1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include <linux/cpufreq.h>
29#include "i915_drv.h"
30#include "intel_drv.h"
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
33#include <linux/vgaarb.h>
34#include <drm/i915_powerwell.h>
35#include <linux/pm_runtime.h>
36
37/**
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage.  This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54#define INTEL_RC6_ENABLE			(1<<0)
55#define INTEL_RC6p_ENABLE			(1<<1)
56#define INTEL_RC6pp_ENABLE			(1<<2)
57
58/* FBC, or Frame Buffer Compression, is a technique employed to compress the
59 * framebuffer contents in-memory, aiming at reducing the required bandwidth
60 * during in-memory transfers and, therefore, reduce the power packet.
61 *
62 * The benefits of FBC are mostly visible with solid backgrounds and
63 * variation-less patterns.
64 *
65 * FBC-related functionality can be enabled by the means of the
66 * i915.i915_enable_fbc parameter
67 */
68
69static void i8xx_disable_fbc(struct drm_device *dev)
70{
71	struct drm_i915_private *dev_priv = dev->dev_private;
72	u32 fbc_ctl;
73
74	/* Disable compression */
75	fbc_ctl = I915_READ(FBC_CONTROL);
76	if ((fbc_ctl & FBC_CTL_EN) == 0)
77		return;
78
79	fbc_ctl &= ~FBC_CTL_EN;
80	I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82	/* Wait for compressing bit to clear */
83	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84		DRM_DEBUG_KMS("FBC idle timed out\n");
85		return;
86	}
87
88	DRM_DEBUG_KMS("disabled FBC\n");
89}
90
91static void i8xx_enable_fbc(struct drm_crtc *crtc)
92{
93	struct drm_device *dev = crtc->dev;
94	struct drm_i915_private *dev_priv = dev->dev_private;
95	struct drm_framebuffer *fb = crtc->primary->fb;
96	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98	int cfb_pitch;
99	int i;
100	u32 fbc_ctl;
101
102	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103	if (fb->pitches[0] < cfb_pitch)
104		cfb_pitch = fb->pitches[0];
105
106	/* FBC_CTL wants 32B or 64B units */
107	if (IS_GEN2(dev))
108		cfb_pitch = (cfb_pitch / 32) - 1;
109	else
110		cfb_pitch = (cfb_pitch / 64) - 1;
111
112	/* Clear old tags */
113	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114		I915_WRITE(FBC_TAG + (i * 4), 0);
115
116	if (IS_GEN4(dev)) {
117		u32 fbc_ctl2;
118
119		/* Set it up... */
120		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123		I915_WRITE(FBC_FENCE_OFF, crtc->y);
124	}
125
126	/* enable it... */
127	fbc_ctl = I915_READ(FBC_CONTROL);
128	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130	if (IS_I945GM(dev))
131		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133	fbc_ctl |= obj->fence_reg;
134	I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138}
139
140static bool i8xx_fbc_enabled(struct drm_device *dev)
141{
142	struct drm_i915_private *dev_priv = dev->dev_private;
143
144	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145}
146
147static void g4x_enable_fbc(struct drm_crtc *crtc)
148{
149	struct drm_device *dev = crtc->dev;
150	struct drm_i915_private *dev_priv = dev->dev_private;
151	struct drm_framebuffer *fb = crtc->primary->fb;
152	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154	u32 dpfc_ctl;
155
156	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159	else
160		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165	/* enable it... */
166	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169}
170
171static void g4x_disable_fbc(struct drm_device *dev)
172{
173	struct drm_i915_private *dev_priv = dev->dev_private;
174	u32 dpfc_ctl;
175
176	/* Disable compression */
177	dpfc_ctl = I915_READ(DPFC_CONTROL);
178	if (dpfc_ctl & DPFC_CTL_EN) {
179		dpfc_ctl &= ~DPFC_CTL_EN;
180		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182		DRM_DEBUG_KMS("disabled FBC\n");
183	}
184}
185
186static bool g4x_fbc_enabled(struct drm_device *dev)
187{
188	struct drm_i915_private *dev_priv = dev->dev_private;
189
190	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191}
192
193static void sandybridge_blit_fbc_update(struct drm_device *dev)
194{
195	struct drm_i915_private *dev_priv = dev->dev_private;
196	u32 blt_ecoskpd;
197
198	/* Make sure blitter notifies FBC of writes */
199
200	/* Blitter is part of Media powerwell on VLV. No impact of
201	 * his param in other platforms for now */
202	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206		GEN6_BLITTER_LOCK_SHIFT;
207	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211			 GEN6_BLITTER_LOCK_SHIFT);
212	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213	POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216}
217
218static void ironlake_enable_fbc(struct drm_crtc *crtc)
219{
220	struct drm_device *dev = crtc->dev;
221	struct drm_i915_private *dev_priv = dev->dev_private;
222	struct drm_framebuffer *fb = crtc->primary->fb;
223	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225	u32 dpfc_ctl;
226
227	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229		dev_priv->fbc.threshold++;
230
231	switch (dev_priv->fbc.threshold) {
232	case 4:
233	case 3:
234		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235		break;
236	case 2:
237		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238		break;
239	case 1:
240		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241		break;
242	}
243	dpfc_ctl |= DPFC_CTL_FENCE_EN;
244	if (IS_GEN5(dev))
245		dpfc_ctl |= obj->fence_reg;
246
247	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249	/* enable it... */
250	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252	if (IS_GEN6(dev)) {
253		I915_WRITE(SNB_DPFC_CTL_SA,
254			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256		sandybridge_blit_fbc_update(dev);
257	}
258
259	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260}
261
262static void ironlake_disable_fbc(struct drm_device *dev)
263{
264	struct drm_i915_private *dev_priv = dev->dev_private;
265	u32 dpfc_ctl;
266
267	/* Disable compression */
268	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269	if (dpfc_ctl & DPFC_CTL_EN) {
270		dpfc_ctl &= ~DPFC_CTL_EN;
271		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273		DRM_DEBUG_KMS("disabled FBC\n");
274	}
275}
276
277static bool ironlake_fbc_enabled(struct drm_device *dev)
278{
279	struct drm_i915_private *dev_priv = dev->dev_private;
280
281	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282}
283
284static void gen7_enable_fbc(struct drm_crtc *crtc)
285{
286	struct drm_device *dev = crtc->dev;
287	struct drm_i915_private *dev_priv = dev->dev_private;
288	struct drm_framebuffer *fb = crtc->primary->fb;
289	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291	u32 dpfc_ctl;
292
293	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295		dev_priv->fbc.threshold++;
296
297	switch (dev_priv->fbc.threshold) {
298	case 4:
299	case 3:
300		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301		break;
302	case 2:
303		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304		break;
305	case 1:
306		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307		break;
308	}
309
310	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312	if (dev_priv->fbc.false_color)
313		dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317	if (IS_IVYBRIDGE(dev)) {
318		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
319		I915_WRITE(ILK_DISPLAY_CHICKEN1,
320			   I915_READ(ILK_DISPLAY_CHICKEN1) |
321			   ILK_FBCQ_DIS);
322	} else {
323		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326			   HSW_FBCQ_DIS);
327	}
328
329	I915_WRITE(SNB_DPFC_CTL_SA,
330		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333	sandybridge_blit_fbc_update(dev);
334
335	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336}
337
338bool intel_fbc_enabled(struct drm_device *dev)
339{
340	struct drm_i915_private *dev_priv = dev->dev_private;
341
342	if (!dev_priv->display.fbc_enabled)
343		return false;
344
345	return dev_priv->display.fbc_enabled(dev);
346}
347
348void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
349{
350	struct drm_i915_private *dev_priv = dev->dev_private;
351
352	if (!IS_GEN8(dev))
353		return;
354
355	I915_WRITE(MSG_FBC_REND_STATE, value);
356}
357
358static void intel_fbc_work_fn(struct work_struct *__work)
359{
360	struct intel_fbc_work *work =
361		container_of(to_delayed_work(__work),
362			     struct intel_fbc_work, work);
363	struct drm_device *dev = work->crtc->dev;
364	struct drm_i915_private *dev_priv = dev->dev_private;
365
366	mutex_lock(&dev->struct_mutex);
367	if (work == dev_priv->fbc.fbc_work) {
368		/* Double check that we haven't switched fb without cancelling
369		 * the prior work.
370		 */
371		if (work->crtc->primary->fb == work->fb) {
372			dev_priv->display.enable_fbc(work->crtc);
373
374			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376			dev_priv->fbc.y = work->crtc->y;
377		}
378
379		dev_priv->fbc.fbc_work = NULL;
380	}
381	mutex_unlock(&dev->struct_mutex);
382
383	kfree(work);
384}
385
386static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
387{
388	if (dev_priv->fbc.fbc_work == NULL)
389		return;
390
391	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
392
393	/* Synchronisation is provided by struct_mutex and checking of
394	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
395	 * entirely asynchronously.
396	 */
397	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398		/* tasklet was killed before being run, clean up */
399		kfree(dev_priv->fbc.fbc_work);
400
401	/* Mark the work as no longer wanted so that if it does
402	 * wake-up (because the work was already running and waiting
403	 * for our mutex), it will discover that is no longer
404	 * necessary to run.
405	 */
406	dev_priv->fbc.fbc_work = NULL;
407}
408
409static void intel_enable_fbc(struct drm_crtc *crtc)
410{
411	struct intel_fbc_work *work;
412	struct drm_device *dev = crtc->dev;
413	struct drm_i915_private *dev_priv = dev->dev_private;
414
415	if (!dev_priv->display.enable_fbc)
416		return;
417
418	intel_cancel_fbc_work(dev_priv);
419
420	work = kzalloc(sizeof(*work), GFP_KERNEL);
421	if (work == NULL) {
422		DRM_ERROR("Failed to allocate FBC work structure\n");
423		dev_priv->display.enable_fbc(crtc);
424		return;
425	}
426
427	work->crtc = crtc;
428	work->fb = crtc->primary->fb;
429	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
430
431	dev_priv->fbc.fbc_work = work;
432
433	/* Delay the actual enabling to let pageflipping cease and the
434	 * display to settle before starting the compression. Note that
435	 * this delay also serves a second purpose: it allows for a
436	 * vblank to pass after disabling the FBC before we attempt
437	 * to modify the control registers.
438	 *
439	 * A more complicated solution would involve tracking vblanks
440	 * following the termination of the page-flipping sequence
441	 * and indeed performing the enable as a co-routine and not
442	 * waiting synchronously upon the vblank.
443	 *
444	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445	 */
446	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
447}
448
449void intel_disable_fbc(struct drm_device *dev)
450{
451	struct drm_i915_private *dev_priv = dev->dev_private;
452
453	intel_cancel_fbc_work(dev_priv);
454
455	if (!dev_priv->display.disable_fbc)
456		return;
457
458	dev_priv->display.disable_fbc(dev);
459	dev_priv->fbc.plane = -1;
460}
461
462static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
463			      enum no_fbc_reason reason)
464{
465	if (dev_priv->fbc.no_fbc_reason == reason)
466		return false;
467
468	dev_priv->fbc.no_fbc_reason = reason;
469	return true;
470}
471
472/**
473 * intel_update_fbc - enable/disable FBC as needed
474 * @dev: the drm_device
475 *
476 * Set up the framebuffer compression hardware at mode set time.  We
477 * enable it if possible:
478 *   - plane A only (on pre-965)
479 *   - no pixel mulitply/line duplication
480 *   - no alpha buffer discard
481 *   - no dual wide
482 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483 *
484 * We can't assume that any compression will take place (worst case),
485 * so the compressed buffer has to be the same size as the uncompressed
486 * one.  It also must reside (along with the line length buffer) in
487 * stolen memory.
488 *
489 * We need to enable/disable FBC on a global basis.
490 */
491void intel_update_fbc(struct drm_device *dev)
492{
493	struct drm_i915_private *dev_priv = dev->dev_private;
494	struct drm_crtc *crtc = NULL, *tmp_crtc;
495	struct intel_crtc *intel_crtc;
496	struct drm_framebuffer *fb;
497	struct drm_i915_gem_object *obj;
498	const struct drm_display_mode *adjusted_mode;
499	unsigned int max_width, max_height;
500
501	if (!HAS_FBC(dev)) {
502		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503		return;
504	}
505
506	if (!i915.powersave) {
507		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508			DRM_DEBUG_KMS("fbc disabled per module param\n");
509		return;
510	}
511
512	/*
513	 * If FBC is already on, we just have to verify that we can
514	 * keep it that way...
515	 * Need to disable if:
516	 *   - more than one pipe is active
517	 *   - changing FBC params (stride, fence, mode)
518	 *   - new fb is too large to fit in compressed buffer
519	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
520	 */
521	for_each_crtc(dev, tmp_crtc) {
522		if (intel_crtc_active(tmp_crtc) &&
523		    to_intel_crtc(tmp_crtc)->primary_enabled) {
524			if (crtc) {
525				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
526					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527				goto out_disable;
528			}
529			crtc = tmp_crtc;
530		}
531	}
532
533	if (!crtc || crtc->primary->fb == NULL) {
534		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
535			DRM_DEBUG_KMS("no output, disabling\n");
536		goto out_disable;
537	}
538
539	intel_crtc = to_intel_crtc(crtc);
540	fb = crtc->primary->fb;
541	obj = intel_fb_obj(fb);
542	adjusted_mode = &intel_crtc->config.adjusted_mode;
543
544	if (i915.enable_fbc < 0) {
545		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
546			DRM_DEBUG_KMS("disabled per chip default\n");
547		goto out_disable;
548	}
549	if (!i915.enable_fbc) {
550		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
551			DRM_DEBUG_KMS("fbc disabled per module param\n");
552		goto out_disable;
553	}
554	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
555	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
557			DRM_DEBUG_KMS("mode incompatible with compression, "
558				      "disabling\n");
559		goto out_disable;
560	}
561
562	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
563		max_width = 4096;
564		max_height = 4096;
565	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566		max_width = 4096;
567		max_height = 2048;
568	} else {
569		max_width = 2048;
570		max_height = 1536;
571	}
572	if (intel_crtc->config.pipe_src_w > max_width ||
573	    intel_crtc->config.pipe_src_h > max_height) {
574		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
575			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576		goto out_disable;
577	}
578	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579	    intel_crtc->plane != PLANE_A) {
580		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581			DRM_DEBUG_KMS("plane not A, disabling compression\n");
582		goto out_disable;
583	}
584
585	/* The use of a CPU fence is mandatory in order to detect writes
586	 * by the CPU to the scanout and trigger updates to the FBC.
587	 */
588	if (obj->tiling_mode != I915_TILING_X ||
589	    obj->fence_reg == I915_FENCE_REG_NONE) {
590		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
591			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592		goto out_disable;
593	}
594	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
595	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
596		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
597			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
598		goto out_disable;
599	}
600
601	/* If the kernel debugger is active, always disable compression */
602	if (in_dbg_master())
603		goto out_disable;
604
605	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
606					      drm_format_plane_cpp(fb->pixel_format, 0))) {
607		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
608			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609		goto out_disable;
610	}
611
612	/* If the scanout has not changed, don't modify the FBC settings.
613	 * Note that we make the fundamental assumption that the fb->obj
614	 * cannot be unpinned (and have its GTT offset and fence revoked)
615	 * without first being decoupled from the scanout and FBC disabled.
616	 */
617	if (dev_priv->fbc.plane == intel_crtc->plane &&
618	    dev_priv->fbc.fb_id == fb->base.id &&
619	    dev_priv->fbc.y == crtc->y)
620		return;
621
622	if (intel_fbc_enabled(dev)) {
623		/* We update FBC along two paths, after changing fb/crtc
624		 * configuration (modeswitching) and after page-flipping
625		 * finishes. For the latter, we know that not only did
626		 * we disable the FBC at the start of the page-flip
627		 * sequence, but also more than one vblank has passed.
628		 *
629		 * For the former case of modeswitching, it is possible
630		 * to switch between two FBC valid configurations
631		 * instantaneously so we do need to disable the FBC
632		 * before we can modify its control registers. We also
633		 * have to wait for the next vblank for that to take
634		 * effect. However, since we delay enabling FBC we can
635		 * assume that a vblank has passed since disabling and
636		 * that we can safely alter the registers in the deferred
637		 * callback.
638		 *
639		 * In the scenario that we go from a valid to invalid
640		 * and then back to valid FBC configuration we have
641		 * no strict enforcement that a vblank occurred since
642		 * disabling the FBC. However, along all current pipe
643		 * disabling paths we do need to wait for a vblank at
644		 * some point. And we wait before enabling FBC anyway.
645		 */
646		DRM_DEBUG_KMS("disabling active FBC for update\n");
647		intel_disable_fbc(dev);
648	}
649
650	intel_enable_fbc(crtc);
651	dev_priv->fbc.no_fbc_reason = FBC_OK;
652	return;
653
654out_disable:
655	/* Multiple disables should be harmless */
656	if (intel_fbc_enabled(dev)) {
657		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
658		intel_disable_fbc(dev);
659	}
660	i915_gem_stolen_cleanup_compression(dev);
661}
662
663static void i915_pineview_get_mem_freq(struct drm_device *dev)
664{
665	struct drm_i915_private *dev_priv = dev->dev_private;
666	u32 tmp;
667
668	tmp = I915_READ(CLKCFG);
669
670	switch (tmp & CLKCFG_FSB_MASK) {
671	case CLKCFG_FSB_533:
672		dev_priv->fsb_freq = 533; /* 133*4 */
673		break;
674	case CLKCFG_FSB_800:
675		dev_priv->fsb_freq = 800; /* 200*4 */
676		break;
677	case CLKCFG_FSB_667:
678		dev_priv->fsb_freq =  667; /* 167*4 */
679		break;
680	case CLKCFG_FSB_400:
681		dev_priv->fsb_freq = 400; /* 100*4 */
682		break;
683	}
684
685	switch (tmp & CLKCFG_MEM_MASK) {
686	case CLKCFG_MEM_533:
687		dev_priv->mem_freq = 533;
688		break;
689	case CLKCFG_MEM_667:
690		dev_priv->mem_freq = 667;
691		break;
692	case CLKCFG_MEM_800:
693		dev_priv->mem_freq = 800;
694		break;
695	}
696
697	/* detect pineview DDR3 setting */
698	tmp = I915_READ(CSHRDDR3CTL);
699	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
700}
701
702static void i915_ironlake_get_mem_freq(struct drm_device *dev)
703{
704	struct drm_i915_private *dev_priv = dev->dev_private;
705	u16 ddrpll, csipll;
706
707	ddrpll = I915_READ16(DDRMPLL1);
708	csipll = I915_READ16(CSIPLL0);
709
710	switch (ddrpll & 0xff) {
711	case 0xc:
712		dev_priv->mem_freq = 800;
713		break;
714	case 0x10:
715		dev_priv->mem_freq = 1066;
716		break;
717	case 0x14:
718		dev_priv->mem_freq = 1333;
719		break;
720	case 0x18:
721		dev_priv->mem_freq = 1600;
722		break;
723	default:
724		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
725				 ddrpll & 0xff);
726		dev_priv->mem_freq = 0;
727		break;
728	}
729
730	dev_priv->ips.r_t = dev_priv->mem_freq;
731
732	switch (csipll & 0x3ff) {
733	case 0x00c:
734		dev_priv->fsb_freq = 3200;
735		break;
736	case 0x00e:
737		dev_priv->fsb_freq = 3733;
738		break;
739	case 0x010:
740		dev_priv->fsb_freq = 4266;
741		break;
742	case 0x012:
743		dev_priv->fsb_freq = 4800;
744		break;
745	case 0x014:
746		dev_priv->fsb_freq = 5333;
747		break;
748	case 0x016:
749		dev_priv->fsb_freq = 5866;
750		break;
751	case 0x018:
752		dev_priv->fsb_freq = 6400;
753		break;
754	default:
755		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
756				 csipll & 0x3ff);
757		dev_priv->fsb_freq = 0;
758		break;
759	}
760
761	if (dev_priv->fsb_freq == 3200) {
762		dev_priv->ips.c_m = 0;
763	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764		dev_priv->ips.c_m = 1;
765	} else {
766		dev_priv->ips.c_m = 2;
767	}
768}
769
770static const struct cxsr_latency cxsr_latency_table[] = {
771	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
772	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
773	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
774	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
775	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
776
777	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
778	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
779	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
780	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
781	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
782
783	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
784	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
785	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
786	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
787	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
788
789	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
790	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
791	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
792	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
793	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
794
795	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
796	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
797	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
798	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
799	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
800
801	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
802	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
803	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
804	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
805	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
806};
807
808static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809							 int is_ddr3,
810							 int fsb,
811							 int mem)
812{
813	const struct cxsr_latency *latency;
814	int i;
815
816	if (fsb == 0 || mem == 0)
817		return NULL;
818
819	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
820		latency = &cxsr_latency_table[i];
821		if (is_desktop == latency->is_desktop &&
822		    is_ddr3 == latency->is_ddr3 &&
823		    fsb == latency->fsb_freq && mem == latency->mem_freq)
824			return latency;
825	}
826
827	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
828
829	return NULL;
830}
831
832void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833{
834	struct drm_device *dev = dev_priv->dev;
835	u32 val;
836
837	if (IS_VALLEYVIEW(dev)) {
838		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
839	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
840		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
841	} else if (IS_PINEVIEW(dev)) {
842		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
843		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
844		I915_WRITE(DSPFW3, val);
845	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
846		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
847			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
848		I915_WRITE(FW_BLC_SELF, val);
849	} else if (IS_I915GM(dev)) {
850		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
851			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
852		I915_WRITE(INSTPM, val);
853	} else {
854		return;
855	}
856
857	DRM_DEBUG_KMS("memory self-refresh is %s\n",
858		      enable ? "enabled" : "disabled");
859}
860
861/*
862 * Latency for FIFO fetches is dependent on several factors:
863 *   - memory configuration (speed, channels)
864 *   - chipset
865 *   - current MCH state
866 * It can be fairly high in some situations, so here we assume a fairly
867 * pessimal value.  It's a tradeoff between extra memory fetches (if we
868 * set this value too high, the FIFO will fetch frequently to stay full)
869 * and power consumption (set it too low to save power and we might see
870 * FIFO underruns and display "flicker").
871 *
872 * A value of 5us seems to be a good balance; safe for very low end
873 * platforms but not overly aggressive on lower latency configs.
874 */
875static const int pessimal_latency_ns = 5000;
876
877static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878{
879	struct drm_i915_private *dev_priv = dev->dev_private;
880	uint32_t dsparb = I915_READ(DSPARB);
881	int size;
882
883	size = dsparb & 0x7f;
884	if (plane)
885		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
886
887	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
888		      plane ? "B" : "A", size);
889
890	return size;
891}
892
893static int i830_get_fifo_size(struct drm_device *dev, int plane)
894{
895	struct drm_i915_private *dev_priv = dev->dev_private;
896	uint32_t dsparb = I915_READ(DSPARB);
897	int size;
898
899	size = dsparb & 0x1ff;
900	if (plane)
901		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
902	size >>= 1; /* Convert to cachelines */
903
904	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
905		      plane ? "B" : "A", size);
906
907	return size;
908}
909
910static int i845_get_fifo_size(struct drm_device *dev, int plane)
911{
912	struct drm_i915_private *dev_priv = dev->dev_private;
913	uint32_t dsparb = I915_READ(DSPARB);
914	int size;
915
916	size = dsparb & 0x7f;
917	size >>= 2; /* Convert to cachelines */
918
919	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920		      plane ? "B" : "A",
921		      size);
922
923	return size;
924}
925
926/* Pineview has different values for various configs */
927static const struct intel_watermark_params pineview_display_wm = {
928	.fifo_size = PINEVIEW_DISPLAY_FIFO,
929	.max_wm = PINEVIEW_MAX_WM,
930	.default_wm = PINEVIEW_DFT_WM,
931	.guard_size = PINEVIEW_GUARD_WM,
932	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933};
934static const struct intel_watermark_params pineview_display_hplloff_wm = {
935	.fifo_size = PINEVIEW_DISPLAY_FIFO,
936	.max_wm = PINEVIEW_MAX_WM,
937	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
938	.guard_size = PINEVIEW_GUARD_WM,
939	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940};
941static const struct intel_watermark_params pineview_cursor_wm = {
942	.fifo_size = PINEVIEW_CURSOR_FIFO,
943	.max_wm = PINEVIEW_CURSOR_MAX_WM,
944	.default_wm = PINEVIEW_CURSOR_DFT_WM,
945	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
946	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947};
948static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949	.fifo_size = PINEVIEW_CURSOR_FIFO,
950	.max_wm = PINEVIEW_CURSOR_MAX_WM,
951	.default_wm = PINEVIEW_CURSOR_DFT_WM,
952	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
953	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954};
955static const struct intel_watermark_params g4x_wm_info = {
956	.fifo_size = G4X_FIFO_SIZE,
957	.max_wm = G4X_MAX_WM,
958	.default_wm = G4X_MAX_WM,
959	.guard_size = 2,
960	.cacheline_size = G4X_FIFO_LINE_SIZE,
961};
962static const struct intel_watermark_params g4x_cursor_wm_info = {
963	.fifo_size = I965_CURSOR_FIFO,
964	.max_wm = I965_CURSOR_MAX_WM,
965	.default_wm = I965_CURSOR_DFT_WM,
966	.guard_size = 2,
967	.cacheline_size = G4X_FIFO_LINE_SIZE,
968};
969static const struct intel_watermark_params valleyview_wm_info = {
970	.fifo_size = VALLEYVIEW_FIFO_SIZE,
971	.max_wm = VALLEYVIEW_MAX_WM,
972	.default_wm = VALLEYVIEW_MAX_WM,
973	.guard_size = 2,
974	.cacheline_size = G4X_FIFO_LINE_SIZE,
975};
976static const struct intel_watermark_params valleyview_cursor_wm_info = {
977	.fifo_size = I965_CURSOR_FIFO,
978	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
979	.default_wm = I965_CURSOR_DFT_WM,
980	.guard_size = 2,
981	.cacheline_size = G4X_FIFO_LINE_SIZE,
982};
983static const struct intel_watermark_params i965_cursor_wm_info = {
984	.fifo_size = I965_CURSOR_FIFO,
985	.max_wm = I965_CURSOR_MAX_WM,
986	.default_wm = I965_CURSOR_DFT_WM,
987	.guard_size = 2,
988	.cacheline_size = I915_FIFO_LINE_SIZE,
989};
990static const struct intel_watermark_params i945_wm_info = {
991	.fifo_size = I945_FIFO_SIZE,
992	.max_wm = I915_MAX_WM,
993	.default_wm = 1,
994	.guard_size = 2,
995	.cacheline_size = I915_FIFO_LINE_SIZE,
996};
997static const struct intel_watermark_params i915_wm_info = {
998	.fifo_size = I915_FIFO_SIZE,
999	.max_wm = I915_MAX_WM,
1000	.default_wm = 1,
1001	.guard_size = 2,
1002	.cacheline_size = I915_FIFO_LINE_SIZE,
1003};
1004static const struct intel_watermark_params i830_a_wm_info = {
1005	.fifo_size = I855GM_FIFO_SIZE,
1006	.max_wm = I915_MAX_WM,
1007	.default_wm = 1,
1008	.guard_size = 2,
1009	.cacheline_size = I830_FIFO_LINE_SIZE,
1010};
1011static const struct intel_watermark_params i830_bc_wm_info = {
1012	.fifo_size = I855GM_FIFO_SIZE,
1013	.max_wm = I915_MAX_WM/2,
1014	.default_wm = 1,
1015	.guard_size = 2,
1016	.cacheline_size = I830_FIFO_LINE_SIZE,
1017};
1018static const struct intel_watermark_params i845_wm_info = {
1019	.fifo_size = I830_FIFO_SIZE,
1020	.max_wm = I915_MAX_WM,
1021	.default_wm = 1,
1022	.guard_size = 2,
1023	.cacheline_size = I830_FIFO_LINE_SIZE,
1024};
1025
1026/**
1027 * intel_calculate_wm - calculate watermark level
1028 * @clock_in_khz: pixel clock
1029 * @wm: chip FIFO params
1030 * @pixel_size: display pixel size
1031 * @latency_ns: memory latency for the platform
1032 *
1033 * Calculate the watermark level (the level at which the display plane will
1034 * start fetching from memory again).  Each chip has a different display
1035 * FIFO size and allocation, so the caller needs to figure that out and pass
1036 * in the correct intel_watermark_params structure.
1037 *
1038 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1039 * on the pixel size.  When it reaches the watermark level, it'll start
1040 * fetching FIFO line sized based chunks from memory until the FIFO fills
1041 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1042 * will occur, and a display engine hang could result.
1043 */
1044static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1045					const struct intel_watermark_params *wm,
1046					int fifo_size,
1047					int pixel_size,
1048					unsigned long latency_ns)
1049{
1050	long entries_required, wm_size;
1051
1052	/*
1053	 * Note: we need to make sure we don't overflow for various clock &
1054	 * latency values.
1055	 * clocks go from a few thousand to several hundred thousand.
1056	 * latency is usually a few thousand
1057	 */
1058	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1059		1000;
1060	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1061
1062	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1063
1064	wm_size = fifo_size - (entries_required + wm->guard_size);
1065
1066	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1067
1068	/* Don't promote wm_size to unsigned... */
1069	if (wm_size > (long)wm->max_wm)
1070		wm_size = wm->max_wm;
1071	if (wm_size <= 0)
1072		wm_size = wm->default_wm;
1073
1074	/*
1075	 * Bspec seems to indicate that the value shouldn't be lower than
1076	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
1077	 * Lets go for 8 which is the burst size since certain platforms
1078	 * already use a hardcoded 8 (which is what the spec says should be
1079	 * done).
1080	 */
1081	if (wm_size <= 8)
1082		wm_size = 8;
1083
1084	return wm_size;
1085}
1086
1087static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1088{
1089	struct drm_crtc *crtc, *enabled = NULL;
1090
1091	for_each_crtc(dev, crtc) {
1092		if (intel_crtc_active(crtc)) {
1093			if (enabled)
1094				return NULL;
1095			enabled = crtc;
1096		}
1097	}
1098
1099	return enabled;
1100}
1101
1102static void pineview_update_wm(struct drm_crtc *unused_crtc)
1103{
1104	struct drm_device *dev = unused_crtc->dev;
1105	struct drm_i915_private *dev_priv = dev->dev_private;
1106	struct drm_crtc *crtc;
1107	const struct cxsr_latency *latency;
1108	u32 reg;
1109	unsigned long wm;
1110
1111	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1112					 dev_priv->fsb_freq, dev_priv->mem_freq);
1113	if (!latency) {
1114		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1115		intel_set_memory_cxsr(dev_priv, false);
1116		return;
1117	}
1118
1119	crtc = single_enabled_crtc(dev);
1120	if (crtc) {
1121		const struct drm_display_mode *adjusted_mode;
1122		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1123		int clock;
1124
1125		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1126		clock = adjusted_mode->crtc_clock;
1127
1128		/* Display SR */
1129		wm = intel_calculate_wm(clock, &pineview_display_wm,
1130					pineview_display_wm.fifo_size,
1131					pixel_size, latency->display_sr);
1132		reg = I915_READ(DSPFW1);
1133		reg &= ~DSPFW_SR_MASK;
1134		reg |= wm << DSPFW_SR_SHIFT;
1135		I915_WRITE(DSPFW1, reg);
1136		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1137
1138		/* cursor SR */
1139		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1140					pineview_display_wm.fifo_size,
1141					pixel_size, latency->cursor_sr);
1142		reg = I915_READ(DSPFW3);
1143		reg &= ~DSPFW_CURSOR_SR_MASK;
1144		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1145		I915_WRITE(DSPFW3, reg);
1146
1147		/* Display HPLL off SR */
1148		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1149					pineview_display_hplloff_wm.fifo_size,
1150					pixel_size, latency->display_hpll_disable);
1151		reg = I915_READ(DSPFW3);
1152		reg &= ~DSPFW_HPLL_SR_MASK;
1153		reg |= wm & DSPFW_HPLL_SR_MASK;
1154		I915_WRITE(DSPFW3, reg);
1155
1156		/* cursor HPLL off SR */
1157		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1158					pineview_display_hplloff_wm.fifo_size,
1159					pixel_size, latency->cursor_hpll_disable);
1160		reg = I915_READ(DSPFW3);
1161		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1162		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1163		I915_WRITE(DSPFW3, reg);
1164		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1165
1166		intel_set_memory_cxsr(dev_priv, true);
1167	} else {
1168		intel_set_memory_cxsr(dev_priv, false);
1169	}
1170}
1171
1172static bool g4x_compute_wm0(struct drm_device *dev,
1173			    int plane,
1174			    const struct intel_watermark_params *display,
1175			    int display_latency_ns,
1176			    const struct intel_watermark_params *cursor,
1177			    int cursor_latency_ns,
1178			    int *plane_wm,
1179			    int *cursor_wm)
1180{
1181	struct drm_crtc *crtc;
1182	const struct drm_display_mode *adjusted_mode;
1183	int htotal, hdisplay, clock, pixel_size;
1184	int line_time_us, line_count;
1185	int entries, tlb_miss;
1186
1187	crtc = intel_get_crtc_for_plane(dev, plane);
1188	if (!intel_crtc_active(crtc)) {
1189		*cursor_wm = cursor->guard_size;
1190		*plane_wm = display->guard_size;
1191		return false;
1192	}
1193
1194	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1195	clock = adjusted_mode->crtc_clock;
1196	htotal = adjusted_mode->crtc_htotal;
1197	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1198	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1199
1200	/* Use the small buffer method to calculate plane watermark */
1201	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1202	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1203	if (tlb_miss > 0)
1204		entries += tlb_miss;
1205	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1206	*plane_wm = entries + display->guard_size;
1207	if (*plane_wm > (int)display->max_wm)
1208		*plane_wm = display->max_wm;
1209
1210	/* Use the large buffer method to calculate cursor watermark */
1211	line_time_us = max(htotal * 1000 / clock, 1);
1212	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1213	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1214	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1215	if (tlb_miss > 0)
1216		entries += tlb_miss;
1217	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1218	*cursor_wm = entries + cursor->guard_size;
1219	if (*cursor_wm > (int)cursor->max_wm)
1220		*cursor_wm = (int)cursor->max_wm;
1221
1222	return true;
1223}
1224
1225/*
1226 * Check the wm result.
1227 *
1228 * If any calculated watermark values is larger than the maximum value that
1229 * can be programmed into the associated watermark register, that watermark
1230 * must be disabled.
1231 */
1232static bool g4x_check_srwm(struct drm_device *dev,
1233			   int display_wm, int cursor_wm,
1234			   const struct intel_watermark_params *display,
1235			   const struct intel_watermark_params *cursor)
1236{
1237	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1238		      display_wm, cursor_wm);
1239
1240	if (display_wm > display->max_wm) {
1241		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1242			      display_wm, display->max_wm);
1243		return false;
1244	}
1245
1246	if (cursor_wm > cursor->max_wm) {
1247		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1248			      cursor_wm, cursor->max_wm);
1249		return false;
1250	}
1251
1252	if (!(display_wm || cursor_wm)) {
1253		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1254		return false;
1255	}
1256
1257	return true;
1258}
1259
1260static bool g4x_compute_srwm(struct drm_device *dev,
1261			     int plane,
1262			     int latency_ns,
1263			     const struct intel_watermark_params *display,
1264			     const struct intel_watermark_params *cursor,
1265			     int *display_wm, int *cursor_wm)
1266{
1267	struct drm_crtc *crtc;
1268	const struct drm_display_mode *adjusted_mode;
1269	int hdisplay, htotal, pixel_size, clock;
1270	unsigned long line_time_us;
1271	int line_count, line_size;
1272	int small, large;
1273	int entries;
1274
1275	if (!latency_ns) {
1276		*display_wm = *cursor_wm = 0;
1277		return false;
1278	}
1279
1280	crtc = intel_get_crtc_for_plane(dev, plane);
1281	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1282	clock = adjusted_mode->crtc_clock;
1283	htotal = adjusted_mode->crtc_htotal;
1284	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1285	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1286
1287	line_time_us = max(htotal * 1000 / clock, 1);
1288	line_count = (latency_ns / line_time_us + 1000) / 1000;
1289	line_size = hdisplay * pixel_size;
1290
1291	/* Use the minimum of the small and large buffer method for primary */
1292	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1293	large = line_count * line_size;
1294
1295	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1296	*display_wm = entries + display->guard_size;
1297
1298	/* calculate the self-refresh watermark for display cursor */
1299	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1300	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1301	*cursor_wm = entries + cursor->guard_size;
1302
1303	return g4x_check_srwm(dev,
1304			      *display_wm, *cursor_wm,
1305			      display, cursor);
1306}
1307
1308static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1309				      int pixel_size,
1310				      int *prec_mult,
1311				      int *drain_latency)
1312{
1313	int entries;
1314	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1315
1316	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1317		return false;
1318
1319	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1320		return false;
1321
1322	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1323	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1324				       DRAIN_LATENCY_PRECISION_32;
1325	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1326
1327	if (*drain_latency > DRAIN_LATENCY_MASK)
1328		*drain_latency = DRAIN_LATENCY_MASK;
1329
1330	return true;
1331}
1332
1333/*
1334 * Update drain latency registers of memory arbiter
1335 *
1336 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1337 * to be programmed. Each plane has a drain latency multiplier and a drain
1338 * latency value.
1339 */
1340
1341static void vlv_update_drain_latency(struct drm_crtc *crtc)
1342{
1343	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1344	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1345	int pixel_size;
1346	int drain_latency;
1347	enum pipe pipe = intel_crtc->pipe;
1348	int plane_prec, prec_mult, plane_dl;
1349
1350	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1351		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1352		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1353
1354	if (!intel_crtc_active(crtc)) {
1355		I915_WRITE(VLV_DDL(pipe), plane_dl);
1356		return;
1357	}
1358
1359	/* Primary plane Drain Latency */
1360	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
1361	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1362		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1363					   DDL_PLANE_PRECISION_64 :
1364					   DDL_PLANE_PRECISION_32;
1365		plane_dl |= plane_prec | drain_latency;
1366	}
1367
1368	/* Cursor Drain Latency
1369	 * BPP is always 4 for cursor
1370	 */
1371	pixel_size = 4;
1372
1373	/* Program cursor DL only if it is enabled */
1374	if (intel_crtc->cursor_base &&
1375	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1376		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1377					   DDL_CURSOR_PRECISION_64 :
1378					   DDL_CURSOR_PRECISION_32;
1379		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1380	}
1381
1382	I915_WRITE(VLV_DDL(pipe), plane_dl);
1383}
1384
1385#define single_plane_enabled(mask) is_power_of_2(mask)
1386
1387static void valleyview_update_wm(struct drm_crtc *crtc)
1388{
1389	struct drm_device *dev = crtc->dev;
1390	static const int sr_latency_ns = 12000;
1391	struct drm_i915_private *dev_priv = dev->dev_private;
1392	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1393	int plane_sr, cursor_sr;
1394	int ignore_plane_sr, ignore_cursor_sr;
1395	unsigned int enabled = 0;
1396	bool cxsr_enabled;
1397
1398	vlv_update_drain_latency(crtc);
1399
1400	if (g4x_compute_wm0(dev, PIPE_A,
1401			    &valleyview_wm_info, pessimal_latency_ns,
1402			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1403			    &planea_wm, &cursora_wm))
1404		enabled |= 1 << PIPE_A;
1405
1406	if (g4x_compute_wm0(dev, PIPE_B,
1407			    &valleyview_wm_info, pessimal_latency_ns,
1408			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1409			    &planeb_wm, &cursorb_wm))
1410		enabled |= 1 << PIPE_B;
1411
1412	if (single_plane_enabled(enabled) &&
1413	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1414			     sr_latency_ns,
1415			     &valleyview_wm_info,
1416			     &valleyview_cursor_wm_info,
1417			     &plane_sr, &ignore_cursor_sr) &&
1418	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1419			     2*sr_latency_ns,
1420			     &valleyview_wm_info,
1421			     &valleyview_cursor_wm_info,
1422			     &ignore_plane_sr, &cursor_sr)) {
1423		cxsr_enabled = true;
1424	} else {
1425		cxsr_enabled = false;
1426		intel_set_memory_cxsr(dev_priv, false);
1427		plane_sr = cursor_sr = 0;
1428	}
1429
1430	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1431		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1432		      planea_wm, cursora_wm,
1433		      planeb_wm, cursorb_wm,
1434		      plane_sr, cursor_sr);
1435
1436	I915_WRITE(DSPFW1,
1437		   (plane_sr << DSPFW_SR_SHIFT) |
1438		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1439		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1440		   (planea_wm << DSPFW_PLANEA_SHIFT));
1441	I915_WRITE(DSPFW2,
1442		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1443		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1444	I915_WRITE(DSPFW3,
1445		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1446		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1447
1448	if (cxsr_enabled)
1449		intel_set_memory_cxsr(dev_priv, true);
1450}
1451
1452static void cherryview_update_wm(struct drm_crtc *crtc)
1453{
1454	struct drm_device *dev = crtc->dev;
1455	static const int sr_latency_ns = 12000;
1456	struct drm_i915_private *dev_priv = dev->dev_private;
1457	int planea_wm, planeb_wm, planec_wm;
1458	int cursora_wm, cursorb_wm, cursorc_wm;
1459	int plane_sr, cursor_sr;
1460	int ignore_plane_sr, ignore_cursor_sr;
1461	unsigned int enabled = 0;
1462	bool cxsr_enabled;
1463
1464	vlv_update_drain_latency(crtc);
1465
1466	if (g4x_compute_wm0(dev, PIPE_A,
1467			    &valleyview_wm_info, pessimal_latency_ns,
1468			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1469			    &planea_wm, &cursora_wm))
1470		enabled |= 1 << PIPE_A;
1471
1472	if (g4x_compute_wm0(dev, PIPE_B,
1473			    &valleyview_wm_info, pessimal_latency_ns,
1474			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1475			    &planeb_wm, &cursorb_wm))
1476		enabled |= 1 << PIPE_B;
1477
1478	if (g4x_compute_wm0(dev, PIPE_C,
1479			    &valleyview_wm_info, pessimal_latency_ns,
1480			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1481			    &planec_wm, &cursorc_wm))
1482		enabled |= 1 << PIPE_C;
1483
1484	if (single_plane_enabled(enabled) &&
1485	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1486			     sr_latency_ns,
1487			     &valleyview_wm_info,
1488			     &valleyview_cursor_wm_info,
1489			     &plane_sr, &ignore_cursor_sr) &&
1490	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1491			     2*sr_latency_ns,
1492			     &valleyview_wm_info,
1493			     &valleyview_cursor_wm_info,
1494			     &ignore_plane_sr, &cursor_sr)) {
1495		cxsr_enabled = true;
1496	} else {
1497		cxsr_enabled = false;
1498		intel_set_memory_cxsr(dev_priv, false);
1499		plane_sr = cursor_sr = 0;
1500	}
1501
1502	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1503		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1504		      "SR: plane=%d, cursor=%d\n",
1505		      planea_wm, cursora_wm,
1506		      planeb_wm, cursorb_wm,
1507		      planec_wm, cursorc_wm,
1508		      plane_sr, cursor_sr);
1509
1510	I915_WRITE(DSPFW1,
1511		   (plane_sr << DSPFW_SR_SHIFT) |
1512		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1513		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1514		   (planea_wm << DSPFW_PLANEA_SHIFT));
1515	I915_WRITE(DSPFW2,
1516		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1517		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1518	I915_WRITE(DSPFW3,
1519		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1520		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1521	I915_WRITE(DSPFW9_CHV,
1522		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1523					      DSPFW_CURSORC_MASK)) |
1524		   (planec_wm << DSPFW_PLANEC_SHIFT) |
1525		   (cursorc_wm << DSPFW_CURSORC_SHIFT));
1526
1527	if (cxsr_enabled)
1528		intel_set_memory_cxsr(dev_priv, true);
1529}
1530
1531static void valleyview_update_sprite_wm(struct drm_plane *plane,
1532					struct drm_crtc *crtc,
1533					uint32_t sprite_width,
1534					uint32_t sprite_height,
1535					int pixel_size,
1536					bool enabled, bool scaled)
1537{
1538	struct drm_device *dev = crtc->dev;
1539	struct drm_i915_private *dev_priv = dev->dev_private;
1540	int pipe = to_intel_plane(plane)->pipe;
1541	int sprite = to_intel_plane(plane)->plane;
1542	int drain_latency;
1543	int plane_prec;
1544	int sprite_dl;
1545	int prec_mult;
1546
1547	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1548		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1549
1550	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1551						 &drain_latency)) {
1552		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1553					   DDL_SPRITE_PRECISION_64(sprite) :
1554					   DDL_SPRITE_PRECISION_32(sprite);
1555		sprite_dl |= plane_prec |
1556			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
1557	}
1558
1559	I915_WRITE(VLV_DDL(pipe), sprite_dl);
1560}
1561
1562static void g4x_update_wm(struct drm_crtc *crtc)
1563{
1564	struct drm_device *dev = crtc->dev;
1565	static const int sr_latency_ns = 12000;
1566	struct drm_i915_private *dev_priv = dev->dev_private;
1567	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1568	int plane_sr, cursor_sr;
1569	unsigned int enabled = 0;
1570	bool cxsr_enabled;
1571
1572	if (g4x_compute_wm0(dev, PIPE_A,
1573			    &g4x_wm_info, pessimal_latency_ns,
1574			    &g4x_cursor_wm_info, pessimal_latency_ns,
1575			    &planea_wm, &cursora_wm))
1576		enabled |= 1 << PIPE_A;
1577
1578	if (g4x_compute_wm0(dev, PIPE_B,
1579			    &g4x_wm_info, pessimal_latency_ns,
1580			    &g4x_cursor_wm_info, pessimal_latency_ns,
1581			    &planeb_wm, &cursorb_wm))
1582		enabled |= 1 << PIPE_B;
1583
1584	if (single_plane_enabled(enabled) &&
1585	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1586			     sr_latency_ns,
1587			     &g4x_wm_info,
1588			     &g4x_cursor_wm_info,
1589			     &plane_sr, &cursor_sr)) {
1590		cxsr_enabled = true;
1591	} else {
1592		cxsr_enabled = false;
1593		intel_set_memory_cxsr(dev_priv, false);
1594		plane_sr = cursor_sr = 0;
1595	}
1596
1597	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1598		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1599		      planea_wm, cursora_wm,
1600		      planeb_wm, cursorb_wm,
1601		      plane_sr, cursor_sr);
1602
1603	I915_WRITE(DSPFW1,
1604		   (plane_sr << DSPFW_SR_SHIFT) |
1605		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1606		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1607		   (planea_wm << DSPFW_PLANEA_SHIFT));
1608	I915_WRITE(DSPFW2,
1609		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1610		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1611	/* HPLL off in SR has some issues on G4x... disable it */
1612	I915_WRITE(DSPFW3,
1613		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1614		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1615
1616	if (cxsr_enabled)
1617		intel_set_memory_cxsr(dev_priv, true);
1618}
1619
1620static void i965_update_wm(struct drm_crtc *unused_crtc)
1621{
1622	struct drm_device *dev = unused_crtc->dev;
1623	struct drm_i915_private *dev_priv = dev->dev_private;
1624	struct drm_crtc *crtc;
1625	int srwm = 1;
1626	int cursor_sr = 16;
1627	bool cxsr_enabled;
1628
1629	/* Calc sr entries for one plane configs */
1630	crtc = single_enabled_crtc(dev);
1631	if (crtc) {
1632		/* self-refresh has much higher latency */
1633		static const int sr_latency_ns = 12000;
1634		const struct drm_display_mode *adjusted_mode =
1635			&to_intel_crtc(crtc)->config.adjusted_mode;
1636		int clock = adjusted_mode->crtc_clock;
1637		int htotal = adjusted_mode->crtc_htotal;
1638		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1639		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1640		unsigned long line_time_us;
1641		int entries;
1642
1643		line_time_us = max(htotal * 1000 / clock, 1);
1644
1645		/* Use ns/us then divide to preserve precision */
1646		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1647			pixel_size * hdisplay;
1648		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1649		srwm = I965_FIFO_SIZE - entries;
1650		if (srwm < 0)
1651			srwm = 1;
1652		srwm &= 0x1ff;
1653		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1654			      entries, srwm);
1655
1656		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1657			pixel_size * to_intel_crtc(crtc)->cursor_width;
1658		entries = DIV_ROUND_UP(entries,
1659					  i965_cursor_wm_info.cacheline_size);
1660		cursor_sr = i965_cursor_wm_info.fifo_size -
1661			(entries + i965_cursor_wm_info.guard_size);
1662
1663		if (cursor_sr > i965_cursor_wm_info.max_wm)
1664			cursor_sr = i965_cursor_wm_info.max_wm;
1665
1666		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1667			      "cursor %d\n", srwm, cursor_sr);
1668
1669		cxsr_enabled = true;
1670	} else {
1671		cxsr_enabled = false;
1672		/* Turn off self refresh if both pipes are enabled */
1673		intel_set_memory_cxsr(dev_priv, false);
1674	}
1675
1676	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1677		      srwm);
1678
1679	/* 965 has limitations... */
1680	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1681		   (8 << DSPFW_CURSORB_SHIFT) |
1682		   (8 << DSPFW_PLANEB_SHIFT) |
1683		   (8 << DSPFW_PLANEA_SHIFT));
1684	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1685		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1686	/* update cursor SR watermark */
1687	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1688
1689	if (cxsr_enabled)
1690		intel_set_memory_cxsr(dev_priv, true);
1691}
1692
1693static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1694{
1695	struct drm_device *dev = unused_crtc->dev;
1696	struct drm_i915_private *dev_priv = dev->dev_private;
1697	const struct intel_watermark_params *wm_info;
1698	uint32_t fwater_lo;
1699	uint32_t fwater_hi;
1700	int cwm, srwm = 1;
1701	int fifo_size;
1702	int planea_wm, planeb_wm;
1703	struct drm_crtc *crtc, *enabled = NULL;
1704
1705	if (IS_I945GM(dev))
1706		wm_info = &i945_wm_info;
1707	else if (!IS_GEN2(dev))
1708		wm_info = &i915_wm_info;
1709	else
1710		wm_info = &i830_a_wm_info;
1711
1712	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1713	crtc = intel_get_crtc_for_plane(dev, 0);
1714	if (intel_crtc_active(crtc)) {
1715		const struct drm_display_mode *adjusted_mode;
1716		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1717		if (IS_GEN2(dev))
1718			cpp = 4;
1719
1720		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1721		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1722					       wm_info, fifo_size, cpp,
1723					       pessimal_latency_ns);
1724		enabled = crtc;
1725	} else {
1726		planea_wm = fifo_size - wm_info->guard_size;
1727		if (planea_wm > (long)wm_info->max_wm)
1728			planea_wm = wm_info->max_wm;
1729	}
1730
1731	if (IS_GEN2(dev))
1732		wm_info = &i830_bc_wm_info;
1733
1734	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1735	crtc = intel_get_crtc_for_plane(dev, 1);
1736	if (intel_crtc_active(crtc)) {
1737		const struct drm_display_mode *adjusted_mode;
1738		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1739		if (IS_GEN2(dev))
1740			cpp = 4;
1741
1742		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1743		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1744					       wm_info, fifo_size, cpp,
1745					       pessimal_latency_ns);
1746		if (enabled == NULL)
1747			enabled = crtc;
1748		else
1749			enabled = NULL;
1750	} else {
1751		planeb_wm = fifo_size - wm_info->guard_size;
1752		if (planeb_wm > (long)wm_info->max_wm)
1753			planeb_wm = wm_info->max_wm;
1754	}
1755
1756	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1757
1758	if (IS_I915GM(dev) && enabled) {
1759		struct drm_i915_gem_object *obj;
1760
1761		obj = intel_fb_obj(enabled->primary->fb);
1762
1763		/* self-refresh seems busted with untiled */
1764		if (obj->tiling_mode == I915_TILING_NONE)
1765			enabled = NULL;
1766	}
1767
1768	/*
1769	 * Overlay gets an aggressive default since video jitter is bad.
1770	 */
1771	cwm = 2;
1772
1773	/* Play safe and disable self-refresh before adjusting watermarks. */
1774	intel_set_memory_cxsr(dev_priv, false);
1775
1776	/* Calc sr entries for one plane configs */
1777	if (HAS_FW_BLC(dev) && enabled) {
1778		/* self-refresh has much higher latency */
1779		static const int sr_latency_ns = 6000;
1780		const struct drm_display_mode *adjusted_mode =
1781			&to_intel_crtc(enabled)->config.adjusted_mode;
1782		int clock = adjusted_mode->crtc_clock;
1783		int htotal = adjusted_mode->crtc_htotal;
1784		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1785		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1786		unsigned long line_time_us;
1787		int entries;
1788
1789		line_time_us = max(htotal * 1000 / clock, 1);
1790
1791		/* Use ns/us then divide to preserve precision */
1792		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1793			pixel_size * hdisplay;
1794		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1795		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1796		srwm = wm_info->fifo_size - entries;
1797		if (srwm < 0)
1798			srwm = 1;
1799
1800		if (IS_I945G(dev) || IS_I945GM(dev))
1801			I915_WRITE(FW_BLC_SELF,
1802				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1803		else if (IS_I915GM(dev))
1804			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1805	}
1806
1807	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1808		      planea_wm, planeb_wm, cwm, srwm);
1809
1810	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1811	fwater_hi = (cwm & 0x1f);
1812
1813	/* Set request length to 8 cachelines per fetch */
1814	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1815	fwater_hi = fwater_hi | (1 << 8);
1816
1817	I915_WRITE(FW_BLC, fwater_lo);
1818	I915_WRITE(FW_BLC2, fwater_hi);
1819
1820	if (enabled)
1821		intel_set_memory_cxsr(dev_priv, true);
1822}
1823
1824static void i845_update_wm(struct drm_crtc *unused_crtc)
1825{
1826	struct drm_device *dev = unused_crtc->dev;
1827	struct drm_i915_private *dev_priv = dev->dev_private;
1828	struct drm_crtc *crtc;
1829	const struct drm_display_mode *adjusted_mode;
1830	uint32_t fwater_lo;
1831	int planea_wm;
1832
1833	crtc = single_enabled_crtc(dev);
1834	if (crtc == NULL)
1835		return;
1836
1837	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1838	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1839				       &i845_wm_info,
1840				       dev_priv->display.get_fifo_size(dev, 0),
1841				       4, pessimal_latency_ns);
1842	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1843	fwater_lo |= (3<<8) | planea_wm;
1844
1845	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1846
1847	I915_WRITE(FW_BLC, fwater_lo);
1848}
1849
1850static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1851				    struct drm_crtc *crtc)
1852{
1853	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1854	uint32_t pixel_rate;
1855
1856	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1857
1858	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1859	 * adjust the pixel_rate here. */
1860
1861	if (intel_crtc->config.pch_pfit.enabled) {
1862		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1863		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1864
1865		pipe_w = intel_crtc->config.pipe_src_w;
1866		pipe_h = intel_crtc->config.pipe_src_h;
1867		pfit_w = (pfit_size >> 16) & 0xFFFF;
1868		pfit_h = pfit_size & 0xFFFF;
1869		if (pipe_w < pfit_w)
1870			pipe_w = pfit_w;
1871		if (pipe_h < pfit_h)
1872			pipe_h = pfit_h;
1873
1874		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1875				     pfit_w * pfit_h);
1876	}
1877
1878	return pixel_rate;
1879}
1880
1881/* latency must be in 0.1us units. */
1882static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1883			       uint32_t latency)
1884{
1885	uint64_t ret;
1886
1887	if (WARN(latency == 0, "Latency value missing\n"))
1888		return UINT_MAX;
1889
1890	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1891	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1892
1893	return ret;
1894}
1895
1896/* latency must be in 0.1us units. */
1897static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1898			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1899			       uint32_t latency)
1900{
1901	uint32_t ret;
1902
1903	if (WARN(latency == 0, "Latency value missing\n"))
1904		return UINT_MAX;
1905
1906	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1907	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1908	ret = DIV_ROUND_UP(ret, 64) + 2;
1909	return ret;
1910}
1911
1912static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1913			   uint8_t bytes_per_pixel)
1914{
1915	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1916}
1917
1918struct ilk_pipe_wm_parameters {
1919	bool active;
1920	uint32_t pipe_htotal;
1921	uint32_t pixel_rate;
1922	struct intel_plane_wm_parameters pri;
1923	struct intel_plane_wm_parameters spr;
1924	struct intel_plane_wm_parameters cur;
1925};
1926
1927struct ilk_wm_maximums {
1928	uint16_t pri;
1929	uint16_t spr;
1930	uint16_t cur;
1931	uint16_t fbc;
1932};
1933
1934/* used in computing the new watermarks state */
1935struct intel_wm_config {
1936	unsigned int num_pipes_active;
1937	bool sprites_enabled;
1938	bool sprites_scaled;
1939};
1940
1941/*
1942 * For both WM_PIPE and WM_LP.
1943 * mem_value must be in 0.1us units.
1944 */
1945static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1946				   uint32_t mem_value,
1947				   bool is_lp)
1948{
1949	uint32_t method1, method2;
1950
1951	if (!params->active || !params->pri.enabled)
1952		return 0;
1953
1954	method1 = ilk_wm_method1(params->pixel_rate,
1955				 params->pri.bytes_per_pixel,
1956				 mem_value);
1957
1958	if (!is_lp)
1959		return method1;
1960
1961	method2 = ilk_wm_method2(params->pixel_rate,
1962				 params->pipe_htotal,
1963				 params->pri.horiz_pixels,
1964				 params->pri.bytes_per_pixel,
1965				 mem_value);
1966
1967	return min(method1, method2);
1968}
1969
1970/*
1971 * For both WM_PIPE and WM_LP.
1972 * mem_value must be in 0.1us units.
1973 */
1974static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1975				   uint32_t mem_value)
1976{
1977	uint32_t method1, method2;
1978
1979	if (!params->active || !params->spr.enabled)
1980		return 0;
1981
1982	method1 = ilk_wm_method1(params->pixel_rate,
1983				 params->spr.bytes_per_pixel,
1984				 mem_value);
1985	method2 = ilk_wm_method2(params->pixel_rate,
1986				 params->pipe_htotal,
1987				 params->spr.horiz_pixels,
1988				 params->spr.bytes_per_pixel,
1989				 mem_value);
1990	return min(method1, method2);
1991}
1992
1993/*
1994 * For both WM_PIPE and WM_LP.
1995 * mem_value must be in 0.1us units.
1996 */
1997static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1998				   uint32_t mem_value)
1999{
2000	if (!params->active || !params->cur.enabled)
2001		return 0;
2002
2003	return ilk_wm_method2(params->pixel_rate,
2004			      params->pipe_htotal,
2005			      params->cur.horiz_pixels,
2006			      params->cur.bytes_per_pixel,
2007			      mem_value);
2008}
2009
2010/* Only for WM_LP. */
2011static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2012				   uint32_t pri_val)
2013{
2014	if (!params->active || !params->pri.enabled)
2015		return 0;
2016
2017	return ilk_wm_fbc(pri_val,
2018			  params->pri.horiz_pixels,
2019			  params->pri.bytes_per_pixel);
2020}
2021
2022static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2023{
2024	if (INTEL_INFO(dev)->gen >= 8)
2025		return 3072;
2026	else if (INTEL_INFO(dev)->gen >= 7)
2027		return 768;
2028	else
2029		return 512;
2030}
2031
2032static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2033					 int level, bool is_sprite)
2034{
2035	if (INTEL_INFO(dev)->gen >= 8)
2036		/* BDW primary/sprite plane watermarks */
2037		return level == 0 ? 255 : 2047;
2038	else if (INTEL_INFO(dev)->gen >= 7)
2039		/* IVB/HSW primary/sprite plane watermarks */
2040		return level == 0 ? 127 : 1023;
2041	else if (!is_sprite)
2042		/* ILK/SNB primary plane watermarks */
2043		return level == 0 ? 127 : 511;
2044	else
2045		/* ILK/SNB sprite plane watermarks */
2046		return level == 0 ? 63 : 255;
2047}
2048
2049static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2050					  int level)
2051{
2052	if (INTEL_INFO(dev)->gen >= 7)
2053		return level == 0 ? 63 : 255;
2054	else
2055		return level == 0 ? 31 : 63;
2056}
2057
2058static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2059{
2060	if (INTEL_INFO(dev)->gen >= 8)
2061		return 31;
2062	else
2063		return 15;
2064}
2065
2066/* Calculate the maximum primary/sprite plane watermark */
2067static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2068				     int level,
2069				     const struct intel_wm_config *config,
2070				     enum intel_ddb_partitioning ddb_partitioning,
2071				     bool is_sprite)
2072{
2073	unsigned int fifo_size = ilk_display_fifo_size(dev);
2074
2075	/* if sprites aren't enabled, sprites get nothing */
2076	if (is_sprite && !config->sprites_enabled)
2077		return 0;
2078
2079	/* HSW allows LP1+ watermarks even with multiple pipes */
2080	if (level == 0 || config->num_pipes_active > 1) {
2081		fifo_size /= INTEL_INFO(dev)->num_pipes;
2082
2083		/*
2084		 * For some reason the non self refresh
2085		 * FIFO size is only half of the self
2086		 * refresh FIFO size on ILK/SNB.
2087		 */
2088		if (INTEL_INFO(dev)->gen <= 6)
2089			fifo_size /= 2;
2090	}
2091
2092	if (config->sprites_enabled) {
2093		/* level 0 is always calculated with 1:1 split */
2094		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2095			if (is_sprite)
2096				fifo_size *= 5;
2097			fifo_size /= 6;
2098		} else {
2099			fifo_size /= 2;
2100		}
2101	}
2102
2103	/* clamp to max that the registers can hold */
2104	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2105}
2106
2107/* Calculate the maximum cursor plane watermark */
2108static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2109				      int level,
2110				      const struct intel_wm_config *config)
2111{
2112	/* HSW LP1+ watermarks w/ multiple pipes */
2113	if (level > 0 && config->num_pipes_active > 1)
2114		return 64;
2115
2116	/* otherwise just report max that registers can hold */
2117	return ilk_cursor_wm_reg_max(dev, level);
2118}
2119
2120static void ilk_compute_wm_maximums(const struct drm_device *dev,
2121				    int level,
2122				    const struct intel_wm_config *config,
2123				    enum intel_ddb_partitioning ddb_partitioning,
2124				    struct ilk_wm_maximums *max)
2125{
2126	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2127	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2128	max->cur = ilk_cursor_wm_max(dev, level, config);
2129	max->fbc = ilk_fbc_wm_reg_max(dev);
2130}
2131
2132static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2133					int level,
2134					struct ilk_wm_maximums *max)
2135{
2136	max->pri = ilk_plane_wm_reg_max(dev, level, false);
2137	max->spr = ilk_plane_wm_reg_max(dev, level, true);
2138	max->cur = ilk_cursor_wm_reg_max(dev, level);
2139	max->fbc = ilk_fbc_wm_reg_max(dev);
2140}
2141
2142static bool ilk_validate_wm_level(int level,
2143				  const struct ilk_wm_maximums *max,
2144				  struct intel_wm_level *result)
2145{
2146	bool ret;
2147
2148	/* already determined to be invalid? */
2149	if (!result->enable)
2150		return false;
2151
2152	result->enable = result->pri_val <= max->pri &&
2153			 result->spr_val <= max->spr &&
2154			 result->cur_val <= max->cur;
2155
2156	ret = result->enable;
2157
2158	/*
2159	 * HACK until we can pre-compute everything,
2160	 * and thus fail gracefully if LP0 watermarks
2161	 * are exceeded...
2162	 */
2163	if (level == 0 && !result->enable) {
2164		if (result->pri_val > max->pri)
2165			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2166				      level, result->pri_val, max->pri);
2167		if (result->spr_val > max->spr)
2168			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2169				      level, result->spr_val, max->spr);
2170		if (result->cur_val > max->cur)
2171			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2172				      level, result->cur_val, max->cur);
2173
2174		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2175		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2176		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2177		result->enable = true;
2178	}
2179
2180	return ret;
2181}
2182
2183static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2184				 int level,
2185				 const struct ilk_pipe_wm_parameters *p,
2186				 struct intel_wm_level *result)
2187{
2188	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2189	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2190	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2191
2192	/* WM1+ latency values stored in 0.5us units */
2193	if (level > 0) {
2194		pri_latency *= 5;
2195		spr_latency *= 5;
2196		cur_latency *= 5;
2197	}
2198
2199	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2200	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2201	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2202	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2203	result->enable = true;
2204}
2205
2206static uint32_t
2207hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2208{
2209	struct drm_i915_private *dev_priv = dev->dev_private;
2210	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2211	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2212	u32 linetime, ips_linetime;
2213
2214	if (!intel_crtc_active(crtc))
2215		return 0;
2216
2217	/* The WM are computed with base on how long it takes to fill a single
2218	 * row at the given clock rate, multiplied by 8.
2219	 * */
2220	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2221				     mode->crtc_clock);
2222	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2223					 intel_ddi_get_cdclk_freq(dev_priv));
2224
2225	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2226	       PIPE_WM_LINETIME_TIME(linetime);
2227}
2228
2229static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2230{
2231	struct drm_i915_private *dev_priv = dev->dev_private;
2232
2233	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2234		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2235
2236		wm[0] = (sskpd >> 56) & 0xFF;
2237		if (wm[0] == 0)
2238			wm[0] = sskpd & 0xF;
2239		wm[1] = (sskpd >> 4) & 0xFF;
2240		wm[2] = (sskpd >> 12) & 0xFF;
2241		wm[3] = (sskpd >> 20) & 0x1FF;
2242		wm[4] = (sskpd >> 32) & 0x1FF;
2243	} else if (INTEL_INFO(dev)->gen >= 6) {
2244		uint32_t sskpd = I915_READ(MCH_SSKPD);
2245
2246		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2247		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2248		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2249		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2250	} else if (INTEL_INFO(dev)->gen >= 5) {
2251		uint32_t mltr = I915_READ(MLTR_ILK);
2252
2253		/* ILK primary LP0 latency is 700 ns */
2254		wm[0] = 7;
2255		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2256		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2257	}
2258}
2259
2260static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2261{
2262	/* ILK sprite LP0 latency is 1300 ns */
2263	if (INTEL_INFO(dev)->gen == 5)
2264		wm[0] = 13;
2265}
2266
2267static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2268{
2269	/* ILK cursor LP0 latency is 1300 ns */
2270	if (INTEL_INFO(dev)->gen == 5)
2271		wm[0] = 13;
2272
2273	/* WaDoubleCursorLP3Latency:ivb */
2274	if (IS_IVYBRIDGE(dev))
2275		wm[3] *= 2;
2276}
2277
2278int ilk_wm_max_level(const struct drm_device *dev)
2279{
2280	/* how many WM levels are we expecting */
2281	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2282		return 4;
2283	else if (INTEL_INFO(dev)->gen >= 6)
2284		return 3;
2285	else
2286		return 2;
2287}
2288
2289static void intel_print_wm_latency(struct drm_device *dev,
2290				   const char *name,
2291				   const uint16_t wm[5])
2292{
2293	int level, max_level = ilk_wm_max_level(dev);
2294
2295	for (level = 0; level <= max_level; level++) {
2296		unsigned int latency = wm[level];
2297
2298		if (latency == 0) {
2299			DRM_ERROR("%s WM%d latency not provided\n",
2300				  name, level);
2301			continue;
2302		}
2303
2304		/* WM1+ latency values in 0.5us units */
2305		if (level > 0)
2306			latency *= 5;
2307
2308		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2309			      name, level, wm[level],
2310			      latency / 10, latency % 10);
2311	}
2312}
2313
2314static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2315				    uint16_t wm[5], uint16_t min)
2316{
2317	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2318
2319	if (wm[0] >= min)
2320		return false;
2321
2322	wm[0] = max(wm[0], min);
2323	for (level = 1; level <= max_level; level++)
2324		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2325
2326	return true;
2327}
2328
2329static void snb_wm_latency_quirk(struct drm_device *dev)
2330{
2331	struct drm_i915_private *dev_priv = dev->dev_private;
2332	bool changed;
2333
2334	/*
2335	 * The BIOS provided WM memory latency values are often
2336	 * inadequate for high resolution displays. Adjust them.
2337	 */
2338	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2339		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2340		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2341
2342	if (!changed)
2343		return;
2344
2345	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2346	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2347	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2348	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2349}
2350
2351static void ilk_setup_wm_latency(struct drm_device *dev)
2352{
2353	struct drm_i915_private *dev_priv = dev->dev_private;
2354
2355	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2356
2357	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2358	       sizeof(dev_priv->wm.pri_latency));
2359	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2360	       sizeof(dev_priv->wm.pri_latency));
2361
2362	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2363	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2364
2365	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2366	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2367	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2368
2369	if (IS_GEN6(dev))
2370		snb_wm_latency_quirk(dev);
2371}
2372
2373static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2374				      struct ilk_pipe_wm_parameters *p)
2375{
2376	struct drm_device *dev = crtc->dev;
2377	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2378	enum pipe pipe = intel_crtc->pipe;
2379	struct drm_plane *plane;
2380
2381	if (!intel_crtc_active(crtc))
2382		return;
2383
2384	p->active = true;
2385	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2386	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2387	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2388	p->cur.bytes_per_pixel = 4;
2389	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2390	p->cur.horiz_pixels = intel_crtc->cursor_width;
2391	/* TODO: for now, assume primary and cursor planes are always enabled. */
2392	p->pri.enabled = true;
2393	p->cur.enabled = true;
2394
2395	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2396		struct intel_plane *intel_plane = to_intel_plane(plane);
2397
2398		if (intel_plane->pipe == pipe) {
2399			p->spr = intel_plane->wm;
2400			break;
2401		}
2402	}
2403}
2404
2405static void ilk_compute_wm_config(struct drm_device *dev,
2406				  struct intel_wm_config *config)
2407{
2408	struct intel_crtc *intel_crtc;
2409
2410	/* Compute the currently _active_ config */
2411	for_each_intel_crtc(dev, intel_crtc) {
2412		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2413
2414		if (!wm->pipe_enabled)
2415			continue;
2416
2417		config->sprites_enabled |= wm->sprites_enabled;
2418		config->sprites_scaled |= wm->sprites_scaled;
2419		config->num_pipes_active++;
2420	}
2421}
2422
2423/* Compute new watermarks for the pipe */
2424static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2425				  const struct ilk_pipe_wm_parameters *params,
2426				  struct intel_pipe_wm *pipe_wm)
2427{
2428	struct drm_device *dev = crtc->dev;
2429	const struct drm_i915_private *dev_priv = dev->dev_private;
2430	int level, max_level = ilk_wm_max_level(dev);
2431	/* LP0 watermark maximums depend on this pipe alone */
2432	struct intel_wm_config config = {
2433		.num_pipes_active = 1,
2434		.sprites_enabled = params->spr.enabled,
2435		.sprites_scaled = params->spr.scaled,
2436	};
2437	struct ilk_wm_maximums max;
2438
2439	pipe_wm->pipe_enabled = params->active;
2440	pipe_wm->sprites_enabled = params->spr.enabled;
2441	pipe_wm->sprites_scaled = params->spr.scaled;
2442
2443	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2444	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2445		max_level = 1;
2446
2447	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2448	if (params->spr.scaled)
2449		max_level = 0;
2450
2451	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2452
2453	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2454		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2455
2456	/* LP0 watermarks always use 1/2 DDB partitioning */
2457	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2458
2459	/* At least LP0 must be valid */
2460	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2461		return false;
2462
2463	ilk_compute_wm_reg_maximums(dev, 1, &max);
2464
2465	for (level = 1; level <= max_level; level++) {
2466		struct intel_wm_level wm = {};
2467
2468		ilk_compute_wm_level(dev_priv, level, params, &wm);
2469
2470		/*
2471		 * Disable any watermark level that exceeds the
2472		 * register maximums since such watermarks are
2473		 * always invalid.
2474		 */
2475		if (!ilk_validate_wm_level(level, &max, &wm))
2476			break;
2477
2478		pipe_wm->wm[level] = wm;
2479	}
2480
2481	return true;
2482}
2483
2484/*
2485 * Merge the watermarks from all active pipes for a specific level.
2486 */
2487static void ilk_merge_wm_level(struct drm_device *dev,
2488			       int level,
2489			       struct intel_wm_level *ret_wm)
2490{
2491	const struct intel_crtc *intel_crtc;
2492
2493	ret_wm->enable = true;
2494
2495	for_each_intel_crtc(dev, intel_crtc) {
2496		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2497		const struct intel_wm_level *wm = &active->wm[level];
2498
2499		if (!active->pipe_enabled)
2500			continue;
2501
2502		/*
2503		 * The watermark values may have been used in the past,
2504		 * so we must maintain them in the registers for some
2505		 * time even if the level is now disabled.
2506		 */
2507		if (!wm->enable)
2508			ret_wm->enable = false;
2509
2510		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2511		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2512		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2513		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2514	}
2515}
2516
2517/*
2518 * Merge all low power watermarks for all active pipes.
2519 */
2520static void ilk_wm_merge(struct drm_device *dev,
2521			 const struct intel_wm_config *config,
2522			 const struct ilk_wm_maximums *max,
2523			 struct intel_pipe_wm *merged)
2524{
2525	int level, max_level = ilk_wm_max_level(dev);
2526	int last_enabled_level = max_level;
2527
2528	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2529	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2530	    config->num_pipes_active > 1)
2531		return;
2532
2533	/* ILK: FBC WM must be disabled always */
2534	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2535
2536	/* merge each WM1+ level */
2537	for (level = 1; level <= max_level; level++) {
2538		struct intel_wm_level *wm = &merged->wm[level];
2539
2540		ilk_merge_wm_level(dev, level, wm);
2541
2542		if (level > last_enabled_level)
2543			wm->enable = false;
2544		else if (!ilk_validate_wm_level(level, max, wm))
2545			/* make sure all following levels get disabled */
2546			last_enabled_level = level - 1;
2547
2548		/*
2549		 * The spec says it is preferred to disable
2550		 * FBC WMs instead of disabling a WM level.
2551		 */
2552		if (wm->fbc_val > max->fbc) {
2553			if (wm->enable)
2554				merged->fbc_wm_enabled = false;
2555			wm->fbc_val = 0;
2556		}
2557	}
2558
2559	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2560	/*
2561	 * FIXME this is racy. FBC might get enabled later.
2562	 * What we should check here is whether FBC can be
2563	 * enabled sometime later.
2564	 */
2565	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2566		for (level = 2; level <= max_level; level++) {
2567			struct intel_wm_level *wm = &merged->wm[level];
2568
2569			wm->enable = false;
2570		}
2571	}
2572}
2573
2574static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2575{
2576	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2577	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2578}
2579
2580/* The value we need to program into the WM_LPx latency field */
2581static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2582{
2583	struct drm_i915_private *dev_priv = dev->dev_private;
2584
2585	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2586		return 2 * level;
2587	else
2588		return dev_priv->wm.pri_latency[level];
2589}
2590
2591static void ilk_compute_wm_results(struct drm_device *dev,
2592				   const struct intel_pipe_wm *merged,
2593				   enum intel_ddb_partitioning partitioning,
2594				   struct ilk_wm_values *results)
2595{
2596	struct intel_crtc *intel_crtc;
2597	int level, wm_lp;
2598
2599	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600	results->partitioning = partitioning;
2601
2602	/* LP1+ register values */
2603	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604		const struct intel_wm_level *r;
2605
2606		level = ilk_wm_lp_to_level(wm_lp, merged);
2607
2608		r = &merged->wm[level];
2609
2610		/*
2611		 * Maintain the watermark values even if the level is
2612		 * disabled. Doing otherwise could cause underruns.
2613		 */
2614		results->wm_lp[wm_lp - 1] =
2615			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616			(r->pri_val << WM1_LP_SR_SHIFT) |
2617			r->cur_val;
2618
2619		if (r->enable)
2620			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2621
2622		if (INTEL_INFO(dev)->gen >= 8)
2623			results->wm_lp[wm_lp - 1] |=
2624				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2625		else
2626			results->wm_lp[wm_lp - 1] |=
2627				r->fbc_val << WM1_LP_FBC_SHIFT;
2628
2629		/*
2630		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2631		 * level is disabled. Doing otherwise could cause underruns.
2632		 */
2633		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2634			WARN_ON(wm_lp != 1);
2635			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2636		} else
2637			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638	}
2639
2640	/* LP0 register values */
2641	for_each_intel_crtc(dev, intel_crtc) {
2642		enum pipe pipe = intel_crtc->pipe;
2643		const struct intel_wm_level *r =
2644			&intel_crtc->wm.active.wm[0];
2645
2646		if (WARN_ON(!r->enable))
2647			continue;
2648
2649		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2650
2651		results->wm_pipe[pipe] =
2652			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2653			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2654			r->cur_val;
2655	}
2656}
2657
2658/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2659 * case both are at the same level. Prefer r1 in case they're the same. */
2660static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661						  struct intel_pipe_wm *r1,
2662						  struct intel_pipe_wm *r2)
2663{
2664	int level, max_level = ilk_wm_max_level(dev);
2665	int level1 = 0, level2 = 0;
2666
2667	for (level = 1; level <= max_level; level++) {
2668		if (r1->wm[level].enable)
2669			level1 = level;
2670		if (r2->wm[level].enable)
2671			level2 = level;
2672	}
2673
2674	if (level1 == level2) {
2675		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676			return r2;
2677		else
2678			return r1;
2679	} else if (level1 > level2) {
2680		return r1;
2681	} else {
2682		return r2;
2683	}
2684}
2685
2686/* dirty bits used to track which watermarks need changes */
2687#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2688#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2689#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2690#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2691#define WM_DIRTY_FBC (1 << 24)
2692#define WM_DIRTY_DDB (1 << 25)
2693
2694static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695					 const struct ilk_wm_values *old,
2696					 const struct ilk_wm_values *new)
2697{
2698	unsigned int dirty = 0;
2699	enum pipe pipe;
2700	int wm_lp;
2701
2702	for_each_pipe(dev_priv, pipe) {
2703		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2704			dirty |= WM_DIRTY_LINETIME(pipe);
2705			/* Must disable LP1+ watermarks too */
2706			dirty |= WM_DIRTY_LP_ALL;
2707		}
2708
2709		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2710			dirty |= WM_DIRTY_PIPE(pipe);
2711			/* Must disable LP1+ watermarks too */
2712			dirty |= WM_DIRTY_LP_ALL;
2713		}
2714	}
2715
2716	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2717		dirty |= WM_DIRTY_FBC;
2718		/* Must disable LP1+ watermarks too */
2719		dirty |= WM_DIRTY_LP_ALL;
2720	}
2721
2722	if (old->partitioning != new->partitioning) {
2723		dirty |= WM_DIRTY_DDB;
2724		/* Must disable LP1+ watermarks too */
2725		dirty |= WM_DIRTY_LP_ALL;
2726	}
2727
2728	/* LP1+ watermarks already deemed dirty, no need to continue */
2729	if (dirty & WM_DIRTY_LP_ALL)
2730		return dirty;
2731
2732	/* Find the lowest numbered LP1+ watermark in need of an update... */
2733	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2734		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2735		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2736			break;
2737	}
2738
2739	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2740	for (; wm_lp <= 3; wm_lp++)
2741		dirty |= WM_DIRTY_LP(wm_lp);
2742
2743	return dirty;
2744}
2745
2746static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2747			       unsigned int dirty)
2748{
2749	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750	bool changed = false;
2751
2752	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2753		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2754		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755		changed = true;
2756	}
2757	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2758		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2759		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760		changed = true;
2761	}
2762	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2763		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2764		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765		changed = true;
2766	}
2767
2768	/*
2769	 * Don't touch WM1S_LP_EN here.
2770	 * Doing so could cause underruns.
2771	 */
2772
2773	return changed;
2774}
2775
2776/*
2777 * The spec says we shouldn't write when we don't need, because every write
2778 * causes WMs to be re-evaluated, expending some power.
2779 */
2780static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2781				struct ilk_wm_values *results)
2782{
2783	struct drm_device *dev = dev_priv->dev;
2784	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785	unsigned int dirty;
2786	uint32_t val;
2787
2788	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789	if (!dirty)
2790		return;
2791
2792	_ilk_disable_lp_wm(dev_priv, dirty);
2793
2794	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2800
2801	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2807
2808	if (dirty & WM_DIRTY_DDB) {
2809		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2810			val = I915_READ(WM_MISC);
2811			if (results->partitioning == INTEL_DDB_PART_1_2)
2812				val &= ~WM_MISC_DATA_PARTITION_5_6;
2813			else
2814				val |= WM_MISC_DATA_PARTITION_5_6;
2815			I915_WRITE(WM_MISC, val);
2816		} else {
2817			val = I915_READ(DISP_ARB_CTL2);
2818			if (results->partitioning == INTEL_DDB_PART_1_2)
2819				val &= ~DISP_DATA_PARTITION_5_6;
2820			else
2821				val |= DISP_DATA_PARTITION_5_6;
2822			I915_WRITE(DISP_ARB_CTL2, val);
2823		}
2824	}
2825
2826	if (dirty & WM_DIRTY_FBC) {
2827		val = I915_READ(DISP_ARB_CTL);
2828		if (results->enable_fbc_wm)
2829			val &= ~DISP_FBC_WM_DIS;
2830		else
2831			val |= DISP_FBC_WM_DIS;
2832		I915_WRITE(DISP_ARB_CTL, val);
2833	}
2834
2835	if (dirty & WM_DIRTY_LP(1) &&
2836	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2837		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2838
2839	if (INTEL_INFO(dev)->gen >= 7) {
2840		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2841			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2842		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2843			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2844	}
2845
2846	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852
2853	dev_priv->wm.hw = *results;
2854}
2855
2856static bool ilk_disable_lp_wm(struct drm_device *dev)
2857{
2858	struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2861}
2862
2863static void ilk_update_wm(struct drm_crtc *crtc)
2864{
2865	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2866	struct drm_device *dev = crtc->dev;
2867	struct drm_i915_private *dev_priv = dev->dev_private;
2868	struct ilk_wm_maximums max;
2869	struct ilk_pipe_wm_parameters params = {};
2870	struct ilk_wm_values results = {};
2871	enum intel_ddb_partitioning partitioning;
2872	struct intel_pipe_wm pipe_wm = {};
2873	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2874	struct intel_wm_config config = {};
2875
2876	ilk_compute_wm_parameters(crtc, &params);
2877
2878	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2879
2880	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2881		return;
2882
2883	intel_crtc->wm.active = pipe_wm;
2884
2885	ilk_compute_wm_config(dev, &config);
2886
2887	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2888	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2889
2890	/* 5/6 split only in single pipe config on IVB+ */
2891	if (INTEL_INFO(dev)->gen >= 7 &&
2892	    config.num_pipes_active == 1 && config.sprites_enabled) {
2893		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2894		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2895
2896		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2897	} else {
2898		best_lp_wm = &lp_wm_1_2;
2899	}
2900
2901	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2902		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2903
2904	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2905
2906	ilk_write_wm_values(dev_priv, &results);
2907}
2908
2909static void
2910ilk_update_sprite_wm(struct drm_plane *plane,
2911		     struct drm_crtc *crtc,
2912		     uint32_t sprite_width, uint32_t sprite_height,
2913		     int pixel_size, bool enabled, bool scaled)
2914{
2915	struct drm_device *dev = plane->dev;
2916	struct intel_plane *intel_plane = to_intel_plane(plane);
2917
2918	intel_plane->wm.enabled = enabled;
2919	intel_plane->wm.scaled = scaled;
2920	intel_plane->wm.horiz_pixels = sprite_width;
2921	intel_plane->wm.vert_pixels = sprite_width;
2922	intel_plane->wm.bytes_per_pixel = pixel_size;
2923
2924	/*
2925	 * IVB workaround: must disable low power watermarks for at least
2926	 * one frame before enabling scaling.  LP watermarks can be re-enabled
2927	 * when scaling is disabled.
2928	 *
2929	 * WaCxSRDisabledForSpriteScaling:ivb
2930	 */
2931	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2932		intel_wait_for_vblank(dev, intel_plane->pipe);
2933
2934	ilk_update_wm(crtc);
2935}
2936
2937static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2938{
2939	struct drm_device *dev = crtc->dev;
2940	struct drm_i915_private *dev_priv = dev->dev_private;
2941	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2942	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943	struct intel_pipe_wm *active = &intel_crtc->wm.active;
2944	enum pipe pipe = intel_crtc->pipe;
2945	static const unsigned int wm0_pipe_reg[] = {
2946		[PIPE_A] = WM0_PIPEA_ILK,
2947		[PIPE_B] = WM0_PIPEB_ILK,
2948		[PIPE_C] = WM0_PIPEC_IVB,
2949	};
2950
2951	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2952	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2953		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2954
2955	active->pipe_enabled = intel_crtc_active(crtc);
2956
2957	if (active->pipe_enabled) {
2958		u32 tmp = hw->wm_pipe[pipe];
2959
2960		/*
2961		 * For active pipes LP0 watermark is marked as
2962		 * enabled, and LP1+ watermaks as disabled since
2963		 * we can't really reverse compute them in case
2964		 * multiple pipes are active.
2965		 */
2966		active->wm[0].enable = true;
2967		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2968		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2969		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2970		active->linetime = hw->wm_linetime[pipe];
2971	} else {
2972		int level, max_level = ilk_wm_max_level(dev);
2973
2974		/*
2975		 * For inactive pipes, all watermark levels
2976		 * should be marked as enabled but zeroed,
2977		 * which is what we'd compute them to.
2978		 */
2979		for (level = 0; level <= max_level; level++)
2980			active->wm[level].enable = true;
2981	}
2982}
2983
2984void ilk_wm_get_hw_state(struct drm_device *dev)
2985{
2986	struct drm_i915_private *dev_priv = dev->dev_private;
2987	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2988	struct drm_crtc *crtc;
2989
2990	for_each_crtc(dev, crtc)
2991		ilk_pipe_wm_get_hw_state(crtc);
2992
2993	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2994	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2995	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2996
2997	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2998	if (INTEL_INFO(dev)->gen >= 7) {
2999		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3000		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3001	}
3002
3003	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3004		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3005			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3006	else if (IS_IVYBRIDGE(dev))
3007		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3008			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3009
3010	hw->enable_fbc_wm =
3011		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3012}
3013
3014/**
3015 * intel_update_watermarks - update FIFO watermark values based on current modes
3016 *
3017 * Calculate watermark values for the various WM regs based on current mode
3018 * and plane configuration.
3019 *
3020 * There are several cases to deal with here:
3021 *   - normal (i.e. non-self-refresh)
3022 *   - self-refresh (SR) mode
3023 *   - lines are large relative to FIFO size (buffer can hold up to 2)
3024 *   - lines are small relative to FIFO size (buffer can hold more than 2
3025 *     lines), so need to account for TLB latency
3026 *
3027 *   The normal calculation is:
3028 *     watermark = dotclock * bytes per pixel * latency
3029 *   where latency is platform & configuration dependent (we assume pessimal
3030 *   values here).
3031 *
3032 *   The SR calculation is:
3033 *     watermark = (trunc(latency/line time)+1) * surface width *
3034 *       bytes per pixel
3035 *   where
3036 *     line time = htotal / dotclock
3037 *     surface width = hdisplay for normal plane and 64 for cursor
3038 *   and latency is assumed to be high, as above.
3039 *
3040 * The final value programmed to the register should always be rounded up,
3041 * and include an extra 2 entries to account for clock crossings.
3042 *
3043 * We don't use the sprite, so we can ignore that.  And on Crestline we have
3044 * to set the non-SR watermarks to 8.
3045 */
3046void intel_update_watermarks(struct drm_crtc *crtc)
3047{
3048	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3049
3050	if (dev_priv->display.update_wm)
3051		dev_priv->display.update_wm(crtc);
3052}
3053
3054void intel_update_sprite_watermarks(struct drm_plane *plane,
3055				    struct drm_crtc *crtc,
3056				    uint32_t sprite_width,
3057				    uint32_t sprite_height,
3058				    int pixel_size,
3059				    bool enabled, bool scaled)
3060{
3061	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3062
3063	if (dev_priv->display.update_sprite_wm)
3064		dev_priv->display.update_sprite_wm(plane, crtc,
3065						   sprite_width, sprite_height,
3066						   pixel_size, enabled, scaled);
3067}
3068
3069static struct drm_i915_gem_object *
3070intel_alloc_context_page(struct drm_device *dev)
3071{
3072	struct drm_i915_gem_object *ctx;
3073	int ret;
3074
3075	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3076
3077	ctx = i915_gem_alloc_object(dev, 4096);
3078	if (!ctx) {
3079		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3080		return NULL;
3081	}
3082
3083	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3084	if (ret) {
3085		DRM_ERROR("failed to pin power context: %d\n", ret);
3086		goto err_unref;
3087	}
3088
3089	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3090	if (ret) {
3091		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3092		goto err_unpin;
3093	}
3094
3095	return ctx;
3096
3097err_unpin:
3098	i915_gem_object_ggtt_unpin(ctx);
3099err_unref:
3100	drm_gem_object_unreference(&ctx->base);
3101	return NULL;
3102}
3103
3104/**
3105 * Lock protecting IPS related data structures
3106 */
3107DEFINE_SPINLOCK(mchdev_lock);
3108
3109/* Global for IPS driver to get at the current i915 device. Protected by
3110 * mchdev_lock. */
3111static struct drm_i915_private *i915_mch_dev;
3112
3113bool ironlake_set_drps(struct drm_device *dev, u8 val)
3114{
3115	struct drm_i915_private *dev_priv = dev->dev_private;
3116	u16 rgvswctl;
3117
3118	assert_spin_locked(&mchdev_lock);
3119
3120	rgvswctl = I915_READ16(MEMSWCTL);
3121	if (rgvswctl & MEMCTL_CMD_STS) {
3122		DRM_DEBUG("gpu busy, RCS change rejected\n");
3123		return false; /* still busy with another command */
3124	}
3125
3126	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3127		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3128	I915_WRITE16(MEMSWCTL, rgvswctl);
3129	POSTING_READ16(MEMSWCTL);
3130
3131	rgvswctl |= MEMCTL_CMD_STS;
3132	I915_WRITE16(MEMSWCTL, rgvswctl);
3133
3134	return true;
3135}
3136
3137static void ironlake_enable_drps(struct drm_device *dev)
3138{
3139	struct drm_i915_private *dev_priv = dev->dev_private;
3140	u32 rgvmodectl = I915_READ(MEMMODECTL);
3141	u8 fmax, fmin, fstart, vstart;
3142
3143	spin_lock_irq(&mchdev_lock);
3144
3145	/* Enable temp reporting */
3146	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3147	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3148
3149	/* 100ms RC evaluation intervals */
3150	I915_WRITE(RCUPEI, 100000);
3151	I915_WRITE(RCDNEI, 100000);
3152
3153	/* Set max/min thresholds to 90ms and 80ms respectively */
3154	I915_WRITE(RCBMAXAVG, 90000);
3155	I915_WRITE(RCBMINAVG, 80000);
3156
3157	I915_WRITE(MEMIHYST, 1);
3158
3159	/* Set up min, max, and cur for interrupt handling */
3160	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3161	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3162	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3163		MEMMODE_FSTART_SHIFT;
3164
3165	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3166		PXVFREQ_PX_SHIFT;
3167
3168	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3169	dev_priv->ips.fstart = fstart;
3170
3171	dev_priv->ips.max_delay = fstart;
3172	dev_priv->ips.min_delay = fmin;
3173	dev_priv->ips.cur_delay = fstart;
3174
3175	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3176			 fmax, fmin, fstart);
3177
3178	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3179
3180	/*
3181	 * Interrupts will be enabled in ironlake_irq_postinstall
3182	 */
3183
3184	I915_WRITE(VIDSTART, vstart);
3185	POSTING_READ(VIDSTART);
3186
3187	rgvmodectl |= MEMMODE_SWMODE_EN;
3188	I915_WRITE(MEMMODECTL, rgvmodectl);
3189
3190	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3191		DRM_ERROR("stuck trying to change perf mode\n");
3192	mdelay(1);
3193
3194	ironlake_set_drps(dev, fstart);
3195
3196	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3197		I915_READ(0x112e0);
3198	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3199	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3200	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3201
3202	spin_unlock_irq(&mchdev_lock);
3203}
3204
3205static void ironlake_disable_drps(struct drm_device *dev)
3206{
3207	struct drm_i915_private *dev_priv = dev->dev_private;
3208	u16 rgvswctl;
3209
3210	spin_lock_irq(&mchdev_lock);
3211
3212	rgvswctl = I915_READ16(MEMSWCTL);
3213
3214	/* Ack interrupts, disable EFC interrupt */
3215	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3216	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3217	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3218	I915_WRITE(DEIIR, DE_PCU_EVENT);
3219	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3220
3221	/* Go back to the starting frequency */
3222	ironlake_set_drps(dev, dev_priv->ips.fstart);
3223	mdelay(1);
3224	rgvswctl |= MEMCTL_CMD_STS;
3225	I915_WRITE(MEMSWCTL, rgvswctl);
3226	mdelay(1);
3227
3228	spin_unlock_irq(&mchdev_lock);
3229}
3230
3231/* There's a funny hw issue where the hw returns all 0 when reading from
3232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3234 * all limits and the gpu stuck at whatever frequency it is at atm).
3235 */
3236static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3237{
3238	u32 limits;
3239
3240	/* Only set the down limit when we've reached the lowest level to avoid
3241	 * getting more interrupts, otherwise leave this clear. This prevents a
3242	 * race in the hw when coming out of rc6: There's a tiny window where
3243	 * the hw runs at the minimal clock before selecting the desired
3244	 * frequency, if the down threshold expires in that window we will not
3245	 * receive a down interrupt. */
3246	limits = dev_priv->rps.max_freq_softlimit << 24;
3247	if (val <= dev_priv->rps.min_freq_softlimit)
3248		limits |= dev_priv->rps.min_freq_softlimit << 16;
3249
3250	return limits;
3251}
3252
3253static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3254{
3255	int new_power;
3256
3257	new_power = dev_priv->rps.power;
3258	switch (dev_priv->rps.power) {
3259	case LOW_POWER:
3260		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3261			new_power = BETWEEN;
3262		break;
3263
3264	case BETWEEN:
3265		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3266			new_power = LOW_POWER;
3267		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3268			new_power = HIGH_POWER;
3269		break;
3270
3271	case HIGH_POWER:
3272		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3273			new_power = BETWEEN;
3274		break;
3275	}
3276	/* Max/min bins are special */
3277	if (val == dev_priv->rps.min_freq_softlimit)
3278		new_power = LOW_POWER;
3279	if (val == dev_priv->rps.max_freq_softlimit)
3280		new_power = HIGH_POWER;
3281	if (new_power == dev_priv->rps.power)
3282		return;
3283
3284	/* Note the units here are not exactly 1us, but 1280ns. */
3285	switch (new_power) {
3286	case LOW_POWER:
3287		/* Upclock if more than 95% busy over 16ms */
3288		I915_WRITE(GEN6_RP_UP_EI, 12500);
3289		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3290
3291		/* Downclock if less than 85% busy over 32ms */
3292		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3293		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3294
3295		I915_WRITE(GEN6_RP_CONTROL,
3296			   GEN6_RP_MEDIA_TURBO |
3297			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3298			   GEN6_RP_MEDIA_IS_GFX |
3299			   GEN6_RP_ENABLE |
3300			   GEN6_RP_UP_BUSY_AVG |
3301			   GEN6_RP_DOWN_IDLE_AVG);
3302		break;
3303
3304	case BETWEEN:
3305		/* Upclock if more than 90% busy over 13ms */
3306		I915_WRITE(GEN6_RP_UP_EI, 10250);
3307		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3308
3309		/* Downclock if less than 75% busy over 32ms */
3310		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3311		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3312
3313		I915_WRITE(GEN6_RP_CONTROL,
3314			   GEN6_RP_MEDIA_TURBO |
3315			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3316			   GEN6_RP_MEDIA_IS_GFX |
3317			   GEN6_RP_ENABLE |
3318			   GEN6_RP_UP_BUSY_AVG |
3319			   GEN6_RP_DOWN_IDLE_AVG);
3320		break;
3321
3322	case HIGH_POWER:
3323		/* Upclock if more than 85% busy over 10ms */
3324		I915_WRITE(GEN6_RP_UP_EI, 8000);
3325		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3326
3327		/* Downclock if less than 60% busy over 32ms */
3328		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3329		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3330
3331		I915_WRITE(GEN6_RP_CONTROL,
3332			   GEN6_RP_MEDIA_TURBO |
3333			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3334			   GEN6_RP_MEDIA_IS_GFX |
3335			   GEN6_RP_ENABLE |
3336			   GEN6_RP_UP_BUSY_AVG |
3337			   GEN6_RP_DOWN_IDLE_AVG);
3338		break;
3339	}
3340
3341	dev_priv->rps.power = new_power;
3342	dev_priv->rps.last_adj = 0;
3343}
3344
3345static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3346{
3347	u32 mask = 0;
3348
3349	if (val > dev_priv->rps.min_freq_softlimit)
3350		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3351	if (val < dev_priv->rps.max_freq_softlimit)
3352		mask |= GEN6_PM_RP_UP_THRESHOLD;
3353
3354	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3355	mask &= dev_priv->pm_rps_events;
3356
3357	/* IVB and SNB hard hangs on looping batchbuffer
3358	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3359	 */
3360	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3361		mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3362
3363	if (IS_GEN8(dev_priv->dev))
3364		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3365
3366	return ~mask;
3367}
3368
3369/* gen6_set_rps is called to update the frequency request, but should also be
3370 * called when the range (min_delay and max_delay) is modified so that we can
3371 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3372void gen6_set_rps(struct drm_device *dev, u8 val)
3373{
3374	struct drm_i915_private *dev_priv = dev->dev_private;
3375
3376	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3377	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3378	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3379
3380	/* min/max delay may still have been modified so be sure to
3381	 * write the limits value.
3382	 */
3383	if (val != dev_priv->rps.cur_freq) {
3384		gen6_set_rps_thresholds(dev_priv, val);
3385
3386		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3387			I915_WRITE(GEN6_RPNSWREQ,
3388				   HSW_FREQUENCY(val));
3389		else
3390			I915_WRITE(GEN6_RPNSWREQ,
3391				   GEN6_FREQUENCY(val) |
3392				   GEN6_OFFSET(0) |
3393				   GEN6_AGGRESSIVE_TURBO);
3394	}
3395
3396	/* Make sure we continue to get interrupts
3397	 * until we hit the minimum or maximum frequencies.
3398	 */
3399	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3400	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3401
3402	POSTING_READ(GEN6_RPNSWREQ);
3403
3404	dev_priv->rps.cur_freq = val;
3405	trace_intel_gpu_freq_change(val * 50);
3406}
3407
3408/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3409 *
3410 * * If Gfx is Idle, then
3411 * 1. Mask Turbo interrupts
3412 * 2. Bring up Gfx clock
3413 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3414 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3415 * 5. Unmask Turbo interrupts
3416*/
3417static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3418{
3419	struct drm_device *dev = dev_priv->dev;
3420
3421	/* Latest VLV doesn't need to force the gfx clock */
3422	if (dev->pdev->revision >= 0xd) {
3423		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3424		return;
3425	}
3426
3427	/*
3428	 * When we are idle.  Drop to min voltage state.
3429	 */
3430
3431	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3432		return;
3433
3434	/* Mask turbo interrupt so that they will not come in between */
3435	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3436
3437	vlv_force_gfx_clock(dev_priv, true);
3438
3439	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3440
3441	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3442					dev_priv->rps.min_freq_softlimit);
3443
3444	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3445				& GENFREQSTATUS) == 0, 5))
3446		DRM_ERROR("timed out waiting for Punit\n");
3447
3448	vlv_force_gfx_clock(dev_priv, false);
3449
3450	I915_WRITE(GEN6_PMINTRMSK,
3451		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3452}
3453
3454void gen6_rps_idle(struct drm_i915_private *dev_priv)
3455{
3456	struct drm_device *dev = dev_priv->dev;
3457
3458	mutex_lock(&dev_priv->rps.hw_lock);
3459	if (dev_priv->rps.enabled) {
3460		if (IS_CHERRYVIEW(dev))
3461			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3462		else if (IS_VALLEYVIEW(dev))
3463			vlv_set_rps_idle(dev_priv);
3464		else
3465			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3466		dev_priv->rps.last_adj = 0;
3467	}
3468	mutex_unlock(&dev_priv->rps.hw_lock);
3469}
3470
3471void gen6_rps_boost(struct drm_i915_private *dev_priv)
3472{
3473	struct drm_device *dev = dev_priv->dev;
3474
3475	mutex_lock(&dev_priv->rps.hw_lock);
3476	if (dev_priv->rps.enabled) {
3477		if (IS_VALLEYVIEW(dev))
3478			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3479		else
3480			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3481		dev_priv->rps.last_adj = 0;
3482	}
3483	mutex_unlock(&dev_priv->rps.hw_lock);
3484}
3485
3486void valleyview_set_rps(struct drm_device *dev, u8 val)
3487{
3488	struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3491	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3492	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3493
3494	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3495		      "Odd GPU freq value\n"))
3496		val &= ~1;
3497
3498	if (val != dev_priv->rps.cur_freq) {
3499		DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3500				 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3501				 dev_priv->rps.cur_freq,
3502				 vlv_gpu_freq(dev_priv, val), val);
3503
3504		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3505	}
3506
3507	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3508
3509	dev_priv->rps.cur_freq = val;
3510	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3511}
3512
3513static void gen8_disable_rps_interrupts(struct drm_device *dev)
3514{
3515	struct drm_i915_private *dev_priv = dev->dev_private;
3516
3517	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3518	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3519				   ~dev_priv->pm_rps_events);
3520	/* Complete PM interrupt masking here doesn't race with the rps work
3521	 * item again unmasking PM interrupts because that is using a different
3522	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3523	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3524	 * gen8_enable_rps will clean up. */
3525
3526	spin_lock_irq(&dev_priv->irq_lock);
3527	dev_priv->rps.pm_iir = 0;
3528	spin_unlock_irq(&dev_priv->irq_lock);
3529
3530	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3531}
3532
3533static void gen6_disable_rps_interrupts(struct drm_device *dev)
3534{
3535	struct drm_i915_private *dev_priv = dev->dev_private;
3536
3537	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3538	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3539				~dev_priv->pm_rps_events);
3540	/* Complete PM interrupt masking here doesn't race with the rps work
3541	 * item again unmasking PM interrupts because that is using a different
3542	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3543	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3544
3545	spin_lock_irq(&dev_priv->irq_lock);
3546	dev_priv->rps.pm_iir = 0;
3547	spin_unlock_irq(&dev_priv->irq_lock);
3548
3549	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3550}
3551
3552static void gen6_disable_rps(struct drm_device *dev)
3553{
3554	struct drm_i915_private *dev_priv = dev->dev_private;
3555
3556	I915_WRITE(GEN6_RC_CONTROL, 0);
3557	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3558
3559	if (IS_BROADWELL(dev))
3560		gen8_disable_rps_interrupts(dev);
3561	else
3562		gen6_disable_rps_interrupts(dev);
3563}
3564
3565static void cherryview_disable_rps(struct drm_device *dev)
3566{
3567	struct drm_i915_private *dev_priv = dev->dev_private;
3568
3569	I915_WRITE(GEN6_RC_CONTROL, 0);
3570
3571	gen8_disable_rps_interrupts(dev);
3572}
3573
3574static void valleyview_disable_rps(struct drm_device *dev)
3575{
3576	struct drm_i915_private *dev_priv = dev->dev_private;
3577
3578	/* we're doing forcewake before Disabling RC6,
3579	 * This what the BIOS expects when going into suspend */
3580	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3581
3582	I915_WRITE(GEN6_RC_CONTROL, 0);
3583
3584	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3585
3586	gen6_disable_rps_interrupts(dev);
3587}
3588
3589static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3590{
3591	if (IS_VALLEYVIEW(dev)) {
3592		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3593			mode = GEN6_RC_CTL_RC6_ENABLE;
3594		else
3595			mode = 0;
3596	}
3597	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3598		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3599		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3600		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3601}
3602
3603static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3604{
3605	/* No RC6 before Ironlake */
3606	if (INTEL_INFO(dev)->gen < 5)
3607		return 0;
3608
3609	/* RC6 is only on Ironlake mobile not on desktop */
3610	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3611		return 0;
3612
3613	/* Respect the kernel parameter if it is set */
3614	if (enable_rc6 >= 0) {
3615		int mask;
3616
3617		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3618			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3619			       INTEL_RC6pp_ENABLE;
3620		else
3621			mask = INTEL_RC6_ENABLE;
3622
3623		if ((enable_rc6 & mask) != enable_rc6)
3624			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3625				      enable_rc6 & mask, enable_rc6, mask);
3626
3627		return enable_rc6 & mask;
3628	}
3629
3630	/* Disable RC6 on Ironlake */
3631	if (INTEL_INFO(dev)->gen == 5)
3632		return 0;
3633
3634	if (IS_IVYBRIDGE(dev))
3635		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3636
3637	return INTEL_RC6_ENABLE;
3638}
3639
3640int intel_enable_rc6(const struct drm_device *dev)
3641{
3642	return i915.enable_rc6;
3643}
3644
3645static void gen8_enable_rps_interrupts(struct drm_device *dev)
3646{
3647	struct drm_i915_private *dev_priv = dev->dev_private;
3648
3649	spin_lock_irq(&dev_priv->irq_lock);
3650	WARN_ON(dev_priv->rps.pm_iir);
3651	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3652	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3653	spin_unlock_irq(&dev_priv->irq_lock);
3654}
3655
3656static void gen6_enable_rps_interrupts(struct drm_device *dev)
3657{
3658	struct drm_i915_private *dev_priv = dev->dev_private;
3659
3660	spin_lock_irq(&dev_priv->irq_lock);
3661	WARN_ON(dev_priv->rps.pm_iir);
3662	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3663	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3664	spin_unlock_irq(&dev_priv->irq_lock);
3665}
3666
3667static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3668{
3669	/* All of these values are in units of 50MHz */
3670	dev_priv->rps.cur_freq		= 0;
3671	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3672	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
3673	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
3674	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
3675	/* XXX: only BYT has a special efficient freq */
3676	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
3677	/* hw_max = RP0 until we check for overclocking */
3678	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
3679
3680	/* Preserve min/max settings in case of re-init */
3681	if (dev_priv->rps.max_freq_softlimit == 0)
3682		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3683
3684	if (dev_priv->rps.min_freq_softlimit == 0)
3685		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3686}
3687
3688static void gen8_enable_rps(struct drm_device *dev)
3689{
3690	struct drm_i915_private *dev_priv = dev->dev_private;
3691	struct intel_engine_cs *ring;
3692	uint32_t rc6_mask = 0, rp_state_cap;
3693	int unused;
3694
3695	/* 1a: Software RC state - RC0 */
3696	I915_WRITE(GEN6_RC_STATE, 0);
3697
3698	/* 1c & 1d: Get forcewake during program sequence. Although the driver
3699	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3700	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3701
3702	/* 2a: Disable RC states. */
3703	I915_WRITE(GEN6_RC_CONTROL, 0);
3704
3705	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3706	parse_rp_state_cap(dev_priv, rp_state_cap);
3707
3708	/* 2b: Program RC6 thresholds.*/
3709	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3710	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3711	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3712	for_each_ring(ring, dev_priv, unused)
3713		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3714	I915_WRITE(GEN6_RC_SLEEP, 0);
3715	if (IS_BROADWELL(dev))
3716		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3717	else
3718		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3719
3720	/* 3: Enable RC6 */
3721	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3722		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3723	intel_print_rc6_info(dev, rc6_mask);
3724	if (IS_BROADWELL(dev))
3725		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3726				GEN7_RC_CTL_TO_MODE |
3727				rc6_mask);
3728	else
3729		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3730				GEN6_RC_CTL_EI_MODE(1) |
3731				rc6_mask);
3732
3733	/* 4 Program defaults and thresholds for RPS*/
3734	I915_WRITE(GEN6_RPNSWREQ,
3735		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3736	I915_WRITE(GEN6_RC_VIDEO_FREQ,
3737		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3738	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3739	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3740
3741	/* Docs recommend 900MHz, and 300 MHz respectively */
3742	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3743		   dev_priv->rps.max_freq_softlimit << 24 |
3744		   dev_priv->rps.min_freq_softlimit << 16);
3745
3746	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3747	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3748	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3749	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3750
3751	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3752
3753	/* 5: Enable RPS */
3754	I915_WRITE(GEN6_RP_CONTROL,
3755		   GEN6_RP_MEDIA_TURBO |
3756		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3757		   GEN6_RP_MEDIA_IS_GFX |
3758		   GEN6_RP_ENABLE |
3759		   GEN6_RP_UP_BUSY_AVG |
3760		   GEN6_RP_DOWN_IDLE_AVG);
3761
3762	/* 6: Ring frequency + overclocking (our driver does this later */
3763
3764	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3765
3766	gen8_enable_rps_interrupts(dev);
3767
3768	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3769}
3770
3771static void gen6_enable_rps(struct drm_device *dev)
3772{
3773	struct drm_i915_private *dev_priv = dev->dev_private;
3774	struct intel_engine_cs *ring;
3775	u32 rp_state_cap;
3776	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3777	u32 gtfifodbg;
3778	int rc6_mode;
3779	int i, ret;
3780
3781	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3782
3783	/* Here begins a magic sequence of register writes to enable
3784	 * auto-downclocking.
3785	 *
3786	 * Perhaps there might be some value in exposing these to
3787	 * userspace...
3788	 */
3789	I915_WRITE(GEN6_RC_STATE, 0);
3790
3791	/* Clear the DBG now so we don't confuse earlier errors */
3792	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3793		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3794		I915_WRITE(GTFIFODBG, gtfifodbg);
3795	}
3796
3797	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3798
3799	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3800
3801	parse_rp_state_cap(dev_priv, rp_state_cap);
3802
3803	/* disable the counters and set deterministic thresholds */
3804	I915_WRITE(GEN6_RC_CONTROL, 0);
3805
3806	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3807	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3808	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3809	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3810	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3811
3812	for_each_ring(ring, dev_priv, i)
3813		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3814
3815	I915_WRITE(GEN6_RC_SLEEP, 0);
3816	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3817	if (IS_IVYBRIDGE(dev))
3818		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3819	else
3820		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3821	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3822	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3823
3824	/* Check if we are enabling RC6 */
3825	rc6_mode = intel_enable_rc6(dev_priv->dev);
3826	if (rc6_mode & INTEL_RC6_ENABLE)
3827		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3828
3829	/* We don't use those on Haswell */
3830	if (!IS_HASWELL(dev)) {
3831		if (rc6_mode & INTEL_RC6p_ENABLE)
3832			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3833
3834		if (rc6_mode & INTEL_RC6pp_ENABLE)
3835			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3836	}
3837
3838	intel_print_rc6_info(dev, rc6_mask);
3839
3840	I915_WRITE(GEN6_RC_CONTROL,
3841		   rc6_mask |
3842		   GEN6_RC_CTL_EI_MODE(1) |
3843		   GEN6_RC_CTL_HW_ENABLE);
3844
3845	/* Power down if completely idle for over 50ms */
3846	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3847	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3848
3849	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3850	if (ret)
3851		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3852
3853	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3854	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3855		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3856				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3857				 (pcu_mbox & 0xff) * 50);
3858		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3859	}
3860
3861	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3862	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3863
3864	gen6_enable_rps_interrupts(dev);
3865
3866	rc6vids = 0;
3867	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3868	if (IS_GEN6(dev) && ret) {
3869		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3870	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3871		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3872			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3873		rc6vids &= 0xffff00;
3874		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3875		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3876		if (ret)
3877			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3878	}
3879
3880	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3881}
3882
3883static void __gen6_update_ring_freq(struct drm_device *dev)
3884{
3885	struct drm_i915_private *dev_priv = dev->dev_private;
3886	int min_freq = 15;
3887	unsigned int gpu_freq;
3888	unsigned int max_ia_freq, min_ring_freq;
3889	int scaling_factor = 180;
3890	struct cpufreq_policy *policy;
3891
3892	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3893
3894	policy = cpufreq_cpu_get(0);
3895	if (policy) {
3896		max_ia_freq = policy->cpuinfo.max_freq;
3897		cpufreq_cpu_put(policy);
3898	} else {
3899		/*
3900		 * Default to measured freq if none found, PCU will ensure we
3901		 * don't go over
3902		 */
3903		max_ia_freq = tsc_khz;
3904	}
3905
3906	/* Convert from kHz to MHz */
3907	max_ia_freq /= 1000;
3908
3909	min_ring_freq = I915_READ(DCLK) & 0xf;
3910	/* convert DDR frequency from units of 266.6MHz to bandwidth */
3911	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3912
3913	/*
3914	 * For each potential GPU frequency, load a ring frequency we'd like
3915	 * to use for memory access.  We do this by specifying the IA frequency
3916	 * the PCU should use as a reference to determine the ring frequency.
3917	 */
3918	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3919	     gpu_freq--) {
3920		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3921		unsigned int ia_freq = 0, ring_freq = 0;
3922
3923		if (INTEL_INFO(dev)->gen >= 8) {
3924			/* max(2 * GT, DDR). NB: GT is 50MHz units */
3925			ring_freq = max(min_ring_freq, gpu_freq);
3926		} else if (IS_HASWELL(dev)) {
3927			ring_freq = mult_frac(gpu_freq, 5, 4);
3928			ring_freq = max(min_ring_freq, ring_freq);
3929			/* leave ia_freq as the default, chosen by cpufreq */
3930		} else {
3931			/* On older processors, there is no separate ring
3932			 * clock domain, so in order to boost the bandwidth
3933			 * of the ring, we need to upclock the CPU (ia_freq).
3934			 *
3935			 * For GPU frequencies less than 750MHz,
3936			 * just use the lowest ring freq.
3937			 */
3938			if (gpu_freq < min_freq)
3939				ia_freq = 800;
3940			else
3941				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3942			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3943		}
3944
3945		sandybridge_pcode_write(dev_priv,
3946					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3947					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3948					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3949					gpu_freq);
3950	}
3951}
3952
3953void gen6_update_ring_freq(struct drm_device *dev)
3954{
3955	struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3958		return;
3959
3960	mutex_lock(&dev_priv->rps.hw_lock);
3961	__gen6_update_ring_freq(dev);
3962	mutex_unlock(&dev_priv->rps.hw_lock);
3963}
3964
3965static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3966{
3967	u32 val, rp0;
3968
3969	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3970	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3971
3972	return rp0;
3973}
3974
3975static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3976{
3977	u32 val, rpe;
3978
3979	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3980	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3981
3982	return rpe;
3983}
3984
3985static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3986{
3987	u32 val, rp1;
3988
3989	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3990	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3991
3992	return rp1;
3993}
3994
3995static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3996{
3997	u32 val, rpn;
3998
3999	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4000	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4001	return rpn;
4002}
4003
4004static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4005{
4006	u32 val, rp1;
4007
4008	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4009
4010	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4011
4012	return rp1;
4013}
4014
4015static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4016{
4017	u32 val, rp0;
4018
4019	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4020
4021	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4022	/* Clamp to max */
4023	rp0 = min_t(u32, rp0, 0xea);
4024
4025	return rp0;
4026}
4027
4028static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4029{
4030	u32 val, rpe;
4031
4032	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4033	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4034	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4035	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4036
4037	return rpe;
4038}
4039
4040static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4041{
4042	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4043}
4044
4045/* Check that the pctx buffer wasn't move under us. */
4046static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4047{
4048	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4049
4050	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4051			     dev_priv->vlv_pctx->stolen->start);
4052}
4053
4054
4055/* Check that the pcbr address is not empty. */
4056static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4057{
4058	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4059
4060	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4061}
4062
4063static void cherryview_setup_pctx(struct drm_device *dev)
4064{
4065	struct drm_i915_private *dev_priv = dev->dev_private;
4066	unsigned long pctx_paddr, paddr;
4067	struct i915_gtt *gtt = &dev_priv->gtt;
4068	u32 pcbr;
4069	int pctx_size = 32*1024;
4070
4071	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4072
4073	pcbr = I915_READ(VLV_PCBR);
4074	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4075		paddr = (dev_priv->mm.stolen_base +
4076			 (gtt->stolen_size - pctx_size));
4077
4078		pctx_paddr = (paddr & (~4095));
4079		I915_WRITE(VLV_PCBR, pctx_paddr);
4080	}
4081}
4082
4083static void valleyview_setup_pctx(struct drm_device *dev)
4084{
4085	struct drm_i915_private *dev_priv = dev->dev_private;
4086	struct drm_i915_gem_object *pctx;
4087	unsigned long pctx_paddr;
4088	u32 pcbr;
4089	int pctx_size = 24*1024;
4090
4091	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4092
4093	pcbr = I915_READ(VLV_PCBR);
4094	if (pcbr) {
4095		/* BIOS set it up already, grab the pre-alloc'd space */
4096		int pcbr_offset;
4097
4098		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4099		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4100								      pcbr_offset,
4101								      I915_GTT_OFFSET_NONE,
4102								      pctx_size);
4103		goto out;
4104	}
4105
4106	/*
4107	 * From the Gunit register HAS:
4108	 * The Gfx driver is expected to program this register and ensure
4109	 * proper allocation within Gfx stolen memory.  For example, this
4110	 * register should be programmed such than the PCBR range does not
4111	 * overlap with other ranges, such as the frame buffer, protected
4112	 * memory, or any other relevant ranges.
4113	 */
4114	pctx = i915_gem_object_create_stolen(dev, pctx_size);
4115	if (!pctx) {
4116		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4117		return;
4118	}
4119
4120	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4121	I915_WRITE(VLV_PCBR, pctx_paddr);
4122
4123out:
4124	dev_priv->vlv_pctx = pctx;
4125}
4126
4127static void valleyview_cleanup_pctx(struct drm_device *dev)
4128{
4129	struct drm_i915_private *dev_priv = dev->dev_private;
4130
4131	if (WARN_ON(!dev_priv->vlv_pctx))
4132		return;
4133
4134	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4135	dev_priv->vlv_pctx = NULL;
4136}
4137
4138static void valleyview_init_gt_powersave(struct drm_device *dev)
4139{
4140	struct drm_i915_private *dev_priv = dev->dev_private;
4141	u32 val;
4142
4143	valleyview_setup_pctx(dev);
4144
4145	mutex_lock(&dev_priv->rps.hw_lock);
4146
4147	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4148	switch ((val >> 6) & 3) {
4149	case 0:
4150	case 1:
4151		dev_priv->mem_freq = 800;
4152		break;
4153	case 2:
4154		dev_priv->mem_freq = 1066;
4155		break;
4156	case 3:
4157		dev_priv->mem_freq = 1333;
4158		break;
4159	}
4160	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4161
4162	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4163	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4164	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4165			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4166			 dev_priv->rps.max_freq);
4167
4168	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4169	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4170			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4171			 dev_priv->rps.efficient_freq);
4172
4173	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4174	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4175			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4176			 dev_priv->rps.rp1_freq);
4177
4178	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4179	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4180			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4181			 dev_priv->rps.min_freq);
4182
4183	/* Preserve min/max settings in case of re-init */
4184	if (dev_priv->rps.max_freq_softlimit == 0)
4185		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4186
4187	if (dev_priv->rps.min_freq_softlimit == 0)
4188		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4189
4190	mutex_unlock(&dev_priv->rps.hw_lock);
4191}
4192
4193static void cherryview_init_gt_powersave(struct drm_device *dev)
4194{
4195	struct drm_i915_private *dev_priv = dev->dev_private;
4196	u32 val;
4197
4198	cherryview_setup_pctx(dev);
4199
4200	mutex_lock(&dev_priv->rps.hw_lock);
4201
4202	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4203	switch ((val >> 2) & 0x7) {
4204	case 0:
4205	case 1:
4206		dev_priv->rps.cz_freq = 200;
4207		dev_priv->mem_freq = 1600;
4208		break;
4209	case 2:
4210		dev_priv->rps.cz_freq = 267;
4211		dev_priv->mem_freq = 1600;
4212		break;
4213	case 3:
4214		dev_priv->rps.cz_freq = 333;
4215		dev_priv->mem_freq = 2000;
4216		break;
4217	case 4:
4218		dev_priv->rps.cz_freq = 320;
4219		dev_priv->mem_freq = 1600;
4220		break;
4221	case 5:
4222		dev_priv->rps.cz_freq = 400;
4223		dev_priv->mem_freq = 1600;
4224		break;
4225	}
4226	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4227
4228	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4229	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4230	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4231			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4232			 dev_priv->rps.max_freq);
4233
4234	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4235	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4236			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4237			 dev_priv->rps.efficient_freq);
4238
4239	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4240	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4241			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4242			 dev_priv->rps.rp1_freq);
4243
4244	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4245	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4246			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4247			 dev_priv->rps.min_freq);
4248
4249	WARN_ONCE((dev_priv->rps.max_freq |
4250		   dev_priv->rps.efficient_freq |
4251		   dev_priv->rps.rp1_freq |
4252		   dev_priv->rps.min_freq) & 1,
4253		  "Odd GPU freq values\n");
4254
4255	/* Preserve min/max settings in case of re-init */
4256	if (dev_priv->rps.max_freq_softlimit == 0)
4257		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4258
4259	if (dev_priv->rps.min_freq_softlimit == 0)
4260		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4261
4262	mutex_unlock(&dev_priv->rps.hw_lock);
4263}
4264
4265static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4266{
4267	valleyview_cleanup_pctx(dev);
4268}
4269
4270static void cherryview_enable_rps(struct drm_device *dev)
4271{
4272	struct drm_i915_private *dev_priv = dev->dev_private;
4273	struct intel_engine_cs *ring;
4274	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4275	int i;
4276
4277	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4278
4279	gtfifodbg = I915_READ(GTFIFODBG);
4280	if (gtfifodbg) {
4281		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4282				 gtfifodbg);
4283		I915_WRITE(GTFIFODBG, gtfifodbg);
4284	}
4285
4286	cherryview_check_pctx(dev_priv);
4287
4288	/* 1a & 1b: Get forcewake during program sequence. Although the driver
4289	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4290	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4291
4292	/* 2a: Program RC6 thresholds.*/
4293	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4294	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4295	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4296
4297	for_each_ring(ring, dev_priv, i)
4298		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4299	I915_WRITE(GEN6_RC_SLEEP, 0);
4300
4301	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4302
4303	/* allows RC6 residency counter to work */
4304	I915_WRITE(VLV_COUNTER_CONTROL,
4305		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4306				      VLV_MEDIA_RC6_COUNT_EN |
4307				      VLV_RENDER_RC6_COUNT_EN));
4308
4309	/* For now we assume BIOS is allocating and populating the PCBR  */
4310	pcbr = I915_READ(VLV_PCBR);
4311
4312	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4313
4314	/* 3: Enable RC6 */
4315	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4316						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4317		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4318
4319	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4320
4321	/* 4 Program defaults and thresholds for RPS*/
4322	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4323	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4324	I915_WRITE(GEN6_RP_UP_EI, 66000);
4325	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4326
4327	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4328
4329	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
4330	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4331	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4332
4333	/* 5: Enable RPS */
4334	I915_WRITE(GEN6_RP_CONTROL,
4335		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4336		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4337		   GEN6_RP_ENABLE |
4338		   GEN6_RP_UP_BUSY_AVG |
4339		   GEN6_RP_DOWN_IDLE_AVG);
4340
4341	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4342
4343	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4344	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4345
4346	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4347	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4348			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4349			 dev_priv->rps.cur_freq);
4350
4351	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4352			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4353			 dev_priv->rps.efficient_freq);
4354
4355	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4356
4357	gen8_enable_rps_interrupts(dev);
4358
4359	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4360}
4361
4362static void valleyview_enable_rps(struct drm_device *dev)
4363{
4364	struct drm_i915_private *dev_priv = dev->dev_private;
4365	struct intel_engine_cs *ring;
4366	u32 gtfifodbg, val, rc6_mode = 0;
4367	int i;
4368
4369	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4370
4371	valleyview_check_pctx(dev_priv);
4372
4373	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4374		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4375				 gtfifodbg);
4376		I915_WRITE(GTFIFODBG, gtfifodbg);
4377	}
4378
4379	/* If VLV, Forcewake all wells, else re-direct to regular path */
4380	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4381
4382	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4383	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4384	I915_WRITE(GEN6_RP_UP_EI, 66000);
4385	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4386
4387	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4388	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4389
4390	I915_WRITE(GEN6_RP_CONTROL,
4391		   GEN6_RP_MEDIA_TURBO |
4392		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4393		   GEN6_RP_MEDIA_IS_GFX |
4394		   GEN6_RP_ENABLE |
4395		   GEN6_RP_UP_BUSY_AVG |
4396		   GEN6_RP_DOWN_IDLE_CONT);
4397
4398	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4399	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4400	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4401
4402	for_each_ring(ring, dev_priv, i)
4403		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4404
4405	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4406
4407	/* allows RC6 residency counter to work */
4408	I915_WRITE(VLV_COUNTER_CONTROL,
4409		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4410				      VLV_RENDER_RC0_COUNT_EN |
4411				      VLV_MEDIA_RC6_COUNT_EN |
4412				      VLV_RENDER_RC6_COUNT_EN));
4413
4414	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4415		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4416
4417	intel_print_rc6_info(dev, rc6_mode);
4418
4419	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4420
4421	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4422
4423	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4424	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4425
4426	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4427	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4428			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4429			 dev_priv->rps.cur_freq);
4430
4431	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4432			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4433			 dev_priv->rps.efficient_freq);
4434
4435	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4436
4437	gen6_enable_rps_interrupts(dev);
4438
4439	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4440}
4441
4442void ironlake_teardown_rc6(struct drm_device *dev)
4443{
4444	struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446	if (dev_priv->ips.renderctx) {
4447		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4448		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4449		dev_priv->ips.renderctx = NULL;
4450	}
4451
4452	if (dev_priv->ips.pwrctx) {
4453		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4454		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4455		dev_priv->ips.pwrctx = NULL;
4456	}
4457}
4458
4459static void ironlake_disable_rc6(struct drm_device *dev)
4460{
4461	struct drm_i915_private *dev_priv = dev->dev_private;
4462
4463	if (I915_READ(PWRCTXA)) {
4464		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4465		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4466		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4467			 50);
4468
4469		I915_WRITE(PWRCTXA, 0);
4470		POSTING_READ(PWRCTXA);
4471
4472		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4473		POSTING_READ(RSTDBYCTL);
4474	}
4475}
4476
4477static int ironlake_setup_rc6(struct drm_device *dev)
4478{
4479	struct drm_i915_private *dev_priv = dev->dev_private;
4480
4481	if (dev_priv->ips.renderctx == NULL)
4482		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4483	if (!dev_priv->ips.renderctx)
4484		return -ENOMEM;
4485
4486	if (dev_priv->ips.pwrctx == NULL)
4487		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4488	if (!dev_priv->ips.pwrctx) {
4489		ironlake_teardown_rc6(dev);
4490		return -ENOMEM;
4491	}
4492
4493	return 0;
4494}
4495
4496static void ironlake_enable_rc6(struct drm_device *dev)
4497{
4498	struct drm_i915_private *dev_priv = dev->dev_private;
4499	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4500	bool was_interruptible;
4501	int ret;
4502
4503	/* rc6 disabled by default due to repeated reports of hanging during
4504	 * boot and resume.
4505	 */
4506	if (!intel_enable_rc6(dev))
4507		return;
4508
4509	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4510
4511	ret = ironlake_setup_rc6(dev);
4512	if (ret)
4513		return;
4514
4515	was_interruptible = dev_priv->mm.interruptible;
4516	dev_priv->mm.interruptible = false;
4517
4518	/*
4519	 * GPU can automatically power down the render unit if given a page
4520	 * to save state.
4521	 */
4522	ret = intel_ring_begin(ring, 6);
4523	if (ret) {
4524		ironlake_teardown_rc6(dev);
4525		dev_priv->mm.interruptible = was_interruptible;
4526		return;
4527	}
4528
4529	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4530	intel_ring_emit(ring, MI_SET_CONTEXT);
4531	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4532			MI_MM_SPACE_GTT |
4533			MI_SAVE_EXT_STATE_EN |
4534			MI_RESTORE_EXT_STATE_EN |
4535			MI_RESTORE_INHIBIT);
4536	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4537	intel_ring_emit(ring, MI_NOOP);
4538	intel_ring_emit(ring, MI_FLUSH);
4539	intel_ring_advance(ring);
4540
4541	/*
4542	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4543	 * does an implicit flush, combined with MI_FLUSH above, it should be
4544	 * safe to assume that renderctx is valid
4545	 */
4546	ret = intel_ring_idle(ring);
4547	dev_priv->mm.interruptible = was_interruptible;
4548	if (ret) {
4549		DRM_ERROR("failed to enable ironlake power savings\n");
4550		ironlake_teardown_rc6(dev);
4551		return;
4552	}
4553
4554	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4555	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4556
4557	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4558}
4559
4560static unsigned long intel_pxfreq(u32 vidfreq)
4561{
4562	unsigned long freq;
4563	int div = (vidfreq & 0x3f0000) >> 16;
4564	int post = (vidfreq & 0x3000) >> 12;
4565	int pre = (vidfreq & 0x7);
4566
4567	if (!pre)
4568		return 0;
4569
4570	freq = ((div * 133333) / ((1<<post) * pre));
4571
4572	return freq;
4573}
4574
4575static const struct cparams {
4576	u16 i;
4577	u16 t;
4578	u16 m;
4579	u16 c;
4580} cparams[] = {
4581	{ 1, 1333, 301, 28664 },
4582	{ 1, 1066, 294, 24460 },
4583	{ 1, 800, 294, 25192 },
4584	{ 0, 1333, 276, 27605 },
4585	{ 0, 1066, 276, 27605 },
4586	{ 0, 800, 231, 23784 },
4587};
4588
4589static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4590{
4591	u64 total_count, diff, ret;
4592	u32 count1, count2, count3, m = 0, c = 0;
4593	unsigned long now = jiffies_to_msecs(jiffies), diff1;
4594	int i;
4595
4596	assert_spin_locked(&mchdev_lock);
4597
4598	diff1 = now - dev_priv->ips.last_time1;
4599
4600	/* Prevent division-by-zero if we are asking too fast.
4601	 * Also, we don't get interesting results if we are polling
4602	 * faster than once in 10ms, so just return the saved value
4603	 * in such cases.
4604	 */
4605	if (diff1 <= 10)
4606		return dev_priv->ips.chipset_power;
4607
4608	count1 = I915_READ(DMIEC);
4609	count2 = I915_READ(DDREC);
4610	count3 = I915_READ(CSIEC);
4611
4612	total_count = count1 + count2 + count3;
4613
4614	/* FIXME: handle per-counter overflow */
4615	if (total_count < dev_priv->ips.last_count1) {
4616		diff = ~0UL - dev_priv->ips.last_count1;
4617		diff += total_count;
4618	} else {
4619		diff = total_count - dev_priv->ips.last_count1;
4620	}
4621
4622	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4623		if (cparams[i].i == dev_priv->ips.c_m &&
4624		    cparams[i].t == dev_priv->ips.r_t) {
4625			m = cparams[i].m;
4626			c = cparams[i].c;
4627			break;
4628		}
4629	}
4630
4631	diff = div_u64(diff, diff1);
4632	ret = ((m * diff) + c);
4633	ret = div_u64(ret, 10);
4634
4635	dev_priv->ips.last_count1 = total_count;
4636	dev_priv->ips.last_time1 = now;
4637
4638	dev_priv->ips.chipset_power = ret;
4639
4640	return ret;
4641}
4642
4643unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4644{
4645	struct drm_device *dev = dev_priv->dev;
4646	unsigned long val;
4647
4648	if (INTEL_INFO(dev)->gen != 5)
4649		return 0;
4650
4651	spin_lock_irq(&mchdev_lock);
4652
4653	val = __i915_chipset_val(dev_priv);
4654
4655	spin_unlock_irq(&mchdev_lock);
4656
4657	return val;
4658}
4659
4660unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4661{
4662	unsigned long m, x, b;
4663	u32 tsfs;
4664
4665	tsfs = I915_READ(TSFS);
4666
4667	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4668	x = I915_READ8(TR1);
4669
4670	b = tsfs & TSFS_INTR_MASK;
4671
4672	return ((m * x) / 127) - b;
4673}
4674
4675static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4676{
4677	struct drm_device *dev = dev_priv->dev;
4678	static const struct v_table {
4679		u16 vd; /* in .1 mil */
4680		u16 vm; /* in .1 mil */
4681	} v_table[] = {
4682		{ 0, 0, },
4683		{ 375, 0, },
4684		{ 500, 0, },
4685		{ 625, 0, },
4686		{ 750, 0, },
4687		{ 875, 0, },
4688		{ 1000, 0, },
4689		{ 1125, 0, },
4690		{ 4125, 3000, },
4691		{ 4125, 3000, },
4692		{ 4125, 3000, },
4693		{ 4125, 3000, },
4694		{ 4125, 3000, },
4695		{ 4125, 3000, },
4696		{ 4125, 3000, },
4697		{ 4125, 3000, },
4698		{ 4125, 3000, },
4699		{ 4125, 3000, },
4700		{ 4125, 3000, },
4701		{ 4125, 3000, },
4702		{ 4125, 3000, },
4703		{ 4125, 3000, },
4704		{ 4125, 3000, },
4705		{ 4125, 3000, },
4706		{ 4125, 3000, },
4707		{ 4125, 3000, },
4708		{ 4125, 3000, },
4709		{ 4125, 3000, },
4710		{ 4125, 3000, },
4711		{ 4125, 3000, },
4712		{ 4125, 3000, },
4713		{ 4125, 3000, },
4714		{ 4250, 3125, },
4715		{ 4375, 3250, },
4716		{ 4500, 3375, },
4717		{ 4625, 3500, },
4718		{ 4750, 3625, },
4719		{ 4875, 3750, },
4720		{ 5000, 3875, },
4721		{ 5125, 4000, },
4722		{ 5250, 4125, },
4723		{ 5375, 4250, },
4724		{ 5500, 4375, },
4725		{ 5625, 4500, },
4726		{ 5750, 4625, },
4727		{ 5875, 4750, },
4728		{ 6000, 4875, },
4729		{ 6125, 5000, },
4730		{ 6250, 5125, },
4731		{ 6375, 5250, },
4732		{ 6500, 5375, },
4733		{ 6625, 5500, },
4734		{ 6750, 5625, },
4735		{ 6875, 5750, },
4736		{ 7000, 5875, },
4737		{ 7125, 6000, },
4738		{ 7250, 6125, },
4739		{ 7375, 6250, },
4740		{ 7500, 6375, },
4741		{ 7625, 6500, },
4742		{ 7750, 6625, },
4743		{ 7875, 6750, },
4744		{ 8000, 6875, },
4745		{ 8125, 7000, },
4746		{ 8250, 7125, },
4747		{ 8375, 7250, },
4748		{ 8500, 7375, },
4749		{ 8625, 7500, },
4750		{ 8750, 7625, },
4751		{ 8875, 7750, },
4752		{ 9000, 7875, },
4753		{ 9125, 8000, },
4754		{ 9250, 8125, },
4755		{ 9375, 8250, },
4756		{ 9500, 8375, },
4757		{ 9625, 8500, },
4758		{ 9750, 8625, },
4759		{ 9875, 8750, },
4760		{ 10000, 8875, },
4761		{ 10125, 9000, },
4762		{ 10250, 9125, },
4763		{ 10375, 9250, },
4764		{ 10500, 9375, },
4765		{ 10625, 9500, },
4766		{ 10750, 9625, },
4767		{ 10875, 9750, },
4768		{ 11000, 9875, },
4769		{ 11125, 10000, },
4770		{ 11250, 10125, },
4771		{ 11375, 10250, },
4772		{ 11500, 10375, },
4773		{ 11625, 10500, },
4774		{ 11750, 10625, },
4775		{ 11875, 10750, },
4776		{ 12000, 10875, },
4777		{ 12125, 11000, },
4778		{ 12250, 11125, },
4779		{ 12375, 11250, },
4780		{ 12500, 11375, },
4781		{ 12625, 11500, },
4782		{ 12750, 11625, },
4783		{ 12875, 11750, },
4784		{ 13000, 11875, },
4785		{ 13125, 12000, },
4786		{ 13250, 12125, },
4787		{ 13375, 12250, },
4788		{ 13500, 12375, },
4789		{ 13625, 12500, },
4790		{ 13750, 12625, },
4791		{ 13875, 12750, },
4792		{ 14000, 12875, },
4793		{ 14125, 13000, },
4794		{ 14250, 13125, },
4795		{ 14375, 13250, },
4796		{ 14500, 13375, },
4797		{ 14625, 13500, },
4798		{ 14750, 13625, },
4799		{ 14875, 13750, },
4800		{ 15000, 13875, },
4801		{ 15125, 14000, },
4802		{ 15250, 14125, },
4803		{ 15375, 14250, },
4804		{ 15500, 14375, },
4805		{ 15625, 14500, },
4806		{ 15750, 14625, },
4807		{ 15875, 14750, },
4808		{ 16000, 14875, },
4809		{ 16125, 15000, },
4810	};
4811	if (INTEL_INFO(dev)->is_mobile)
4812		return v_table[pxvid].vm;
4813	else
4814		return v_table[pxvid].vd;
4815}
4816
4817static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4818{
4819	u64 now, diff, diffms;
4820	u32 count;
4821
4822	assert_spin_locked(&mchdev_lock);
4823
4824	now = ktime_get_raw_ns();
4825	diffms = now - dev_priv->ips.last_time2;
4826	do_div(diffms, NSEC_PER_MSEC);
4827
4828	/* Don't divide by 0 */
4829	if (!diffms)
4830		return;
4831
4832	count = I915_READ(GFXEC);
4833
4834	if (count < dev_priv->ips.last_count2) {
4835		diff = ~0UL - dev_priv->ips.last_count2;
4836		diff += count;
4837	} else {
4838		diff = count - dev_priv->ips.last_count2;
4839	}
4840
4841	dev_priv->ips.last_count2 = count;
4842	dev_priv->ips.last_time2 = now;
4843
4844	/* More magic constants... */
4845	diff = diff * 1181;
4846	diff = div_u64(diff, diffms * 10);
4847	dev_priv->ips.gfx_power = diff;
4848}
4849
4850void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4851{
4852	struct drm_device *dev = dev_priv->dev;
4853
4854	if (INTEL_INFO(dev)->gen != 5)
4855		return;
4856
4857	spin_lock_irq(&mchdev_lock);
4858
4859	__i915_update_gfx_val(dev_priv);
4860
4861	spin_unlock_irq(&mchdev_lock);
4862}
4863
4864static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4865{
4866	unsigned long t, corr, state1, corr2, state2;
4867	u32 pxvid, ext_v;
4868
4869	assert_spin_locked(&mchdev_lock);
4870
4871	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4872	pxvid = (pxvid >> 24) & 0x7f;
4873	ext_v = pvid_to_extvid(dev_priv, pxvid);
4874
4875	state1 = ext_v;
4876
4877	t = i915_mch_val(dev_priv);
4878
4879	/* Revel in the empirically derived constants */
4880
4881	/* Correction factor in 1/100000 units */
4882	if (t > 80)
4883		corr = ((t * 2349) + 135940);
4884	else if (t >= 50)
4885		corr = ((t * 964) + 29317);
4886	else /* < 50 */
4887		corr = ((t * 301) + 1004);
4888
4889	corr = corr * ((150142 * state1) / 10000 - 78642);
4890	corr /= 100000;
4891	corr2 = (corr * dev_priv->ips.corr);
4892
4893	state2 = (corr2 * state1) / 10000;
4894	state2 /= 100; /* convert to mW */
4895
4896	__i915_update_gfx_val(dev_priv);
4897
4898	return dev_priv->ips.gfx_power + state2;
4899}
4900
4901unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4902{
4903	struct drm_device *dev = dev_priv->dev;
4904	unsigned long val;
4905
4906	if (INTEL_INFO(dev)->gen != 5)
4907		return 0;
4908
4909	spin_lock_irq(&mchdev_lock);
4910
4911	val = __i915_gfx_val(dev_priv);
4912
4913	spin_unlock_irq(&mchdev_lock);
4914
4915	return val;
4916}
4917
4918/**
4919 * i915_read_mch_val - return value for IPS use
4920 *
4921 * Calculate and return a value for the IPS driver to use when deciding whether
4922 * we have thermal and power headroom to increase CPU or GPU power budget.
4923 */
4924unsigned long i915_read_mch_val(void)
4925{
4926	struct drm_i915_private *dev_priv;
4927	unsigned long chipset_val, graphics_val, ret = 0;
4928
4929	spin_lock_irq(&mchdev_lock);
4930	if (!i915_mch_dev)
4931		goto out_unlock;
4932	dev_priv = i915_mch_dev;
4933
4934	chipset_val = __i915_chipset_val(dev_priv);
4935	graphics_val = __i915_gfx_val(dev_priv);
4936
4937	ret = chipset_val + graphics_val;
4938
4939out_unlock:
4940	spin_unlock_irq(&mchdev_lock);
4941
4942	return ret;
4943}
4944EXPORT_SYMBOL_GPL(i915_read_mch_val);
4945
4946/**
4947 * i915_gpu_raise - raise GPU frequency limit
4948 *
4949 * Raise the limit; IPS indicates we have thermal headroom.
4950 */
4951bool i915_gpu_raise(void)
4952{
4953	struct drm_i915_private *dev_priv;
4954	bool ret = true;
4955
4956	spin_lock_irq(&mchdev_lock);
4957	if (!i915_mch_dev) {
4958		ret = false;
4959		goto out_unlock;
4960	}
4961	dev_priv = i915_mch_dev;
4962
4963	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4964		dev_priv->ips.max_delay--;
4965
4966out_unlock:
4967	spin_unlock_irq(&mchdev_lock);
4968
4969	return ret;
4970}
4971EXPORT_SYMBOL_GPL(i915_gpu_raise);
4972
4973/**
4974 * i915_gpu_lower - lower GPU frequency limit
4975 *
4976 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4977 * frequency maximum.
4978 */
4979bool i915_gpu_lower(void)
4980{
4981	struct drm_i915_private *dev_priv;
4982	bool ret = true;
4983
4984	spin_lock_irq(&mchdev_lock);
4985	if (!i915_mch_dev) {
4986		ret = false;
4987		goto out_unlock;
4988	}
4989	dev_priv = i915_mch_dev;
4990
4991	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4992		dev_priv->ips.max_delay++;
4993
4994out_unlock:
4995	spin_unlock_irq(&mchdev_lock);
4996
4997	return ret;
4998}
4999EXPORT_SYMBOL_GPL(i915_gpu_lower);
5000
5001/**
5002 * i915_gpu_busy - indicate GPU business to IPS
5003 *
5004 * Tell the IPS driver whether or not the GPU is busy.
5005 */
5006bool i915_gpu_busy(void)
5007{
5008	struct drm_i915_private *dev_priv;
5009	struct intel_engine_cs *ring;
5010	bool ret = false;
5011	int i;
5012
5013	spin_lock_irq(&mchdev_lock);
5014	if (!i915_mch_dev)
5015		goto out_unlock;
5016	dev_priv = i915_mch_dev;
5017
5018	for_each_ring(ring, dev_priv, i)
5019		ret |= !list_empty(&ring->request_list);
5020
5021out_unlock:
5022	spin_unlock_irq(&mchdev_lock);
5023
5024	return ret;
5025}
5026EXPORT_SYMBOL_GPL(i915_gpu_busy);
5027
5028/**
5029 * i915_gpu_turbo_disable - disable graphics turbo
5030 *
5031 * Disable graphics turbo by resetting the max frequency and setting the
5032 * current frequency to the default.
5033 */
5034bool i915_gpu_turbo_disable(void)
5035{
5036	struct drm_i915_private *dev_priv;
5037	bool ret = true;
5038
5039	spin_lock_irq(&mchdev_lock);
5040	if (!i915_mch_dev) {
5041		ret = false;
5042		goto out_unlock;
5043	}
5044	dev_priv = i915_mch_dev;
5045
5046	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5047
5048	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5049		ret = false;
5050
5051out_unlock:
5052	spin_unlock_irq(&mchdev_lock);
5053
5054	return ret;
5055}
5056EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5057
5058/**
5059 * Tells the intel_ips driver that the i915 driver is now loaded, if
5060 * IPS got loaded first.
5061 *
5062 * This awkward dance is so that neither module has to depend on the
5063 * other in order for IPS to do the appropriate communication of
5064 * GPU turbo limits to i915.
5065 */
5066static void
5067ips_ping_for_i915_load(void)
5068{
5069	void (*link)(void);
5070
5071	link = symbol_get(ips_link_to_i915_driver);
5072	if (link) {
5073		link();
5074		symbol_put(ips_link_to_i915_driver);
5075	}
5076}
5077
5078void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5079{
5080	/* We only register the i915 ips part with intel-ips once everything is
5081	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5082	spin_lock_irq(&mchdev_lock);
5083	i915_mch_dev = dev_priv;
5084	spin_unlock_irq(&mchdev_lock);
5085
5086	ips_ping_for_i915_load();
5087}
5088
5089void intel_gpu_ips_teardown(void)
5090{
5091	spin_lock_irq(&mchdev_lock);
5092	i915_mch_dev = NULL;
5093	spin_unlock_irq(&mchdev_lock);
5094}
5095
5096static void intel_init_emon(struct drm_device *dev)
5097{
5098	struct drm_i915_private *dev_priv = dev->dev_private;
5099	u32 lcfuse;
5100	u8 pxw[16];
5101	int i;
5102
5103	/* Disable to program */
5104	I915_WRITE(ECR, 0);
5105	POSTING_READ(ECR);
5106
5107	/* Program energy weights for various events */
5108	I915_WRITE(SDEW, 0x15040d00);
5109	I915_WRITE(CSIEW0, 0x007f0000);
5110	I915_WRITE(CSIEW1, 0x1e220004);
5111	I915_WRITE(CSIEW2, 0x04000004);
5112
5113	for (i = 0; i < 5; i++)
5114		I915_WRITE(PEW + (i * 4), 0);
5115	for (i = 0; i < 3; i++)
5116		I915_WRITE(DEW + (i * 4), 0);
5117
5118	/* Program P-state weights to account for frequency power adjustment */
5119	for (i = 0; i < 16; i++) {
5120		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5121		unsigned long freq = intel_pxfreq(pxvidfreq);
5122		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5123			PXVFREQ_PX_SHIFT;
5124		unsigned long val;
5125
5126		val = vid * vid;
5127		val *= (freq / 1000);
5128		val *= 255;
5129		val /= (127*127*900);
5130		if (val > 0xff)
5131			DRM_ERROR("bad pxval: %ld\n", val);
5132		pxw[i] = val;
5133	}
5134	/* Render standby states get 0 weight */
5135	pxw[14] = 0;
5136	pxw[15] = 0;
5137
5138	for (i = 0; i < 4; i++) {
5139		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5140			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5141		I915_WRITE(PXW + (i * 4), val);
5142	}
5143
5144	/* Adjust magic regs to magic values (more experimental results) */
5145	I915_WRITE(OGW0, 0);
5146	I915_WRITE(OGW1, 0);
5147	I915_WRITE(EG0, 0x00007f00);
5148	I915_WRITE(EG1, 0x0000000e);
5149	I915_WRITE(EG2, 0x000e0000);
5150	I915_WRITE(EG3, 0x68000300);
5151	I915_WRITE(EG4, 0x42000000);
5152	I915_WRITE(EG5, 0x00140031);
5153	I915_WRITE(EG6, 0);
5154	I915_WRITE(EG7, 0);
5155
5156	for (i = 0; i < 8; i++)
5157		I915_WRITE(PXWL + (i * 4), 0);
5158
5159	/* Enable PMON + select events */
5160	I915_WRITE(ECR, 0x80000019);
5161
5162	lcfuse = I915_READ(LCFUSE02);
5163
5164	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5165}
5166
5167void intel_init_gt_powersave(struct drm_device *dev)
5168{
5169	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5170
5171	if (IS_CHERRYVIEW(dev))
5172		cherryview_init_gt_powersave(dev);
5173	else if (IS_VALLEYVIEW(dev))
5174		valleyview_init_gt_powersave(dev);
5175}
5176
5177void intel_cleanup_gt_powersave(struct drm_device *dev)
5178{
5179	if (IS_CHERRYVIEW(dev))
5180		return;
5181	else if (IS_VALLEYVIEW(dev))
5182		valleyview_cleanup_gt_powersave(dev);
5183}
5184
5185/**
5186 * intel_suspend_gt_powersave - suspend PM work and helper threads
5187 * @dev: drm device
5188 *
5189 * We don't want to disable RC6 or other features here, we just want
5190 * to make sure any work we've queued has finished and won't bother
5191 * us while we're suspended.
5192 */
5193void intel_suspend_gt_powersave(struct drm_device *dev)
5194{
5195	struct drm_i915_private *dev_priv = dev->dev_private;
5196
5197	/* Interrupts should be disabled already to avoid re-arming. */
5198	WARN_ON(intel_irqs_enabled(dev_priv));
5199
5200	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5201
5202	cancel_work_sync(&dev_priv->rps.work);
5203
5204	/* Force GPU to min freq during suspend */
5205	gen6_rps_idle(dev_priv);
5206}
5207
5208void intel_disable_gt_powersave(struct drm_device *dev)
5209{
5210	struct drm_i915_private *dev_priv = dev->dev_private;
5211
5212	/* Interrupts should be disabled already to avoid re-arming. */
5213	WARN_ON(intel_irqs_enabled(dev_priv));
5214
5215	if (IS_IRONLAKE_M(dev)) {
5216		ironlake_disable_drps(dev);
5217		ironlake_disable_rc6(dev);
5218	} else if (INTEL_INFO(dev)->gen >= 6) {
5219		intel_suspend_gt_powersave(dev);
5220
5221		mutex_lock(&dev_priv->rps.hw_lock);
5222		if (IS_CHERRYVIEW(dev))
5223			cherryview_disable_rps(dev);
5224		else if (IS_VALLEYVIEW(dev))
5225			valleyview_disable_rps(dev);
5226		else
5227			gen6_disable_rps(dev);
5228		dev_priv->rps.enabled = false;
5229		mutex_unlock(&dev_priv->rps.hw_lock);
5230	}
5231}
5232
5233static void intel_gen6_powersave_work(struct work_struct *work)
5234{
5235	struct drm_i915_private *dev_priv =
5236		container_of(work, struct drm_i915_private,
5237			     rps.delayed_resume_work.work);
5238	struct drm_device *dev = dev_priv->dev;
5239
5240	mutex_lock(&dev_priv->rps.hw_lock);
5241
5242	if (IS_CHERRYVIEW(dev)) {
5243		cherryview_enable_rps(dev);
5244	} else if (IS_VALLEYVIEW(dev)) {
5245		valleyview_enable_rps(dev);
5246	} else if (IS_BROADWELL(dev)) {
5247		gen8_enable_rps(dev);
5248		__gen6_update_ring_freq(dev);
5249	} else {
5250		gen6_enable_rps(dev);
5251		__gen6_update_ring_freq(dev);
5252	}
5253	dev_priv->rps.enabled = true;
5254	mutex_unlock(&dev_priv->rps.hw_lock);
5255
5256	intel_runtime_pm_put(dev_priv);
5257}
5258
5259void intel_enable_gt_powersave(struct drm_device *dev)
5260{
5261	struct drm_i915_private *dev_priv = dev->dev_private;
5262
5263	if (IS_IRONLAKE_M(dev)) {
5264		mutex_lock(&dev->struct_mutex);
5265		ironlake_enable_drps(dev);
5266		ironlake_enable_rc6(dev);
5267		intel_init_emon(dev);
5268		mutex_unlock(&dev->struct_mutex);
5269	} else if (INTEL_INFO(dev)->gen >= 6) {
5270		/*
5271		 * PCU communication is slow and this doesn't need to be
5272		 * done at any specific time, so do this out of our fast path
5273		 * to make resume and init faster.
5274		 *
5275		 * We depend on the HW RC6 power context save/restore
5276		 * mechanism when entering D3 through runtime PM suspend. So
5277		 * disable RPM until RPS/RC6 is properly setup. We can only
5278		 * get here via the driver load/system resume/runtime resume
5279		 * paths, so the _noresume version is enough (and in case of
5280		 * runtime resume it's necessary).
5281		 */
5282		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5283					   round_jiffies_up_relative(HZ)))
5284			intel_runtime_pm_get_noresume(dev_priv);
5285	}
5286}
5287
5288void intel_reset_gt_powersave(struct drm_device *dev)
5289{
5290	struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292	dev_priv->rps.enabled = false;
5293	intel_enable_gt_powersave(dev);
5294}
5295
5296static void ibx_init_clock_gating(struct drm_device *dev)
5297{
5298	struct drm_i915_private *dev_priv = dev->dev_private;
5299
5300	/*
5301	 * On Ibex Peak and Cougar Point, we need to disable clock
5302	 * gating for the panel power sequencer or it will fail to
5303	 * start up when no ports are active.
5304	 */
5305	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5306}
5307
5308static void g4x_disable_trickle_feed(struct drm_device *dev)
5309{
5310	struct drm_i915_private *dev_priv = dev->dev_private;
5311	int pipe;
5312
5313	for_each_pipe(dev_priv, pipe) {
5314		I915_WRITE(DSPCNTR(pipe),
5315			   I915_READ(DSPCNTR(pipe)) |
5316			   DISPPLANE_TRICKLE_FEED_DISABLE);
5317		intel_flush_primary_plane(dev_priv, pipe);
5318	}
5319}
5320
5321static void ilk_init_lp_watermarks(struct drm_device *dev)
5322{
5323	struct drm_i915_private *dev_priv = dev->dev_private;
5324
5325	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5326	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5327	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5328
5329	/*
5330	 * Don't touch WM1S_LP_EN here.
5331	 * Doing so could cause underruns.
5332	 */
5333}
5334
5335static void ironlake_init_clock_gating(struct drm_device *dev)
5336{
5337	struct drm_i915_private *dev_priv = dev->dev_private;
5338	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5339
5340	/*
5341	 * Required for FBC
5342	 * WaFbcDisableDpfcClockGating:ilk
5343	 */
5344	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5345		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5346		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5347
5348	I915_WRITE(PCH_3DCGDIS0,
5349		   MARIUNIT_CLOCK_GATE_DISABLE |
5350		   SVSMUNIT_CLOCK_GATE_DISABLE);
5351	I915_WRITE(PCH_3DCGDIS1,
5352		   VFMUNIT_CLOCK_GATE_DISABLE);
5353
5354	/*
5355	 * According to the spec the following bits should be set in
5356	 * order to enable memory self-refresh
5357	 * The bit 22/21 of 0x42004
5358	 * The bit 5 of 0x42020
5359	 * The bit 15 of 0x45000
5360	 */
5361	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5362		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
5363		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5364	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5365	I915_WRITE(DISP_ARB_CTL,
5366		   (I915_READ(DISP_ARB_CTL) |
5367		    DISP_FBC_WM_DIS));
5368
5369	ilk_init_lp_watermarks(dev);
5370
5371	/*
5372	 * Based on the document from hardware guys the following bits
5373	 * should be set unconditionally in order to enable FBC.
5374	 * The bit 22 of 0x42000
5375	 * The bit 22 of 0x42004
5376	 * The bit 7,8,9 of 0x42020.
5377	 */
5378	if (IS_IRONLAKE_M(dev)) {
5379		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5380		I915_WRITE(ILK_DISPLAY_CHICKEN1,
5381			   I915_READ(ILK_DISPLAY_CHICKEN1) |
5382			   ILK_FBCQ_DIS);
5383		I915_WRITE(ILK_DISPLAY_CHICKEN2,
5384			   I915_READ(ILK_DISPLAY_CHICKEN2) |
5385			   ILK_DPARB_GATE);
5386	}
5387
5388	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5389
5390	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5391		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5392		   ILK_ELPIN_409_SELECT);
5393	I915_WRITE(_3D_CHICKEN2,
5394		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5395		   _3D_CHICKEN2_WM_READ_PIPELINED);
5396
5397	/* WaDisableRenderCachePipelinedFlush:ilk */
5398	I915_WRITE(CACHE_MODE_0,
5399		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5400
5401	/* WaDisable_RenderCache_OperationalFlush:ilk */
5402	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5403
5404	g4x_disable_trickle_feed(dev);
5405
5406	ibx_init_clock_gating(dev);
5407}
5408
5409static void cpt_init_clock_gating(struct drm_device *dev)
5410{
5411	struct drm_i915_private *dev_priv = dev->dev_private;
5412	int pipe;
5413	uint32_t val;
5414
5415	/*
5416	 * On Ibex Peak and Cougar Point, we need to disable clock
5417	 * gating for the panel power sequencer or it will fail to
5418	 * start up when no ports are active.
5419	 */
5420	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5421		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5422		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5423	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5424		   DPLS_EDP_PPS_FIX_DIS);
5425	/* The below fixes the weird display corruption, a few pixels shifted
5426	 * downward, on (only) LVDS of some HP laptops with IVY.
5427	 */
5428	for_each_pipe(dev_priv, pipe) {
5429		val = I915_READ(TRANS_CHICKEN2(pipe));
5430		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5431		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5432		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5433			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5434		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5435		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5436		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5437		I915_WRITE(TRANS_CHICKEN2(pipe), val);
5438	}
5439	/* WADP0ClockGatingDisable */
5440	for_each_pipe(dev_priv, pipe) {
5441		I915_WRITE(TRANS_CHICKEN1(pipe),
5442			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5443	}
5444}
5445
5446static void gen6_check_mch_setup(struct drm_device *dev)
5447{
5448	struct drm_i915_private *dev_priv = dev->dev_private;
5449	uint32_t tmp;
5450
5451	tmp = I915_READ(MCH_SSKPD);
5452	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5453		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5454			      tmp);
5455}
5456
5457static void gen6_init_clock_gating(struct drm_device *dev)
5458{
5459	struct drm_i915_private *dev_priv = dev->dev_private;
5460	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5461
5462	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5463
5464	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5465		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5466		   ILK_ELPIN_409_SELECT);
5467
5468	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5469	I915_WRITE(_3D_CHICKEN,
5470		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5471
5472	/* WaDisable_RenderCache_OperationalFlush:snb */
5473	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5474
5475	/*
5476	 * BSpec recoomends 8x4 when MSAA is used,
5477	 * however in practice 16x4 seems fastest.
5478	 *
5479	 * Note that PS/WM thread counts depend on the WIZ hashing
5480	 * disable bit, which we don't touch here, but it's good
5481	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5482	 */
5483	I915_WRITE(GEN6_GT_MODE,
5484		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5485
5486	ilk_init_lp_watermarks(dev);
5487
5488	I915_WRITE(CACHE_MODE_0,
5489		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5490
5491	I915_WRITE(GEN6_UCGCTL1,
5492		   I915_READ(GEN6_UCGCTL1) |
5493		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5494		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5495
5496	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5497	 * gating disable must be set.  Failure to set it results in
5498	 * flickering pixels due to Z write ordering failures after
5499	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5500	 * Sanctuary and Tropics, and apparently anything else with
5501	 * alpha test or pixel discard.
5502	 *
5503	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5504	 * but we didn't debug actual testcases to find it out.
5505	 *
5506	 * WaDisableRCCUnitClockGating:snb
5507	 * WaDisableRCPBUnitClockGating:snb
5508	 */
5509	I915_WRITE(GEN6_UCGCTL2,
5510		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5511		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5512
5513	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5514	I915_WRITE(_3D_CHICKEN3,
5515		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5516
5517	/*
5518	 * Bspec says:
5519	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5520	 * 3DSTATE_SF number of SF output attributes is more than 16."
5521	 */
5522	I915_WRITE(_3D_CHICKEN3,
5523		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5524
5525	/*
5526	 * According to the spec the following bits should be
5527	 * set in order to enable memory self-refresh and fbc:
5528	 * The bit21 and bit22 of 0x42000
5529	 * The bit21 and bit22 of 0x42004
5530	 * The bit5 and bit7 of 0x42020
5531	 * The bit14 of 0x70180
5532	 * The bit14 of 0x71180
5533	 *
5534	 * WaFbcAsynchFlipDisableFbcQueue:snb
5535	 */
5536	I915_WRITE(ILK_DISPLAY_CHICKEN1,
5537		   I915_READ(ILK_DISPLAY_CHICKEN1) |
5538		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5539	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5540		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5541		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5542	I915_WRITE(ILK_DSPCLK_GATE_D,
5543		   I915_READ(ILK_DSPCLK_GATE_D) |
5544		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5545		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5546
5547	g4x_disable_trickle_feed(dev);
5548
5549	cpt_init_clock_gating(dev);
5550
5551	gen6_check_mch_setup(dev);
5552}
5553
5554static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5555{
5556	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5557
5558	/*
5559	 * WaVSThreadDispatchOverride:ivb,vlv
5560	 *
5561	 * This actually overrides the dispatch
5562	 * mode for all thread types.
5563	 */
5564	reg &= ~GEN7_FF_SCHED_MASK;
5565	reg |= GEN7_FF_TS_SCHED_HW;
5566	reg |= GEN7_FF_VS_SCHED_HW;
5567	reg |= GEN7_FF_DS_SCHED_HW;
5568
5569	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5570}
5571
5572static void lpt_init_clock_gating(struct drm_device *dev)
5573{
5574	struct drm_i915_private *dev_priv = dev->dev_private;
5575
5576	/*
5577	 * TODO: this bit should only be enabled when really needed, then
5578	 * disabled when not needed anymore in order to save power.
5579	 */
5580	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5581		I915_WRITE(SOUTH_DSPCLK_GATE_D,
5582			   I915_READ(SOUTH_DSPCLK_GATE_D) |
5583			   PCH_LP_PARTITION_LEVEL_DISABLE);
5584
5585	/* WADPOClockGatingDisable:hsw */
5586	I915_WRITE(_TRANSA_CHICKEN1,
5587		   I915_READ(_TRANSA_CHICKEN1) |
5588		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5589}
5590
5591static void lpt_suspend_hw(struct drm_device *dev)
5592{
5593	struct drm_i915_private *dev_priv = dev->dev_private;
5594
5595	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5596		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5597
5598		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5599		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5600	}
5601}
5602
5603static void broadwell_init_clock_gating(struct drm_device *dev)
5604{
5605	struct drm_i915_private *dev_priv = dev->dev_private;
5606	enum pipe pipe;
5607
5608	I915_WRITE(WM3_LP_ILK, 0);
5609	I915_WRITE(WM2_LP_ILK, 0);
5610	I915_WRITE(WM1_LP_ILK, 0);
5611
5612	/* FIXME(BDW): Check all the w/a, some might only apply to
5613	 * pre-production hw. */
5614
5615
5616	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5617
5618	I915_WRITE(_3D_CHICKEN3,
5619		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5620
5621
5622	/* WaSwitchSolVfFArbitrationPriority:bdw */
5623	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5624
5625	/* WaPsrDPAMaskVBlankInSRD:bdw */
5626	I915_WRITE(CHICKEN_PAR1_1,
5627		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5628
5629	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5630	for_each_pipe(dev_priv, pipe) {
5631		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5632			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5633			   BDW_DPRS_MASK_VBLANK_SRD);
5634	}
5635
5636	/* WaVSRefCountFullforceMissDisable:bdw */
5637	/* WaDSRefCountFullforceMissDisable:bdw */
5638	I915_WRITE(GEN7_FF_THREAD_MODE,
5639		   I915_READ(GEN7_FF_THREAD_MODE) &
5640		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5641
5642	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5643		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5644
5645	/* WaDisableSDEUnitClockGating:bdw */
5646	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5647		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5648
5649	lpt_init_clock_gating(dev);
5650}
5651
5652static void haswell_init_clock_gating(struct drm_device *dev)
5653{
5654	struct drm_i915_private *dev_priv = dev->dev_private;
5655
5656	ilk_init_lp_watermarks(dev);
5657
5658	/* L3 caching of data atomics doesn't work -- disable it. */
5659	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5660	I915_WRITE(HSW_ROW_CHICKEN3,
5661		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5662
5663	/* This is required by WaCatErrorRejectionIssue:hsw */
5664	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5665			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5666			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5667
5668	/* WaVSRefCountFullforceMissDisable:hsw */
5669	I915_WRITE(GEN7_FF_THREAD_MODE,
5670		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5671
5672	/* WaDisable_RenderCache_OperationalFlush:hsw */
5673	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5674
5675	/* enable HiZ Raw Stall Optimization */
5676	I915_WRITE(CACHE_MODE_0_GEN7,
5677		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5678
5679	/* WaDisable4x2SubspanOptimization:hsw */
5680	I915_WRITE(CACHE_MODE_1,
5681		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5682
5683	/*
5684	 * BSpec recommends 8x4 when MSAA is used,
5685	 * however in practice 16x4 seems fastest.
5686	 *
5687	 * Note that PS/WM thread counts depend on the WIZ hashing
5688	 * disable bit, which we don't touch here, but it's good
5689	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5690	 */
5691	I915_WRITE(GEN7_GT_MODE,
5692		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5693
5694	/* WaSwitchSolVfFArbitrationPriority:hsw */
5695	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5696
5697	/* WaRsPkgCStateDisplayPMReq:hsw */
5698	I915_WRITE(CHICKEN_PAR1_1,
5699		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5700
5701	lpt_init_clock_gating(dev);
5702}
5703
5704static void ivybridge_init_clock_gating(struct drm_device *dev)
5705{
5706	struct drm_i915_private *dev_priv = dev->dev_private;
5707	uint32_t snpcr;
5708
5709	ilk_init_lp_watermarks(dev);
5710
5711	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5712
5713	/* WaDisableEarlyCull:ivb */
5714	I915_WRITE(_3D_CHICKEN3,
5715		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5716
5717	/* WaDisableBackToBackFlipFix:ivb */
5718	I915_WRITE(IVB_CHICKEN3,
5719		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5720		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5721
5722	/* WaDisablePSDDualDispatchEnable:ivb */
5723	if (IS_IVB_GT1(dev))
5724		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5725			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5726
5727	/* WaDisable_RenderCache_OperationalFlush:ivb */
5728	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5729
5730	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5731	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5732		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5733
5734	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5735	I915_WRITE(GEN7_L3CNTLREG1,
5736			GEN7_WA_FOR_GEN7_L3_CONTROL);
5737	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5738		   GEN7_WA_L3_CHICKEN_MODE);
5739	if (IS_IVB_GT1(dev))
5740		I915_WRITE(GEN7_ROW_CHICKEN2,
5741			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5742	else {
5743		/* must write both registers */
5744		I915_WRITE(GEN7_ROW_CHICKEN2,
5745			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5746		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5747			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5748	}
5749
5750	/* WaForceL3Serialization:ivb */
5751	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5752		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5753
5754	/*
5755	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5756	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5757	 */
5758	I915_WRITE(GEN6_UCGCTL2,
5759		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5760
5761	/* This is required by WaCatErrorRejectionIssue:ivb */
5762	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5763			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5764			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5765
5766	g4x_disable_trickle_feed(dev);
5767
5768	gen7_setup_fixed_func_scheduler(dev_priv);
5769
5770	if (0) { /* causes HiZ corruption on ivb:gt1 */
5771		/* enable HiZ Raw Stall Optimization */
5772		I915_WRITE(CACHE_MODE_0_GEN7,
5773			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5774	}
5775
5776	/* WaDisable4x2SubspanOptimization:ivb */
5777	I915_WRITE(CACHE_MODE_1,
5778		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5779
5780	/*
5781	 * BSpec recommends 8x4 when MSAA is used,
5782	 * however in practice 16x4 seems fastest.
5783	 *
5784	 * Note that PS/WM thread counts depend on the WIZ hashing
5785	 * disable bit, which we don't touch here, but it's good
5786	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5787	 */
5788	I915_WRITE(GEN7_GT_MODE,
5789		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5790
5791	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5792	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5793	snpcr |= GEN6_MBC_SNPCR_MED;
5794	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5795
5796	if (!HAS_PCH_NOP(dev))
5797		cpt_init_clock_gating(dev);
5798
5799	gen6_check_mch_setup(dev);
5800}
5801
5802static void valleyview_init_clock_gating(struct drm_device *dev)
5803{
5804	struct drm_i915_private *dev_priv = dev->dev_private;
5805
5806	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5807
5808	/* WaDisableEarlyCull:vlv */
5809	I915_WRITE(_3D_CHICKEN3,
5810		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5811
5812	/* WaDisableBackToBackFlipFix:vlv */
5813	I915_WRITE(IVB_CHICKEN3,
5814		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5815		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
5816
5817	/* WaPsdDispatchEnable:vlv */
5818	/* WaDisablePSDDualDispatchEnable:vlv */
5819	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5820		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5821				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5822
5823	/* WaDisable_RenderCache_OperationalFlush:vlv */
5824	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5825
5826	/* WaForceL3Serialization:vlv */
5827	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5828		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5829
5830	/* WaDisableDopClockGating:vlv */
5831	I915_WRITE(GEN7_ROW_CHICKEN2,
5832		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5833
5834	/* This is required by WaCatErrorRejectionIssue:vlv */
5835	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5836		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5837		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5838
5839	gen7_setup_fixed_func_scheduler(dev_priv);
5840
5841	/*
5842	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5843	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5844	 */
5845	I915_WRITE(GEN6_UCGCTL2,
5846		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5847
5848	/* WaDisableL3Bank2xClockGate:vlv
5849	 * Disabling L3 clock gating- MMIO 940c[25] = 1
5850	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5851	I915_WRITE(GEN7_UCGCTL4,
5852		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5853
5854	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5855
5856	/*
5857	 * BSpec says this must be set, even though
5858	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
5859	 */
5860	I915_WRITE(CACHE_MODE_1,
5861		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5862
5863	/*
5864	 * WaIncreaseL3CreditsForVLVB0:vlv
5865	 * This is the hardware default actually.
5866	 */
5867	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5868
5869	/*
5870	 * WaDisableVLVClockGating_VBIIssue:vlv
5871	 * Disable clock gating on th GCFG unit to prevent a delay
5872	 * in the reporting of vblank events.
5873	 */
5874	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5875}
5876
5877static void cherryview_init_clock_gating(struct drm_device *dev)
5878{
5879	struct drm_i915_private *dev_priv = dev->dev_private;
5880
5881	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5882
5883	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5884
5885	/* WaVSRefCountFullforceMissDisable:chv */
5886	/* WaDSRefCountFullforceMissDisable:chv */
5887	I915_WRITE(GEN7_FF_THREAD_MODE,
5888		   I915_READ(GEN7_FF_THREAD_MODE) &
5889		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5890
5891	/* WaDisableSemaphoreAndSyncFlipWait:chv */
5892	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5893		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5894
5895	/* WaDisableCSUnitClockGating:chv */
5896	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5897		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5898
5899	/* WaDisableSDEUnitClockGating:chv */
5900	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5901		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5902
5903	/* WaDisableGunitClockGating:chv (pre-production hw) */
5904	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5905		   GINT_DIS);
5906
5907	/* WaDisableFfDopClockGating:chv (pre-production hw) */
5908	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5909		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5910
5911	/* WaDisableDopClockGating:chv (pre-production hw) */
5912	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5913		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5914}
5915
5916static void g4x_init_clock_gating(struct drm_device *dev)
5917{
5918	struct drm_i915_private *dev_priv = dev->dev_private;
5919	uint32_t dspclk_gate;
5920
5921	I915_WRITE(RENCLK_GATE_D1, 0);
5922	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5923		   GS_UNIT_CLOCK_GATE_DISABLE |
5924		   CL_UNIT_CLOCK_GATE_DISABLE);
5925	I915_WRITE(RAMCLK_GATE_D, 0);
5926	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5927		OVRUNIT_CLOCK_GATE_DISABLE |
5928		OVCUNIT_CLOCK_GATE_DISABLE;
5929	if (IS_GM45(dev))
5930		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5931	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5932
5933	/* WaDisableRenderCachePipelinedFlush */
5934	I915_WRITE(CACHE_MODE_0,
5935		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5936
5937	/* WaDisable_RenderCache_OperationalFlush:g4x */
5938	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5939
5940	g4x_disable_trickle_feed(dev);
5941}
5942
5943static void crestline_init_clock_gating(struct drm_device *dev)
5944{
5945	struct drm_i915_private *dev_priv = dev->dev_private;
5946
5947	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5948	I915_WRITE(RENCLK_GATE_D2, 0);
5949	I915_WRITE(DSPCLK_GATE_D, 0);
5950	I915_WRITE(RAMCLK_GATE_D, 0);
5951	I915_WRITE16(DEUC, 0);
5952	I915_WRITE(MI_ARB_STATE,
5953		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5954
5955	/* WaDisable_RenderCache_OperationalFlush:gen4 */
5956	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5957}
5958
5959static void broadwater_init_clock_gating(struct drm_device *dev)
5960{
5961	struct drm_i915_private *dev_priv = dev->dev_private;
5962
5963	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5964		   I965_RCC_CLOCK_GATE_DISABLE |
5965		   I965_RCPB_CLOCK_GATE_DISABLE |
5966		   I965_ISC_CLOCK_GATE_DISABLE |
5967		   I965_FBC_CLOCK_GATE_DISABLE);
5968	I915_WRITE(RENCLK_GATE_D2, 0);
5969	I915_WRITE(MI_ARB_STATE,
5970		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5971
5972	/* WaDisable_RenderCache_OperationalFlush:gen4 */
5973	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5974}
5975
5976static void gen3_init_clock_gating(struct drm_device *dev)
5977{
5978	struct drm_i915_private *dev_priv = dev->dev_private;
5979	u32 dstate = I915_READ(D_STATE);
5980
5981	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5982		DSTATE_DOT_CLOCK_GATING;
5983	I915_WRITE(D_STATE, dstate);
5984
5985	if (IS_PINEVIEW(dev))
5986		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5987
5988	/* IIR "flip pending" means done if this bit is set */
5989	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5990
5991	/* interrupts should cause a wake up from C3 */
5992	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5993
5994	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5995	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5996
5997	I915_WRITE(MI_ARB_STATE,
5998		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5999}
6000
6001static void i85x_init_clock_gating(struct drm_device *dev)
6002{
6003	struct drm_i915_private *dev_priv = dev->dev_private;
6004
6005	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6006
6007	/* interrupts should cause a wake up from C3 */
6008	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6009		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6010
6011	I915_WRITE(MEM_MODE,
6012		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6013}
6014
6015static void i830_init_clock_gating(struct drm_device *dev)
6016{
6017	struct drm_i915_private *dev_priv = dev->dev_private;
6018
6019	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6020
6021	I915_WRITE(MEM_MODE,
6022		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6023		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6024}
6025
6026void intel_init_clock_gating(struct drm_device *dev)
6027{
6028	struct drm_i915_private *dev_priv = dev->dev_private;
6029
6030	dev_priv->display.init_clock_gating(dev);
6031}
6032
6033void intel_suspend_hw(struct drm_device *dev)
6034{
6035	if (HAS_PCH_LPT(dev))
6036		lpt_suspend_hw(dev);
6037}
6038
6039#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
6040	for (i = 0;							\
6041	     i < (power_domains)->power_well_count &&			\
6042		 ((power_well) = &(power_domains)->power_wells[i]);	\
6043	     i++)							\
6044		if ((power_well)->domains & (domain_mask))
6045
6046#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6047	for (i = (power_domains)->power_well_count - 1;			 \
6048	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6049	     i--)							 \
6050		if ((power_well)->domains & (domain_mask))
6051
6052/**
6053 * We should only use the power well if we explicitly asked the hardware to
6054 * enable it, so check if it's enabled and also check if we've requested it to
6055 * be enabled.
6056 */
6057static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6058				   struct i915_power_well *power_well)
6059{
6060	return I915_READ(HSW_PWR_WELL_DRIVER) ==
6061		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6062}
6063
6064bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6065					  enum intel_display_power_domain domain)
6066{
6067	struct i915_power_domains *power_domains;
6068	struct i915_power_well *power_well;
6069	bool is_enabled;
6070	int i;
6071
6072	if (dev_priv->pm.suspended)
6073		return false;
6074
6075	power_domains = &dev_priv->power_domains;
6076
6077	is_enabled = true;
6078
6079	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6080		if (power_well->always_on)
6081			continue;
6082
6083		if (!power_well->hw_enabled) {
6084			is_enabled = false;
6085			break;
6086		}
6087	}
6088
6089	return is_enabled;
6090}
6091
6092bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6093				 enum intel_display_power_domain domain)
6094{
6095	struct i915_power_domains *power_domains;
6096	bool ret;
6097
6098	power_domains = &dev_priv->power_domains;
6099
6100	mutex_lock(&power_domains->lock);
6101	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6102	mutex_unlock(&power_domains->lock);
6103
6104	return ret;
6105}
6106
6107/*
6108 * Starting with Haswell, we have a "Power Down Well" that can be turned off
6109 * when not needed anymore. We have 4 registers that can request the power well
6110 * to be enabled, and it will only be disabled if none of the registers is
6111 * requesting it to be enabled.
6112 */
6113static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6114{
6115	struct drm_device *dev = dev_priv->dev;
6116
6117	/*
6118	 * After we re-enable the power well, if we touch VGA register 0x3d5
6119	 * we'll get unclaimed register interrupts. This stops after we write
6120	 * anything to the VGA MSR register. The vgacon module uses this
6121	 * register all the time, so if we unbind our driver and, as a
6122	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
6123	 * console_unlock(). So make here we touch the VGA MSR register, making
6124	 * sure vgacon can keep working normally without triggering interrupts
6125	 * and error messages.
6126	 */
6127	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6128	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6129	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6130
6131	if (IS_BROADWELL(dev))
6132		gen8_irq_power_well_post_enable(dev_priv);
6133}
6134
6135static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6136			       struct i915_power_well *power_well, bool enable)
6137{
6138	bool is_enabled, enable_requested;
6139	uint32_t tmp;
6140
6141	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6142	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6143	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6144
6145	if (enable) {
6146		if (!enable_requested)
6147			I915_WRITE(HSW_PWR_WELL_DRIVER,
6148				   HSW_PWR_WELL_ENABLE_REQUEST);
6149
6150		if (!is_enabled) {
6151			DRM_DEBUG_KMS("Enabling power well\n");
6152			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6153				      HSW_PWR_WELL_STATE_ENABLED), 20))
6154				DRM_ERROR("Timeout enabling power well\n");
6155		}
6156
6157		hsw_power_well_post_enable(dev_priv);
6158	} else {
6159		if (enable_requested) {
6160			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6161			POSTING_READ(HSW_PWR_WELL_DRIVER);
6162			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6163		}
6164	}
6165}
6166
6167static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6168				   struct i915_power_well *power_well)
6169{
6170	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6171
6172	/*
6173	 * We're taking over the BIOS, so clear any requests made by it since
6174	 * the driver is in charge now.
6175	 */
6176	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6177		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6178}
6179
6180static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6181				  struct i915_power_well *power_well)
6182{
6183	hsw_set_power_well(dev_priv, power_well, true);
6184}
6185
6186static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6187				   struct i915_power_well *power_well)
6188{
6189	hsw_set_power_well(dev_priv, power_well, false);
6190}
6191
6192static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6193					   struct i915_power_well *power_well)
6194{
6195}
6196
6197static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6198					     struct i915_power_well *power_well)
6199{
6200	return true;
6201}
6202
6203static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6204			       struct i915_power_well *power_well, bool enable)
6205{
6206	enum punit_power_well power_well_id = power_well->data;
6207	u32 mask;
6208	u32 state;
6209	u32 ctrl;
6210
6211	mask = PUNIT_PWRGT_MASK(power_well_id);
6212	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6213			 PUNIT_PWRGT_PWR_GATE(power_well_id);
6214
6215	mutex_lock(&dev_priv->rps.hw_lock);
6216
6217#define COND \
6218	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6219
6220	if (COND)
6221		goto out;
6222
6223	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6224	ctrl &= ~mask;
6225	ctrl |= state;
6226	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6227
6228	if (wait_for(COND, 100))
6229		DRM_ERROR("timout setting power well state %08x (%08x)\n",
6230			  state,
6231			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6232
6233#undef COND
6234
6235out:
6236	mutex_unlock(&dev_priv->rps.hw_lock);
6237}
6238
6239static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6240				   struct i915_power_well *power_well)
6241{
6242	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6243}
6244
6245static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6246				  struct i915_power_well *power_well)
6247{
6248	vlv_set_power_well(dev_priv, power_well, true);
6249}
6250
6251static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6252				   struct i915_power_well *power_well)
6253{
6254	vlv_set_power_well(dev_priv, power_well, false);
6255}
6256
6257static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6258				   struct i915_power_well *power_well)
6259{
6260	int power_well_id = power_well->data;
6261	bool enabled = false;
6262	u32 mask;
6263	u32 state;
6264	u32 ctrl;
6265
6266	mask = PUNIT_PWRGT_MASK(power_well_id);
6267	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6268
6269	mutex_lock(&dev_priv->rps.hw_lock);
6270
6271	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6272	/*
6273	 * We only ever set the power-on and power-gate states, anything
6274	 * else is unexpected.
6275	 */
6276	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6277		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6278	if (state == ctrl)
6279		enabled = true;
6280
6281	/*
6282	 * A transient state at this point would mean some unexpected party
6283	 * is poking at the power controls too.
6284	 */
6285	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6286	WARN_ON(ctrl != state);
6287
6288	mutex_unlock(&dev_priv->rps.hw_lock);
6289
6290	return enabled;
6291}
6292
6293static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6294					  struct i915_power_well *power_well)
6295{
6296	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6297
6298	vlv_set_power_well(dev_priv, power_well, true);
6299
6300	spin_lock_irq(&dev_priv->irq_lock);
6301	valleyview_enable_display_irqs(dev_priv);
6302	spin_unlock_irq(&dev_priv->irq_lock);
6303
6304	/*
6305	 * During driver initialization/resume we can avoid restoring the
6306	 * part of the HW/SW state that will be inited anyway explicitly.
6307	 */
6308	if (dev_priv->power_domains.initializing)
6309		return;
6310
6311	intel_hpd_init(dev_priv->dev);
6312
6313	i915_redisable_vga_power_on(dev_priv->dev);
6314}
6315
6316static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6317					   struct i915_power_well *power_well)
6318{
6319	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6320
6321	spin_lock_irq(&dev_priv->irq_lock);
6322	valleyview_disable_display_irqs(dev_priv);
6323	spin_unlock_irq(&dev_priv->irq_lock);
6324
6325	vlv_set_power_well(dev_priv, power_well, false);
6326
6327	vlv_power_sequencer_reset(dev_priv);
6328}
6329
6330static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6331					   struct i915_power_well *power_well)
6332{
6333	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6334
6335	/*
6336	 * Enable the CRI clock source so we can get at the
6337	 * display and the reference clock for VGA
6338	 * hotplug / manual detection.
6339	 */
6340	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6341		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6342	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6343
6344	vlv_set_power_well(dev_priv, power_well, true);
6345
6346	/*
6347	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6348	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
6349	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
6350	 *   b.	The other bits such as sfr settings / modesel may all
6351	 *	be set to 0.
6352	 *
6353	 * This should only be done on init and resume from S3 with
6354	 * both PLLs disabled, or we risk losing DPIO and PLL
6355	 * synchronization.
6356	 */
6357	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6358}
6359
6360static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6361					    struct i915_power_well *power_well)
6362{
6363	enum pipe pipe;
6364
6365	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6366
6367	for_each_pipe(dev_priv, pipe)
6368		assert_pll_disabled(dev_priv, pipe);
6369
6370	/* Assert common reset */
6371	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6372
6373	vlv_set_power_well(dev_priv, power_well, false);
6374}
6375
6376static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6377					   struct i915_power_well *power_well)
6378{
6379	enum dpio_phy phy;
6380
6381	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6382		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6383
6384	/*
6385	 * Enable the CRI clock source so we can get at the
6386	 * display and the reference clock for VGA
6387	 * hotplug / manual detection.
6388	 */
6389	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6390		phy = DPIO_PHY0;
6391		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6392			   DPLL_REFA_CLK_ENABLE_VLV);
6393		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6394			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6395	} else {
6396		phy = DPIO_PHY1;
6397		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6398			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6399	}
6400	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6401	vlv_set_power_well(dev_priv, power_well, true);
6402
6403	/* Poll for phypwrgood signal */
6404	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6405		DRM_ERROR("Display PHY %d is not power up\n", phy);
6406
6407	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6408		   PHY_COM_LANE_RESET_DEASSERT(phy));
6409}
6410
6411static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6412					    struct i915_power_well *power_well)
6413{
6414	enum dpio_phy phy;
6415
6416	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6417		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6418
6419	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6420		phy = DPIO_PHY0;
6421		assert_pll_disabled(dev_priv, PIPE_A);
6422		assert_pll_disabled(dev_priv, PIPE_B);
6423	} else {
6424		phy = DPIO_PHY1;
6425		assert_pll_disabled(dev_priv, PIPE_C);
6426	}
6427
6428	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6429		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6430
6431	vlv_set_power_well(dev_priv, power_well, false);
6432}
6433
6434static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6435					struct i915_power_well *power_well)
6436{
6437	enum pipe pipe = power_well->data;
6438	bool enabled;
6439	u32 state, ctrl;
6440
6441	mutex_lock(&dev_priv->rps.hw_lock);
6442
6443	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6444	/*
6445	 * We only ever set the power-on and power-gate states, anything
6446	 * else is unexpected.
6447	 */
6448	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6449	enabled = state == DP_SSS_PWR_ON(pipe);
6450
6451	/*
6452	 * A transient state at this point would mean some unexpected party
6453	 * is poking at the power controls too.
6454	 */
6455	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6456	WARN_ON(ctrl << 16 != state);
6457
6458	mutex_unlock(&dev_priv->rps.hw_lock);
6459
6460	return enabled;
6461}
6462
6463static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6464				    struct i915_power_well *power_well,
6465				    bool enable)
6466{
6467	enum pipe pipe = power_well->data;
6468	u32 state;
6469	u32 ctrl;
6470
6471	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6472
6473	mutex_lock(&dev_priv->rps.hw_lock);
6474
6475#define COND \
6476	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6477
6478	if (COND)
6479		goto out;
6480
6481	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6482	ctrl &= ~DP_SSC_MASK(pipe);
6483	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6484	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6485
6486	if (wait_for(COND, 100))
6487		DRM_ERROR("timout setting power well state %08x (%08x)\n",
6488			  state,
6489			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6490
6491#undef COND
6492
6493out:
6494	mutex_unlock(&dev_priv->rps.hw_lock);
6495}
6496
6497static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6498					struct i915_power_well *power_well)
6499{
6500	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6501}
6502
6503static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6504				       struct i915_power_well *power_well)
6505{
6506	WARN_ON_ONCE(power_well->data != PIPE_A &&
6507		     power_well->data != PIPE_B &&
6508		     power_well->data != PIPE_C);
6509
6510	chv_set_pipe_power_well(dev_priv, power_well, true);
6511}
6512
6513static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6514					struct i915_power_well *power_well)
6515{
6516	WARN_ON_ONCE(power_well->data != PIPE_A &&
6517		     power_well->data != PIPE_B &&
6518		     power_well->data != PIPE_C);
6519
6520	chv_set_pipe_power_well(dev_priv, power_well, false);
6521}
6522
6523static void check_power_well_state(struct drm_i915_private *dev_priv,
6524				   struct i915_power_well *power_well)
6525{
6526	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6527
6528	if (power_well->always_on || !i915.disable_power_well) {
6529		if (!enabled)
6530			goto mismatch;
6531
6532		return;
6533	}
6534
6535	if (enabled != (power_well->count > 0))
6536		goto mismatch;
6537
6538	return;
6539
6540mismatch:
6541	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6542		  power_well->name, power_well->always_on, enabled,
6543		  power_well->count, i915.disable_power_well);
6544}
6545
6546void intel_display_power_get(struct drm_i915_private *dev_priv,
6547			     enum intel_display_power_domain domain)
6548{
6549	struct i915_power_domains *power_domains;
6550	struct i915_power_well *power_well;
6551	int i;
6552
6553	intel_runtime_pm_get(dev_priv);
6554
6555	power_domains = &dev_priv->power_domains;
6556
6557	mutex_lock(&power_domains->lock);
6558
6559	for_each_power_well(i, power_well, BIT(domain), power_domains) {
6560		if (!power_well->count++) {
6561			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6562			power_well->ops->enable(dev_priv, power_well);
6563			power_well->hw_enabled = true;
6564		}
6565
6566		check_power_well_state(dev_priv, power_well);
6567	}
6568
6569	power_domains->domain_use_count[domain]++;
6570
6571	mutex_unlock(&power_domains->lock);
6572}
6573
6574void intel_display_power_put(struct drm_i915_private *dev_priv,
6575			     enum intel_display_power_domain domain)
6576{
6577	struct i915_power_domains *power_domains;
6578	struct i915_power_well *power_well;
6579	int i;
6580
6581	power_domains = &dev_priv->power_domains;
6582
6583	mutex_lock(&power_domains->lock);
6584
6585	WARN_ON(!power_domains->domain_use_count[domain]);
6586	power_domains->domain_use_count[domain]--;
6587
6588	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6589		WARN_ON(!power_well->count);
6590
6591		if (!--power_well->count && i915.disable_power_well) {
6592			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6593			power_well->hw_enabled = false;
6594			power_well->ops->disable(dev_priv, power_well);
6595		}
6596
6597		check_power_well_state(dev_priv, power_well);
6598	}
6599
6600	mutex_unlock(&power_domains->lock);
6601
6602	intel_runtime_pm_put(dev_priv);
6603}
6604
6605static struct i915_power_domains *hsw_pwr;
6606
6607/* Display audio driver power well request */
6608int i915_request_power_well(void)
6609{
6610	struct drm_i915_private *dev_priv;
6611
6612	if (!hsw_pwr)
6613		return -ENODEV;
6614
6615	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6616				power_domains);
6617	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6618	return 0;
6619}
6620EXPORT_SYMBOL_GPL(i915_request_power_well);
6621
6622/* Display audio driver power well release */
6623int i915_release_power_well(void)
6624{
6625	struct drm_i915_private *dev_priv;
6626
6627	if (!hsw_pwr)
6628		return -ENODEV;
6629
6630	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6631				power_domains);
6632	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6633	return 0;
6634}
6635EXPORT_SYMBOL_GPL(i915_release_power_well);
6636
6637/*
6638 * Private interface for the audio driver to get CDCLK in kHz.
6639 *
6640 * Caller must request power well using i915_request_power_well() prior to
6641 * making the call.
6642 */
6643int i915_get_cdclk_freq(void)
6644{
6645	struct drm_i915_private *dev_priv;
6646
6647	if (!hsw_pwr)
6648		return -ENODEV;
6649
6650	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6651				power_domains);
6652
6653	return intel_ddi_get_cdclk_freq(dev_priv);
6654}
6655EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6656
6657
6658#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6659
6660#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
6661	BIT(POWER_DOMAIN_PIPE_A) |			\
6662	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
6663	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
6664	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
6665	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
6666	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
6667	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
6668	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
6669	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
6670	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
6671	BIT(POWER_DOMAIN_PORT_CRT) |			\
6672	BIT(POWER_DOMAIN_PLLS) |			\
6673	BIT(POWER_DOMAIN_INIT))
6674#define HSW_DISPLAY_POWER_DOMAINS (				\
6675	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
6676	BIT(POWER_DOMAIN_INIT))
6677
6678#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
6679	HSW_ALWAYS_ON_POWER_DOMAINS |			\
6680	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6681#define BDW_DISPLAY_POWER_DOMAINS (				\
6682	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
6683	BIT(POWER_DOMAIN_INIT))
6684
6685#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
6686#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
6687
6688#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
6689	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
6690	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6691	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
6692	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6693	BIT(POWER_DOMAIN_PORT_CRT) |		\
6694	BIT(POWER_DOMAIN_INIT))
6695
6696#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
6697	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
6698	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6699	BIT(POWER_DOMAIN_INIT))
6700
6701#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
6702	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6703	BIT(POWER_DOMAIN_INIT))
6704
6705#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
6706	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
6707	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6708	BIT(POWER_DOMAIN_INIT))
6709
6710#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
6711	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6712	BIT(POWER_DOMAIN_INIT))
6713
6714#define CHV_PIPE_A_POWER_DOMAINS (	\
6715	BIT(POWER_DOMAIN_PIPE_A) |	\
6716	BIT(POWER_DOMAIN_INIT))
6717
6718#define CHV_PIPE_B_POWER_DOMAINS (	\
6719	BIT(POWER_DOMAIN_PIPE_B) |	\
6720	BIT(POWER_DOMAIN_INIT))
6721
6722#define CHV_PIPE_C_POWER_DOMAINS (	\
6723	BIT(POWER_DOMAIN_PIPE_C) |	\
6724	BIT(POWER_DOMAIN_INIT))
6725
6726#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
6727	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
6728	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
6729	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
6730	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
6731	BIT(POWER_DOMAIN_INIT))
6732
6733#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
6734	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
6735	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
6736	BIT(POWER_DOMAIN_INIT))
6737
6738#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
6739	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
6740	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
6741	BIT(POWER_DOMAIN_INIT))
6742
6743#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
6744	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
6745	BIT(POWER_DOMAIN_INIT))
6746
6747static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6748	.sync_hw = i9xx_always_on_power_well_noop,
6749	.enable = i9xx_always_on_power_well_noop,
6750	.disable = i9xx_always_on_power_well_noop,
6751	.is_enabled = i9xx_always_on_power_well_enabled,
6752};
6753
6754static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6755	.sync_hw = chv_pipe_power_well_sync_hw,
6756	.enable = chv_pipe_power_well_enable,
6757	.disable = chv_pipe_power_well_disable,
6758	.is_enabled = chv_pipe_power_well_enabled,
6759};
6760
6761static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6762	.sync_hw = vlv_power_well_sync_hw,
6763	.enable = chv_dpio_cmn_power_well_enable,
6764	.disable = chv_dpio_cmn_power_well_disable,
6765	.is_enabled = vlv_power_well_enabled,
6766};
6767
6768static struct i915_power_well i9xx_always_on_power_well[] = {
6769	{
6770		.name = "always-on",
6771		.always_on = 1,
6772		.domains = POWER_DOMAIN_MASK,
6773		.ops = &i9xx_always_on_power_well_ops,
6774	},
6775};
6776
6777static const struct i915_power_well_ops hsw_power_well_ops = {
6778	.sync_hw = hsw_power_well_sync_hw,
6779	.enable = hsw_power_well_enable,
6780	.disable = hsw_power_well_disable,
6781	.is_enabled = hsw_power_well_enabled,
6782};
6783
6784static struct i915_power_well hsw_power_wells[] = {
6785	{
6786		.name = "always-on",
6787		.always_on = 1,
6788		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6789		.ops = &i9xx_always_on_power_well_ops,
6790	},
6791	{
6792		.name = "display",
6793		.domains = HSW_DISPLAY_POWER_DOMAINS,
6794		.ops = &hsw_power_well_ops,
6795	},
6796};
6797
6798static struct i915_power_well bdw_power_wells[] = {
6799	{
6800		.name = "always-on",
6801		.always_on = 1,
6802		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6803		.ops = &i9xx_always_on_power_well_ops,
6804	},
6805	{
6806		.name = "display",
6807		.domains = BDW_DISPLAY_POWER_DOMAINS,
6808		.ops = &hsw_power_well_ops,
6809	},
6810};
6811
6812static const struct i915_power_well_ops vlv_display_power_well_ops = {
6813	.sync_hw = vlv_power_well_sync_hw,
6814	.enable = vlv_display_power_well_enable,
6815	.disable = vlv_display_power_well_disable,
6816	.is_enabled = vlv_power_well_enabled,
6817};
6818
6819static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6820	.sync_hw = vlv_power_well_sync_hw,
6821	.enable = vlv_dpio_cmn_power_well_enable,
6822	.disable = vlv_dpio_cmn_power_well_disable,
6823	.is_enabled = vlv_power_well_enabled,
6824};
6825
6826static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6827	.sync_hw = vlv_power_well_sync_hw,
6828	.enable = vlv_power_well_enable,
6829	.disable = vlv_power_well_disable,
6830	.is_enabled = vlv_power_well_enabled,
6831};
6832
6833static struct i915_power_well vlv_power_wells[] = {
6834	{
6835		.name = "always-on",
6836		.always_on = 1,
6837		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6838		.ops = &i9xx_always_on_power_well_ops,
6839	},
6840	{
6841		.name = "display",
6842		.domains = VLV_DISPLAY_POWER_DOMAINS,
6843		.data = PUNIT_POWER_WELL_DISP2D,
6844		.ops = &vlv_display_power_well_ops,
6845	},
6846	{
6847		.name = "dpio-tx-b-01",
6848		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6849			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6850			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6851			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6852		.ops = &vlv_dpio_power_well_ops,
6853		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6854	},
6855	{
6856		.name = "dpio-tx-b-23",
6857		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6858			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6859			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6860			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6861		.ops = &vlv_dpio_power_well_ops,
6862		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6863	},
6864	{
6865		.name = "dpio-tx-c-01",
6866		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6867			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6868			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6869			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6870		.ops = &vlv_dpio_power_well_ops,
6871		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6872	},
6873	{
6874		.name = "dpio-tx-c-23",
6875		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6876			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6877			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6878			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6879		.ops = &vlv_dpio_power_well_ops,
6880		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6881	},
6882	{
6883		.name = "dpio-common",
6884		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6885		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6886		.ops = &vlv_dpio_cmn_power_well_ops,
6887	},
6888};
6889
6890static struct i915_power_well chv_power_wells[] = {
6891	{
6892		.name = "always-on",
6893		.always_on = 1,
6894		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6895		.ops = &i9xx_always_on_power_well_ops,
6896	},
6897#if 0
6898	{
6899		.name = "display",
6900		.domains = VLV_DISPLAY_POWER_DOMAINS,
6901		.data = PUNIT_POWER_WELL_DISP2D,
6902		.ops = &vlv_display_power_well_ops,
6903	},
6904	{
6905		.name = "pipe-a",
6906		.domains = CHV_PIPE_A_POWER_DOMAINS,
6907		.data = PIPE_A,
6908		.ops = &chv_pipe_power_well_ops,
6909	},
6910	{
6911		.name = "pipe-b",
6912		.domains = CHV_PIPE_B_POWER_DOMAINS,
6913		.data = PIPE_B,
6914		.ops = &chv_pipe_power_well_ops,
6915	},
6916	{
6917		.name = "pipe-c",
6918		.domains = CHV_PIPE_C_POWER_DOMAINS,
6919		.data = PIPE_C,
6920		.ops = &chv_pipe_power_well_ops,
6921	},
6922#endif
6923	{
6924		.name = "dpio-common-bc",
6925		/*
6926		 * XXX: cmnreset for one PHY seems to disturb the other.
6927		 * As a workaround keep both powered on at the same
6928		 * time for now.
6929		 */
6930		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6931		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6932		.ops = &chv_dpio_cmn_power_well_ops,
6933	},
6934	{
6935		.name = "dpio-common-d",
6936		/*
6937		 * XXX: cmnreset for one PHY seems to disturb the other.
6938		 * As a workaround keep both powered on at the same
6939		 * time for now.
6940		 */
6941		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6942		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
6943		.ops = &chv_dpio_cmn_power_well_ops,
6944	},
6945#if 0
6946	{
6947		.name = "dpio-tx-b-01",
6948		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6949			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6950		.ops = &vlv_dpio_power_well_ops,
6951		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6952	},
6953	{
6954		.name = "dpio-tx-b-23",
6955		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6956			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
6957		.ops = &vlv_dpio_power_well_ops,
6958		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6959	},
6960	{
6961		.name = "dpio-tx-c-01",
6962		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6963			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6964		.ops = &vlv_dpio_power_well_ops,
6965		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6966	},
6967	{
6968		.name = "dpio-tx-c-23",
6969		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6970			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6971		.ops = &vlv_dpio_power_well_ops,
6972		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6973	},
6974	{
6975		.name = "dpio-tx-d-01",
6976		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6977			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6978		.ops = &vlv_dpio_power_well_ops,
6979		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
6980	},
6981	{
6982		.name = "dpio-tx-d-23",
6983		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
6984			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
6985		.ops = &vlv_dpio_power_well_ops,
6986		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
6987	},
6988#endif
6989};
6990
6991static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6992						 enum punit_power_well power_well_id)
6993{
6994	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6995	struct i915_power_well *power_well;
6996	int i;
6997
6998	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6999		if (power_well->data == power_well_id)
7000			return power_well;
7001	}
7002
7003	return NULL;
7004}
7005
7006#define set_power_wells(power_domains, __power_wells) ({		\
7007	(power_domains)->power_wells = (__power_wells);			\
7008	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
7009})
7010
7011int intel_power_domains_init(struct drm_i915_private *dev_priv)
7012{
7013	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7014
7015	mutex_init(&power_domains->lock);
7016
7017	/*
7018	 * The enabling order will be from lower to higher indexed wells,
7019	 * the disabling order is reversed.
7020	 */
7021	if (IS_HASWELL(dev_priv->dev)) {
7022		set_power_wells(power_domains, hsw_power_wells);
7023		hsw_pwr = power_domains;
7024	} else if (IS_BROADWELL(dev_priv->dev)) {
7025		set_power_wells(power_domains, bdw_power_wells);
7026		hsw_pwr = power_domains;
7027	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
7028		set_power_wells(power_domains, chv_power_wells);
7029	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
7030		set_power_wells(power_domains, vlv_power_wells);
7031	} else {
7032		set_power_wells(power_domains, i9xx_always_on_power_well);
7033	}
7034
7035	return 0;
7036}
7037
7038void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7039{
7040	hsw_pwr = NULL;
7041}
7042
7043static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7044{
7045	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7046	struct i915_power_well *power_well;
7047	int i;
7048
7049	mutex_lock(&power_domains->lock);
7050	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7051		power_well->ops->sync_hw(dev_priv, power_well);
7052		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7053								     power_well);
7054	}
7055	mutex_unlock(&power_domains->lock);
7056}
7057
7058static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7059{
7060	struct i915_power_well *cmn =
7061		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7062	struct i915_power_well *disp2d =
7063		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7064
7065	/* nothing to do if common lane is already off */
7066	if (!cmn->ops->is_enabled(dev_priv, cmn))
7067		return;
7068
7069	/* If the display might be already active skip this */
7070	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7071	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
7072		return;
7073
7074	DRM_DEBUG_KMS("toggling display PHY side reset\n");
7075
7076	/* cmnlane needs DPLL registers */
7077	disp2d->ops->enable(dev_priv, disp2d);
7078
7079	/*
7080	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7081	 * Need to assert and de-assert PHY SB reset by gating the
7082	 * common lane power, then un-gating it.
7083	 * Simply ungating isn't enough to reset the PHY enough to get
7084	 * ports and lanes running.
7085	 */
7086	cmn->ops->disable(dev_priv, cmn);
7087}
7088
7089void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7090{
7091	struct drm_device *dev = dev_priv->dev;
7092	struct i915_power_domains *power_domains = &dev_priv->power_domains;
7093
7094	power_domains->initializing = true;
7095
7096	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7097		mutex_lock(&power_domains->lock);
7098		vlv_cmnlane_wa(dev_priv);
7099		mutex_unlock(&power_domains->lock);
7100	}
7101
7102	/* For now, we need the power well to be always enabled. */
7103	intel_display_set_init_power(dev_priv, true);
7104	intel_power_domains_resume(dev_priv);
7105	power_domains->initializing = false;
7106}
7107
7108void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7109{
7110	intel_runtime_pm_get(dev_priv);
7111}
7112
7113void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7114{
7115	intel_runtime_pm_put(dev_priv);
7116}
7117
7118void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7119{
7120	struct drm_device *dev = dev_priv->dev;
7121	struct device *device = &dev->pdev->dev;
7122
7123	if (!HAS_RUNTIME_PM(dev))
7124		return;
7125
7126	pm_runtime_get_sync(device);
7127	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7128}
7129
7130void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7131{
7132	struct drm_device *dev = dev_priv->dev;
7133	struct device *device = &dev->pdev->dev;
7134
7135	if (!HAS_RUNTIME_PM(dev))
7136		return;
7137
7138	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7139	pm_runtime_get_noresume(device);
7140}
7141
7142void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7143{
7144	struct drm_device *dev = dev_priv->dev;
7145	struct device *device = &dev->pdev->dev;
7146
7147	if (!HAS_RUNTIME_PM(dev))
7148		return;
7149
7150	pm_runtime_mark_last_busy(device);
7151	pm_runtime_put_autosuspend(device);
7152}
7153
7154void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7155{
7156	struct drm_device *dev = dev_priv->dev;
7157	struct device *device = &dev->pdev->dev;
7158
7159	if (!HAS_RUNTIME_PM(dev))
7160		return;
7161
7162	pm_runtime_set_active(device);
7163
7164	/*
7165	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7166	 * requirement.
7167	 */
7168	if (!intel_enable_rc6(dev)) {
7169		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7170		return;
7171	}
7172
7173	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7174	pm_runtime_mark_last_busy(device);
7175	pm_runtime_use_autosuspend(device);
7176
7177	pm_runtime_put_autosuspend(device);
7178}
7179
7180void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7181{
7182	struct drm_device *dev = dev_priv->dev;
7183	struct device *device = &dev->pdev->dev;
7184
7185	if (!HAS_RUNTIME_PM(dev))
7186		return;
7187
7188	if (!intel_enable_rc6(dev))
7189		return;
7190
7191	/* Make sure we're not suspended first. */
7192	pm_runtime_get_sync(device);
7193	pm_runtime_disable(device);
7194}
7195
7196/* Set up chip specific power management-related functions */
7197void intel_init_pm(struct drm_device *dev)
7198{
7199	struct drm_i915_private *dev_priv = dev->dev_private;
7200
7201	if (HAS_FBC(dev)) {
7202		if (INTEL_INFO(dev)->gen >= 7) {
7203			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7204			dev_priv->display.enable_fbc = gen7_enable_fbc;
7205			dev_priv->display.disable_fbc = ironlake_disable_fbc;
7206		} else if (INTEL_INFO(dev)->gen >= 5) {
7207			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7208			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7209			dev_priv->display.disable_fbc = ironlake_disable_fbc;
7210		} else if (IS_GM45(dev)) {
7211			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7212			dev_priv->display.enable_fbc = g4x_enable_fbc;
7213			dev_priv->display.disable_fbc = g4x_disable_fbc;
7214		} else {
7215			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7216			dev_priv->display.enable_fbc = i8xx_enable_fbc;
7217			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7218
7219			/* This value was pulled out of someone's hat */
7220			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7221		}
7222	}
7223
7224	/* For cxsr */
7225	if (IS_PINEVIEW(dev))
7226		i915_pineview_get_mem_freq(dev);
7227	else if (IS_GEN5(dev))
7228		i915_ironlake_get_mem_freq(dev);
7229
7230	/* For FIFO watermark updates */
7231	if (HAS_PCH_SPLIT(dev)) {
7232		ilk_setup_wm_latency(dev);
7233
7234		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7235		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7236		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7237		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7238			dev_priv->display.update_wm = ilk_update_wm;
7239			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7240		} else {
7241			DRM_DEBUG_KMS("Failed to read display plane latency. "
7242				      "Disable CxSR\n");
7243		}
7244
7245		if (IS_GEN5(dev))
7246			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7247		else if (IS_GEN6(dev))
7248			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7249		else if (IS_IVYBRIDGE(dev))
7250			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7251		else if (IS_HASWELL(dev))
7252			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7253		else if (INTEL_INFO(dev)->gen == 8)
7254			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7255	} else if (IS_CHERRYVIEW(dev)) {
7256		dev_priv->display.update_wm = cherryview_update_wm;
7257		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7258		dev_priv->display.init_clock_gating =
7259			cherryview_init_clock_gating;
7260	} else if (IS_VALLEYVIEW(dev)) {
7261		dev_priv->display.update_wm = valleyview_update_wm;
7262		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7263		dev_priv->display.init_clock_gating =
7264			valleyview_init_clock_gating;
7265	} else if (IS_PINEVIEW(dev)) {
7266		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7267					    dev_priv->is_ddr3,
7268					    dev_priv->fsb_freq,
7269					    dev_priv->mem_freq)) {
7270			DRM_INFO("failed to find known CxSR latency "
7271				 "(found ddr%s fsb freq %d, mem freq %d), "
7272				 "disabling CxSR\n",
7273				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7274				 dev_priv->fsb_freq, dev_priv->mem_freq);
7275			/* Disable CxSR and never update its watermark again */
7276			intel_set_memory_cxsr(dev_priv, false);
7277			dev_priv->display.update_wm = NULL;
7278		} else
7279			dev_priv->display.update_wm = pineview_update_wm;
7280		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7281	} else if (IS_G4X(dev)) {
7282		dev_priv->display.update_wm = g4x_update_wm;
7283		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7284	} else if (IS_GEN4(dev)) {
7285		dev_priv->display.update_wm = i965_update_wm;
7286		if (IS_CRESTLINE(dev))
7287			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7288		else if (IS_BROADWATER(dev))
7289			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7290	} else if (IS_GEN3(dev)) {
7291		dev_priv->display.update_wm = i9xx_update_wm;
7292		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7293		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7294	} else if (IS_GEN2(dev)) {
7295		if (INTEL_INFO(dev)->num_pipes == 1) {
7296			dev_priv->display.update_wm = i845_update_wm;
7297			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7298		} else {
7299			dev_priv->display.update_wm = i9xx_update_wm;
7300			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7301		}
7302
7303		if (IS_I85X(dev) || IS_I865G(dev))
7304			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7305		else
7306			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7307	} else {
7308		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7309	}
7310}
7311
7312int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7313{
7314	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7315
7316	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7317		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7318		return -EAGAIN;
7319	}
7320
7321	I915_WRITE(GEN6_PCODE_DATA, *val);
7322	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7323
7324	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7325		     500)) {
7326		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7327		return -ETIMEDOUT;
7328	}
7329
7330	*val = I915_READ(GEN6_PCODE_DATA);
7331	I915_WRITE(GEN6_PCODE_DATA, 0);
7332
7333	return 0;
7334}
7335
7336int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7337{
7338	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7339
7340	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7341		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7342		return -EAGAIN;
7343	}
7344
7345	I915_WRITE(GEN6_PCODE_DATA, val);
7346	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7347
7348	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7349		     500)) {
7350		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7351		return -ETIMEDOUT;
7352	}
7353
7354	I915_WRITE(GEN6_PCODE_DATA, 0);
7355
7356	return 0;
7357}
7358
7359static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7360{
7361	int div;
7362
7363	/* 4 x czclk */
7364	switch (dev_priv->mem_freq) {
7365	case 800:
7366		div = 10;
7367		break;
7368	case 1066:
7369		div = 12;
7370		break;
7371	case 1333:
7372		div = 16;
7373		break;
7374	default:
7375		return -1;
7376	}
7377
7378	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7379}
7380
7381static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7382{
7383	int mul;
7384
7385	/* 4 x czclk */
7386	switch (dev_priv->mem_freq) {
7387	case 800:
7388		mul = 10;
7389		break;
7390	case 1066:
7391		mul = 12;
7392		break;
7393	case 1333:
7394		mul = 16;
7395		break;
7396	default:
7397		return -1;
7398	}
7399
7400	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7401}
7402
7403static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7404{
7405	int div, freq;
7406
7407	switch (dev_priv->rps.cz_freq) {
7408	case 200:
7409		div = 5;
7410		break;
7411	case 267:
7412		div = 6;
7413		break;
7414	case 320:
7415	case 333:
7416	case 400:
7417		div = 8;
7418		break;
7419	default:
7420		return -1;
7421	}
7422
7423	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7424
7425	return freq;
7426}
7427
7428static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7429{
7430	int mul, opcode;
7431
7432	switch (dev_priv->rps.cz_freq) {
7433	case 200:
7434		mul = 5;
7435		break;
7436	case 267:
7437		mul = 6;
7438		break;
7439	case 320:
7440	case 333:
7441	case 400:
7442		mul = 8;
7443		break;
7444	default:
7445		return -1;
7446	}
7447
7448	/* CHV needs even values */
7449	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7450
7451	return opcode;
7452}
7453
7454int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7455{
7456	int ret = -1;
7457
7458	if (IS_CHERRYVIEW(dev_priv->dev))
7459		ret = chv_gpu_freq(dev_priv, val);
7460	else if (IS_VALLEYVIEW(dev_priv->dev))
7461		ret = byt_gpu_freq(dev_priv, val);
7462
7463	return ret;
7464}
7465
7466int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7467{
7468	int ret = -1;
7469
7470	if (IS_CHERRYVIEW(dev_priv->dev))
7471		ret = chv_freq_opcode(dev_priv, val);
7472	else if (IS_VALLEYVIEW(dev_priv->dev))
7473		ret = byt_freq_opcode(dev_priv, val);
7474
7475	return ret;
7476}
7477
7478void intel_pm_setup(struct drm_device *dev)
7479{
7480	struct drm_i915_private *dev_priv = dev->dev_private;
7481
7482	mutex_init(&dev_priv->rps.hw_lock);
7483
7484	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7485			  intel_gen6_powersave_work);
7486
7487	dev_priv->pm.suspended = false;
7488	dev_priv->pm._irqs_disabled = false;
7489}
7490