stop(struct intel_engine_cs *ring)
737{
738	struct drm_i915_private *dev_priv = ring->dev->dev_private;
739	int ret;
740
741	if (!intel_ring_initialized(ring))
742		return;
743
744	ret = intel_ring_idle(ring);
745	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
746		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
747			  ring->name, ret);
748
749	/* TODO: Is this correct with Execlists enabled? */
750	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
751	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
752		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
753		return;
754	}
755	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
756}
757
758int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
759{
760	struct intel_engine_cs *ring = ringbuf->ring;
761	int ret;
762
763	if (!ring->gpu_caches_dirty)
764		return 0;
765
766	ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
767	if (ret)
768		return ret;
769
770	ring->gpu_caches_dirty = false;
771	return 0;
772}
773
774/**
775 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
776 * @ringbuf: Logical Ringbuffer to advance.
777 *
778 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
779 * really happens during submission is that the context and current tail will be placed
780 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
781 * point, the tail *inside* the context is updated and the ELSP written to.
782 */
783void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
784{
785	struct intel_engine_cs *ring = ringbuf->ring;
786	struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
787
788	intel_logical_ring_advance(ringbuf);
789
790	if (intel_ring_stopped(ring))
791		return;
792
793	execlists_context_queue(ring, ctx, ringbuf->tail);
794}
795
796static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
797				    struct intel_context *ctx)
798{
799	if (ring->outstanding_lazy_seqno)
800		return 0;
801
802	if (ring->preallocated_lazy_request == NULL) {
803		struct drm_i915_gem_request *request;
804
805		request = kmalloc(sizeof(*request), GFP_KERNEL);
806		if (request == NULL)
807			return -ENOMEM;
808
809		/* Hold a reference to the context this request belongs to
810		 * (we will need it when the time comes to emit/retire the
811		 * request).
812		 */
813		request->ctx = ctx;
814		i915_gem_context_reference(request->ctx);
815
816		ring->preallocated_lazy_request = request;
817	}
818
819	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
820}
821
822static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
823				     int bytes)
824{
825	struct intel_engine_cs *ring = ringbuf->ring;
826	struct drm_i915_gem_request *request;
827	u32 seqno = 0;
828	int ret;
829
830	if (ringbuf->last_retired_head != -1) {
831		ringbuf->head = ringbuf->last_retired_head;
832		ringbuf->last_retired_head = -1;
833
834		ringbuf->space = intel_ring_space(ringbuf);
835		if (ringbuf->space >= bytes)
836			return 0;
837	}
838
839	list_for_each_entry(request, &ring->request_list, list) {
840		if (__intel_ring_space(request->tail, ringbuf->tail,
841				       ringbuf->size) >= bytes) {
842			seqno = request->seqno;
843			break;
844		}
845	}
846
847	if (seqno == 0)
848		return -ENOSPC;
849
850	ret = i915_wait_seqno(ring, seqno);
851	if (ret)
852		return ret;
853
854	i915_gem_retire_requests_ring(ring);
855	ringbuf->head = ringbuf->last_retired_head;
856	ringbuf->last_retired_head = -1;
857
858	ringbuf->space = intel_ring_space(ringbuf);
859	return 0;
860}
861
862static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
863				       int bytes)
864{
865	struct intel_engine_cs *ring = ringbuf->ring;
866	struct drm_device *dev = ring->dev;
867	struct drm_i915_private *dev_priv = dev->dev_private;
868	unsigned long end;
869	int ret;
870
871	ret = logical_ring_wait_request(ringbuf, bytes);
872	if (ret != -ENOSPC)
873		return ret;
874
875	/* Force the context submission in case we have been skipping it */
876	intel_logical_ring_advance_and_submit(ringbuf);
877
878	/* With GEM the hangcheck timer should kick us out of the loop,
879	 * leaving it early runs the risk of corrupting GEM state (due
880	 * to running on almost untested codepaths). But on resume
881	 * timers don't work yet, so prevent a complete hang in that
882	 * case by choosing an insanely large timeout. */
883	end = jiffies + 60 * HZ;
884
885	do {
886		ringbuf->head = I915_READ_HEAD(ring);
887		ringbuf->space = intel_ring_space(ringbuf);
888		if (ringbuf->space >= bytes) {
889			ret = 0;
890			break;
891		}
892
893		msleep(1);
894
895		if (dev_priv->mm.interruptible && signal_pending(current)) {
896			ret = -ERESTARTSYS;
897			break;
898		}
899
900		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
901					   dev_priv->mm.interruptible);
902		if (ret)
903			break;
904
905		if (time_after(jiffies, end)) {
906			ret = -EBUSY;
907			break;
908		}
909	} while (1);
910
911	return ret;
912}
913
914static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
915{
916	uint32_t __iomem *virt;
917	int rem = ringbuf->size - ringbuf->tail;
918
919	if (ringbuf->space < rem) {
920		int ret = logical_ring_wait_for_space(ringbuf, rem);
921
922		if (ret)
923			return ret;
924	}
925
926	virt = ringbuf->virtual_start + ringbuf->tail;
927	rem /= 4;
928	while (rem--)
929		iowrite32(MI_NOOP, virt++);
930
931	ringbuf->tail = 0;
932	ringbuf->space = intel_ring_space(ringbuf);
933
934	return 0;
935}
936
937static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
938{
939	int ret;
940
941	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
942		ret = logical_ring_wrap_buffer(ringbuf);
943		if (unlikely(ret))
944			return ret;
945	}
946
947	if (unlikely(ringbuf->space < bytes)) {
948		ret = logical_ring_wait_for_space(ringbuf, bytes);
949		if (unlikely(ret))
950			return ret;
951	}
952
953	return 0;
954}
955
956/**
957 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
958 *
959 * @ringbuf: Logical ringbuffer.
960 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
961 *
962 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
963 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
964 * and also preallocates a request (every workload submission is still mediated through
965 * requests, same as it did with legacy ringbuffer submission).
966 *
967 * Return: non-zero if the ringbuffer is not ready to be written to.
968 */
969int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
970{
971	struct intel_engine_cs *ring = ringbuf->ring;
972	struct drm_device *dev = ring->dev;
973	struct drm_i915_private *dev_priv = dev->dev_private;
974	int ret;
975
976	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
977				   dev_priv->mm.interruptible);
978	if (ret)
979		return ret;
980
981	ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
982	if (ret)
983		return ret;
984
985	/* Preallocate the olr before touching the ring */
986	ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
987	if (ret)
988		return ret;
989
990	ringbuf->space -= num_dwords * sizeof(uint32_t);
991	return 0;
992}
993
994static int gen8_init_common_ring(struct intel_engine_cs *ring)
995{
996	struct drm_device *dev = ring->dev;
997	struct drm_i915_private *dev_priv = dev->dev_private;
998
999	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1000	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1001
1002	I915_WRITE(RING_MODE_GEN7(ring),
1003		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1004		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1005	POSTING_READ(RING_MODE_GEN7(ring));
1006	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1007
1008	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1009
1010	return 0;
1011}
1012
1013static int gen8_init_render_ring(struct intel_engine_cs *ring)
1014{
1015	struct drm_device *dev = ring->dev;
1016	struct drm_i915_private *dev_priv = dev->dev_private;
1017	int ret;
1018
1019	ret = gen8_init_common_ring(ring);
1020	if (ret)
1021		return ret;
1022
1023	/* We need to disable the AsyncFlip performance optimisations in order
1024	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1025	 * programmed to '1' on all products.
1026	 *
1027	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1028	 */
1029	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1030
1031	ret = intel_init_pipe_control(ring);
1032	if (ret)
1033		return ret;
1034
1035	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1036
1037	return ret;
1038}
1039
1040static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1041			      u64 offset, unsigned flags)
1042{
1043	bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1044	int ret;
1045
1046	ret = intel_logical_ring_begin(ringbuf, 4);
1047	if (ret)
1048		return ret;
1049
1050	/* FIXME(BDW): Address space and security selectors. */
1051	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1052	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1053	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1054	intel_logical_ring_emit(ringbuf, MI_NOOP);
1055	intel_logical_ring_advance(ringbuf);
1056
1057	return 0;
1058}
1059
1060static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1061{
1062	struct drm_device *dev = ring->dev;
1063	struct drm_i915_private *dev_priv = dev->dev_private;
1064	unsigned long flags;
1065
1066	if (!dev->irq_enabled)
1067		return false;
1068
1069	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1070	if (ring->irq_refcount++ == 0) {
1071		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1072		POSTING_READ(RING_IMR(ring->mmio_base));
1073	}
1074	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1075
1076	return true;
1077}
1078
1079static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1080{
1081	struct drm_device *dev = ring->dev;
1082	struct drm_i915_private *dev_priv = dev->dev_private;
1083	unsigned long flags;
1084
1085	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1086	if (--ring->irq_refcount == 0) {
1087		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1088		POSTING_READ(RING_IMR(ring->mmio_base));
1089	}
1090	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1091}
1092
1093static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1094			   u32 invalidate_domains,
1095			   u32 unused)
1096{
1097	struct intel_engine_cs *ring = ringbuf->ring;
1098	struct drm_device *dev = ring->dev;
1099	struct drm_i915_private *dev_priv = dev->dev_private;
1100	uint32_t cmd;
1101	int ret;
1102
1103	ret = intel_logical_ring_begin(ringbuf, 4);
1104	if (ret)
1105		return ret;
1106
1107	cmd = MI_FLUSH_DW + 1;
1108
1109	if (ring == &dev_priv->ring[VCS]) {
1110		if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1111			cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1112				MI_FLUSH_DW_STORE_INDEX |
1113				MI_FLUSH_DW_OP_STOREDW;
1114	} else {
1115		if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1116			cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1117				MI_FLUSH_DW_OP_STOREDW;
1118	}
1119
1120	intel_logical_ring_emit(ringbuf, cmd);
1121	intel_logical_ring_emit(ringbuf,
1122				I915_GEM_HWS_SCRATCH_ADDR |
1123				MI_FLUSH_DW_USE_GTT);
1124	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1125	intel_logical_ring_emit(ringbuf, 0); /* value */
1126	intel_logical_ring_advance(ringbuf);
1127
1128	return 0;
1129}
1130
1131static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1132				  u32 invalidate_domains,
1133				  u32 flush_domains)
1134{
1135	struct intel_engine_cs *ring = ringbuf->ring;
1136	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1137	u32 flags = 0;
1138	int ret;
1139
1140	flags |= PIPE_CONTROL_CS_STALL;
1141
1142	if (flush_domains) {
1143		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1144		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1145	}
1146
1147	if (invalidate_domains) {
1148		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1149		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1150		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1151		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1152		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1153		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1154		flags |= PIPE_CONTROL_QW_WRITE;
1155		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1156	}
1157
1158	ret = intel_logical_ring_begin(ringbuf, 6);
1159	if (ret)
1160		return ret;
1161
1162	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1163	intel_logical_ring_emit(ringbuf, flags);
1164	intel_logical_ring_emit(ringbuf, scratch_addr);
1165	intel_logical_ring_emit(ringbuf, 0);
1166	intel_logical_ring_emit(ringbuf, 0);
1167	intel_logical_ring_emit(ringbuf, 0);
1168	intel_logical_ring_advance(ringbuf);
1169
1170	return 0;
1171}
1172
1173static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1174{
1175	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1176}
1177
1178static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1179{
1180	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1181}
1182
1183static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1184{
1185	struct intel_engine_cs *ring = ringbuf->ring;
1186	u32 cmd;
1187	int ret;
1188
1189	ret = intel_logical_ring_begin(ringbuf, 6);
1190	if (ret)
1191		return ret;
1192
1193	cmd = MI_STORE_DWORD_IMM_GEN8;
1194	cmd |= MI_GLOBAL_GTT;
1195
1196	intel_logical_ring_emit(ringbuf, cmd);
1197	intel_logical_ring_emit(ringbuf,
1198				(ring->status_page.gfx_addr +
1199				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1200	intel_logical_ring_emit(ringbuf, 0);
1201	intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1202	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1203	intel_logical_ring_emit(ringbuf, MI_NOOP);
1204	intel_logical_ring_advance_and_submit(ringbuf);
1205
1206	return 0;
1207}
1208
1209/**
1210 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1211 *
1212 * @ring: Engine Command Streamer.
1213 *
1214 */
1215void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1216{
1217	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1218
1219	if (!intel_ring_initialized(ring))
1220		return;
1221
1222	intel_logical_ring_stop(ring);
1223	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1224	ring->preallocated_lazy_request = NULL;
1225	ring->outstanding_lazy_seqno = 0;
1226
1227	if (ring->cleanup)
1228		ring->cleanup(ring);
1229
1230	i915_cmd_parser_fini_ring(ring);
1231
1232	if (ring->status_page.obj) {
1233		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1234		ring->status_page.obj = NULL;
1235	}
1236}
1237
1238static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1239{
1240	int ret;
1241
1242	/* Intentionally left blank. */
1243	ring->buffer = NULL;
1244
1245	ring->dev = dev;
1246	INIT_LIST_HEAD(&ring->active_list);
1247	INIT_LIST_HEAD(&ring->request_list);
1248	init_waitqueue_head(&ring->irq_queue);
1249
1250	INIT_LIST_HEAD(&ring->execlist_queue);
1251	spin_lock_init(&ring->execlist_lock);
1252	ring->next_context_status_buffer = 0;
1253
1254	ret = i915_cmd_parser_init_ring(ring);
1255	if (ret)
1256		return ret;
1257
1258	if (ring->init) {
1259		ret = ring->init(ring);
1260		if (ret)
1261			return ret;
1262	}
1263
1264	ret = intel_lr_context_deferred_create(ring->default_context, ring);
1265
1266	return ret;
1267}
1268
1269static int logical_render_ring_init(struct drm_device *dev)
1270{
1271	struct drm_i915_private *dev_priv = dev->dev_private;
1272	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1273
1274	ring->name = "render ring";
1275	ring->id = RCS;
1276	ring->mmio_base = RENDER_RING_BASE;
1277	ring->irq_enable_mask =
1278		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1279	ring->irq_keep_mask =
1280		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1281	if (HAS_L3_DPF(dev))
1282		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1283
1284	ring->init = gen8_init_render_ring;
1285	ring->cleanup = intel_fini_pipe_control;
1286	ring->get_seqno = gen8_get_seqno;
1287	ring->set_seqno = gen8_set_seqno;
1288	ring->emit_request = gen8_emit_request;
1289	ring->emit_flush = gen8_emit_flush_render;
1290	ring->irq_get = gen8_logical_ring_get_irq;
1291	ring->irq_put = gen8_logical_ring_put_irq;
1292	ring->emit_bb_start = gen8_emit_bb_start;
1293
1294	return logical_ring_init(dev, ring);
1295}
1296
1297static int logical_bsd_ring_init(struct drm_device *dev)
1298{
1299	struct drm_i915_private *dev_priv = dev->dev_private;
1300	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1301
1302	ring->name = "bsd ring";
1303	ring->id = VCS;
1304	ring->mmio_base = GEN6_BSD_RING_BASE;
1305	ring->irq_enable_mask =
1306		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1307	ring->irq_keep_mask =
1308		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1309
1310	ring->init = gen8_init_common_ring;
1311	ring->get_seqno = gen8_get_seqno;
1312	ring->set_seqno = gen8_set_seqno;
1313	ring->emit_request = gen8_emit_request;
1314	ring->emit_flush = gen8_emit_flush;
1315	ring->irq_get = gen8_logical_ring_get_irq;
1316	ring->irq_put = gen8_logical_ring_put_irq;
1317	ring->emit_bb_start = gen8_emit_bb_start;
1318
1319	return logical_ring_init(dev, ring);
1320}
1321
1322static int logical_bsd2_ring_init(struct drm_device *dev)
1323{
1324	struct drm_i915_private *dev_priv = dev->dev_private;
1325	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1326
1327	ring->name = "bds2 ring";
1328	ring->id = VCS2;
1329	ring->mmio_base = GEN8_BSD2_RING_BASE;
1330	ring->irq_enable_mask =
1331		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1332	ring->irq_keep_mask =
1333		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1334
1335	ring->init = gen8_init_common_ring;
1336	ring->get_seqno = gen8_get_seqno;
1337	ring->set_seqno = gen8_set_seqno;
1338	ring->emit_request = gen8_emit_request;
1339	ring->emit_flush = gen8_emit_flush;
1340	ring->irq_get = gen8_logical_ring_get_irq;
1341	ring->irq_put = gen8_logical_ring_put_irq;
1342	ring->emit_bb_start = gen8_emit_bb_start;
1343
1344	return logical_ring_init(dev, ring);
1345}
1346
1347static int logical_blt_ring_init(struct drm_device *dev)
1348{
1349	struct drm_i915_private *dev_priv = dev->dev_private;
1350	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1351
1352	ring->name = "blitter ring";
1353	ring->id = BCS;
1354	ring->mmio_base = BLT_RING_BASE;
1355	ring->irq_enable_mask =
1356		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1357	ring->irq_keep_mask =
1358		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1359
1360	ring->init = gen8_init_common_ring;
1361	ring->get_seqno = gen8_get_seqno;
1362	ring->set_seqno = gen8_set_seqno;
1363	ring->emit_request = gen8_emit_request;
1364	ring->emit_flush = gen8_emit_flush;
1365	ring->irq_get = gen8_logical_ring_get_irq;
1366	ring->irq_put = gen8_logical_ring_put_irq;
1367	ring->emit_bb_start = gen8_emit_bb_start;
1368
1369	return logical_ring_init(dev, ring);
1370}
1371
1372static int logical_vebox_ring_init(struct drm_device *dev)
1373{
1374	struct drm_i915_private *dev_priv = dev->dev_private;
1375	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1376
1377	ring->name = "video enhancement ring";
1378	ring->id = VECS;
1379	ring->mmio_base = VEBOX_RING_BASE;
1380	ring->irq_enable_mask =
1381		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1382	ring->irq_keep_mask =
1383		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1384
1385	ring->init = gen8_init_common_ring;
1386	ring->get_seqno = gen8_get_seqno;
1387	ring->set_seqno = gen8_set_seqno;
1388	ring->emit_request = gen8_emit_request;
1389	ring->emit_flush = gen8_emit_flush;
1390	ring->irq_get = gen8_logical_ring_get_irq;
1391	ring->irq_put = gen8_logical_ring_put_irq;
1392	ring->emit_bb_start = gen8_emit_bb_start;
1393
1394	return logical_ring_init(dev, ring);
1395}
1396
1397/**
1398 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1399 * @dev: DRM device.
1400 *
1401 * This function inits the engines for an Execlists submission style (the equivalent in the
1402 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1403 * those engines that are present in the hardware.
1404 *
1405 * Return: non-zero if the initialization failed.
1406 */
1407int intel_logical_rings_init(struct drm_device *dev)
1408{
1409	struct drm_i915_private *dev_priv = dev->dev_private;
1410	int ret;
1411
1412	ret = logical_render_ring_init(dev);
1413	if (ret)
1414		return ret;
1415
1416	if (HAS_BSD(dev)) {
1417		ret = logical_bsd_ring_init(dev);
1418		if (ret)
1419			goto cleanup_render_ring;
1420	}
1421
1422	if (HAS_BLT(dev)) {
1423		ret = logical_blt_ring_init(dev);
1424		if (ret)
1425			goto cleanup_bsd_ring;
1426	}
1427
1428	if (HAS_VEBOX(dev)) {
1429		ret = logical_vebox_ring_init(dev);
1430		if (ret)
1431			goto cleanup_blt_ring;
1432	}
1433
1434	if (HAS_BSD2(dev)) {
1435		ret = logical_bsd2_ring_init(dev);
1436		if (ret)
1437			goto cleanup_vebox_ring;
1438	}
1439
1440	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1441	if (ret)
1442		goto cleanup_bsd2_ring;
1443
1444	return 0;
1445
1446cleanup_bsd2_ring:
1447	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1448cleanup_vebox_ring:
1449	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1450cleanup_blt_ring:
1451	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1452cleanup_bsd_ring:
1453	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1454cleanup_render_ring:
1455	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1456
1457	return ret;
1458}
1459
1460int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1461				       struct intel_context *ctx)
1462{
1463	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1464	struct render_state so;
1465	struct drm_i915_file_private *file_priv = ctx->file_priv;
1466	struct drm_file *file = file_priv ? file_priv->file : NULL;
1467	int ret;
1468
1469	ret = i915_gem_render_state_prepare(ring, &so);
1470	if (ret)
1471		return ret;
1472
1473	if (so.rodata == NULL)
1474		return 0;
1475
1476	ret = ring->emit_bb_start(ringbuf,
1477			so.ggtt_offset,
1478			I915_DISPATCH_SECURE);
1479	if (ret)
1480		goto out;
1481
1482	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1483
1484	ret = __i915_add_request(ring, file, so.obj, NULL);
1485	/* intel_logical_ring_add_request moves object to inactive if it
1486	 * fails */
1487out:
1488	i915_gem_render_state_fini(&so);
1489	return ret;
1490}
1491
1492static int
1493populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1494		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1495{
1496	struct drm_device *dev = ring->dev;
1497	struct drm_i915_private *dev_priv = dev->dev_private;
1498	struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1499	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1500	struct page *page;
1501	uint32_t *reg_state;
1502	int ret;
1503
1504	if (!ppgtt)
1505		ppgtt = dev_priv->mm.aliasing_ppgtt;
1506
1507	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1508	if (ret) {
1509		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1510		return ret;
1511	}
1512
1513	ret = i915_gem_object_get_pages(ctx_obj);
1514	if (ret) {
1515		DRM_DEBUG_DRIVER("Could not get object pages\n");
1516		return ret;
1517	}
1518
1519	i915_gem_object_pin_pages(ctx_obj);
1520
1521	/* The second page of the context object contains some fields which must
1522	 * be set up prior to the first execution. */
1523	page = i915_gem_object_get_page(ctx_obj, 1);
1524	reg_state = kmap_atomic(page);
1525
1526	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1527	 * commands followed by (reg, value) pairs. The values we are setting here are
1528	 * only for the first context restore: on a subsequent save, the GPU will
1529	 * recreate this batchbuffer with new values (including all the missing
1530	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1531	if (ring->id == RCS)
1532		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1533	else
1534		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1535	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1536	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1537	reg_state[CTX_CONTEXT_CONTROL+1] =
1538			_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1539	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1540	reg_state[CTX_RING_HEAD+1] = 0;
1541	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1542	reg_state[CTX_RING_TAIL+1] = 0;
1543	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1544	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1545	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1546	reg_state[CTX_RING_BUFFER_CONTROL+1] =
1547			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1548	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1549	reg_state[CTX_BB_HEAD_U+1] = 0;
1550	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1551	reg_state[CTX_BB_HEAD_L+1] = 0;
1552	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1553	reg_state[CTX_BB_STATE+1] = (1<<5);
1554	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1555	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1556	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1557	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1558	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1559	reg_state[CTX_SECOND_BB_STATE+1] = 0;
1560	if (ring->id == RCS) {
1561		/* TODO: according to BSpec, the register state context
1562		 * for CHV does not have these. OTOH, these registers do
1563		 * exist in CHV. I'm waiting for a clarification */
1564		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1565		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1566		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1567		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1568		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1569		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1570	}
1571	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1572	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1573	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1574	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1575	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1576	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1577	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1578	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1579	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1580	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1581	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1582	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1583	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1584	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1585	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1586	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1587	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1588	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1589	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1590	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1591	if (ring->id == RCS) {
1592		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1593		reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1594		reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1595	}
1596
1597	kunmap_atomic(reg_state);
1598
1599	ctx_obj->dirty = 1;
1600	set_page_dirty(page);
1601	i915_gem_object_unpin_pages(ctx_obj);
1602
1603	return 0;
1604}
1605
1606/**
1607 * intel_lr_context_free() - free the LRC specific bits of a context
1608 * @ctx: the LR context to free.
1609 *
1610 * The real context freeing is done in i915_gem_context_free: this only
1611 * takes care of the bits that are LRC related: the per-engine backing
1612 * objects and the logical ringbuffer.
1613 */
1614void intel_lr_context_free(struct intel_context *ctx)
1615{
1616	int i;
1617
1618	for (i = 0; i < I915_NUM_RINGS; i++) {
1619		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1620		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1621
1622		if (ctx_obj) {
1623			intel_destroy_ringbuffer_obj(ringbuf);
1624			kfree(ringbuf);
1625			i915_gem_object_ggtt_unpin(ctx_obj);
1626			drm_gem_object_unreference(&ctx_obj->base);
1627		}
1628	}
1629}
1630
1631static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1632{
1633	int ret = 0;
1634
1635	WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1636
1637	switch (ring->id) {
1638	case RCS:
1639		ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1640		break;
1641	case VCS:
1642	case BCS:
1643	case VECS:
1644	case VCS2:
1645		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1646		break;
1647	}
1648
1649	return ret;
1650}
1651
1652/**
1653 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1654 * @ctx: LR context to create.
1655 * @ring: engine to be used with the context.
1656 *
1657 * This function can be called more than once, with different engines, if we plan
1658 * to use the context with them. The context backing objects and the ringbuffers
1659 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1660 * the creation is a deferred call: it's better to make sure first that we need to use
1661 * a given ring with the context.
1662 *
1663 * Return: non-zero on eror.
1664 */
1665int intel_lr_context_deferred_create(struct intel_context *ctx,
1666				     struct intel_engine_cs *ring)
1667{
1668	struct drm_device *dev = ring->dev;
1669	struct drm_i915_gem_object *ctx_obj;
1670	uint32_t context_size;
1671	struct intel_ringbuffer *ringbuf;
1672	int ret;
1673
1674	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1675	if (ctx->engine[ring->id].state)
1676		return 0;
1677
1678	context_size = round_up(get_lr_context_size(ring), 4096);
1679
1680	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1681	if (IS_ERR(ctx_obj)) {
1682		ret = PTR_ERR(ctx_obj);
1683		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1684		return ret;
1685	}
1686
1687	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1688	if (ret) {
1689		DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1690		drm_gem_object_unreference(&ctx_obj->base);
1691		return ret;
1692	}
1693
1694	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1695	if (!ringbuf) {
1696		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1697				ring->name);
1698		i915_gem_object_ggtt_unpin(ctx_obj);
1699		drm_gem_object_unreference(&ctx_obj->base);
1700		ret = -ENOMEM;
1701		return ret;
1702	}
1703
1704	ringbuf->ring = ring;
1705	ringbuf->FIXME_lrc_ctx = ctx;
1706
1707	ringbuf->size = 32 * PAGE_SIZE;
1708	ringbuf->effective_size = ringbuf->size;
1709	ringbuf->head = 0;
1710	ringbuf->tail = 0;
1711	ringbuf->space = ringbuf->size;
1712	ringbuf->last_retired_head = -1;
1713
1714	/* TODO: For now we put this in the mappable region so that we can reuse
1715	 * the existing ringbuffer code which ioremaps it. When we start
1716	 * creating many contexts, this will no longer work and we must switch
1717	 * to a kmapish interface.
1718	 */
1719	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1720	if (ret) {
1721		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1722				ring->name, ret);
1723		goto error;
1724	}
1725
1726	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1727	if (ret) {
1728		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1729		intel_destroy_ringbuffer_obj(ringbuf);
1730		goto error;
1731	}
1732
1733	ctx->engine[ring->id].ringbuf = ringbuf;
1734	ctx->engine[ring->id].state = ctx_obj;
1735
1736	if (ctx == ring->default_context) {
1737		/* The status page is offset 0 from the default context object
1738		 * in LRC mode. */
1739		ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1740		ring->status_page.page_addr =
1741				kmap(sg_page(ctx_obj->pages->sgl));
1742		if (ring->status_page.page_addr == NULL)
1743			return -ENOMEM;
1744		ring->status_page.obj = ctx_obj;
1745	}
1746
1747	if (ring->id == RCS && !ctx->rcs_initialized) {
1748		ret = intel_lr_context_render_state_init(ring, ctx);
1749		if (ret) {
1750			DRM_ERROR("Init render state failed: %d\n", ret);
1751			ctx->engine[ring->id].ringbuf = NULL;
1752			ctx->engine[ring->id].state = NULL;
1753			intel_destroy_ringbuffer_obj(ringbuf);
1754			goto error;
1755		}
1756		ctx->rcs_initialized = true;
1757	}
1758
1759	return 0;
1760
1761error:
1762	kfree(ringbuf);
1763	i915_gem_object_ggtt_unpin(ctx_obj);
1764	drm_gem_object_unreference(&ctx_obj->base);
1765	return ret;
1766}
1767